Friday, May 29, 2009

ISI Web of Knowledge Alert - Maibaum, L

ISI Web of Knowledge Citation Alert

Cited Article: Maibaum, L. A coarse-grained model of water confined in a hydrophobic tube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265964800019
*Order Full Text [ ]

Title:
General discussion

Authors:
Luzar; Willard; Patel; Paulaitis; Feibelman; Salmeron; Hodgson; Klein; Lynden-Bell; Jungwirth; Christenson; Van Der Niet; Debenedetti; Perkin; Held; Feibelman; Salmeron; Nutt; von Klitzing; Lutzenkirchen; Rao; Thurmer; Buch; Slater; Finney; Vega; Roeselova; Fuchs; Bonn; Bovensiepen; Rovere; Bako; Michaelides; Wu; Fraxedas; Tobias

Author Full Names:
Luzar; Willard; Dr Patel; Dr Paulaitis; Dr Feibelman; Dr Salmeron; Hodgson; Klein; Lynden-Bell; Jungwirth; Dr Christenson; Van Der Niet; Debenedetti; Dr Perkin; Dr Held; Dr Feibelman; Dr Salmeron; Dr Nutt; Dr von Klitzing; Dr Luetzenkirchen; Dr Rao; Dr Thuermer; Buch; Dr Slater; Finney; Vega; Dr Roeselova; Fuchs; Bonn; Dr Bovensiepen; Rovere; Dr Bako; Dr Michaelides; Wu; Dr Fraxedas; Tobias

Source:
FARADAY DISCUSSIONS 141: 309-346 2009

Language:
English

Document Type:
Editorial Material

KeyWords Plus:
ICE-I-H; MOLECULAR-DYNAMICS SIMULATIONS; POLARIZATION FORCE MICROSCOPY; RADIAL-DISTRIBUTION FUNCTIONS; ANTIFREEZE PROTEIN; WATER-STRUCTURE; CAPILLARY EVAPORATION; VIRIAL-COEFFICIENTS; NONUNIFORM LIQUIDS; POTENTIAL TIP5P

Cited References:
AKINOJO O, 2008, J CHEM PHYS, V129, ARTN 064108.
ARAGONES JL, 2007, J CHEM PHYS, V127, ARTN 154518.
BALMER TE, 2008, LANGMUIR, V24, P1566, DOI 10.1021/la702391m.
BARKER JA, 1962, J CHEM PHYS, V36, P2564.
BENJAMIN KM, 2007, J PHYS CHEM B, V111, P11463, DOI 10.1021/jp0710685.
BLUHM H, 1999, J CHEM PHYS, V111, P6947.
BLUHM H, 2002, J PHYS-CONDENS MAT, V14, L227.
BOLTON K, 2000, J PHYS CHEM B, V104, P1590.
BOVENSIEPEN U, 2008, J PHYS CHEM C UNPUB.
BRAUNSCHWEIG B, 2008, J PHYS CHEM C, V112, P1751.
BUCH V, 1998, J PHYS CHEM B, V102, P8641.
BUCH V, 2008, P NATL ACAD SCI USA, V105, P5969, DOI 10.1073/pnas.0710129105.
CABRERASANFELIX P, 2007, PHYS REV B, V76, ARTN 205438.
CALDWELL JW, 1995, J PHYS CHEM-US, V99, P6208.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHEM YG, 2004, J PHYS CHEM B, V108, P19874.
CHEN YG, 2006, P NATL ACAD SCI USA, V103, P7560, DOI 10.1073/pnas.0600282103.
CHOUDHURY N, 2008, J PHYS CHEM B, V112, P6296, DOI 10.1021/jp801852v.
CHRISTENSON HK, 1993, J PHYS CHEM-US, V97, P12034.
CLAY C, 2004, CHEM PHYS LETT, V388, P89, DOI 10.1016/j.cplett.2004.02.076.
CLAY C, 2004, PHYS REV LETT, V92, ARTN 046102.
CONDE MM, 2008, J CHEM PHYS, V129, ARTN 014702.
DEVLIN JP, 2007, J CHEM PHYS, V127.
DOCHERTY H, 2006, J CHEM PHYS, V125, UNSP 074510.
DOERING DL, 1982, SURF SCI, V123, P305.
DUCKER WA, 1994, J AM CERAM SOC, V77, P437.
DYER PJ, 2008, J CHEM PHYS, V129, ARTN 024508.
ENG PJ, 2000, SURF SCI, V12, P1029.
FARADZHEV NS, 2005, CHEM PHYS LETT, V415, P165, DOI 10.1016/j.cplett.2005.08.119.
GALLAGHER M, 2009, FARADAY DISCUSS, V141, P231.
GALLAGHER ME, 2007, SURF SCI, V601, P268, DOI 10.1016/j.susc.2006.09.034.
GHOUFI A, 2008, J CHEM PHYS, V128, ARTN 154716.
GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1323.
GLADYS, UNPUB.
HAQ S, 2002, SURF SCI, V505, P171.
HAQ S, 2006, PHYS REV B, V73, ARTN 115414.
HAQ S, 2007, J PHYS CHEM C, V111, P5946, DOI 10.1021/jp065328e.
HELD G, 1994, SURF SCI, V316, P92.
HU XL, 2008, SURF SCI, V602, P960, DOI 10.1016/j.susc.2007.12.032.
HUANG X, 2003, P NATL ACAD SCI USA, V100, P11953, DOI 10.1073/pnas.1934837100.
ICHIYE T, 2006, J CHEM PHYS, V124, ARTN 134504.
KATSOV K, 2001, J PHYS CHEM B, V105, P6738.
KNIGHT C, 2006, J CHEM PHYS, V125, ARTN 064506.
KNIGHT C, 2006, PHYS REV E 2, V73, ARTN 056113.
KOLAFA J, 2008, COLLECT CZECH CHEM C, V73, P481, DOI 10.1135/cccc20080481.
LEUNG K, 2000, J CHEM PHYS, V113, P5845.
LISAL M, 2002, J CHEM PHYS, V117, P8892, DOI 10.1063/1.1514572.
LUM K, 1997, PHYS REV E, V56, P6283.
LUM K, 1998, THESIS U CALIFORNIA.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
LUZAR A, 2000, J CHEM PHYS, V113, P5836.
MACDOWELL LG, 2003, J CHEM PHYS, V119, P11367, DOI 10.1063/1.1622373.
MADARASZ A, 2007, J CHEM PHYS, V126, ARTN 234707.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MCCORMICK TA, 2003, PHYS REV E 1, V68, ARTN 061601.
MCGRATH MJ, 2006, MOL PHYS, V104, P3619, DOI 10.1080/00268970601014781.
MILLER TF, 2007, P NATL ACAD SCI USA, V104, P14559, DOI 10.1073/pnas.0705830104.
MUCHOVA E, 2008, J CHEM PHYS UNPUB.
MUGARZA A, 2008, J PHYS CHEM C, V112, P14052, DOI 10.1021/jp8026622.
NADA H, 2008, J PHYS CHEM B, V112, P7111, DOI 10.1021/jp711977g.
NARTEN AH, 1976, J CHEM PHYS, V64, P1106.
NESHYBA S, 2008, J PHYS CHEM C UNPUB.
NICHOLSON BF, 2006, J CRYST GROWTH, V293, P78, DOI 10.1016/j.jcrysgro.2006.04.077.
NUTT DR, 2002, J CHEM PHYS, V117, P800.
NUTT DR, 2007, J CHEM THEORY COMPUT, V3, P1550, DOI 10.1021/ct700053u.
NUTT DR, 2008, J AM CHEM SOC, V130, P13066, DOI 10.1021/ja8034027.
OCKO BM, 2008, PHYS REV LETT, V101, ARTN 039601.
PAN D, 2008, PHYS REV LETT, V101, ARTN 155703.
PASCHEK D, 2004, J CHEM PHYS, V120, P6674, DOI 10.1063/1.1652015.
PENDRY JB, 1974, LOW ENERGY ELECTRON, P228.
PERKIN S, 2005, J PHYS CHEM B, V109, P3832, DOI 10.1021/jp047746u.
PERKIN S, 2006, LANGMUIR, V22, P6142, DOI 10.1021/la053097h.
PERKIN S, 2006, PHYS REV LETT, V96, ARTN 038301.
PETRIDES M, 1999, EUR J NEUROSCI, V2, P11.
POPOVITZBIRO R, 1994, J AM CHEM SOC, V116, P1179.
POYNOR A, 2008, PHYS REV LETT, V101, ARTN 039602.
PRICE DJ, 2004, J CHEM PHYS, V121, P10096, DOI 10.1063/1.1808117.
PUISTO SR, 2003, SURF REV LETT, V10, P487.
PUSZTAI L, 2008, J CHEM PHYS, V129, ARTN 184103.
RICK SW, 2004, J CHEM PHYS, V120, P6085, DOI 10.1063/1.1652434.
RODGERS JM, 2006, PHYS REV LETT, V97, ARTN 097801.
RODGERS JM, 2008, J PHYS-CONDENS MAT, V20, ARTN 494206.
RODGERS JM, 2008, P NATL ACAD SCI US.
ROWLINSON JS, 1951, T FARADAY SOC, V47, P120.
ROY R, 2008, MATER RES INNOV, V12, P3, DOI 10.1179/143307508/270875.
SADTCHENKO V, 2002, LANGMUIR, V18, P4632.
SAVAGE H, 1986, WATER SCI REV, V2, P67.
SAVAGE HFJ, 1986, NATURE, V322, P717.
SLATER B, 2007, COMMUNICATION.
SMOLIN N, 2008, J PHYS CHEM B, V112, P6193, DOI 10.1021/jp710546e.
SOPER AK, 2000, CHEM PHYS, V258, P121.
TENWOLDE PR, 2001, PHYS REV E, V258.
TENWOLDE PR, 2001, PHYS REV E, V65, ARTN 011201.
TENWOLDE PR, 2002, P NATL ACAD SCI USA, V99, P6539.
THURMER K, 2008, PHYS REV B, V77, ARTN 195425.
THURMER K, 2008, PHYS REV LETT, V100, ARTN 186101.
VACHA R, 2008, J PHYS CHEM C, V112, P7689, DOI 10.1021/jp800888b.
VEGA C, 2005, PHYS CHEM CHEM PHYS, V7, P1450, DOI 10.1039/b418934e.
VEGA C, 2006, MOL PHYS, V104, P3583, DOI 10.1080/00268970600967948.
WATKINS M, 2008, UNPUB.
WEEKS JD, 1971, J CHEM PHYS, V54, P5237.
WEEKS JD, 1998, PHYS REV LETT, V81, P4400.
WEEKS JD, 2002, ANNU REV PHYS CHEM, V53, P533, DOI 10.1146/annurev.physchem.53.100201.133929.
WEEKS JD, 2008, COMMUNICATION.
WHALLEY E, 1984, J CHEM PHYS, V81, P4087.
WILLARD AP, 2008, J PHYS CHEM B, V112, P6187, DOI 10.1021/jp077186+.
WILLARD AP, 2009, FARADAY DISCUSS, V141, P209, DOI 10.1039/b805786a.
XU L, 1998, J PHYS CHEM B, V102, P540.
XU L, 1998, LANGMUIR, V14, P5841.
YONETANI Y, 2006, J CHEM PHYS, V124, ARTN 204501.
ZHANG L, 2008, J AM CHEM SOC, V130, P7686, DOI 10.1021/ja8011116.
ZIMBITAS G, 2005, J CHEM PHYS, V123, ARTN 174701.
ZIMBITAS G, 2008, J CHEM PHYS, V128, ARTN 074701.

