Friday, February 27, 2009

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 22 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000263167000057
*Order Full Text [ ]

Title:
Direct printing of aligned carbon nanotube patterns for high-performance thin film devices

Authors:
Im, J; Lee, IH; Lee, BY; Kim, B; Park, J; Yu, W; Kim, UJ; Lee, YH; Seong, MJ; Lee, EH; Min, YS; Hong, S

Author Full Names:
Im, Jiwoon; Lee, Il-Ha; Lee, Byung Yang; Kim, Byeongju; Park, June; Yu, Woojong; Kim, Un Jeong; Lee, Young Hee; Seong, Maeng-Je; Lee, Eun Hong; Min, Yo-Sep; Hong, Seunghun

Source:
APPLIED PHYSICS LETTERS 94 (5): Art. No. 053109 FEB 2 2009

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; field effect transistors; gas sensors; nanopatterning; printing; Raman spectra; silicon compounds; thin film devices; nanofabrication

KeyWords Plus:
FIELD-EFFECT TRANSISTORS; LARGE-SCALE; RAMAN-SPECTROSCOPY; SINGLE; ARRAYS; GROWTH; DEPOSITION

Abstract:
The aligned assembly of carbon nanotubes (CNTs) on substrate presents a significant bottleneck in the fabrication of high-performance thin film devices. Here, we report a direct printing method to prepare laterally aligned thick CNT patterns over large surface regions. In this method, CNT forests were grown selectively on specific regions of one substrate, and the forest patterns were transferred on another SiO2 substrate in a laterally aligned formation while keeping their original shapes. The degree of alignment was characterized via electrical measurement and polarized Raman spectroscopy. Furthermore, we demonstrated high-performance field-effect transistors and gas sensors using our method.

Reprint Address:
Im, J, Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea.

Research Institution addresses:
[Im, Jiwoon; Lee, Byung Yang; Kim, Byeongju; Hong, Seunghun] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea; [Im, Jiwoon; Lee, Il-Ha; Yu, Woojong; Kim, Un Jeong; Lee, Eun Hong] Samsung Adv Inst Technol, Frontier Res Lab, Yongin 449712, Gyeonggi Do, South Korea; [Lee, Il-Ha; Yu, Woojong; Lee, Young Hee] Sungkyunkwan Univ, Sungkyunkwan Adv Inst Technol, Ctr Nanotubes & Nanostruct Composites, Dept Phys, Suwon 440746, South Korea; [Seong, Maeng-Je] Chung Ang Univ, Dept Phys, Seoul 156756, South Korea; [Min, Yo-Sep] Konkuk Univ, Dept Chem Engn, Seoul 143701, South Korea

E-mail Address:
elee@samsung.com; ysmin@konkuk.ac.kr; seunghun@snu.ac.kr

Cited References:
*EPAPS, EAPPLAB94038904 EPAP.
CUI Y, 2001, SCIENCE, V293, P1289.
DERYCKE V, 2002, APPL PHYS LETT, V80, P2773.
FAN ZY, 2008, NANO LETT, V8, P20, DOI 10.1021/nI071626r.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GOMMANS HH, 2000, J APPL PHYS, V88, P2509.
HILDING J, 2003, J DISPER SCI TECHNOL, V24, P1, DOI 10.1081/DIS-120017941.
HUANG Y, 2001, SCIENCE, V291, P630.
IM J, 2006, J CHEM PHYS, V124, ARTN 224707.
JAVEY A, 2003, NATURE, V424, P654, DOI 10.1038/nature01797.
KANG J, 2008, NANOTECHNOLOGY, V19, ARTN 135305.
KANG SJ, 2007, NANO LETT, V7, P3343, DOI 10.1021/nl071596s.
KOCABAS C, 2005, SMALL, V1, P1110, DOI 10.1002/smll.200500120.
KOCABAS C, 2007, NANO LETT, V7, P1195, DOI 10.1021/nl062907m.
KRUPKE R, 2003, SCIENCE, V301, P344, DOI 10.1126/science.1086534.
LEE IH, LOW TEMPERATUR UNPUB.
LIU J, 1999, CHEM PHYS LETT, V303, P125.
MARTEL R, 1998, APPL PHYS LETT, V73, P2447.
MIN YS, 2005, J AM CHEM SOC, V127, P12498, DOI 10.1021/ja054108w.
MYUNG S, 2005, ADV MATER, V17, P2361, DOI 10.1002/adma.200500682.
NURAJE N, 2004, J AM CHEM SOC, V126, P8088, DOI 10.1021/ja048617u.
PARK J, POLARIZED RAMA UNPUB.
PARK J, 2006, J KOREAN PHYS SOC, V48, P1347.
PARK SY, 2007, ADV MATER, V19, P2530, DOI 10.1002/adma.200600875.
QI P, 2003, NANO LETT, V3, P347.
RAO SG, 2003, NATURE, V425, P36, DOI 10.1038/425036a.
SKAKALOVA V, 2006, PHYS REV B, V74, ARTN 085403.
TANS SJ, 1998, NATURE, V393, P49.
ZHOU CW, 2000, SCIENCE, V290, P1552.

Cited Reference Count:
29

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0003-6951

DOI:
10.1063/1.3073748

IDS Number:
404QB

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000263260900003
*Order Full Text [ ]

Title:
Effects of charge distribution on water filling process in carbon nanotube

Authors:
Meng, LY; Li, QK; Shuai, ZG

Author Full Names:
Meng LingYi; Li QiKai; Shuai ZhiGang

Source:
SCIENCE IN CHINA SERIES B-CHEMISTRY 52 (2): 137-143 FEB 2009

Language:
English

Document Type:
Article

Author Keywords:
nanotube; micro/nanofluidic; molecular dynamics

KeyWords Plus:
PARTICLE MESH EWALD; SIMULATION; CONDUCTION; FILM; TRANSITION; MEMBRANES; CHANNELS

Abstract:
Using umbrella sampling technique with molecular dynamics simulation, we investigated the nanofluidic transport of water in carbon nanotube (CNT). The simulations showed that a positive charge modification to the carbon nanotube can slow down the water column growth process, while the negative charge modification to the carbon nanotube will, on the other hand, quicken the water column growth process. The free energy curves were obtained through the statistical process of water column growth under different charge distributions, and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.

Reprint Address:
Li, QK, Chinese Acad Sci, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China.

Research Institution addresses:
[Meng LingYi; Li QiKai; Shuai ZhiGang] Chinese Acad Sci, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China; [Meng LingYi; Li QiKai; Shuai ZhiGang] Chinese Acad Sci, Key Lab Organ Solids, Inst Chem, Beijing 100190, Peoples R China; [Shuai ZhiGang] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China

E-mail Address:
qkli@iccas.ac.cn; zgshuai@iccas.ac.cn

Cited References:
BROVCHENKO I, 2004, J PHYS-CONDENS MAT, V16, S5345, DOI 10.1088/0953-8984/16/45/004.
CORRY C, 2008, J PHYS CHEM B, V112, P1427.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FENG L, 2004, ANGEW CHEM INT EDIT, V43, P2012, DOI 10.1002/anie.200353381.
FENG XJ, 2005, ANGEW CHEM INT EDIT, V44, P5115, DOI 10.1002/anie.200501337.
FRISCH MJ, 2007, GAUSSIAN 03 REVISION.
GALLO P, 2000, J CHEM PHYS, V113, P11324.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
GORDILLO MC, 2007, PHYS REV B, V75, ARTN 085406.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 174714.
HUANG BD, 2005, J CHEM PHYS, V122, ARTN 084708.
HUMMER G, 2001, NATURE, V414, P188.
JIANG L, 2004, ANGEW CHEM INT EDIT, V43, P4338, DOI 10.1002/anie.200460333.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2001, NATURE, V412, P802.
KOSZTIN I, 2006, J CHEM PHYS, V124, ARTN 064106.
KUTANA A, 2006, NANO LETT, V6, P656, DOI 10.1021/nl052393b.
LEACH AR, 2001, MOL MODELLING PRINCI.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
MENG LY, 2008, J CHEM PHYS, V128, ARTN 134703.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
OCONNELL MJ, 2002, SCIENCE, V297, P593.
PRESTON GM, 1992, SCIENCE, V256, P385.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TORRIE GM, 1977, J COMPUT PHYS, V23, P187.
TRUSKETT TM, 2001, J CHEM PHYS, V114, P2401.
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI 10.1073/pnas.0407968101.
VANDERSPOEL D, 2005, GROMACS USER MANUAL.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG ST, 2006, ANGEW CHEM INT EDIT, V45, P1264, DOI 10.1002/anie.200502061.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
WON CY, 2006, J CHEM PHYS, V125, ARTN 114701.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
38

Times Cited:
0

Publisher:
SCIENCE CHINA PRESS; 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
1006-9291

DOI:
10.1007/s11426-009-0016-0

IDS Number:
405YU

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000263320900042
*Order Full Text [ ]

Title:
Terahertz Spectra and Normal Mode Analysis of the Crystalline VA Class Dipeptide Nanotubes

Authors:
Zhang, H; Siegrist, K; Plusquellic, DF; Gregurick, SK

Author Full Names:
Zhang, Hailiang; Siegrist, Karen; Plusquellic, David F.; Gregurick, Susan K.

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 130 (52): 17846-17857 DEC 31 2008

Language:
English

Document Type:
Article

KeyWords Plus:
SELF-CONSISTENT-FIELD; VIBRATIONAL WAVE-FUNCTIONS; VALYL-L-ALANINE; AB-INITIO; DYNAMICS CALCULATIONS; COLLOCATION METHOD; FORCE-FIELDS; SPECTROSCOPY; WATER; MOLECULES

Abstract:
Terahertz (THz) vibrational modes are characterized by nonlocal, collective molecular motions which are relevant to conformational changes and molecular functions in biological systems. We have investigated the THz spectra of a set of small bionanotubes which can serve as very simple models of membrane pores, and have examined the character of the THz modes which can impact transport processes. In this work, THz spectra of the crystalline VA class dipeptide nanotubes were calculated at both the harmonic and vibrational self-consistent field (VSCF) level using the CHARMM22 force field with periodic boundary conditions. Comparison of the calculated THz spectra against the experimental spectra revealed that the VSCF corrections generally improved the predictions in the low-frequency region. The improvements were especially manifested in the overall blue-shifts of the VSCF frequencies relative to the harmonic values, and blue shifts were attributed to the overall positive coupli!
ng strengths in all systems. Closer examination of the motions in the most significantly coupled normal mode pairs leads us to propose that, when two similar side-chain squeezing modes are coupled, the rapidly increased van der Waals interactions can lead to a stiffening of the effective potential, which in turn leads to the observed blue-shifts. However, we also noted that when the side-chain atoms become unphysically proximate and the van der Waals repulsion becomes too large, the VSCF calculations tend to deviate in the high frequency region and for the system Of L-isoleucyl-L-valine. In addition, normal-mode analysis revealed a series of channel-breathing motions in all systems except L-valyl-L-alanine. We show that the inner products of the backbone vibrations between these channel-breathing motions divided the remaining VA class dipeptide systems into two subgroups. It is suggested that these modes may facilitate a pathway for the guest molecule absorption, substituti!
on and removal in the VA class dipeptide nanotubes. Normal mod!
e analys
is also demonstrated that the THz motions may contribute to the pore permeability either directly by changing the pore size, or indirectly by affecting the solvent-host effective potentials.

Reprint Address:
Gregurick, SK, Off Biol & Environm Res, US Dept Energy, Germantown, MD 20874 USA.

Research Institution addresses:
[Zhang, Hailiang; Gregurick, Susan K.] Univ Maryland Baltimore Cty, Dept Chem & Biochem, Baltimore, MD 21250 USA; [Siegrist, Karen; Plusquellic, David F.] NIST, Phys Lab, Biophys Grp, Gaithersburg, MD 20899 USA

E-mail Address:
greguric@umbc.edu

Cited References:
ADESOKAN AA, 2007, J AM CHEM SOC, V129, P4584, DOI 10.1021/ja066903v.
ALLEN TW, 1999, J CHEM PHYS, V111, P7985.
ALLIS DG, 2006, CHEMPHYSCHEM, V7, P2398, DOI 10.1002/cphc.200600456.
ALLIS DG, 2007, CHEM PHYS LETT, V440, P203, DOI 10.1016/j.cplett.2007.04.032.
BALU R, 2008, BIOPHYS J, V94, P3217, DOI 10.1529/biophysj.107.105163.
BECKSTEIN O, 2004, PHYS BIOL, V1, P42.
BIHARY Z, 2001, J CHEM PHYS, V115, P2695.
BJARNASON JE, 2005, APPL PHYS LETT, V87, ARTN 134105.
BOWMAN JM, 1978, J CHEM PHYS, V68, P608.
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
DAY GM, 2006, J PHYS CHEM B, V110, P447, DOI 10.1021/jp055439y.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
EBBINGHAUS S, 2008, J AM CHEM SOC, V130, P2374, DOI 10.1021/ja0746520.
EBBINGHAUS S, 2008, P NATL ACAD SCI USA, V104, P20749.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
EWALD PP, 1921, ANN PHYS-BERLIN, V64, P253.
FUJISAKI H, 2005, NORMAL MODE ANAL THE.
FUJIYOSHI Y, 2002, CURR OPIN STRUC BIOL, V12, P509.
GAO XY, 2005, ADV MATER, V17, P2037, DOI 10.1002/adma.200401849.
GERBER RB, 1979, CHEM PHYS LETT, V68, P195.
GERBER RB, 1988, ADV CHEM PHYS, V70, P97.
GERBER RB, 2003, BIOPOLYMERS, V68, P370, DOI 10.1002/bip.10293.
GERBER RB, 2004, ANNU REV PHYS CHEM, V55, P55.
GHADIRI MR, 1993, NATURE, V366, P324.
GORBITZ CH, 1996, ACTA CRYSTALLOGR C 7, V52, P1764.
GORBITZ CH, 2002, ACTA CRYSTALLOGR B 5, V58, P849, DOI 10.1107/S0108768102012314.
GORBITZ CH, 2005, CRYSTENGCOMM, V7, P670, DOI 10.1039/b513055g.
GORBITZ CH, 2007, CHEM-EUR J, V13, P1022, DOI 10.1002/chem.200601427.
GREGURICK SK, 1997, J PHYS CHEM B, V101, P8595.
GREGURICK SK, 1999, J PHYS CHEM B, V103, P3476.
GREGURICK SK, 2002, J PHYS CHEM A, V106, P8696, DOI 10.1021/jp025633+.
HAGEMAN JA, 2000, J CHEM PHYS, V113, P7955.
HARTGERINK JD, 1998, CHEM-EUR J, V4, P1367.
HEUGEN U, 2006, P NATL ACAD SCI USA, V103, P12301, DOI 10.1073/pnas.0604897103.
HEYDEN M, 2008, J AM CHEM SOC, V130, P5773, DOI 10.1021/ja00781083.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JEPSEN PU, 2007, CHEM PHYS LETT, V442, P275, DOI 10.1016/j.cplett.2007.05.112.
JUNG JO, 1996, J CHEM PHYS, V105, P10332.
JUNG JO, 1996, J CHEM PHYS, V105, P10682.
KORTER TM, 2004, CHEM PHYS LETT, V385, P45, DOI 10.1016/j.cplett.2003.12.060.
KORTER TM, 2006, CHEM PHYS LETT, V418, P65, DOI 10.1016/j.cplett.2005.10.097.
MACKERELL AD, 1998, ENCY COMPUTATIONAL C, V1.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MASSON JB, 2006, P NATL ACAD SCI USA, V103, P4808, DOI 10.1073/pnas.0510945103.
MILLER Y, 2005, J PHYS CHEM A, V109, P6565, DOI 10.1021/jp058110l.
MILLER Y, 2007, J CHEM PHYS, V127, ARTN 094305.
MORITSUGU K, 2000, PHYS REV LETT, V85, P3970.
ORBITZ CH, 2003, NEW J CHEM, V27, P1789.
PEET AC, 1989, J CHEM PHYS, V90, P1746.
PELE L, 2008, J CHEM PHYS, V128, ARTN 165105.
PLUSQUELLIC DF, 2003, TERAHERTZ SENSING TE, V2.
POMES R, 1998, BIOPHYS J, V75, P33.
ROITBERG A, 1995, SCIENCE, V268, P1319.
SIEGRIST K, 2006, J AM CHEM SOC, V128, P5764, DOI 10.1021/ja058176u.
SOLDATOV DV, 2006, J AM CHEM SOC, V128, P6737, DOI 10.1021/je060474j.
WHITMIRE SE, 2003, BIOPHYS J, V85, P1269.
WILSON EB, 1955, MOL VIBRATIONS THEOR.
YANG W, 1988, CHEM PHYS LETT, V153, P98.
ZHANG SG, 2002, CURR OPIN CHEM BIOL, V6, P865.

Cited Reference Count:
60

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja805581n

IDS Number:
406UR

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000263167000055
*Order Full Text [ ]

Title:
Rotational friction of single-wall carbon nanotubes in liquid suspension

Authors:
Zimmermann, FM; Shan, JW

Author Full Names:
Zimmermann, Frank M.; Shan, Jerry W.

Source:
APPLIED PHYSICS LETTERS 94 (5): Art. No. 053107 FEB 2 2009

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; friction; hydrodynamics; polarimetry; suspensions

KeyWords Plus:
DISPERSION; TRANSPORT; FLUID; FLOW

Abstract:
The hydrodynamics of single-wall carbon nanotubes rotated in liquid suspension by an external electric field was experimentally investigated with laser polarimetry and compared with theoretical predictions. The measured rates of change of the nematic order parameter were largely consistent with theoretical predictions based on classical, no-slip hydrodynamics. This implies that, despite the nanotubes' diameter approaching the size of the solvent molecules and the reduced resistance previously reported for internal flow through carbon nanotubes, classical continuum hydrodynamics holds approximately for external flow about individual single-wall carbon nanotubes in liquids.

Reprint Address:
Shan, JW, Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ 08854 USA.

Research Institution addresses:
[Shan, Jerry W.] Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ 08854 USA; [Zimmermann, Frank M.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA; [Zimmermann, Frank M.] Rutgers State Univ, Surface Modificat Lab, Piscataway, NJ 08854 USA

E-mail Address:
jshan@jove.rutgers.edu

Cited References:
*EPAPS, 2007, EAPPLAB93034847 EPAP.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
BIERCUK MJ, 2002, APPL PHYS LETT, V80, P2767.
BROWN MS, 2007, APPL PHYS LETT, V90, ARTN 203108.
DOI M, 1986, THEORY POLYM DYNAMIC.
DUGGAL R, 2006, PHYS REV LETT, V96, ARTN 246104.
FAGAN JA, 2006, J PHYS CHEM B, V110, P23801, DOI 10.1021/jp0647434.
FAGAN JA, 2007, APPL PHYS LETT, V91, ARTN 213105.
GROSSIORD N, 2006, CHEM MATER, V18, P1089, DOI 10.1021/cm051881h.
HAPPEL J, 1965, LOW REYNOLDS NUMBER.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HONE J, 2000, APPL PHYS LETT, V77, P666.
HUMMER G, 2001, NATURE, V414, P188.
JEFFERY GB, 1922, P R SOC LOND A-CONTA, V102, P161.
KIRKWOOD JG, 1951, J CHEM PHYS, V19, P281.
KRUPKE R, 2003, SCIENCE, V301, P344, DOI 10.1126/science.1086534.
LANDAU LD, 1960, ELECTRODYNAMICS CONT.
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI 10.1073/pnas.0400352101.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MUKHERJEE A, 2005, CHEM PHYS LETT, V404, P409, DOI 10.1016/j.cplett.2005.01.125.
OCONNELL MJ, 2002, SCIENCE, V297, P593.
PERRIN F, 1934, J PHYS-PARIS, V5, P497.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
VIGOLO B, 2000, SCIENCE, V290, P1331.
ZHENG M, 2003, SCIENCE, V302, P1545.

Cited Reference Count:
26

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0003-6951

DOI:
10.1063/1.3033365

IDS Number:
404QB

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert
Cited Article:   Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires:   21 OCT 2009
Number of Citing Articles:   2 new records this week (2 in this e-mail)
Organization ID:   3b97d1bbc1878baed0ab183d8b03130b

Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.

*Record 1 of 2.
*Click Here to View Full Record
*Order Full Text [ ]
Title: Spatial Dependence of Viscosity and Thermal Conductivity through a Planar Interface
Authors: Petravic, J; Harrowell, P
Author Full Names: Petravic, Janka; Harrowell, Peter
Source: JOURNAL OF PHYSICAL CHEMISTRY B 113 (7): 2059-2065 FEB 19 2009
Language: English
Document Type: Article
KeyWords Plus: LIQUID-SOLID INTERFACE; MOLECULAR-DYNAMICS; RESISTANCE; SURFACES; FLOW
Abstract: We present a general algorithm for calculating the spatial variation of the shear viscosity and thermal conductivity through an equilibrium solid-liquid interface using the zero-flux version of the boundary fluctuation theory. In the case of an equilibrium interface between a high melting point Lennard-Jones solid and a low melting point Lennard-Jones liquid, we find that the transport coefficients deviate from the bulk values only in a narrow layer close to the interface. We observe a sliding friction of the liquid against the surface of the solid that increases with increased wetting of the solid by the liquid. The thermal conductivity, in contrast, is suppressed in the interfacial region, irrespective of how the liquid wets the solid.
Reprint Address: Petravic, J, Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia.
Research Institution addresses: [Petravic, Janka; Harrowell, Peter] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
Cited References: ALLEN MP, 1987, COMPUTER SIMULATION.
BARRAT JL, 1994, PHYS REV E, V49, P3079.
BARRAT JL, 2003, MOL PHYS, V101, P1605, DOI 10.1080/0026897031000068578.
BOCQUET L, 1997, J STAT PHYS, V89, P321.
COTTINBIZONNE C, 2005, PHYS REV LETT, V94, P6102.
EVANS DJ, 1993, PHYS REV E, V48, P65.
GE ZB, 2006, PHYS REV LETT, V96, ARTN 186101.
GUO HX, 2002, PHYS REV E 1, V66, ARTN 061503.
HELFAND E, 1960, PHYS REV, V119, P1.
MCQUARRIE DA, 2000, STAT MECH.
PETRAVIC J, 2005, PHYS REV E 1, V71, ARTN 061201.
PETRAVIC J, 2006, J CHEM PHYS, V124, ARTN 014103.
PETRAVIC J, 2006, J CHEM PHYS, V124, ARTN 044512.
PETRAVIC J, 2008, J CHEM PHYS, V128, ARTN 194710.
SIMON JM, 2004, J PHYS CHEM B, V108, P7186, DOI 10.1021/jp0375719.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1997, NATURE, V389, P360.
VINOGRADOVA OI, 1995, LANGMUIR, V11, P2213.
XUE L, 2003, J CHEM PHYS, V118, P337, DOI 10.1063/1.1525806.
Cited Reference Count: 19
Times Cited: 0
Publisher: AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
Subject Category: Chemistry, Physical
ISSN: 1520-6106
DOI: 10.1021/jp807254b
IDS Number: 406MK

*Record 2 of 2.
*Click Here to View Full Record
*Order Full Text [ ]
Title: A continuum model for the flow of thin liquid films over intermittently chemically patterned surfaces
Authors: Sprittles, JE; Shikhmurzaev, YD
Author Full Names: Sprittles, J. E.; Shikhmurzaev, Y. D.
Source: EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS 166: 159-163 JAN 2009
Language: English
Document Type: Proceedings Paper
Abstract: It is known from both experiments and molecular dynamics simulations that chemically patterning a solid surface has an effect on the flow of an adjacent liquid. This fact is in stark contrast with predictions of classical fluid mechanics where the no-slip boundary condition is insensitive to the chemistry of the solid substrate. It has been shown that the influence on the flow caused by a steep change in the wettability of the solid substrate can be described in the framework of continuum mechanics using the interface formation theory. The present work extends this study to the case of intermittent patterning. Results show that variations in wettability of the substrate can significantly affect the flow, especially of thin films, which may have applications to the design of microfluidic devices.
Reprint Address: Sprittles, JE, Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England.
Research Institution addresses: [Sprittles, J. E.; Shikhmurzaev, Y. D.] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
E-mail Address: sprittlj@maths.bham.ac.uk; yulii@for.mat.bham.ac.uk
Cited References: BLAKE TD, 2002, J COLLOID INTERF SCI, V253, P196, DOI 10.1006/jcis.2002.8513.
COTTINBIZONNE C, 2005, PHYS REV LETT, V94, P6102.
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695.
LAUGA E, 2005, HDB EXPT FLUID DYNAM.
NAVIER CLM, 1823, MEMOIRES ACAD ROYALE, V6, P389.
PRIEZJEV NV, 2005, PHYS REV E 1, V71, P1608.
SHIKHMURZAEV YD, 2005, IMA J APPL MATH, V70, P880, DOI 10.1093/imamat/hxh075.
SHIKHMURZAEV YD, 2006, PHYSICA D, V217, P121, DOI 10.1016/j.physd.2006.03.003.
SHIKHMURZAEV YD, 2007, CAPILLARY FLOWS FORM.
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878.
SPRITTLES JE, 2007, PHYS REV E 1, V76, P1602.
TABELING P, 2006, INTRO MICROFLUIDICS.
THOMPSON PA, 1997, NATURE, V389, P360.
Cited Reference Count: 13
Times Cited: 0
Publisher: EDP SCIENCES S A; 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE
Subject Category: Physics, Multidisciplinary
ISSN: 1951-6355
DOI: 10.1140/epjst/e2009-00899-5
IDS Number: 404VO

Order Full Text

All Customers
    Please contact your library administrator, or person(s) responsible for document delivery, to find out more about your organization's policy for obtaining the full text of the above articles. If your organization does not have a current document delivery provider, your administrator can contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 or 734-459-8565.
IDS Customers
    IDS customers can purchase the full text of an article (having page number, volume, and issue information) by returning this ENTIRE message as a Reply to Sender or Forward to orders@isidoc.com. Mark your choices with an X in the "Order Full Text: []" brackets for each item. For example, [X].

 Please enter your account number here:

Help Desk Contact Information
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page.


ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000263210600002
*Order Full Text [ ]

Title:
Thermo-mechanical behavior of low-dimensional systems: The local bond average approach

Authors:
Sun, CQ

Author Full Names:
Sun, Chang Q.