Cited Reference Count:
113

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical

ISSN:
1364-5498

IDS Number:
444EZ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 22 OCT 2009
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265939200033
*Order Full Text [ ]

Title:
Hydroelectric Voltage Generation Based on Water-Filled Single-Walled Carbon Nanotubes

Authors:
Yuan, QZ; Zhao, YP

Author Full Names:
Yuan, Quanzi; Zhao, Ya-Pu

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 131 (18): 6374-+ MAY 13 2009

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; CHANNEL; FLOW

Abstract:
A DFT/MD mutual iterative method was employed to give insights into the mechanism of voltage generation based on water-fitted single-walled carbon nanotubes (SWCNTs). Our calculations showed that a constant voltage difference of several mV would generate between the two ends of a carbon nanotube, due to interactions between the water dipole chains and charge carriers in the tube. Our work validates this structure of a water-fitted SWCNT as a promising candidate for a synthetic nanoscale power cell, as well as a practical nanopower harvesting device at the atomic level.

Reprint Address:
Zhao, YP, Chinese Acad Sci, State Key Lab Nonlinear Mech, Inst Mech, Beijing 100190, Peoples R China.

Research Institution addresses:
[Yuan, Quanzi; Zhao, Ya-Pu] Chinese Acad Sci, State Key Lab Nonlinear Mech, Inst Mech, Beijing 100190, Peoples R China

E-mail Address:
yzhao@imech.ac.cn

Cited References:
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503.
BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI 10.1073/pnas.0408098102.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
FRISCH MJ, 2004, GAUSSION 03 REVISION.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GHOSH S, 2004, PHYS REV B, V70, ARTN 205423.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
KRAL P, 2001, PHYS REV LETT, V86, P131.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU YC, 2005, PHYS REV B, V72, ARTN 085420.
MAITI A, 2002, PHYS REV LETT, V88, ARTN 126805.
MANIA D, 2008, MICROFLUID NANOFLUID, V5, P289.
MENG LY, 2008, J CHEM PHYS, V128, ARTN 134703.
NOY A, 2007, NANO TODAY, V2, P22.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
THOMAS JA, 2008, J CHEM PHYS, V128, ARTN 084715.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WON CY, 2006, J CHEM PHYS, V125, ARTN 114701.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2002, BIOPHYS J, V83, P154.

Cited Reference Count:
25

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja8093372

IDS Number:
443VP

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265835300010
*Order Full Text [ ]

Title:
Ab-initio molecular dynamical study of a single transition metal atom on fullerene C-60: the case of Ta

Authors:
Ramaniah, LM; Boero, M

Author Full Names:
Ramaniah, L. M.; Boero, M.

Source:
EUROPEAN PHYSICAL JOURNAL D 51 (3): 369-374 MAR 2009

Language:
English

Document Type:
Article

KeyWords Plus:
DENSITY; CLUSTERS; DIFFUSION; SURFACE; POTASSIUM; NANOTUBE; WATER; GAS

Abstract:
We report the first-principles Car-Parrinello molecular dynamics study of the behaviour of a single transition metal Ta atom on fullerene C-60, at different temperatures, and for both neutral and charged clusters. We seek to characterise the motion of the lone Ta metal atom on the C-60 surface, contrasting its behaviour both with that of three Ta atoms, as well as with a single alkali metal atom on the cage surface. Our earlier simulations on C60Ta3 had revealed that the Ta atoms on the surface of the fullerene are affected by a rather high mobility, and that the motion of these atoms is highly correlated due to Ta-atom-Ta-atom attraction. Earlier, experimental studies of a single metal atom (K, Rb) on the surface of a C-60 molecule had led to the inference that at room temperature the metal atom skates freely over the surface, the first direct evidence for which was presented by us in earlier first principles molecular dynamical simulations.

Reprint Address:
Ramaniah, LM, Bhabha Atom Res Ctr, Phys Grp, High Pressure Phys Div, Mumbai 400085, Maharashtra, India.

Research Institution addresses:
[Ramaniah, L. M.] Bhabha Atom Res Ctr, Phys Grp, High Pressure Phys Div, Mumbai 400085, Maharashtra, India; [Boero, M.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 3058571, Japan; [Boero, M.] Univ Strasbourg 1, CNRS, UMR 7504, Inst Phys & Chim Mat, F-67034 Strasbourg, France

E-mail Address:
lavanya@barc.gov.in

Cited References:
BARNETT RN, 1993, PHYS REV B, V48, P2081.
BECKE AD, 1988, PHYS REV A, V38, P3098.
CAR R, 1985, PHYS REV LETT, V55, P2471.
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566.
CICCOTTI G, 1987, SIMULATION LIQUIDS S.
DEBBASCH F, 2004, PHYSICA A, V343, P81, DOI 10.1016/j.physa.2004.06.159.
DUGOURD P, 2000, PHYS REV A, V62, P11201.
GANZ E, 1989, SURF SCI, V219, P33.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GOMER R, 1990, REP PROG PHYS, V53, P917.
HEDBERG K, 1991, SCIENCE, V254, P410.
HENRY BI, 2003, PHYS REV E, V68, P16112.
HOHENBERG P, 1964, PHYS REV, V136, P3864.
HUTTER J, 1994, COMP MATER SCI, V2, P244.
KRASHENINNIKOV AV, 2004, PHYS REV B, V69, P73402.
KRISHNA MMG, 2000, J PHYS A-MATH GEN, V33, P5965.
LEE C, 1988, PHYS REV B, V37, P785.
LOBO RFM, 2006, EUR PHYS J D, V38, P35, DOI 10.1140/epjd/e2006-00023-5.
MARTIN TP, 1993, J CHEM PHYS, V99, P4210.
MATSUBARA M, PREPRINT.
MILLER GL, 1956, TANTALUM NIOBIUM MET, V6.
OSTLING D, 1993, CHEM PHYS LETT, V202, P389.
RAMANIAH LM, UNPUB.
RAMANIAH LM, 1998, J CHEM PHYS, V109, P6839.
RAMANIAH LM, 1999, J CHEM PHYS, V111, P1587.
RAMANIAH LM, 2004, PHYS REV B, V70, P35411.
RAYANE D, 2000, PHYS REV LETT, V84, P1962.
SHU DJ, 2001, J CHEM PHYS, V114, P10922.
TAST F, 1996, PHYS REV LETT, V77, P3529.
TROULLIER N, 1993, PHYS REV B, V43, P1991.
ZIMMERMANN U, 1994, PHYS REV LETT, V72, P3542.

Cited Reference Count:
31

Times Cited:
0

Publisher:
SPRINGER; 233 SPRING ST, NEW YORK, NY 10013 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
1434-6060

DOI:
10.1140/epjd/e2008-00262-4

IDS Number:
442IQ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 8 new records this week (8 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266051400022
*Order Full Text [ ]

Title:
Diffusion in quasi-one-dimensional structures with a periodic sharp narrowing of the cross section

Authors:
Makhnovskii, YA; Zitserman, VY; Berezhkovskii, AM

Author Full Names:
Makhnovskii, Yu. A.; Zitserman, V. Yu.; Berezhkovskii, A. M.

Source:
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 3 (2): 313-319 APR 2009

Language:
English

Document Type:
Article

KeyWords Plus:
ENTROPY BARRIER; TRANSPORT; KINETICS

Abstract:
The problem of diffusion of particles in a tube with periodically positioned partitions with circular orifices at the center of each was considered. Using an approach based on the methods and results of the theory of diffusion-controlled reactions and the idea of homogenization of the permeability of partitions, we derived a formula for the effective diffusion coefficient for the steady-state regime of the process. The accuracy and applicability domain of the formula were determined by comparing its predictions with computer simulation results.

Reprint Address:
Makhnovskii, YA, Russian Acad Sci, AV Topchiev Petrochem Synth Inst, Leninskii Pr 29, Moscow 117912, Russia.

Research Institution addresses:
[Makhnovskii, Yu. A.] Russian Acad Sci, AV Topchiev Petrochem Synth Inst, Moscow 117912, Russia; [Zitserman, V. Yu.] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia; [Berezhkovskii, A. M.] NIH, Math & Stat Comp Lab, Div Computat Biosci, Ctr Informat Technol, Bethesda, MD 20892 USA

E-mail Address:
yuam@ips.ac.ru

Cited References:
BEREZHKOVSKII AM, 2003, J CHEM PHYS, V118, P7146, DOI 10.1063/1.1561615.
BEREZHKOVSKII AM, 2003, J CHEM PHYS, V119, P6991, DOI 10.1063/1.1615758.
BEREZHKOVSKII AM, 2004, J CHEM PHYS, V121, P11390, DOI 10.1063/1.1814351.
BEREZHKOVSKII AM, 2006, J CHEM PHYS, V124, ARTN 036103.
BEREZHKOVSKII AM, 2006, J CHEM PHYS, V125, ARTN 194501.
BEREZHKOVSKII AM, 2007, J CHEM PHYS, V126, ARTN 134706.
BEREZHKOVSKII AM, 2008, KHIM FIZ, V27, P84.
BURADA PS, 2007, PHYS REV E 1, V75, ARTN 051111.
BURADA PS, 2008, BIOSYSTEMS, V93, P16, DOI 10.1016/j.biosystems.2008.03.006.
CRICK F, 1970, NATURE, V225, P420.
DAGDUG L, 2007, J CHEM PHYS, V127, ARTN 224712.
DELVECCHIO T, 1987, ANN MAT PUR APPL, V147, P363.
DUDKO OK, 2004, J CHEM PHYS, V121, P11283, DOI 10.1063/1.1814055.
DYDKO OK, 2005, J PHYS CHEM B, V109, P21296.
FULINSKI A, 2005, NEW J PHYS, V7, ARTN 132.
GRIGORIEV IV, 2002, J CHEM PHYS, V116, P9574.
GUO L, 2007, J PHYS CHEM B, V111, P14244, DOI 10.1021/jp076562n.
HILLE B, 2001, ION CHANNELS EXCITAB.
HUMMER G, 2001, NATURE, V414, P188.
JACOBS MH, 1967, DIFFUSION PROCESSES.
KALINAY P, 2005, J CHEM PHYS, V122, ARTN 204701.
KARGER J, 1992, DIFFUSION ZEOLITES O.
KOSINSKA ID, 2007, ACTA PHYS POL B, V38, P1631.
MAKHNOVSKII YA, 2005, J CHEM PHYS, V122, ARTN 236102.
MAKHNOVSKII YA, 2006, RUSS J PHYS CHEM, V80, P1129.
OVCHINNIKOV AA, 1986, KINETICS DIFFUSION C.
REGUERA D, 2001, PHYS REV E 1, V64, ARTN 061106.
REGUERA D, 2006, PHYS REV LETT, V96, ARTN 130603.
SHOUP D, 1982, BIOPHYS J, V40, P33.
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 158101.
TANNER JE, 1978, J CHEM PHYS, V69, P1748.
TIMASHEV SF, 1991, PHYS CHEM MEMBRANE P.
VAZGUEZ MV, 2008, J CHEM PHYS, V129, UNSP 046101.
ZITSERMAN VY, 2006, RUSS J PHYS CHEM, V80, P77.
ZITSERMAN VY, 2008, RUSS J PHYS CHEM A+, V82, P2039, DOI 10.1134/S0036024408120121.
ZWANZIG R, 1992, J PHYS CHEM-US, V96, P3926.