Source:
PROGRESS IN MATERIALS SCIENCE 54 (2): 179-307 FEB 2009

Language:
English

Document Type:
Review

KeyWords Plus:
HALL-PETCH RELATIONSHIP; AMORPHOUS-CARBON FILMS; INDUCED SURFACE STRESS; STRAIN-GRADIENT PLASTICITY; ATOMIC-FORCE MICROSCOPY; SINGLE-WALLED NANOTUBES; NI-W ALLOYS; ELECTRODEPOSITED NANOCRYSTALLINE NI; ENHANCED TENSILE DUCTILITY; RECONSTRUCTED 110 SURFACES

Abstract:
With the miniaturization of a solid, effects of surface strain and quantum trapping become increasingly important in determining its properties. As a result, low-dimensional materials manifest unusual features, especially in their energetic and mechanical behavior. The establishment of a consistent understanding on an atomic-level of the mechanism behind the fascinating behaviors of low-dimensional systems, which include monatomic chains, hollow tubes, liquid and solid surface skins, nanocavities, nanowires, and nanograins, as well as interfaces, has long been a great challenge. In this report, a literature survey is presented, followed by a theoretical analysis culminating in the development of a local bond average (LBA) approach that may complement existing approximations in terms of continuum medium and quantum computations. The LBA approach correlates the measurable quantities of a specimen to the identities of its representative bonds, and the energetic responses of the!
se bonds (bond nature, order, length and strength) to external stimuli, such as changes in temperatures and coordination environments. It is shown that the shortened and strengthened bonds between under-coordinated atoms and the consequent local strain and quantum trapping dictate, intrinsically, the mechanical behavior of systems with a high proportion of such atoms. The thermally driven softening of a substance arises from bond expansion and lattice vibrations that weaken the bonds. The competition between the energy density gain and the residual atomic cohesive energy in the relaxed surface of skin depth determines, intrinsically, the mechanical performance of a mesoscopic specimen; the competition between the activation and inhibition of the motion of atomic dislocations dominates, extrinsically, the yield strength of the specimen during plastic deformation. Therefore, the mechanical behavior of a specimen depends on its shape, size, the nature of the bonds involved, su!
rface and interface conditions, and the temperature at which t!
he physi
cal properties of the specimen is measured. Excellent agreement with existent measurements of temperature dependence of surface tension, size and temperature dependence of elasticity and extensibility, and the inverse Hall-Petch relationship in nanograins have been established. Furthermore, these agreements have led to quantitative information regarding the bond identities in monatomic chains and carbon nanotubes, as well as the factors dominating the sizes at which a grain is strongest. in addition, the interface electric repulsion between nanocontacts due to the skin trapping and the associated local charge densification may provide feasible mechanism for the superfluidity, superlubricity and superhydrophobicity as widely observed. The progress made insofar evidences the essentiality of the LBA approach from the perspective of bond formation, dissociation, relaxation and vibration and the associated energetics for the exposition of thermo-mechanical behavior of low-dimensi!
onal materials. Extending the application of the approach to junction interfaces, liquid surfaces, defects and impurities, chemically adsorbed systems, amorphous states, and substances under other applied stimuli such as pressure and electric field would contribute to better knowledge of such systems and could lead to the development of even more fascinating and profitable materials. (C) 2008 Elsevier Ltd. All rights reserved.

Reprint Address:
Sun, CQ, Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore.

Research Institution addresses:
[Sun, Chang Q.] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore; [Sun, Chang Q.] Xiangtan Univ, Minist Educ, Key Lab Low Dimens Mat & Applicat Technol, Xiangtan 411105, Hunan, Peoples R China; [Sun, Chang Q.] Tianjin Univ, Tianjin Key Lab Low Dimens Mat Phys & Preparing T, Tianjin 300072, Peoples R China