Cited Reference Count:
36

Times Cited:
0

Publisher:
MAIK NAUKA/INTERPERIODICA/SPRINGER; 233 SPRING ST, NEW YORK, NY 10013-1578 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
1990-7931

DOI:
10.1134/S1990793109020225

IDS Number:
445LD

========================================================================

*Record 2 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265948600031
*Order Full Text [ ]

Title:
Infiltration of Electrolytes in Molecular-Sized Nanopores

Authors:
Liu, L; Chen, X; Lu, WY; Han, AJ; Qiao, Y

Author Full Names:
Liu, Ling; Chen, Xi; Lu, Weiyi; Han, Aijie; Qiao, Yu

Source:
PHYSICAL REVIEW LETTERS 102 (18): Art. No. 184501 MAY 8 2009

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; ION-TRANSPORT; NANOFLUIDICS; PRESSURE; LIQUID; WATER

Abstract:
In both experiment and molecular simulation, it is found that a higher pressure is required to sustain the infiltration of smaller ions in a molecular-sized nanochannel. Simulations indicate that the effective ion solubility of the infiltrated liquid is reduced to nearly zero. Because of the strong interactions between the ion couples and the solid or liquid phases, an external force is required to continuously advance the confined liquid segment. The competition between the probability of ion entry and ion-couple formation causes the observed ion-size-dependent characteristics.

Reprint Address:
Qiao, Y, Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA.

Research Institution addresses:
[Lu, Weiyi; Han, Aijie; Qiao, Yu] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA; [Liu, Ling; Chen, Xi] Columbia Univ, Sch Engn & Appl Sci, New York, NY 10027 USA

E-mail Address:
yqiao@ucsd.edu

Cited References:
*EPAPS, EPRLTAO102040920 EPA.
AUERBACH SM, 2003, HDB ZEOLITE SCI TECH.
CARRILLOTRIPP M, 2004, PHYS REV LETT, V93, ARTN 168104.
CHAN KY, 2004, MOL SIMULAT, V30, P81, DOI 10.1080/0892702031000152235.
DAIGUJI H, 2004, NANO LETT, V4, P137, DOI 10.1021/nl0348185.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GUENES S, 2008, INORG CHIM ACTA, V361, P581, DOI 10.1016/j.ica.2007.06.042.
HAMANN CH, 2007, ELECTROCHEMISTRY.
HAN A, 2007, APPL PHYS LETT, V91, UNSP 173 123.
HAN A, 2007, J MATER RES, V22, P644, DOI 10.1557/JMR.2007.0088.
HAN AJ, 2006, J AM CHEM SOC, V128, P10348, DOI 10.1021/ja062037a.
HEALY K, 2007, NANOMEDICINE-UK, V2, P875, DOI 10.2217/17435889.2.6.875.
HOLTZEL A, 2007, J SEP SCI, V30, P1398, DOI 10.1002/jssc.200600427.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KHAZAEI M, 2004, J PHYS CHEM B, V108, P15529, DOI 10.1021/jp0481557.
KONG X, 2005, APPL PHYS LETT, V86, P51919, ARTN 151919.
KONG XG, 2006, J APPL PHYS, V99, P64313, ARTN 064313.
LU W, 2009, APPL PHYS LETT, V94, UNSP 023 106.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
QIAO Y, 2009, NANO LETT, V9, P984, DOI 10.1021/nl8030136.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SHAO Q, 2008, PHYS CHEM CHEM PHYS, V10, P1896, DOI 10.1039/b719033f.
TANG YW, 2003, NANO LETT, V3, P217, DOI 10.1021/nl025868x.
WASAN DT, 2003, NATURE, V423, P156, DOI 10.1038/nature01591.
YANG L, 2007, J CHEM PHYS, V126, UNSP 084 706.

Cited Reference Count:
28

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Multidisciplinary

ISSN:
0031-9007

DOI:
10.1103/PhysRevLett.102.184501

IDS Number:
443ZF

========================================================================

*Record 3 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265941300062
*Order Full Text [ ]

Title:
Hydrogen-bond dynamics of water in a quasi-two-dimensional hydrophobic nanopore slit

Authors:
Han, SH; Kumar, P; Stanley, HE

Author Full Names:
Han, Sungho; Kumar, Pradeep; Stanley, H. Eugene

Source:
PHYSICAL REVIEW E 79 (4): Art. No. 041202 Part 1 APR 2009

Language:
English

Document Type:
Article

Author Keywords:
hydrogen bonds; interface phenomena; liquid theory; molecular dynamics method; potential energy functions; water

KeyWords Plus:
DEPOLARIZED RAYLEIGH-SCATTERING; LIQUID WATER; CONFINED WATER; SUPERCOOLED WATER; WIDOM LINE; SPECTROSCOPY; TRANSITION; SIMULATION; CROSSOVER; KINETICS

Abstract:
We perform molecular dynamics simulations to investigate hydrogen-bond dynamics of the TIP5P (transferable intermolecular potential with five points) model of water confined in a quasi-two-dimensional hydrophobic nanopore slit. We find that even if the average number and the lifetime of hydrogen bonds are affected by nanoconfinement, the characteristics of hydrogen-bond dynamics in hydrophobic confined water are the same as in bulk water-such as an Arrhenius temperature dependence of average hydrogen-bond lifetime and a nonexponential behavior of lifetime distributions at short time scales. The different physical properties of water in hydrophobic confinement compared to bulk water-such as similar to 40 K temperature shift-may be primarily due to the reduction of the lifetime of hydrogen bonds in confined environments. We also find that the hydrogen-bond autocorrelation function exhibits a power-law tail following a stretched exponential behavior. The relaxation time of hydr!
ogen bonds in confined water is smaller than in bulk water. Further, we find that the temperature dependence of the relaxation time follows a power-law behavior, and the exponents for bulk and confined water are similar to each other.

Reprint Address:
Han, SH, Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.

Research Institution addresses:
[Han, Sungho; Stanley, H. Eugene] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA; [Han, Sungho; Stanley, H. Eugene] Boston Univ, Dept Phys, Boston, MA 02215 USA; [Kumar, Pradeep] Rockefeller Univ, Ctr Studies Phys & Biol, New York, NY 10021 USA