E-mail Address:
ecqsun@ntu.edu.sg

Cited References:
ABBAS Z, 2008, J PHYS CHEM C, V112, P5715, DOI 10.1021/jp709667u.
AFANASYEV KA, 2007, NANO LETT, V7, P2056, DOI 10.1021/nl070959l.
AGRAIT N, 2003, PHYS REP, V377, P81, DOI 10.1016/S0370-1573(02)00633-6.
AGRAWAL PM, 2006, COMP MATER SCI, V38, P271, DOI 10.1016/j.commatsci.2006.02.011.
AJAYAN PM, 2002, SCIENCE, V296, P705.
ALERHAND OL, 1989, PHYS REV B, V39, P12622.
AN B, 1998, JPN J APPL PHYS 1, V37, P3809.
ANDERSON OL, 1966, PHYS REV, V144, P553.
ANDREWS R, 2001, CARBON, V39, P1681.
ANDRIEVSKI RA, 1996, ACS SYM SER, V622, P294.
ANDRIEVSKI RA, 2007, SURF COAT TECH, V201, P6112, DOI 10.1016/j.surfcoat.2006.08.119.
ANDRIEVSKII RA, 2000, FIZ MET METALLOVED+, V89, P91.
ARGON AS, 2006, PHIL MAG LETT, V86, P713, DOI 10.1080/09500830600986091.
ARMSTRONG RW, 1965, ACTA METALL, V13, P759.
ARZT E, 1998, ACTA MATER, V46, P5611.
ASAKA K, 2005, PHYS REV B, V72, ARTN 115431.
ASHBY MF, 1970, PHILOS MAG, V21, P399.
ASHBY MF, 1973, ACTA METALL, V21, P149.
ASHBY MF, 1980, ENG MAT, V1.
ASTROM JA, 2004, PHYS REV LETT, V93, ARTN 215503.
AUDOIT G, 2007, J MATER CHEM, V17, P1608, DOI 10.1039/b616216a.
AYUELA A, 2005, PHYS REV B, V72, UNSP 161403(R).
BAHN SR, 2001, PHYS REV LETT, V87, ARTN 266101.
BAI XD, 2003, APPL PHYS LETT, V82, P4806, DOI 10.1063/1.1587878.
BAI XM, 2005, PROG NAT SCI, V15, P97.
BAI XM, 2006, NANO LETT, V6, P2284, DOI 10.1021/nl0617282.
BALDESSARI F, 2008, J COLLOID INTERF SCI, V325, P526, DOI 10.1016/j.jcis.2008.06.007.
BALERNA A, 1986, PHYS REV B, V34, P2293.
BALIBAR S, 2008, J PHYS-CONDENS MAT, V20, ARTN 173201.
BALIBAR S, 2008, PHYSICS, V1, P16, DOI 10.1103/PHYSICS.1.16.
BANDOW S, 1998, PHYS REV LETT, V80, P3779.
BANERJEE S, 2006, APPL SURF SCI, V253, P17, DOI 10.1016/j.apsusc.2006.05.066.
BARALDI A, 2005, PHYS REV B, V72, ARTN 075417.
BATA V, 2004, ACTA MATER, V52, P657, DOI 10.1016/j.actamat.2003.10.002.
BAUGHMAN RH, 2003, SCIENCE, V300, P268.
BEI H, 2006, PHYS REV LETT, V96, ARTN 105503.
BERBERICH F, 2003, NUCL INSTRUM METH B, V199, P54.
BERGER R, 1997, SCIENCE, V276, P2021.
BHATTACHARYYA S, 1997, APPL PHYS LETT, V71, P632.
BIENER J, 2005, APPL PHYS LETT, V87, ARTN 121908.
BIENER J, 2005, J APPL PHYS, V97, ARTN 024301.
BIENER J, 2006, NANO LETT, V6, P2379, DOI 10.1021/nl061978i.
BINNS C, 2001, SURF SCI REP, V44, P1.
BIRCH F, 1947, PHYS REV, V71, P809.
BISWAS C, 2004, PHYS REV LETT, V92, ARTN 115506.
BOM D, 2002, NANO LETTERS, V2, P615.
BOMBIS C, 2005, PHYS REV B, V72, ARTN 245408.
BORN M, 1939, J CHEM PHYS, V7, P591.
BRAZHKIN V, 2004, NAT MATER, V3, P576.
BRULS RJ, 2001, J EUR CERAM SOC, V21, P263.
BRULS RJ, 2001, J PHYS CHEM SOLIDS, V62, P783.
BUFFAT P, 1976, PHYS REV A, V13, P2287.
BURENKOV YA, 1974, FIZ TVERD TELA, V16, P1496.
CACERES D, 1999, J APPL PHYS, V86, P6773.
CALVERT P, 1999, NATURE, V399, P210.
CAMMARATA RC, 1989, PHYS REV LETT, V62, P2005.
CAMPBELL J, 1991, CASTINGS.
CANTOR B, 2004, MAT SCI ENG A-STRUCT, V375, P213, DOI 10.1016/j.mesa.2003.10.257.
CAO G, 2007, PHYS REV B, V76, ARTN 165407.
CAO GX, 2008, INT J SOLIDS STRUCT, V45, P1730, DOI 10.1016/j.ijsolstr.2007.10.019.
CAO YF, 2006, MAT SCI ENG A-STRUCT, V427, P232, DOI 10.1016/j.msea.2006.04.080.
CAO ZQ, 2006, J PHYS D APPL PHYS, V39, P5054, DOI 10.1088/0022-3727/39/23/023.
CAPPELLA B, 1999, SURF SCI REP, V14, P1.
CARDONA M, 2005, REV MOD PHYS, V77, P1174.
CARLTON CE, 2007, ACTA MATER, V55, P3749, DOI 10.1016/j.actamat.2007.02.021.
CASTRO T, 1990, PHYS REV B B, V42, P8548.
CHACON E, 2006, PHYS REV B, V74, ARTN 224201.
CHAMPION Y, 2003, SCIENCE, V300, P310.
CHANG SY, 2007, J APPL PHYS, V101, ARTN 033507.
CHANG YA, 1993, INTERMETALLICS, V1, P107.
CHATTOPADHYAY PP, 2000, Z METALLKD, V91, P1049.
CHEN B, 2002, PHYS REV B, V66, ARTN 144101.
CHEN CQ, 2006, PHYS REV LETT, V96, ARTN 075505.
CHEN DL, 2005, PHYS REV B, V72, ARTN 075341.
CHEN ZW, 2007, APPL PHYS LETT, V91, ARTN 061905.
CHEN ZW, 2007, J PHYS CHEM C, V112, P2423.
CHENG S, 2003, ACTA MATER, V51, P4505, DOI 10.1016/S1359-6454(03)00286-6.
CHIU YP, 2006, PHYS REV LETT, V97, ARTN 165504.
CHOI Y, 2002, ACTA MATER, V50, P1881.
CHUNG SM, 2005, DENT MATER, V21, P1008, DOI 10.1016/j.dental.2004.11.006.
CHUSHAK YG, 2001, J PHYS CHEM B, V105, P11605.
CI L, 2008, NANO LETT, V8, P2762, DOI 10.1021/nl8012715.
CISTON J, 2006, PHYS REV B, V74, ARTN 085401.
CITRIN PH, 1974, PHYS REV B, V10, P4948.
COEY JMD, 2006, CURR OPIN SOLID ST M, V10, P83, DOI 10.1016/j.cossms.2006.12.002.
COHEN ML, 1966, PHYS REV, V141, P789.
COMASCHI T, 2008, PHYS REV B, V77, ARTN 075432.
CONCUSTELL A, 2007, SCRIPTA MATER, V56, P85, DOI 10.1016/j.scriptamat.2006.09.026.
CONRAD H, 2002, APPL PHYS LETT, V81, P2241, DOI 10.1063/1.1507353.
CORMIER J, 2001, J APPL PHYS, V89, P99.
COUCHMAN PR, 1977, PHYS LETT A, V62, P59.
COURA PZ, 2004, NANO LETT, V4, P1187, DOI 10.1021/nl049725h.
CRABTREE RH, 1998, SCIENCE, V282, P2000.
CRAIN JN, 2005, SCIENCE, V307, P703, DOI 10.1126/science.1106911.
CUENOT S, 2004, PHYS REV B, V69, ARTN 165410.
CUMINGS J, 2000, SCIENCE, V289, P602.
CZAPLEWSKI DA, 2005, APPL PHYS LETT, V87, ARTN 161915.
DAI CS, 2004, RARE METAL MAT EN S1, V33, P1.
DALTON AB, 2003, NATURE, V423, P703.
DAO M, 2006, ACTA MATER, V54, P5421, DOI 10.1016/j.actamat.2006.06.062.
DASH JG, 1999, REV MOD PHYS, V71, P1737.
DAY J, 2007, NATURE, V450, P853, DOI 10.1038/nature06383.
DEDEUS JF, 2006, SURF COAT TECH, V201, P3615, DOI 10.1016/j.surfcoat.2006.08.116.
DELPH TJ, 2005, P ROY SOC A-MATH PHY, V461, P1869, DOI 10.1098/rspa.2004.1421.
DESAI AV, 2007, SENSOR ACTUAT A-PHYS, V134, P169, DOI 10.1016/j.sna.2006.04.046.
DESJONQUERES MC, 1993, SPRINGER SERIES SURF, V30.
DICK K, 2002, J AM CHEM SOC, V124, P2312.
DIMIDUK DM, 2006, SCIENCE, V312, P1188, DOI 10.1126/science.1123889.
DINGREVILLE R, 2005, J MECH PHYS SOLIDS, V53, P1827, DOI 10.1016/j.jmps.2005.02.012.
DODD SP, 2001, J MATER SCI, V36, P723.
DODSON BW, 1988, PHYS REV LETT, V60, P2288.
DOWLING NE, 1999, MECH BEHAV MAT ENG M.
DUCKHAM A, 2003, ACTA MATER, V51, P4083, DOI 10.1016/S1359-6454(03)00228-3.
DUNAND DC, 2004, ADV ENG MATER, V6, P369, DOI 10.1002/adem.200405576.
EGERTON RF, 2004, MICRON, V35, P399, DOI 10.1016/j.micron.2004.02.003.
EGRY I, 2005, INT J THERMOPHYS, V26, P931, DOI 10.1007/s10765-005-6675-y.
EGUCHI T, 2006, PHYS REV B, V74, UNSP 073403.
EICHEL RA, 1999, Z METALLKD, V90, P371.
ENOMOTO K, 2006, APPL PHYS LETT, V88, ARTN 153115.
ERDEMIR A, 2007, SUPERLUBICITY.
ERLEBACHER J, 2001, NATURE, V410, P450.
ESKIN DG, 2004, PROG MATER SCI, V49, P629, DOI 10.1016/S0079-6425(03)00037-9.
FALVO MR, 1997, NATURE, V389, P582.
FAN GJ, 2005, MAT SCI ENG A-STRUCT, V409, P243, DOI 10.1016/j.msea.2005.06.073.
FAUSTER T, 2000, PHYS REV B, V61, P16168.
FEDOROV AA, 2002, SCRIPTA MATER, V47, P51.
FEIBELMAN PJ, 1996, PHYS REV B, V53, P13740.
FENG G, 2006, J APPL PHYS, V99, ARTN 074304.
FERRO D, 2004, MATER CHEM PHYS, V87, P233, DOI 10.1016/j.matchemphys.2004.06.019.
FINE ME, 1953, J APPL PHYS, V24, P338.
FINNIS MW, 1974, J PHYS F MET PHYS, V4, L37.
FIORAVANTE F, 2007, APPL PHYS LETT, V91, ARTN 223115.
FIORI L, 2005, J MATER SCI, V40, P2155.
FLECK NA, 1997, ADV APPL MECH, V33, P295.
FROSETH A, 2004, ACTA MATER, V52, P2259, DOI 10.1016/j.actamat.2004.01.017.
FU HH, 2001, ACTA MATER, V49, P2567.
FU R, 2000, ACTA MATER, V48, P1729.
FU SY, 2006, COMPOS PART B-ENG, V37, P182, DOI 10.1016/j.compositesb.2005.05.018.
FU SY, 2006, KEY ENG MAT, V312, P211.
FU YQ, 1999, J MATER SCI, V34, P2269.
FU YQ, 2001, J PHYS D APPL PHYS, V34, L129.
FUJII H, 2000, METALL MATER TRANS A, V31, P1585.
FUJII H, 2006, ACTA MATER, V54, P1221, DOI 10.1016/j.actamat.2005.10.058.
GAIRE C, 2005, J NANOSCI NANOTECHNO, V5, P1893, DOI 10.1166/jnn.2005.425.
GALANAKIS I, 2002, SURF SCI, V511, P1.
GALLAS MR, 1994, J AM CERAM SOC, V77, P2917.
GANGULI D, 2008, TRANS INDIAN CERAM S, V67, P49.
GAO FM, 2003, PHYS REV LETT, V91, ARTN 015502.
GARAI J, 2007, J APPL PHYS, V101, ARTN 023514.
GARCIAMANYES S, 2005, J CHEM PHYS, V123, ARTN 114711.
GAVRILJUK VG, 1996, ISIJ INT, V36, P738.
GERBERICH WW, 2003, J MECH PHYS SOLIDS, V51, P979, DOI 10.1016/S0022-5096(03)00018-8.
GIBSON LJ, 1997, CELLULAR SOLIDS STRU.
GIGA A, 2006, SCRIPTA MATER, V55, P143, DOI 10.1016/j.scriptamat.2006.03.047.
GILBERT B, 2006, PHYS REV B, V74, ARTN 115405.
GNECCO E, 2008, J PHYS-CONDENS MAT, V20, ARTN 354004.
GOGOTSI Y, 2001, NATURE, V411, P283.
GOLDSCHMIDT VM, 1927, BER DEUT CHEM GES, V60, P1270.
GRACA S, 2007, SURF COAT TECH, V202, P538, DOI 10.1016/j.surfcoat.2007.06.031.
GREER JR, 2005, ACTA MATER, V53, P1821, DOI 10.1016/j.actamat.2004.12.031.
GREER JR, 2005, APPL PHYS A-MATER, V80, P1625, DOI 10.1007/s00339-005-3204-6.
GROSSMANN A, 1994, SURF SCI, V313, P209.
GROSSMANN A, 1995, SURF SCI, V337, P183.
GRYAZNOV VG, 1993, PROG MATER SCI, V37, P289.
GU CD, 2006, SCRIPTA MATER, V54, P579, DOI 10.1016/j.scriptamat.2005.10.041.
GU CD, 2007, SCRIPTA MATER, V57, P233, DOI 10.1016/j.scriptamat.2007.04.005.
GU MX, 2007, J APPL PHYS, V102, ARTN 083524.
GU MX, 2007, J PHYS CHEM C, V111, P13606, DOI 10.1021/jp0727087.
GU MX, 2007, J RAMAN SPECTROSC, V38, P780, DOI 10.1002/jrs.1683.
GU MX, 2007, PHYS REV B, V75, ARTN 125403.
GU MX, 2008, J PHYS CHEM B, V112, P7992, DOI 10.1021/jp077598i.
GU QF, 2008, PHYS REV LETT, V100, ARTN 045502.
GUICCIARDI S, 2004, J AM CERAM SOC, V87, P2101.
GUISBIERS G, 2007, ACTA MATER, V55, P3541, DOI 10.1016/j.actamat.2007.02.003.
GUISBIERS G, 2008, J PHYS CHEM C, V112, P4097, DOI 10.1021/jp077371n.
GUO JG, 2005, J APPL PHYS, V98, ARTN 074306.
GUO JG, 2007, NANOTECHNOLOGY, V18, ARTN 295701.
GUSEV AI, 1998, USP FIZ NAUK+, V168, P55.
GYSIN U, 2004, PHYS REV B, V69, UNSP 043403.
HAISS W, 2001, REP PROG PHYS, V64, P591.
HAKAMADA M, 2007, SCRIPTA MATER, V56, P1003, DOI 10.1016/j.scriptamat.2007.01.046.
HAKKINEN H, 2000, J PHYS CHEM B, V104, P9063.
HALAS S, 2002, J PHYS-CONDENS MAT, V14, L735.
HALICIOGLU T, 1991, SURF SCI, V259, L714.
HALL EO, 1951, P PHYS SOC B, V64, P747.
HAN XD, 2007, ADV MATER, V19, P2112, DOI 10.1002/adma.200602705.
HAN XD, 2007, NANO LETT, V7, P452, DOI 10.1021/nl0627689.
HAN XD, 2007, NANO, V2, P249.
HAN XJ, 2002, PHIL MAG LETT, V82, P451, DOI 10.1080/09500830210144382.
HAO SQ, 2006, PHYS REV LETT, V97, ARTN 086102.
HAQUE MA, 2005, THIN SOLID FILMS, V484, P364, DOI 10.1016/j.tsf.2005.02.036.
HARAGUCHI K, 2006, ADV MATER, V18, P2250, DOI 10.1002/adma.200600143.
HE J, 2008, NANO LETT, V8, P1798, DOI 10.1021/nl0733233.
HE JQ, 2005, APPL PHYS LETT, V87, ARTN 062901.
HEINZ DL, 1984, J APPL PHYS, V55, P885.
HERMANN A, 2008, J PHYS CONDENS MATT, V20, UNSP 225003.
HERNANDEZ E, 1998, PHYS REV LETT, V80, P4502.
HODGE AM, 2005, J MATER RES, V20, P554, DOI 10.1557/JMR.2005.0081.
HODGE AM, 2007, ACTA MATER, V55, P1343, DOI 10.1016/j.actamat.2006.09.038.
HOFLER HJ, 1990, SCRIPTA METALL MATER, V24, P2401.
HOLLECK H, 1986, J VAC SCI TECHNOL A, V4, P2661.
HORSTEMEYER MF, 2001, THEOR APPL FRACT MEC, V37, P49.
HOWARD A, 2002, SURF SCI, V518, P210.
HU JL, 2005, APPL PHYS LETT, V86, ARTN 151915.
HU WY, 2005, EUR PHYS J B, V45, P547, DOI 10.1140/epjb/e2005-00210-8.
HUANG JY, 2006, NATURE, V439, P281, DOI 10.1038/439281a.
HUANG WJ, 2008, NAT MATER, V7, P308, DOI 10.1038/nmat2132.
HUANG Y, 2000, J MECH PHYS SOLIDS, V48, P99.
HUQ AMA, 2008, J APPL PHYS, V103, ARTN 054306.
HURYSZ KM, 1998, MATER RES SOC SYMP P, V521, P191.
HUSSAIN F, 2006, J COMPOS MATER, V40, P1511, DOI 10.1177/0021998306067321.
HWANG IS, 2004, PHYS REV LETT, V93, ARTN 106101.
HWANG KS, 2006, APPL PHYS LETT, V89, ARTN 173905.
IBACH H, 1994, J VAC SCI TECHNOL 2, V12, P2240.
IBACH H, 1997, SURF SCI REP, V29, P193.
IGNATESCU V, 2007, SURF SCI, V601, P5459, DOI 10.1016/j.susc.2007.09.013.
IKEMOTO H, 2007, PHYS REV LETT, V99, ARTN 165503.
INOUE A, 1997, MATER T JIM, V38, P756.
JACOBSEN KW, 1987, PHYS REV B, V35, P7423.
JADZINSKY PD, 2007, SCIENCE, V318, P430, DOI 10.1126/science.1148624.
JANG D, 2003, J APPL PHYS, V93, P9282, DOI 10.1063/1.1569035.
JANSSEN GCAM, 2006, J APPL PHYS, V100, ARTN 093512.
JHI SH, 1999, NATURE, V399, P132.
JHI SH, 2001, PHYS REV LETT, V86, P3348.
JIANG B, 2004, J MECH PHYS SOLIDS, V52, P1125, DOI 10.1016/j.jumps.2003.09.002.
JIANG B, 2007, SCRIPTA MATER, V56, P169, DOI 10.1016/j.scriptamat.2006.08.070.
JIANG LY, 2006, J MECH PHYS SOLIDS, V54, P2436, DOI 10.1016/j.jmps.2006.04.009.
JIANG Q, 2000, CHEM PHYS LETT, V322, P549.
JIANG Q, 2003, APPL SURF SCI, V206, P331.
JIANG Q, 2004, J PHYS-CONDENS MAT, V16, P521, DOI 10.1088/0953-8984/16/4/001.
JIANG Q, 2008, CURR NANOSCI, V4, P179.
JIANG X, 1991, J APPL PHYS, V69, P3053.
JIANG Y, 2007, PHYS REV B, V76, ARTN 235434.
JIANG ZH, 2006, APPL PHYS LETT, V88, ARTN 143115.
JING GY, 2006, PHYS REV B, V73, ARTN 235409.
KAINDL G, 1980, PHYS REV LETT, V45, P1808.
KALA S, 2007, J ALLOY COMPD, V431, P10, DOI 10.1016/j.jallcom.2006.05.052.
KAPLANASHIRI I, 2006, P NATL ACAD SCI USA, V103, P523, DOI 10.1073/pnas.0505640103.
KARAK N, 2006, J POLYM MATER, V23, P1.
KEENE BJ, 1985, MATER SCI TECH SER, V1, P568.
KEENE BJ, 1993, INT MATER REV, V38, P157.
KILLEAN RCG, 1975, J PHYS C SOLID STATE, V8, P3510.
KIM E, 2004, NATURE, V427, P225, DOI 10.1038/nature02220.
KIM HS, 1998, SCRIPTA MATER, V39, P1057.
KIM HS, 2005, ACTA MATER, V53, P765, DOI 10.1016/j.actamat.2004.10.028.
KIM JH, 2007, APPL PHYS LETT, V90, ARTN 143521.
KIM S, 2008, APPL PHYS LETT, V93, ARTN 081911.
KIS A, 2004, NAT MATER, V3, P153, DOI 10.1038/nmat1076.
KITTEL C, 2005, INTRO SOLID STATE PH.
KIZUKA T, 2008, PHYS REV B, V77, ARTN 155401.
KLINK C, 1993, PHYS REV LETT, V71, P4350.
KLUTH P, 2004, APPL PHYS LETT, V85, P3561, DOI 10.1063/1.1803619.
KNAPP JA, 2004, J MATER RES, V19, P218.
KNAPP JA, 2008, APPL PHYS LETT, V103, UNSP 013518.
KO S, 2006, THIN SOLID FILMS, V515, P1932, DOI 10.1016/j.tsf.2006.07.169.
KOBAYASHI Y, 2005, PHYS REV B, V71, ARTN 193406.
KOBAYASHI Y, 2006, PHYS REV B, V73, ARTN 125415.
KOBAYASHI Y, 2006, PHYSICA E, V34, P678, DOI 10.1016/j.physe.2006.03.058.
KOCKS UF, 1975, PROGR MATERIALS SCIE, V19, P1.
KOIZUMI H, 2001, ULTRAMICROSCOPY, V88, P17.
KONDO Y, 2000, SCIENCE, V289, P606.
KOPYCINSKAMULLER M, 2005, NANOTECHNOLOGY, V16, P703, DOI 10.1088/0957-4484/16/6/013.
KORNER C, 2000, ADV ENG MATER, V2, P159.
KRAFT O, 2001, Z METALLKD, V92, P1068.
KRASILNIKOV NA, 2003, SOL ST PHEN, V94, P51.
KRISHNAN A, 1998, PHYS REV B, V58, P14013.
KULKARNI AJ, 2005, NANOTECHNOLOGY, V16, P2749, DOI 10.1088/0957-4484/16/12/001.
KUMAR KS, 2003, ACTA MATER, V51, P5743, DOI 10.1016/j.actamat.2003.08.032.
KURY P, 2004, REV SCI INSTRUM 1, V75, P1357, DOI 10.1063/1.1711151.
LACERDA RG, 2001, DIAM RELAT MATER, V10, P956.
LACERDA RG, 2002, J NON-CRYST SOLIDS B, V299, P805.
LACERDA RG, 2003, PHYS REV B, V68, ARTN 054104.
LASALMONIE A, 1986, J MATER SCI, V21, P1837.
LEE C, 2008, PHYS REV LETT, V101, ARTN 064501.
LEE C, 2008, SCIENCE, V321, P385, DOI 10.1126/science.1157996.
LEE J, 2004, MATER TRANS, V45, P2864.
LEE J, 2005, MEAS SCI TECHNOL, V16, P438, DOI 10.1088/0957-0233/16/2/015.
LEE J, 2005, MONATSH CHEM, V136, P1829, DOI 10.1007/s00706-005-0379-7.
LEE JK, 2006, APPL PHYS LETT, V89, ARTN 101901.
LEFEBVRE S, 2005, MAT SCI ENG A-STRUCT, V400, P150, DOI 10.1016/j.msea.2005.02.067.
LEGOAS SB, 2002, PHYS REV LETT, V88, ARTN 076105.
LEHMHUS D, 2003, MAT SCI ENG A-STRUCT, V349, P98.
LEIBSLE FM, 1993, SURF SCI, V297, P98.
LI J, J PHYS CHEM UNPUB.
LI JC, 1963, INC, V227, P239.
LI JCM, 1970, METALLURG T, V1, P1145.
LI JG, 2004, NANOTECHNOLOGY, V15, P982, DOI 10.1088/0957-4484/15/8/020.
LI L, 2005, APPL PHYS LETT, V87, ARTN 031912.
LI W, 2007, ADV MATER, V19, P3421, DOI 10.1002/adma.200601.764.
LI XD, 2003, NANO LETT, V3, P1495, DOI 10.1021/nl034525b.
LI XD, 2005, NANO LETT, V5, P1982, DOI 10.1021/nl0513885.
LI XD, 2005, NANOTECHNOLOGY, V16, P2020, DOI 10.1088/0957-4484/16/006.
LI XL, 2005, APPL PHYS LETT, V87, ARTN 222905.
LI XM, 2007, CHEM SOC REV, V36, P1350, DOI 10.1039/b602486f.
LI XX, 2003, APPL PHYS LETT, V83, P3081, DOI 10.1063/1.1618369.
LI YP, 2007, SCRIPTA MATER, V57, P117, DOI 10.1016/j.scriptamat.2007.03.032.
LIAN JS, 2006, J APPL PHYS, V99, ARTN 076103.
LIANG HY, 2005, PHYS REV B, V71, ARTN 241403.
LIANG LH, 2002, PHYSICA B, V322, P188.
LIANG LH, 2008, J APPL PHYS, V103, ARTN 084314.
LIAO K, 2001, APPL PHYS LETT, V79, P4225.
LINDEMANN FA, 1910, PHYS Z, V11, P609.
LITOVCHENKO V, 2002, PHYS REV B, V65, ARTN 153108.
LIU AY, 1989, SCIENCE, V245, P841.
LIU E, 1999, SURF COAT TECH, V120, P601.
LIU H, 2004, J APPL POLYM SCI, V94, P211, DOI 10.1002/app.20862.
LIU HH, J NANOSCI N IN PRESS.
LIU MY, 2003, SCRIPTA MATER, V49, P167, DOI 10.1016/S1359-6462(03)00211-2.
LIU Q, 2006, MATER RES BULL, V41, P1430, DOI 10.1016/j.materresbull.2006.02.008.
LIU W, 2006, PHYS REV B, V73, ARTN 205421.
LIU YL, 2008, J PHYS-CONDENS MAT, V20, ARTN 335216.
LOUAT N, 1985, ACTA METALL, V33, P59.
LOUCHET F, 2006, PHYS REV LETT, V97, ARTN 075504.
LU C, 2005, PHYS REV E 2, V72, ARTN 027101.
LU C, 2007, PHIL MAG LETT, V87, P409, DOI 10.1080/09500830701203156.
LU CS, 2006, J MATER SCI, V41, P937, DOI 10.1007/s10853-006-6577-9.
LU GH, 2004, PHYS REV B, V69, ARTN 134106.
LU GH, 2006, PHYS REV B, V73, ARTN 224115.
LU GH, 2008, APPL PHYS LETT, V92, ARTN 211906.
LU HM, 2005, J PHYS CHEM B, V109, P15463, DOI 10.1021/jp0516341.
LU JP, 1997, PHYS REV LETT, V79, P1297.
LU K, 1996, MAT SCI ENG R, V16, P161.
LU L, 2000, SCIENCE, V287, P1463.
LU L, 2005, ACTA MATER, V53, P2169, DOI 10.1016/j.actamat.2005.01.031.
LU M, 2006, CARBON, V44, P383, DOI 10.1016/j.carbon.2005.09.007.
LU Y, 2005, CHINESE PHYS LETT, V22, P2346.
LUBOMIRSKY I, 2006, SOLID STATE IONICS, V177, P1639, DOI 10.1016/j.ssi.2006.01.020.
LUCAS M, 2007, PHILOS MAG, V87, P2135, DOI 10.1080/14786430701225799.
LUK VK, 1991, J APPL MECH-T ASME, V58, P1.
LUND AC, 2004, PHYS REV B, V69, ARTN 012101.
LYNCH RW, 1966, J CHEM PHYS, V44, P181.
MA DDD, 2003, SCIENCE, V299, P1874.
MA E, 2003, SCRIPTA MATER, V49, P663, DOI 10.1016/S1359-6462(03)00396-8.
MA E, 2004, APPL PHYS LETT, V85, P4932, DOI 10.1063/1.1814431.
MA G, 2008, APPL PHYS LETT, V92, UNSP 083105.
MA ZS, 2008, J APPL PHYS, V103, ARTN 043512.
MACKENZIE JH, 1950, P PHYS SOC B, V63, P2.
MACKENZIE M, 2006, APPL PHYS LETT, V88, ARTN 192112.
MAGLIONE M, 2008, J PHYS-CONDENS MAT, V20, ARTN 322202.
MAGNUSSEN OM, 1995, PHYS REV LETT, V74, P4444.
MAGOMEDOV MN, 2004, PHYS SOLID STATE+, V46, P954.
MAGOMEDOV MN, 2005, RUSS J PHYS CHEM+, V79, P711.
MAHNKE HE, 2005, THIN SOLID FILMS, V480, P279, DOI 10.1016/j.tsf.2004.11.059.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MALYGIN GA, 2007, PHYS SOLID STATE+, V49, P1013, DOI 10.1134/S106378340706001710..
MANIKA E, 2006, ACTA MATER, V54, P2049, DOI 10.1016/j.actamat.2005.12.031.
MARKS LD, 1994, REP PROG PHYS, V57, P603.
MARSZALEK PE, 2000, P NATL ACAD SCI USA, V97, P6282.
MARTIN CD, 2005, APPL PHYS LETT, V86, ARTN 061910.
MARTIN CJ, 1977, J PHYS C SOLID STATE, V10, P3521.
MARTINES E, 2005, NANO LETT, V5, P2097, DOI 10.1021/n1051435t.
MASUMURA RA, 1998, ACTA MATER, V46, P4527.
MATHUR A, 2007, APPL PHYS LETT, V90, ARTN 061910.
MATTILA S, 2006, SURF SCI, V600, P1168, DOI 10.1016/j.susc.2006.08.038.
MAYRHOFER PH, 2006, PROG MATER SCI, V51, P1032, DOI 10.1016/j.pmatsci.2006.02.002.
MERCER JR, 1996, SURF SCI, V352, P173.
MESAROVIC SD, 2007, SCRIPTA MATER, V56, P157, DOI 10.1016/j.scriptamat.2006.09.021.
METENIER K, 2002, CARBON, V40, P1765.
MEYERS MA, 2006, PROG MATER SCI, V51, P427, DOI 10.1016/j.pmatsci.2005.08.003.
MIAO MS, 2007, PHYS REV B, V76, ARTN 195209.
MILLER JT, 2006, J CATAL, V240, P222, DOI 10.1016/j.jcat.2006.04.004.
MILLER RE, 2000, NANOTECHNOLOGY, V11, P139.
MIRABELLA S, 2006, APPL PHYS LETT, V88, ARTN 191910.
MIRONETS O, 2008, PHYS REV LETT, V100, ARTN 096103.
MIRSHAMS RA, 2004, MAT SCI ENG A-STRUCT, V372, P252, DOI 10.1016/j.msea.2004.01.010.
MISHIN Y, 1999, PHYS REV B, V59, P3393.
MIYAKE K, 2006, APPL PHYS LETT, V89, ARTN 031925.
MO HD, 2006, PHYS REV LETT, V96, ARTN 096107.
MODROW H, 2004, APPL SPECTROSC REV, V39, P183, DOI 10.1081/ASR-120030955.
MOHAMED FA, 2007, METALL MATER TRANS A, V38, P340, DOI 10.1007/s11661-006-9057-6.
MOOK WM, 2007, PHYS REV B, V75, ARTN 214112.
MUGELE F, 2005, J PHYS-CONDENS MAT, V17, R705, DOI 10.1088/0953-8984/17/28/R01.
MURNAGHAN FD, 1944, P NATL ACAD SCI USA, V30, P244.
NAKAJIMA K, 2006, POLYMER, V47, P2505, DOI 10.1016/j.polymer.2005.12.092.
NAKAJIMA M, 2006, IEEE T NANOTECHNOL, V5, P243, DOI 10.1109/TNANO.2006.874048.
NAKAMURA F, 1996, PHYS REV B, V54, P10061.
NAKANISHI H, 2000, JPN J APPL PHYS 1, V39, P6487.
NANDA KK, 2002, PHYS REV A, V66, ARTN 013208.
NANDA KK, 2005, APPL PHYS LETT, V87, ARTN 021909.
NANDANPAWAR ML, 1978, J APPL PHYS, V49, P3976.
NARAYAN J, 2002, J NANOPART RES, V4, P265.
NARDELLI MB, 1998, PHYS REV B, V57, R4277.
NARDELLI MB, 1998, PHYS REV LETT, V81, P4656.
NDUWIMANA A, 2003, APPL SURF SCI, V219, P129, DOI 10.1016/S0169-4332(03)00598-1.
NGO LT, 2006, NANO LETT, V6, P2964, DOI 10.1021/nl0619397.
NI H, 2006, APPL PHYS LETT, V88, ARTN 043108.
NI H, 2006, NANOTECHNOLOGY, V17, P3591, DOI 10.1088/0957-4484/17/14/039.
NIEH TG, 2005, INTERMETALLICS, V13, P377, DOI 10.1016/j.intermet.2004.07.029.
NIIMI Y, 2006, PHYSICA E, V34, P100, DOI 10.1016/j.physe.2006.02.037.
NIKOLAEV P, 1997, CHEM PHYS LETT, V266, P422.
NILSSON SG, 2004, APPL PHYS LETT, V85, P3555, DOI 10.1063/1.1807945.
NIX WD, 1998, J MECH PHYS SOLIDS, V46, P411.
NOOR A, 2008, ANGEW CHEM INT EDIT, P47, DOI 10.1002/ANIE.200801160.
NOVAES FD, 2003, PHYS REV LETT, V90, ARTN 036101.
NOVOSELOV KS, 2004, SCIENCE, V306, P666.
NOVOTNY V, 1972, PHYS REV LETT, V28, P901.
OGATA S, 2002, SCIENCE, V298, P807.
OHGI T, 2002, PHYS REV B, V66, ARTN 115410.
OHNISHI H, 1998, NATURE, V395, P780.
OKAMOTO M, 2006, MATER SCI TECH-LOND, V22, P756, DOI 10.1179/174328406X101319.
OMAR MA, 1975, ELEMENTARY SOLID STA.
ONO N, 2004, MATER LETT, V58, P39, DOI 10.1016/S0167-577X(03)00410-5.
ORLIKOWSKI D, 1999, PHYS REV LETT, V83, P4132.
OUYANG G, 2006, APPL PHYS LETT, V89, ARTN 031904.
OUYANG G, 2006, APPL PHYS LETT, V89, ARTN 183104.
OUYANG G, 2006, APPL PHYS LETT, V98, UNSP 031904.
OUYANG G, 2006, CHEM PHYS LETT, V420, P65, DOI 10.1016/j.cplett.2005.12.044.
OUYANG G, 2006, PHYS REV B, V74, ARTN 195408.
OUYANG G, 2008, J PHYS CHEM B, V112, P5027, DOI 10.1021/jp71l530q.
OVIDKO IA, 2005, INT MATER REV, V50, P65, DOI 10.1179/174328005X14294.
PALDEY S, 2003, MAT SCI ENG A-STRUCT, V342, P58.
PALUMBO G, 1990, SCRIPTA METALL MATER, V24, P2347.
PAN LK, 2004, NANOTECHNOLOGY, V15, P802.
PAN LK, 2005, APPL SURF SCI, V240, P19, DOI 10.1016/j.apsusc.2004.06.022.
PAN ZY, 2006, J PHYS D APPL PHYS, V39, P2796, DOI 10.1088/0022-3727/39/13/024.
PANDE CS, 2004, MAT SCI ENG A-STRUCT, V367, P171, DOI 10.1016/j.msea.2003.09.100.
PARADIS PF, 2005, J APPL PHYS, V97, ARTN 053506.
PARADIS PF, 2005, JPN J APPL PHYS, V44, P5082.
PARAIDIS PF, 2005, APPL PHYS LETT, V86, UNSP 041901.
PARTHASARATHY TA, 2007, SCRIPTA MATER, V56, P313, DOI 10.1016/j.scriptamat.2006.09.016.
PAULING L, 1947, J AM CHEM SOC, V69, P542.
PENG SA, 1994, J PHYS CHEM SOLIDS, V55, P707.
PETCH NJ, 1953, J IRON STEEL I, V174, P25.
PEY KL, 2005, MICROELECTRON ENG, V80, P353, DOI 10.1016/j.mee.2005.04.091.
PHILIPS JC, 1969, COVALENT BONDING CRY.
POA CH, 2002, APPL PHYS LETT, V81, P853.
POA CHP, 2003, J VAC SCI TECHNOL B, V21, P1710, DOI 10.1116/1.1591747.
POLLET L, 2008, PHYS REV LETT, V101, ARTN 097202.
POPOVIC ZS, 2005, PHYS REV LETT, V94, ARTN 176805.
PRASHER RS, 1999, INT J HEAT MASS TRAN, V42, P1991.
PRAVICA M, 2006, PHYS REV B, V74, ARTN 104107.
PRICE WJ, 2006, J PHYS CHEM A, V110, P1382, DOI 10.1021/jp0544540.
PRZYBOROWSKI M, 1995, J CRYST GROWTH, V151, P60.
PUGNO NM, 2004, PHILOS MAG, V84, P2829, DOI 10.1080/14786430412331280382.
QADRI SB, 1996, APPL PHYS LETT, V69, P2205.
QI WH, 2003, CHEM PHYS LETT, V372, P632, DOI 10.1016/S0009-2614(03)00470-6.
QIAO L, 2008, APPL PHYS LETT, V92, ARTN 231908.
QIN XY, 2002, J PHYS-CONDENS MAT, V14, P2605.
RABE U, 1996, REV SCI INSTRUM, V67, P3281.
RADU I, 2006, APPL PHYS LETT, V89, ARTN 031912.
RAO CNR, 2002, CHEM-EUR J, V8, P29.
RAST S, 2000, REV SCI INSTRUM, V71, P2772.