Cited References:
BALASUBRAMANIAN S, 2002, PHYS REV LETT, V89, P5505.
CHU XQ, 2007, PHYS REV E 1, V76, ARTN 021505.
CONDE O, 1984, MOL PHYS, V53, P951.
DANNINGER W, 1981, J CHEM PHYS, V74, P2769.
DOKTER AM, 2005, PHYS REV LETT, V94, ARTN 178301.
DOKTER AM, 2006, P NATL ACAD SCI USA, V103, P15355, DOI 10.1073/pnas.0603239103.
EISENBERG D, 1969, STRUCTURE PROPERTIES.
FECKO CJ, 2003, SCIENCE, V301, P1698.
FRANZESE G, 2007, J PHYS-CONDENS MAT, V19, ARTN 205126.
FRANZESE G, 2008, J PHYS-CONDENS MAT, V20, ARTN 494210.
GALLO P, 2000, J CHEM PHYS, V113, P11324.
GALLO P, 2000, PHYS REV LETT, V85, P4317.
GALLO P, 2007, PHYS REV E 1, V76, ARTN 061202.
HAN SH, 2008, PHYS REV E 1, V77.
HANASAKI I, 2006, J CHEM PHYS, V124, P74714, ARTN 174714.
HUMMER G, 2001, NATURE, V414, P188.
KUMAR P, 2005, PHYS REV E 1, V72, ARTN 051503.
KUMAR P, 2006, PHYS REV LETT, V97, ARTN 177802.
KUMAR P, 2007, P NATL ACAD SCI USA, V104, P9575, DOI 10.1073/pnas.0702608104.
KUMAR P, 2007, PHYS REV E 1, V75, ARTN 011202.
KUMAR P, 2008, J PHYS CONDENS MATT, V20, P44114, DOI 10.1088/0953-8984/20/24/244114.
KUMAR P, 2008, PHYS REV LETT, V100, ARTN 105701.
LATIMER WM, 1920, J AM CHEM SOC, V42, P1419.
LAWRENCE CP, 2003, J CHEM PHYS, V118, P264, DOI 10.1063/1.1525802.
LEE HS, 2007, J CHEM PHYS, V126, P64501, ARTN 164501.
LIU L, 2005, PHYS REV LETT, V95, ARTN 117802.
LUZAR A, 1993, J CHEM PHYS, V98, P8160.
LUZAR A, 1996, NATURE, V379, P55.
LUZAR A, 1996, PHYS REV LETT, V76, P928.
LUZAR A, 2000, J CHEM PHYS, V113, P10663.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MARKOVITCH O, 2008, J CHEM PHYS, V129, P84505, ARTN 084505.
MARTI J, 1996, J CHEM PHYS, V105, P639.
MATSUMOTO M, 1996, J CHEM PHYS, V104, P2705.
MONTROSE CJ, 1974, J CHEM PHYS, V60, P5025.
PAOLANTONI M, 2007, J CHEM PHYS, V127, P24504, ARTN 024504.
PAUL S, 2004, CHEM PHYS LETT, V386, P218, DOI 10.1016/j.cplett.2003.12.120.
POOLE PH, 1992, NATURE, V360, P324.
RAITERI P, 2004, PHYS REV LETT, V93, ARTN 087801.
SCIORTINO F, 1989, J CHEM PHYS, V90, P2786.
SCIORTINO F, 1990, PHYS REV LETT, V64, P1686.
STARR FW, 1999, PHYS REV LETT, V82, P2294.
STARR FW, 2000, PHYS REV E A, V62, P579.
XU HF, 2001, J PHYS CHEM B, V105, P11929.
XU LM, 2005, P NATL ACAD SCI USA, V102, P16558, DOI 10.1073/pnas.0507870102.
YAMADA M, 2002, PHYS REV LETT, V88, ARTN 195701.
YEREMENKO S, 2003, CHEM PHYS LETT, V369, P107, DOI 10.1016/S0009-2614(02)02001-8.

Cited Reference Count:
47

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Fluids & Plasmas; Physics, Mathematical

ISSN:
1539-3755

DOI:
10.1103/PhysRevE.79.041202

IDS Number:
443WK

========================================================================

*Record 4 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265941400049
*Order Full Text [ ]

Title:
Molecular dynamics of a water jet from a carbon nanotube

Authors:
Hanasaki, I; Yonebayashi, T; Kawano, S

Author Full Names:
Hanasaki, Itsuo; Yonebayashi, Toru; Kawano, Satoyuki

Source:
PHYSICAL REVIEW E 79 (4): Art. No. 046307 Part 2 APR 2009

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; flow simulation; jets; molecular dynamics method; nanofluidics; nozzles; pipe flow; water

KeyWords Plus:
NANOJET; SIMULATIONS; CONDUCTION; CURVATURE; DROPLETS; DIAMETER; RUPTURE; MODEL; FLOW

Abstract:
A carbon nanotube (CNT) can be viewed as a molecular nozzle. It has a cylindrical shape of atomistic regularity, and the diameter can be even less than 1 nm. We have conducted molecular-dynamics simulations of water jet from a (6,6) CNT that confines water in a form of single-file molecular chain. The results show that the water forms nanoscale clusters at the outlet and they are released intermittently. The jet breakup is dominated by the thermal fluctuations, which leads to the strong dependence on the temperature. The cluster size n decreases and the release frequency f increases at higher temperatures. The f roughly follows the reaction kinetics by the transition state theory. The speed of a cluster is proportional to the 1/root n because of the central limit theorem. These properties make great contrast with the macroscopic liquid jets.

Reprint Address:
Hanasaki, I, Osaka Univ, Grad Sch Engn Sci, Dept Mech Sci & Bioengn, Machikaneyama Cho 1-3, Osaka 5608531, Japan.

Research Institution addresses:
[Hanasaki, Itsuo; Yonebayashi, Toru; Kawano, Satoyuki] Osaka Univ, Grad Sch Engn Sci, Dept Mech Sci & Bioengn, Osaka 5608531, Japan

E-mail Address:
hanasaki@me.es.osaka-u.ac.jp; kawano@me.es.osaka-u.ac.jp

Cited References:
ANDERSEN HC, 1983, J COMPUT PHYS, V52, P24.
ANDREEV S, 2005, J CHEM PHYS, V123, P94502, ARTN 194502.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
CHOI YS, 2006, PHYS REV E 2, V73, ARTN 016309.
EGGERS J, 2002, PHYS REV LETT, V89, ARTN 084502.
FANG TH, 2003, J PHYS-CONDENS MAT, V15, P8263.
FRISCH MJ, 2004, GAUSSIAN 03 REVISION.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
HANASAKI I, 2006, J CHEM PHYS, V124, P44708.
HANASAKI I, 2006, J CHEM PHYS, V124, P74714, ARTN 174714.
HANASAKI I, 2006, MODEL SIMUL MATER SC, V14, S9, DOI 10.1088/0965-0393/14/5/S02.
HANASAKI I, 2006, NANOTECHNOLOGY, V17, P2794, DOI 10.1088/0957-4484/17/11/012.
HANASAKI I, 2008, J PHYS-CONDENS MAT, V20, P15213, ARTN 015213.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
IIJIMA S, 1991, NATURE, V354, P56.
IIJIMA S, 1992, NATURE, V356, P776.
IIJIMA S, 1993, NATURE, V363, P603.
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, ARTN 044501.
KASSINOS SC, 2004, LECT NOTES COMPUT SC, V39, P215.
KAWANO S, 1998, PHYS REV E, V58, P4468.
KOGA K, 2001, NATURE, V412, P802.
KOPLIK J, 1993, PHYS FLUIDS A-FLUID, V5, P521.
MARTI J, 1999, J CHEM PHYS, V110, P6876.
MARTI J, 2001, J CHEM PHYS, V114, P10486.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MIN DH, 2006, PHYS FLUIDS, V18, P24103, ARTN 024103.
MOSELER M, 2000, SCIENCE, V289, P1165.
RANGELOW IW, 2001, J VAC SCI TECHNOL B, V19, P2723.
RIVERA JL, 2002, NANO LETT, V2, P1427, DOI 10.1021/nl0257566.
SAITO R, 1996, PHYS REV B, V53, P2044.
SONG F, 2005, PHYS REV LETT, V94, ARTN 093401.
VOIGT J, 1999, J VAC SCI TECHNOL B, V17, P2764.
VOIGT J, 2000, J VAC SCI TECHNOL B, V18, P3525.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WALTHER JH, 2004, PHYS REV E 1, V69, ARTN 062201.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
40

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Fluids & Plasmas; Physics, Mathematical

ISSN:
1539-3755

DOI:
10.1103/PhysRevE.79.046307

IDS Number:
443WL

========================================================================

*Record 5 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265687500034
*Order Full Text [ ]

Title:
Nanofluidic Transport in Branching Nanochannels: A Molecular Sieve Based on Y-Junction Nanotubes

Authors:
Liu, L; Chen, X

Author Full Names:
Liu, Ling; Chen, Xi

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 113 (18): 6468-6472 MAY 7 2009

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; FLOW-CONTROL; FORCE-FIELD; FLUID-FLOW; NANOPORES; NETWORKS; DYNAMICS; SURFACE; LIQUID; WATER

Abstract:
Using molecular dynamics (MD) simulations, we study the fundamental partitioning and screening behaviors of nanofluids confined in Y-junction nanochannels, and demonstrate their feasibility as efficient molecular sieves. A flow of gas or liquid molecules is partitioned at the junction and separated into the two side branches with different volume fractions. The opening-gaps of the side branches are manipulated, and the sieve characteristics are explored as the gas phase, mixture composition/ratio, and opening dimensions are varied. The studies provide design principles for a molecular sieve with maximum probability passing one type of molecule into a screening branch, and meanwhile maximizing the rejection rate of other types of molecules.