RASTEI MV, 2007, PHYS REV LETT, V99, ARTN 246102.
REEBER RR, 2000, J MATER RES, V15, P40.
REISS H, 1948, J COLLOID SCI, V3, P551.
RICE RW, 2005, J MATER SCI, V40, P983.
ROBINSON I, 2008, NAT MATER, V7, P275, DOI 10.1038/nmat2144.
ROBINSON IK, 2005, SURF SCI, V575, P321, DOI 10.1016/j.susc.2004.11.035.
RODRIGUES V, 2001, PHYS REV B, V63, ARTN 073405.
RODUNER E, 2006, CHEM SOC REV, V35, P583, DOI 10.1039/b502142c.
ROSNERKUHN M, 1999, SURF SCI, V443, P159.
ROST MJ, 2003, SURF SCI, V547, P71, DOI 10.1016/j.susc.2003.10.006.
RUBIOBOLLINGER G, 2001, PHYS REV LETT, V87, ARTN 026101.
RUSANOV AI, 2005, SURF SCI REP, V58, P111, DOI 10.1016/j.surfrep.2005.08.002.
SADER JE, 2002, J APPL PHYS, V91, P9354.
SAHARA R, 2006, PHYS REV B, V73, ARTN 184102.
SAKAI H, 1996, SURF SCI, V351, P285.
SALMON M, 1998, PHYS REV B, V28, P1158.
SALVETAT JP, 1999, ADV MATER, V11, P161.
SALVETAT JP, 1999, PHYS REV LETT, V82, P944.
SAMMALKORPI M, 2004, PHYS REV B, V70, ARTN 245416.
SANCHEZPORTAL D, 1999, PHYS REV LETT, V83, P3884.
SANDER D, 1991, PHYS REV B, V43, P4263.
SANDER D, 1992, SURF SCI, V272, P318.
SANDERS PG, 1997, ACTA MATER, V45, P4019.
SANDERS PG, 1997, MAT SCI ENG A-STRUCT, V234, P77.
SANTUCCI SC, 2004, PHYS REV LETT, V93, ARTN 106105.
SASAKI S, 2006, SCIENCE, V313, P1098, DOI 10.1126/science.1130879.
SATO F, 2005, APPL PHYS A-MATER, V81, P1527, DOI 10.1007/s00339-005-3390-2.
SAUER BB, 2002, MACROMOLECULES, V35, P7024, DOI 10.1021/ma0202437.
SAUERLAND S, 1993, THERMOCHIM ACTA, V218, P445.
SCARPA F, 2008, J PHYS D APPL PHYS, V41, ARTN 085306.
SCHAAF P, 2002, PROG MATER SCI, V47, P1.
SCHADE J, 1986, P 115 ANN M TMS AIME, P233.
SCHIOTZ J, 1998, NATURE, V391, P561.
SCHIOTZ J, 1999, PHYS REV B, V60, P11971.
SCHIOTZ J, 2003, SCIENCE, V301, P1357.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SCHUH CA, 2002, SCRIPTA MATER, V46, P735.
SCHUH CA, 2003, ACTA MATER, V51, P431, DOI 10.1016/S1359-6454(02)00427-5.
SHANDIZ MA, 2008, J PHYS-CONDENS MAT, V20, ARTN 325237.
SHARMA P, 2003, APPL PHYS LETT, V82, P535, DOI 10.1063/1.1539929.
SHARMA P, 2004, J APPL MECH-T ASME, V71, P663, DOI 10.1115/1.1781177.
SHELEG AU, 1976, IZV AKAD NAUK BSSR S, V3, P126.
SHENG HW, 1996, PHIL MAG LETT, V73, P179.
SHENOY VB, 2005, PHYS REV B, V71, ARTN 094104.
SHERMAN D, 1999, ADV ENG MATER, V1, P161.
SHI FG, 1994, J MATER RES, V9, P1307.
SHI X, 1997, MATER RES SOC SYMP P, V436, P293.
SHIM HW, 2005, APPL PHYS LETT, V86, ARTN 151912.
SHIMIZU RN, 2000, J APPL POLYM SCI, V76, P1831.
SHIN CS, 2003, J APPL PHYS 1, V93, P6025, DOI 10.1063/1.1568521.
SHIN MK, 2006, APPL PHYS LETT, V89, ARTN 231929.
SHPYRKO OG, 2004, PHYS REV B, V70, ARTN 224206.
SIAVOSHHAGHIGHI A, 2007, J PHYS CHEM C, V111, P7980, DOI 10.1021/jp070242m.
SIEGEL RW, 1995, NANOSTRUCT MATER, V6, P205.
SINGH VN, 2005, J NANOSCI NANOTECHNO, V5, P431, DOI 10.1166/jnn.2005.056.
SINNOT MJ, 1963, SOLID STATE ENG.
SIOW KS, 2004, MATER SCI TECH-LOND, V20, P285, DOI 10.1179/026708304225010460.
SJOSTROM H, 1995, PHYS REV LETT, V75, P1336.
SKRIPOV VP, 1981, PHYS STATUS SOLIDI A, V66, P109.
SLACK GA, 1975, J APPL PHYS, V46, P89.
SLOAN J, 2002, ACCOUNTS CHEM RES, V35, P1054, DOI 10.1021/ar010169x.
SMIT RHM, 2001, PHYS REV LETT, V87, ARTN 266102.
SMOLUCHOWSKI R, 1941, PHYS REV, V60, P661.
SOCOLIUC A, 2004, PHYS REV LETT, V92, ARTN 134301.
SOCOLIUC A, 2006, SCIENCE, V313, P207, DOI 10.1126/science.1125874.
SOLON J, 2006, PHYS REV LETT, V97, ARTN 098103.
SOMEKAWA H, 2004, SCRIPTA MATER, V50, P1361, DOI 10.1016/j.scriptamat.2004.02.042.
SONG HW, 1999, NANOSTRUCT MATER, V11, P203.
SONG JH, 2005, NANO LETT, V5, P1954, DOI 10.1021/nl051334v.
SONG QL, 2004, MICROELECTRON J, V35, P817, DOI 10.1016/j.mejo.2004.06.013.
SORENSEN MR, 1998, PHYS REV B, V57, P3283.
SRINIVASAN SG, 2005, PHYS REV LETT, V94, P25502.
STAN G, 2008, APPL PHYS LETT, V92, ARTN 241908.
STENGEL M, 2006, NATURE, V443, P679, DOI 10.1038/nature05148.
STEPANYUK VS, 2005, PHYS REV B, V72, ARTN 153407.
STOLYAROV VV, 2006, APPL PHYS LETT, V88, ARTN 041905.
STREITZ FH, 1994, PHYS REV B, V49, P10699.
SUN CQ, J PHYS CHEM IN PRESS.
SUN CQ, 1997, VACUUM, V48, P535.
SUN CQ, 1998, APPL PHYS LETT, V72, P1706.
SUN CQ, 2000, SURF REV LETT, V7, P347.
SUN CQ, 2001, J APPL PHYS, V90, P2615.
SUN CQ, 2002, J APPL PHYS, V91, P2051.
SUN CQ, 2002, J PHYS CHEM B, V106, P10701, DOI 10.1021/jp025868l.
SUN CQ, 2003, J PHYS CHEM B, V107, P7544, DOI 10.1021/jp035070h.
SUN CQ, 2003, PROG MATER SCI, V48, P521.
SUN CQ, 2004, J PHYS CHEM B, V108, P2162, DOI 10.1021/jp035815j.
SUN CQ, 2004, PHYS REV B, V69, ARTN 045105.
SUN CQ, 2004, PHYS REV B, V69, ARTN 245402.
SUN CQ, 2005, APPL SURF SCI, V246, P6, DOI 10.1016/j.apsusc.2004.11.021.
SUN CQ, 2005, J PHYS CHEM B, V109, P415, DOI 10.1021/jp045894e.
SUN CQ, 2005, NANOTECHNOLOGY, V16, P1290, DOI 10.1088/0957-4484/16/8/051.
SUN CQ, 2005, PHYS REV B, V72, ARTN 134301.
SUN CQ, 2006, APPL SURF SCI, V252, P2101, DOI 10.1016/j.apsusc.2005.03.136.
SUN CQ, 2006, PHYS REV B, V73, ARTN 075408.
SUN CQ, 2007, PROG SOLID STATE CH, V35, P1, DOI 10.1016/j.progsolidstchem.2006.03.001.
SUN RD, 2001, J PHYS CHEM B, V105, P1984.
SUN WC, 2006, APPL PHYS LETT, V89, ARTN 091915.
SURYANARAYANA C, 1995, INT MATER REV, V40, P41.
SYASSEN K, 1978, J APPL PHYS, V49, P4427.
SZUECS F, 1999, J APPL PHYS, V86, P6010.
TAKAI Y, 2001, PHYS REV LETT, V87, ARTN 106105.
TAKAYANAGI K, 1998, COMMUNICATION.
TAN EPS, 2005, APPL PHYS LETT, V87, ARTN 123106.
TAN EPS, 2006, COMPOS SCI TECHNOL, V66, P1102, DOI 10.1016/j.compscitech.2005.10.003.
TANAKA T, 2004, Z METALLKD, V95, P818.
TANAKA Y, 2005, PROG POLYM SCI, V30, P1, DOI 10.1016/j.progpolymsci.2004.11.003.
TERRONES M, 2000, SCIENCE, V288, P1226.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
THOSTENSON ET, 2001, COMPOS SCI TECHNOL, V61, P1899.
TIEN SK, 2006, THIN SOLID FILMS, V515, P1097, DOI 10.1016/j.tsf.2006.07.162.
TJONG SC, 2004, MAT SCI ENG R, V45, P1, DOI 10.1016/j.mser.2004.07.001.
TORRES JA, 1999, SURF SCI, V426, L441.
TOSTMANN H, 1999, PHYS REV B, V59, P783.
TOTH LE, 1971, TRANSITION METAL CAR.
TREACY MMJ, 1996, NATURE, V381, P678.
TRIPATHI S, 2008, J NANOSCI NANOTECHNO, V8, P2955, DOI 10.1166/jnn.2008.151.
TSAI YC, 2008, ANGEW CHEM INT EDIT, V47, DOI 10.1002/ANIE.200801286.
TU ZC, 2002, PHYS REV B, V65, ARTN 233407.
TUNG CH, 2003, APPL PHYS LETT, V83, P2223, DOI 10.1063/1.1611649.
UCHIC MD, 2004, SCIENCE, V305, P986.
UMEMOTO K, 2001, PHYS REV B, V64, ARTN 193409.
UNTIEDT C, 2002, PHYS REV B, V66, UNSP 083418.
URYADOV VG, 2005, RUSS J PHYS CHEM+, V79, P2016.
VALIEV RZ, 2000, PROG MATER SCI, V45, P103.
VALLEE R, 2001, NANOTECHNOLOGY, V12, P68.
VANSWYGENHOVEN H, 2002, PHYS REV B, V66, ARTN 024101.
VANSWYGENHOVEN H, 2003, ADV ENG MATER, V5, P345, DOI 10.1002/adem.200310080.
VANSWYGENHOVEN H, 2004, NAT MATER, V3, P399, DOI 10.1038/nmat1136.
VANSWYGENHOVEN H, 2006, MATER SCI FORUM, V503, P193.
VAZ F, 2002, THIN SOLID FILMS, V408, P160.
VENNILA S, 2006, APPL PHYS LETT, V89, ARTN 261901.
VEPREK RG, 2006, MAT SCI ENG A-STRUCT, V422, P205, DOI 10.1016/j.msea.2006.02.020.
VEPREK S, 1995, THIN SOLID FILMS, V268, P64.
VEPREK S, 1997, SURF COAT TECH, V97, P15.
VEPREK S, 1997, THIN SOLID FILMS, V297, P145.
VEPREK S, 1999, J VAC SCI TECHNOL A, V17, P2401.
VEPREK S, 2002, J VAC SCI TECHNOL B, V20, P650.
VEPREK S, 2005, THIN SOLID FILMS, V476, P1, DOI 10.1016/j.tsf.2004.10.053.
VEPREK S, 2007, SURF COAT TECH, V201, P6064, DOI 10.1016/j.surfcoat.2006.08.112.
VODENITCHAROVA T, 2003, PHYS REV B, V68, ARTN 165401.
VOGELSBERGER W, 2001, Z PHYS CHEM 9, V215, P1099.
VOLKERT CA, 2006, APPL PHYS LETT, V89, ARTN 061920.
WACHTMAN JB, 1961, PHYS REV, V122, P1754.
WACHTMAN JB, 1997, MECH THERMAL PROPERT, P139.
WACLAWSKI BJ, 1978, PHYS REV LETT, V41, P583.
WALTERS DA, 1999, APPL PHYS LETT, V74, P3803.
WANG C, 2007, J APPL PHYS, V101, ARTN 013501.
WANG CY, 2008, NANOTECHNOLOGY, V19, ARTN 195704.
WANG EG, 1999, ADV MATER, V11, P1129.
WANG HP, 2004, APPL PHYS LETT, V85, P3414, DOI 10.1063/1.1808880.
WANG LF, 2005, PHYS REV LETT, V95, ARTN 105501.
WANG XW, SOLID STATE IN PRESS.
WANG YH, 2004, THIN SOLID FILMS, V462, P227, DOI 10.1016/j.tsf.2004.05.038.
WANG YM, 2002, APPL PHYS LETT, V80, P2395.
WANG YM, 2002, NATURE, V419, P912, DOI 10.1038/nature01133.
WANG ZD, 2006, COMPOS PART A-APPL S, V37, P74, DOI 10.1016/j.compositesa.2005.04.018.
WANG ZP, 1997, J APPL MECH-T ASME, V64, P503.
WAS GS, 1996, THIN SOLID FILMS, V286, P1.
WATSON RE, 1976, PHYS REV B, V14, P18.
WAUTELET M, 2004, J PHYS-CONDENS MAT, V16, L163, DOI 10.1088/0953-8984/16/12/L01.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
WOLF D, 2005, ACTA MATER, V53, P1, DOI 10.1016/j.actamat.2004.08.045.
WOLSKA A, 2007, PHYS REV B, V75, ARTN 113201.
WONG EW, 1997, SCIENCE, V277, P1971.
WONG KFV, 2008, NANOTECHNOLOGY, V19, ARTN 345702.
WRONSKI CRM, 1967, BRIT J APPL PHYS, V18, P1731.
WU B, 2005, NAT MATER, V4, P525, DOI 10.1038/nmat1403.
WU B, 2006, NANO LETT, V6, P468, DOI 10.1021/nl052427f.
WU HA, 2006, MECH RES COMMUN, V33, P9, DOI 10.1016/j.mechrescom.2005.05.012.
WU XF, 2007, J APPL PHYS, V102, ARTN 044306.
WU YH, 2005, POLYM ENG SCI, V45, P1522, DOI 10.1002/pen.20423.
XIA YN, 2003, ADV MATER, V15, P353.
XIAO F, 2006, MAT SCI ENG B-SOLID, V132, P183, DOI 10.1016/j.mseb.2006.02.017.
XIE D, 2004, J PHYS-CONDENS MAT, V16, L401, DOI 10.1088/0953-8984/16/36/L01.
XIE D, 2005, PHYS STATUS SOLIDI B, V242, R76, DOI 10.1002/pssb.200510036.
XIONG QH, 2006, NANO LETT, V6, P1904, DOI 10.1021/nl060978f.
XU WH, 2004, KEY ENG MAT 1&2, V261, P1587.
XU XJ, 2002, APPL PHYS LETT, V81, P2833, DOI 10.1063/1.1511532.
YAKOBSON BI, 1996, PHYS REV LETT, V76, P2511.
YAMAKOV V, 2003, NAT MATER, V2, P43.
YAMAKOV V, 2003, PHIL MAG LETT, V83, P385, DOI 10.1080/0950083031000120891.
YAMASAKI T, 1998, NANOSTRUCT MATER, V10, P375.
YAN JM, 2005, CHEMPHYSCHEM, V6, P2099, DOI 10.1002/cphc.200500143.
YANG CC, 2006, SOLID STATE COMMUN, V139, P148, DOI 10.1016/j.ssc.2006.05.035.
YANG FQ, 2003, J APPL PHYS, V93, P9304, DOI 10.1063/1.1569980.
YANG FQ, 2004, J APPL PHYS, V95, P3516, DOI 10.1063/1.1664030.
YANSON AI, 1998, NATURE, V395, P783.
YAO WJ, 2002, J PHYS-CONDENS MAT, V14, P7479.
YEUNG TCA, 2005, PHYS REV B, V72, P55417.
YEUNG TCA, 2006, PHYS REV B, V74, UNSP 155417.
YIP S, 2004, NAT MATER, V3, P11, DOI 10.1038/nmat1053.
YU J, 2005, CHINESE PHYS LETT, V22, P2429.
YU MF, 2000, SCIENCE, V287, P637.
YUM K, 2004, J APPL PHYS, V96, P3933, DOI 10.1063/1.1787912.
ZAICHENKO SG, 1999, INTERFACE SCI, V7, P57.
ZANCHET D, 2000, CHEM PHYS LETT, V323, P167.
ZENG XT, 2003, THIN SOLID FILMS, V424, P99.
ZHANG CL, 2006, APPL PHYS LETT, V89, ARTN 081904.
ZHANG G, 2005, J PHYS CHEM B, V109, P23823, DOI 10.1021/jp0558167.
ZHANG JM, 2006, J PHYS CHEM SOLIDS, V67, P1623, DOI 10.1016/j.jpcs.2006.02.008.
ZHANG LC, 2001, INT J MECH SCI, V43, P1985.
ZHANG LX, 2006, APPL PHYS LETT, V89, ARTN 183111.
ZHANG P, 2003, PHYS REV LETT, V90, P45502.
ZHANG RF, 2007, APPL PHYS LETT, V90, ARTN 191903.
ZHANG TY, 2002, J MATER RES, V17, P1715.
ZHANG TY, 2008, J APPL PHYS, V103, ARTN 104308.
ZHANG Y, 2006, PHYS REV B, V73, ARTN 064109.
ZHAO J, 2001, J APPL PHYS, V90, P3280.
ZHAO M, 2003, J ALLOY COMPD, V361, P160, DOI 10.1016/S0925-8388(03)00415-8.
ZHAO M, 2007, PHYS REV B, V75, ARTN 085427.
ZHAO MH, 2003, ACTA MATER, V51, P4461, DOI 10.1016/S1359-6465(03)00281-7.
ZHAO Q, 2004, J COLLOID INTERF SCI, V280, P174.
ZHAO QZ, 2002, PHYS REV B, V65, ARTN 144105.
ZHAO Y, 2007, NANOSCALE RES LETT, V2, P476.
ZHAO YH, 1997, PHYS REV B, V56, P14330.
ZHAO YS, 2007, NANO LETT, V7, P426, DOI 10.1021/nl062685s.
ZHAO ZW, 2004, J APPL PHYS, V95, P4147, DOI 10.1063/1.1686905.
ZHENG WT, 1996, J VAC SCI TECHNOL A, V14, P2696.
ZHENG WT, 2006, PROG SOLID STATE CH, V34, P1, DOI 10.1016/j.progsolidstchem.2005.12.001.
ZHENG XJ, 2006, APPL PHYS LETT, V89, ARTN 153110.
ZHONG J, 2001, ACTA MATER, V49, P2897.
ZHOU LG, 2004, APPL PHYS LETT, V84, P1940, DOI 10.1063/1.1682698.
ZHOU LG, 2006, INT J MULTISCALE COM, V4, P19.
ZHOU X, 2000, PHYS REV B, V62, P13692.
ZHOU Y, 2003, SCRIPTA MATER, V48, P825, PII S1359-6462(02)00511-0.

Cited Reference Count:
668

Times Cited:
2

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Materials Science, Multidisciplinary

ISSN:
0079-6425

DOI:
10.1016/j.pmatsci.2008.08.001

IDS Number:
405GI

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000263167000055
*Order Full Text [ ]

Title:
Rotational friction of single-wall carbon nanotubes in liquid suspension

Authors:
Zimmermann, FM; Shan, JW

Author Full Names:
Zimmermann, Frank M.; Shan, Jerry W.

Source:
APPLIED PHYSICS LETTERS 94 (5): Art. No. 053107 FEB 2 2009

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; friction; hydrodynamics; polarimetry; suspensions

KeyWords Plus:
DISPERSION; TRANSPORT; FLUID; FLOW

Abstract:
The hydrodynamics of single-wall carbon nanotubes rotated in liquid suspension by an external electric field was experimentally investigated with laser polarimetry and compared with theoretical predictions. The measured rates of change of the nematic order parameter were largely consistent with theoretical predictions based on classical, no-slip hydrodynamics. This implies that, despite the nanotubes' diameter approaching the size of the solvent molecules and the reduced resistance previously reported for internal flow through carbon nanotubes, classical continuum hydrodynamics holds approximately for external flow about individual single-wall carbon nanotubes in liquids.

Reprint Address:
Shan, JW, Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ 08854 USA.

Research Institution addresses:
[Shan, Jerry W.] Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ 08854 USA; [Zimmermann, Frank M.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA; [Zimmermann, Frank M.] Rutgers State Univ, Surface Modificat Lab, Piscataway, NJ 08854 USA

E-mail Address:
jshan@jove.rutgers.edu

Cited References:
*EPAPS, 2007, EAPPLAB93034847 EPAP.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
BIERCUK MJ, 2002, APPL PHYS LETT, V80, P2767.
BROWN MS, 2007, APPL PHYS LETT, V90, ARTN 203108.
DOI M, 1986, THEORY POLYM DYNAMIC.
DUGGAL R, 2006, PHYS REV LETT, V96, ARTN 246104.
FAGAN JA, 2006, J PHYS CHEM B, V110, P23801, DOI 10.1021/jp0647434.
FAGAN JA, 2007, APPL PHYS LETT, V91, ARTN 213105.
GROSSIORD N, 2006, CHEM MATER, V18, P1089, DOI 10.1021/cm051881h.
HAPPEL J, 1965, LOW REYNOLDS NUMBER.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HONE J, 2000, APPL PHYS LETT, V77, P666.
HUMMER G, 2001, NATURE, V414, P188.
JEFFERY GB, 1922, P R SOC LOND A-CONTA, V102, P161.
KIRKWOOD JG, 1951, J CHEM PHYS, V19, P281.
KRUPKE R, 2003, SCIENCE, V301, P344, DOI 10.1126/science.1086534.
LANDAU LD, 1960, ELECTRODYNAMICS CONT.
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI 10.1073/pnas.0400352101.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MUKHERJEE A, 2005, CHEM PHYS LETT, V404, P409, DOI 10.1016/j.cplett.2005.01.125.
OCONNELL MJ, 2002, SCIENCE, V297, P593.
PERRIN F, 1934, J PHYS-PARIS, V5, P497.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
VIGOLO B, 2000, SCIENCE, V290, P1331.
ZHENG M, 2003, SCIENCE, V302, P1545.