Reprint Address:
Chen, X, Columbia Univ, Columbia Nanomech Res Ctr, Sch Engn & Appl Sci, Mail Code 4709, New York, NY 10027 USA.

Research Institution addresses:
[Liu, Ling; Chen, Xi] Columbia Univ, Columbia Nanomech Res Ctr, Sch Engn & Appl Sci, New York, NY 10027 USA

E-mail Address:
xichen@civil.columbia.edu

Cited References:
ANASTASIOS IS, 2006, J CHEM PHYS, V124, UNSP 054708.
ARORA G, 2006, LANGMUIR, V22, P4620, DOI 10.1021/la053062h.
ARORA G, 2007, NANO LETT, V7, P565, DOI 10.1021/nl062201s.
BANDARU PR, 2005, NAT MATER, V4, P663, DOI 10.1038/nmat1450.
BHATIA SK, 2008, J CHEM PHYS, V129, P12.
BUCH V, 1994, J CHEM PHYS, V100, P7610.
CERVELLERA VR, 2008, INT J QUANTUM CHEM, V108, P1714, DOI 10.1002/qua.21590.
CHEN X, 2006, APPL PHYS LETT, V89, ARTN 241918.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
CHEN YF, 2008, NANO LETT, V8, P42, DOI 10.1021/nI0718566.
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179.
DERTINGER SKW, 2001, ANAL CHEM, V73, P1240.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GABRIEL A, 2004, AICHE J, V50, P596.
GAURAV A, 2005, J CHEM PHYS, V123, UNSP 044705.
GAURAV A, 2006, J CHEM PHYS, V124, UNSP 084702.
GRUJICIC M, 2005, MAT SCI ENG B-SOLID, V117, P53, DOI 10.1016/j.mseb.2004.10.020.
GUENES S, 2008, INORG CHIM ACTA, V361, P581, DOI 10.1016/j.ica.2007.06.042.
GYURCSANYI RE, 2008, TRAC-TREND ANAL CHEM, V27, P627, DOI 10.1016/j.trac.2008.06.002.
HAN A, 2008, LANGMUIR, V24, P7044, DOI 10.1021/la800446z.
HARRIS JG, 1995, J PHYS CHEM-US, V99, P12021.
HEALY K, 2007, NANOMEDICINE-UK, V2, P875, DOI 10.2217/17435889.2.6.875.
HOLTZEL A, 2007, J SEP SCI, V30, P1398, DOI 10.1002/jssc.200600427.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KLAUDA JB, 2004, J PHYS CHEM B, V108, P9842, DOI 10.1021/jp037897h.
LAI ZP, 2003, SCIENCE, V300, P456, DOI 10.1126/science.1082169.
LIU L, 2008, APPL PHYS LETT, V92, ARTN 101927.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
MERKEL TC, 2002, SCIENCE, V296, P519.
NEWSOME DA, 2006, NANO LETT, V6, P2150, DOI 10.1021/nl061181r.
NGUYEN TD, 2005, P NATL ACAD SCI USA, V102, P10029, DOI 10.1073/pnas.0504109102.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
PIASECKI J, 2004, PHYS REV E 1, V70, ARTN 021105.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
QIAO Y, 2009, NANO LETT, V9, P984, DOI 10.1021/nl8030136.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
SATISHKUMAR BC, 2000, APPL PHYS LETT, V77, P2530.
SCHASFOORT RBM, 1999, SCIENCE, V286, P942.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SIVAKUMAR RC, 2002, J CHEM PHYS, V116, P814.
TAKAYAMA S, 1999, P NATL ACAD SCI USA, V96, P5545.
TANIMURA A, 2007, LANGMUIR, V23, P1507.
TERRONES M, 2003, ANNU REV MATER RES, V33, P419, DOI 10.1146/annurev.matsei.33.012802.100255.
WANG SC, 1980, J LOW TEMP PHYS, V41, P611.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
ZHANG ZQ, 2008, PHYS REV B, V78, ARTN 035439.

Cited Reference Count:
48

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp900721h

IDS Number:
440FZ

========================================================================

*Record 6 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265888100039
*Order Full Text [ ]

Title:
Molecular Insight into Protein Conformational Transition in Hydrophobic Charge Induction Chromatography: A Molecular Dynamics Simulation

Authors:
Zhang, L; Zhao, GF; Sun, Y

Author Full Names:
Zhang, Lin; Zhao, Guofeng; Sun, Yan

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 113 (19): 6873-6880 MAY 14 2009

Language:
English

Document Type:
Article

KeyWords Plus:
PHASE LIQUID-CHROMATOGRAPHY; FOLDING KINETICS; PURIFICATION; MODEL; ANTIBODIES; SEPARATION; FRAGMENTS; PATHWAYS; SURFACE; MOBILE

Abstract:
Hydrophobic charge induction chromatography (HCIC) is an adsorption chromatography combining hydrophobic interaction in adsorption with electrostatic repulsion in elution. The method has been successfully applied in the separation and purification of antibodies and other proteins. However, little is understood about protein conformational transition and the dynamic process within adsorbent pores. In the present study, a pore model is established to represent the realistic porous adsorbent composed of matrix and immobilized HCIC ligands. Protein adsorption, desorption, and conformational transition in the HCIC pore and its implications to the separation performance are shown by a molecular dynamics simulation of a 46-bead beta-barrel coarse-grained model protein in the adsorbent pore. Repeated adjustment of both protein position and orientation is observed before reaching a stable adsorption. Once the protein is adsorbed, there is a dynamic equilibrium between unfolding and r!
efolding. The effect of hydrophobic interaction strength between protein and ligands on adsorption phenomena is then examined. Strong hydrophobic interaction, representing the presence of high-concentration lyotropic salt in mobile phase, can speed up the adsorption but cause protein unfolding more significantly. On the contrary, weak hydrophobic interaction, representing the absence of a lyotropic salt or the presence of a chaotropic agent, can reserve native protein conformation but does not lead to stable adsorption. In the elution, protein unfolding occurs due to simultaneous hydrophobic adsorption and electrostatic repulsion in the opposite directions. When the protein has been desorbed, the conformational transition between unfolded and native protein is still observed due to the long-range nature of electrostatic interaction. The simulation has provided molecular insight into protein conformational transition in the whole HCIC process, and it would be beneficial to t!
he rational design of ligands and parameter optimizations for !
high-per
formance HCIC.

Reprint Address:
Sun, Y, Tianjin Univ, Dept Biochem Engn, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China.

Research Institution addresses:
[Zhang, Lin; Zhao, Guofeng; Sun, Yan] Tianjin Univ, Dept Biochem Engn, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China