Cited Reference Count:
26

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0003-6951

DOI:
10.1063/1.3033365

IDS Number:
404QB

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000263298700040>
*Order Full Text [ ]
AU Stadermann, M
Sherlock, SP
In, JB
Fornasiero, F
Park, HG
Artyukhin, AB
Wang, YM
De Yoreo, JJ
Grigoropoulos, CP
Bakajin, O
Chernov, AA
Noy, A
AF Stadermann, Michael
Sherlock, Sarah P.
In, Jung-Bin
Fornasiero, Francesco
Park, Hyung Gyu
Artyukhin, Alexander B.
Wang, Yinmin
De Yoreo, James J.
Grigoropoulos, Costas P.
Bakajin, Olgica
Chernov, Alexander A.
Noy, Aleksandr
TI Mechanism and Kinetics of Growth Termination in Controlled Chemical
Vapor Deposition Growth of Multiwall Carbon Nanotube Arrays
SO NANO LETTERS
LA English
DT Article
ID PARTICLES; CATALYSTS
AB We have investigated growth kinetics of multiwall carbon nanotube
(MWCNT) arrays produced by catalytic thermal decomposition of ethylene
gas in hydrogen, water, and argon mixture. The MWCNT growth rate
exhibits a nonmonotonic dependence on total pressure and reaches a
maximum at similar to 750 Torr of total pressure. Water concentrations
in excess of 3000 ppm lead to the decrease in the observed growth rate.
Optimal pressure and water concentration combination results in a
reliable growth of well-aligned MWCNT arrays at a maximum growth rate
of similar to 30 mu m/min. These MWCNT arrays can reach heights of up
to 1 mm with typical standard deviations for the array height of less
than 8% over a large number of process runs spread over the time of 8
months. Nanotube growth rate in this optimal growth region remains
essentially constant until growth reaches an abrupt and irreversible
termination. We present a quantitative model that shows how
accumulation of the amorphous carbon patches at the catalyst particle
surface and the carbon diffusion to the growing nanotube perimeter
causes this abrupt growth cessation. The influence of the partial
pressures of ethylene and hydrogen on the ethylene decomposition
driving force explains the nonlinear behavior of the growth rate as a
function of total process pressure.
C1 [Stadermann, Michael; Sherlock, Sarah P.; In, Jung-Bin; Fornasiero, Francesco; Park, Hyung Gyu; Artyukhin, Alexander B.; Wang, Yinmin; Bakajin, Olgica; Chernov, Alexander A.; Noy, Aleksandr] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Park, Hyung Gyu] Lawrence Livermore Natl Lab, Engn Directorate, Livermore, CA 94550 USA.
[In, Jung-Bin; Park, Hyung Gyu; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[De Yoreo, James J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Bakajin, Olgica] Univ Calif Davis, Ctr Biophoton Sci & Technol, Sacramento, CA 95616 USA.
[Noy, Aleksandr] Univ Calif Merced, Sch Nat Sci, Merced, CA 95344 USA.
RP Noy, A, Lawrence Livermore Natl Lab, Phys & Life Sci Directorate,
Livermore, CA 94550 USA.
EM noyl@llnl.gov
CR ABILDPEDERSEN F, 2006, PHYS REV B, V73, ARTN 115419
AVRAMI M, 1941, J CHEM PHYS, V9, P177
CHERNOV AA, 1984, MODERN CRYSTALLOGRAP, V36, P517
CHRISTEN HM, 2004, NANO LETT, V4, P1939, DOI 10.1021/nl048856f
CI LJ, 2001, CHEM PHYS LETT, V349, P191
CI LJ, 2007, ADV MATER, V19, P3300, DOI 10.1002/adma.200602974
DAI HJ, 2002, ACCOUNTS CHEM RES, V35, P1035, DOI 10.1021/ar0101640
DELZEIT L, 2001, CHEM PHYS LETT, V348, P368
FAN SS, 1999, SCIENCE, V283, P512
FUTABA DN, 2005, PHYS REV LETT, V95, ARTN 056104
HAFNER JH, 1998, CHEM PHYS LETT, V296, P195
HATA K, 2004, SCIENCE, V306, P1362
HELVEG S, 2004, NATURE, V427, P426, DOI 10.1038/nature02278
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
JIANG DE, 2003, PHYS REV B, V67, ARTN 214103
JOHNSON WA, 1939, T AM I MIN MET ENG, V135, P416
KOLMOGOROV AN, 1937, IZV AKAD NAUK SSSR M, V1, P355
KONG J, 1998, NATURE, V395, P878
MESHOT ER, 2008, APPL PHYS LETT, V92, ARTN 113107
NIU CM, 1997, APPL PHYS LETT, V70, P1480
PURETZKY AA, 2005, APPL PHYS A-MATER, V81, P223, DOI
10.1007/s00339-005-3256-7
PURETZKY AA, 2008, NANOTECHNOLOGY, V19, P55605
SARIDARA C, 2005, ANAL CHEM, V77, P7094, DOI 10.1021/ac050812j
SU M, 2000, CHEM PHYS LETT, V322, P321
TIBBETTS GG, 1987, CARBON, V25, P367
XIANG R, 2008, J PHYS CHEM C, V112, P4892, DOI 10.1021/jp710730x
NR 27
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
DI 10.1021/nl803277g
PD FEB
VL 9
IS 2
BP 738
EP 744
SC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary
GA 406MD
UT ISI:000263298700040
ER

PT J
*Record 2 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000263167100033>
*Order Full Text [ ]
AU Ball, CD
MacWilliam, ND
Percus, JK
Bowles, RK
AF Ball, C. D.
MacWilliam, N. D.
Percus, J. K.
Bowles, R. K.
TI Normal and anomalous diffusion in highly confined hard disk fluid
mixtures
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE diffusion; liquid mixtures; liquid theory; Monte Carlo methods;
particle size
ID BINARY ADSORBATE MIXTURES; SINGLE-FILE DIFFUSION; DUAL-MODE DIFFUSION;
DIMENSIONAL NANOPOROUS MATERIALS; CARBON NANOTUBES; ACCELERATED
DIFFUSION; JOSEPHSON-JUNCTIONS; CHAOTIC SYSTEMS; SELF-DIFFUSION;
SEPARATION
AB Monte Carlo simulation is used to study binary mixtures of
two-dimensional hard disks, confined to long, narrow, structureless
pores with hard walls, in a regime of pore sizes where the large
particles exhibit single file diffusion while the small particles
diffuse normally. The dynamics of the small particles can be understood
in the context of a hopping time, tau(21), that measures the time it
takes for a small particle to escape the single file cage formed by its
large particle neighbors, and can be linked to the long time diffusion
coefficient. We find that tau(21) follows a power law as a function of
the reduced pore radius for a wide range of particle size ratios with
an exponent, alpha, that is independent of the size ratio, but linearly
dependent on the Monte Carlo step size used in the dynamic scheme. The
mean squared displacement of the small particles as a function of time
exhibits two dynamic crossovers. The first, from normal to anomalous
diffusion, occurs at intermediate times then the system returns to
normal diffusion in the long time limit. We also find that the
diffusion coefficient is related to tau(21) through a power law with
exponent beta=-0.5, as predicted by theory. Finally, we show that
particle separation in a binary mixture will be optimal at the pore
radius that causes the large particles to undergo their transition from
normal to anomalous diffusion.
C1 [Ball, C. D.; MacWilliam, N. D.; Bowles, R. K.] Univ Saskatchewan, Dept Chem, Saskatoon, SK S7N 5C9, Canada.
[Percus, J. K.] NYU, Dept Phys, New York, NY 10003 USA.
[Percus, J. K.] NYU, Courant Inst Math Sci, New York, NY 10012 USA.
RP Ball, CD, Univ Saskatchewan, Dept Chem, Saskatoon, SK S7N 5C9, Canada.
EM richard.bowles@usask.ca
CR ADHANGALE P, 2002, MOL PHYS, V100, P2727, DOI 10.1080/00268970210133224
ADHANGALE P, 2003, SEPAR SCI TECHNOL, V38, P977, DOI
10.1081/SS-120018119
AYAPPA KG, 1998, LANGMUIR, V14, P880
BOWLES RK, 2004, J CHEM PHYS, V121, P10668, DOI 10.1063/1.1811075
CHANDLER D, 1978, J CHEM PHYS, V68, P2959
FRENKEL D, 2002, UNDERSTANDING MOL SI
GEISEL T, 1985, PHYS REV LETT, V54, P616
GELB LD, 1999, REP PROG PHYS, V62, P1573
GITTERMAN M, 2000, PHYS REV E A, V62, P6065
HAHN K, 1996, J PHYS CHEM-US, V316, P310
HAHN K, 1998, J CHEM PHYS, V109, P5691
HAHN K, 1998, J PHYS CHEM B, V102, P5766
HARRIS TE, 1965, J APPL PROBAB, V2, P323
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
KALINAY P, 2007, J CHEM PHYS, V126, ARTN 194708
KEIL FJ, 2000, REV CHEM ENG, V16, P71
KOLLMANN M, 2003, PHYS REV LETT, V90, ARTN 180602
KUTNER R, 1984, PHYS REV B, V30, P4382
LEE KH, 2004, J PHYS CHEM B, V108, P9861, DOI 10.1021/jp036791j
LEVITT DG, 1973, PHYS REV A, V8, P3050
LIN BH, 2005, PHYS REV LETT, V94, ARTN 216001
LUTZ C, 2004, PHYS REV LETT, V93, ARTN 026001
MAO ZG, 2001, J PHYS CHEM B, V105, P6916, DOI 10.1021/jp0103272
MON KK, 2002, J CHEM PHYS, V117, P2289
MON KK, 2005, J CHEM PHYS, V122, ARTN 214503
MON KK, 2006, J CHEM PHYS, V125, ARTN 244704
MON KK, 2007, J CHEM PHYS, V127, ARTN 094702
MON KK, 2007, J PHYS CHEM C, V111, P15995, DOI 10.1021/jp0738558
MON KK, 2008, J CHEM PHYS, V128, ARTN 197102
PERCUS JK, 1974, PHYS REV A, V9, P557
SHLESINGER MF, 1985, PHYS REV LETT, V54, P2551
SHOLL DS, 1997, J CHEM PHYS, V107, P4384
SHOLL DS, 1998, J CHEM PHYS, V109, P5693
WEI QH, 2000, SCIENCE, V287, P625
WIGNER E, 1932, Z PHYS CHEM B-CHEM E, V19, P203
ZWANZIG R, 1992, J PHYS CHEM-US, V96, P3926
NR 36
TC 0
PU AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON
QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
DI 10.1063/1.3074296
PD FEB 7
VL 130
IS 5
AR 054504
SC Physics, Atomic, Molecular & Chemical
GA 404QC
UT ISI:000263167100033
ER

PT J
*Record 3 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000263167000055>
*Order Full Text [ ]
AU Zimmermann, FM
Shan, JW
AF Zimmermann, Frank M.
Shan, Jerry W.
TI Rotational friction of single-wall carbon nanotubes in liquid suspension
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE carbon nanotubes; friction; hydrodynamics; polarimetry; suspensions
ID DISPERSION; TRANSPORT; FLUID; FLOW
AB The hydrodynamics of single-wall carbon nanotubes rotated in liquid
suspension by an external electric field was experimentally
investigated with laser polarimetry and compared with theoretical
predictions. The measured rates of change of the nematic order
parameter were largely consistent with theoretical predictions based on
classical, no-slip hydrodynamics. This implies that, despite the
nanotubes' diameter approaching the size of the solvent molecules and
the reduced resistance previously reported for internal flow through
carbon nanotubes, classical continuum hydrodynamics holds approximately
for external flow about individual single-wall carbon nanotubes in
liquids.
C1 [Shan, Jerry W.] Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ 08854 USA.
[Zimmermann, Frank M.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Zimmermann, Frank M.] Rutgers State Univ, Surface Modificat Lab, Piscataway, NJ 08854 USA.
RP Shan, JW, Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ
08854 USA.
EM jshan@jove.rutgers.edu
CR *EPAPS, 2007, EAPPLAB93034847 EPAP
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI
10.1016/j.cbpa.2005.10.006
BIERCUK MJ, 2002, APPL PHYS LETT, V80, P2767
BROWN MS, 2007, APPL PHYS LETT, V90, ARTN 203108
DOI M, 1986, THEORY POLYM DYNAMIC
DUGGAL R, 2006, PHYS REV LETT, V96, ARTN 246104
FAGAN JA, 2006, J PHYS CHEM B, V110, P23801, DOI 10.1021/jp0647434
FAGAN JA, 2007, APPL PHYS LETT, V91, ARTN 213105
GROSSIORD N, 2006, CHEM MATER, V18, P1089, DOI 10.1021/cm051881h
HAPPEL J, 1965, LOW REYNOLDS NUMBER
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HONE J, 2000, APPL PHYS LETT, V77, P666
HUMMER G, 2001, NATURE, V414, P188
JEFFERY GB, 1922, P R SOC LOND A-CONTA, V102, P161
KIRKWOOD JG, 1951, J CHEM PHYS, V19, P281
KRUPKE R, 2003, SCIENCE, V301, P344, DOI 10.1126/science.1086534
LANDAU LD, 1960, ELECTRODYNAMICS CONT
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI
10.1073/pnas.0400352101
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MUKHERJEE A, 2005, CHEM PHYS LETT, V404, P409, DOI
10.1016/j.cplett.2005.01.125
OCONNELL MJ, 2002, SCIENCE, V297, P593
PERRIN F, 1934, J PHYS-PARIS, V5, P497
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643
VIGOLO B, 2000, SCIENCE, V290, P1331
ZHENG M, 2003, SCIENCE, V302, P1545
NR 26
TC 0
PU AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON
QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
DI 10.1063/1.3033365
PD FEB 2
VL 94
IS 5
AR 053107
SC Physics, Applied
GA 404QB
UT ISI:000263167000055
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================