E-mail Address:
ysun@tju.edu.cn

Cited References:
ALLEN MP, 1989, COMPUTER SIMULATION, P385.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BOND PJ, 2006, J AM CHEM SOC, V128, P2697, DOI 10.1021/ja0569104.
BOSCHETTI E, 2002, TRENDS BIOTECHNOL, V20, P333.
BURTON SC, 1997, BIOTECHNOL BIOENG, V56, P45.
BURTON SC, 1998, J CHROMATOGR A, V814, P71.
CELLMER T, 2005, BIOTECHNOL BIOENG, V89, P78, DOI 10.1002/bit.20302.
COULON D, 2004, J CHROMATOGR B, V808, P111, DOI 10.1016/j.jchromb.2004.03.025.
DAGGETT V, 2006, CHEM REV, V106, P1898, DOI 10.1021/cr0404242.
DRESSELHAUS MS, 2001, TOP APPL PHYS, V80, P1.
DUX MP, 2006, PROTEIN EXPRES PURIF, V45, P359, DOI 10.1016/j.pep.2005.08.015.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
GHOSE S, 2005, BIOTECHNOL PROGR, V21, P498, DOI 10.1021/bp049712+.
GHOSE S, 2006, J CHROMATOGR A, V1122, P144, DOI 10.1016/j.chroma.2006.04.083.
GUERRIER L, 2000, BIOSEPARATION, V9, P211.
GUERRIER L, 2001, J CHROMATOGR B, V755, P37.
GUN Z, 1995, BIOPOLYMERS, V36, P83.
GUO ZY, 1992, J CHEM PHYS, V97, P525.
HONEYCUTT JD, 1990, P NATL ACAD SCI USA, V87, P3526.
HUMMER G, 2001, NATURE, V414, P188.
JANG HB, 2004, BIOPHYS J 1, V86, P31.
JANSON J, 1998, PROTEIN PURIFICATION.
KARPLUS M, 2002, NAT STRUCT BIOL, V9, P646.
KARPLUS M, 2003, BIOPOLYMERS, V68, P350, DOI 10.1002/bip.10266.
KLIMOV DK, 1998, FOLD DES, V3, P481.
KLIMOV DK, 2002, P NATL ACAD SCI USA, V99, P8019.
LIENQUEO ME, 2007, J CHROMATOGR B, V849, P53, DOI 10.1016/j.jchromb.2006.11.019.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LU DN, 2006, BIOPHYS J, V90, P3224, DOI 10.1529/biophysj.105.071761.
LU DN, 2008, J PHYS CHEM B, V112, P2686, DOI 10.1021/jp076940o.
MARRINK SJ, 2004, J PHYS CHEM B, V108, P750, DOI 10.1021/jp036508g.
MCNAY JL, 1999, J CHROMATOGR A, V849, P135.
MCNAY JLM, 2001, BIOTECHNOL BIOENG, V76, P224.
SAYLE RA, 1995, TRENDS BIOCHEM SCI, V20, P374.
SCHWARTZ W, 2001, J CHROMATOGR A, V908, P251.
SHALTIEL S, 1984, METHOD ENZYMOL, V104, P69.
SHEA JE, 1998, J CHEM PHYS, V109, P2895.
SOKOL JM, 2003, J CHROMATOGR A, V1007, P55, DOI 10.1016/S0021-9673(03)00979-8.
VEITSHANS T, 1997, FOLD DES, V2, P1.
WEATHERLY GT, 2002, J CHROMATOGR A, V952, P99.
WU SL, 1986, J CHROMATOGR, V371, P3.
XIA F, 2004, BIOTECHNOL BIOENG, V87, P354, DOI 10.1002/bit.20120.
XIAO YZ, 2007, BIOTECHNOL BIOENG, V96, P80, DOI 10.1002/bit.21186.
ZHANG L, 2009, J CHROMATOGR A, V1216, P2483, DOI 10.1016/j.chroma.2009.01.038.
ZHAO GF, 2007, J CHROMATOGR A, V1165, P109, DOI 10.1016/j.chroma.2007.07.067.

Cited Reference Count:
45

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp809754k

IDS Number:
443CP

========================================================================

*Record 7 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266093800025
*Order Full Text [ ]

Title:
Water Confined in Carbon Nanotubes: Magnetic Response and Proton Chemical Shieldings

Authors:
Huang, P; Schwegler, E; Galli, G

Author Full Names:
Huang, Patrick; Schwegler, Eric; Galli, Giulia

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (20): 8696-8700 MAY 21 2009

Language:
English

Document Type:
Article

KeyWords Plus:
1ST PRINCIPLES SIMULATIONS; DENSITY-FUNCTIONAL THEORY; LIQUID WATER; AB-INITIO; NMR; SHIFTS; ACCURACY

Abstract:
We study the proton nuclear magnetic resonance of a model system consisting of liquid water confined in carbon nanotubes (CNTs). Chemical shieldings are evaluated from linear response theory, where the electronic structure is derived from density functional theory with plane-wave basis sets and periodic boundary conditions. The shieldings are sampled from trajectories generated via first-principles molecular dynamics simulations at ambient conditions for water confined in (14,0) and (19,0) CNTs with diameters d = 11 and 14.9 angstrom, respectively. We find that confinement within the CNT leads to a large (ca. -23 ppm) upfield shift relative to bulk liquid water. This shift is a consequence of strongly anisotropic magnetic fields induced in the CNT by an applied magnetic field.

Reprint Address:
Huang, P, Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 E Ave, Livermore, CA 94551 USA.

Research Institution addresses:
[Huang, Patrick; Schwegler, Eric] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA; [Galli, Giulia] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA

E-mail Address:
huang26@llnl.gov

Cited References:
BESLEY NA, 2008, J CHEM PHYS, V128, ARTN 101102.
CHEN Q, 2008, NANO LETT, V8, P1902, DOI 10.1021/nl080569e.
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
DITCHFIELD R, 1976, J CHEM PHYS, V65, P3123.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9.
GROSSMAN JC, 2004, J CHEM PHYS, V120, P300, DOI 10.1063/1.1630560.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
MARQUES MAL, 2006, PHYS REV B, V73, ARTN 125433.
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415.
MAURI F, 1996, PHYS REV LETT, V76, P4246.
MAURI F, 1996, PHYS REV LETT, V77, P5300.
MODIG K, 2002, J AM CHEM SOC, V124, P12031, DOI 10.1021/ja026981s.
MODIG K, 2003, PHYS REV LETT, V90, ARTN 075502.
PERDEW JP, 1996, PHYS REV LETT, V77, P3865.
PFROMMER BG, 2000, J AM CHEM SOC, V122, P123.
PICKARD CJ, 2001, PHYS REV B, V63, ARTN 245101.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
SCHWEGLER E, 2004, J CHEM PHYS, V121, P5400, DOI 10.1063/1.1782074.
SEBASTIANI D, 2002, CHEMPHYSCHEM, V3, P675.
SEBASTIANI D, 2006, CHEMPHYSCHEM, V7, P164, DOI 10.1002/cphc.200500438.
SEBASTIANI D, 2008, ACS NANO, V2, P661, DOI 10.1021/nn700147w.
SEKHANEH W, 2006, CHEM PHYS LETT, V428, P143, DOI 10.1016/j.cplett.2006.06.105.
SILVESTRELLI PL, 1997, CHEM PHYS LETT, V277, P478.
SPRIK M, 1996, J CHEM PHYS, V105, P1142.
STONE AJ, 1986, CHEM PHYS LETT, V128, P501.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
ZUREK E, 2006, J PHYS CHEM A, V110, P11995, DOI 10.1021/jp064540f.

Cited Reference Count:
29

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp811060y

IDS Number:
446AY

========================================================================

*Record 8 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265964800022
*Order Full Text [ ]

Title:
Water nanodroplets confined in zeolite pores

Authors:
Coudert, FX; Cailliez, F; Vuilleuinier, R; Fuchs, AH; Boutin, A

Author Full Names:
Coudert, Francois-Xavier; Cailliez, Fabien; Vuilleuinier, Rodolphe; Fuchs, Alain H.; Boutin, Anne

Source:
FARADAY DISCUSSIONS 141: 377-398 2009

Language:
English

Document Type:
Article

KeyWords Plus:
FREQUENCY VIBRATIONAL SPECTROSCOPY; INITIO MOLECULAR-DYNAMICS; MONTE-CARLO SIMULATIONS; FAUJASITE-TYPE ZEOLITES; HYDROPHOBIC NANOPORES; SILICALITE-1 ZEOLITE; LIQUID WATER; RANDOM-WALK; ADSORPTION; DENSITY

Abstract:
We provide a comprehensive depiction of the behaviour of a nanodroplet of 20 water molecules confined in the pores of a series of 3D-connected isostructural zeolites with varying acidity, by means of molecular simulations. Both grand canonical Monte Carlo simulations using classical interatomic forcefields and first-principles Car-Parrinello molecular dynamics were used in order to characterise the behaviour of confined water by computing it range of properties, front thermodynamic quantities to electronic properties such its dipole moment, including structural and dynamical information. From the thermodynamic point of vie x, we have identified the all-silica zeolite as hydrophobic, and the cationic zeolites its hydrophilic; the condensation transition in the first case was demonstrated to be of first order. Furthermore. in-depth analysis of the dynamical and electronic properties of water showed that water in the hydrophobic zeolite behaves as a nanodroplet trying to close !
its hydrogen-bond network onto itself, with I few short-lived dangling Oil groups. while water in hydrophilic zeolites "opens up" to form weak hydrogen bonds with the zeolite oxygen atoms. Finally, the dipole moment of confined Water is studied and the contributions of water self-polarisation and the zeolite electric field are discussed.

Reprint Address:
Boutin, A, Univ Paris 11, Chim Phys Lab, F-91405 Orsay, France.

Research Institution addresses:
[Coudert, Francois-Xavier; Boutin, Anne] Univ Paris 11, Chim Phys Lab, F-91405 Orsay, France; [Vuilleuinier, Rodolphe] Univ Paris 06, Lab Phys Theor Mat Condensee, F-75005 Paris, France; [Cailliez, Fabien; Fuchs, Alain H.] Ecole Natl Super Chim Paris Chim ParisTech, F-75005 Paris, France

E-mail Address:
anne.boutin@lep.u-psud.fr

Cited References:
BAERLOCHER C, 2001, ATLAS ZEOLITE FRAMEW.
BAIN CD, 1995, J CHEM SOC FARADAY T, V91, P1281.
BEAUVAIS C, 2004, CHEMPHYSCHEM, V5, P1791, DOI 10.1002/cphc.2004000195.
BEAUVAIS C, 2004, J PHYS CHEM B, V108, P399, DOI 10.1021/jp036085i.
BECKE AD, 1988, PHYS REV A, V38, P309.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BODDENBERG B, 2002, PHYS CHEM CHEM PHYS, V4, P4172, DOI 10.1039/b203088h.
BOUGEARD D, 2007, PHYS CHEM CHEM PHYS, V9, P226, DOI 10.1039/b614463m.
BROOKS CL, 2001, SCIENCE, V293, P612.
BUSSAI C, 2003, J PHYS CHEM B, V107, P12444, DOI 10.1021/jp035151d.
CAILLIEZ F, 2008, J PHYS CHEM C, V112, P10435, DOI 10.1021/jp710746b.
CAILLIEZ F, 2008, STUD SURF SCI CATAL, V174, P683.
CAR R, 1985, PHYS REV LETT, V55, P2471.
CAULLET P, 2005, CR CHIM, V8, P245, DOI 10.1016/j.crci.2005.02.001.
CERIANI C, 2004, AM MINERAL, V89, P102.
CHANDLER D, 2002, NATURE, V417, P491.
CHOPRA M, 2006, J CHEM PHYS, V124, UNSP 134102.
CORMA A, 2004, NATURE, V431, P287, DOI 10.1038/nature02909.
COUDERT FX, 2006, CHEMPHYSCHEM, V7, P2464, DOI 10.1002/cphc.200600561.
CRACKNELL RF, 1990, MOL PHYS, V71, P931.
DELEEUW NH, 1999, J AM CERAM SOC, V82, P3209.
DEMONTIS P, 1997, CHEM REV, V97, P2845.
DESBIENS N, 2005, ANGEW CHEM INT EDIT, V44, P5310, DOI 10.1002/anie.200501250.
DESBIENS N, 2005, J PHYS CHEM B, V109, P24071, DOI 10.1021/jp054168o.
DILELLA A, 2006, PHYS CHEM CHEM PHYS, V8, P5396, DOI 10.1039/b610621h.
DILL KA, 1990, BIOCHEMISTRY-US, V29, P7155.
DOBSON CM, 1998, ANGEW CHEM INT EDIT, V37, P868.
DZUBIELLA J, 2005, J CHEM PHYS, V122, ARTN 234706.
EROSHENKO V, 2001, J AM CHEM SOC, V123, P8129.
FOIS E, 2001, J PHYS CHEM B, V105, P3012.
FOIS E, 2001, PHYS CHEM CHEM PHYS, V3, P4158.
FOIS E, 2002, J PHYS CHEM B, V106, P4806.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
FUCHS AH, 2001, J PHYS CHEM B, V105, P7375.
FYFE CA, 1984, J CHEM SOC CHEM COMM, P1093.
GAIGEOT MP, 2003, J PHYS CHEM B, V107, P10344, DOI 10.1021/jp034788u.
GAIGEOT MP, 2005, J CHEM THEORY COMPUT, V1, P772, DOI 10.1021/ct050029z.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
GONZE X, 1997, PHYS REV B, V55, P10337.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HUANG YN, 1997, MICROPOROUS MATER, V12, P341.
HUMMER G, 2001, NATURE, V414, P188.
IFTIMIE R, 2005, J CHEM PHYS, V122, ARTN 214508.
JACKSON RA, 1988, MOL SIMULAT, V1, P207.
JARAMILLO E, 1999, J PHYS CHEM B, V103, P9589.
JORGENSEN WL, 1985, MOL PHYS, V56, P1381.
KAUZMANN W, 1959, ADV PROTEIN CHEM, V14, P1.
KIM EB, 2002, J CHEM PHYS, V117, P7781, DOI 10.1063/1.1508365.
LAAGE D, UNPUB.
LACHET V, 1998, J PHYS CHEM B, V102, P9224.
LEE C, 1988, PHYS REV B, V37, P785.
LOEWENSTEIN W, 1954, AM MINERAL, V39, P92.
LUZAR A, 1996, NATURE, V379, P55.
MACKIE AD, 1997, MOL SIMULAT, V19, P1.
MANONHIGGINS F, 2002, J MATER CHEM, V12, P124.
MARZARI N, 1997, PHYS REV B, V56, P12847.
MAURIN G, 2004, J PHYS CHEM B, V108, P3739, DOI 10.1021/jp034151a.
MIRANDA PB, 1999, J PHYS CHEM B, V103, P3292.
MOISE JC, 2001, MICROPOR MESOPOR MAT, V43, P91.
NICHOLSON D, 1982, COMPUTER SIMULATION.
NOSE S, 1984, MOL PHYS, V52, P255.
OHBA T, 2004, J AM CHEM SOC, V126, P1560, DOI 10.1021/ja038842w.
OTTEN A, 2004, LANGMUIR, V20, P2405, DOI 10.1021/la034961d.
PATARIN J, 2006, COMMUNICATION.
POULAIN P, 2006, PHYS REV E 2, V73, ARTN 056704.
PUTRINO A, 2000, J CHEM PHYS, V113, P7102.
RAMACHANDRAN CE, 2006, MICROPOR MESOPOR MAT, V90, P293, DOI 10.1016/j.micromeso.2005.10.021.
RAMREZ R, 2004, J CHEM PHYS, V121, P3973.
RAMSAHYE NA, 2005, J PHYS CHEM B, V109, P4728.
RATHORE N, 2002, ABSTR PAP AM CHEM 1, V224, U485.
RATHORE N, 2004, J CHEM PHYS, V120, P5781, DOI 10.1063/1.1649314.
RESTA R, 1998, PHYS REV LETT, V80, P1800.
ROUGUEROL F, 1999, ADSORPTION POWDERS P.
RUIZSALVADOR R, 1998, J PHYS CHEM B, V100, P6722.
SANDERS MJ, 1984, J CHEM SOC CHEM COMM, P1271.
SCATENA LF, 2001, SCIENCE, V292, P908.
SHARMA M, 2005, PHYS REV LETT, V95, ARTN 187401.
SHELL M, 2002, PHYS REV E, V60, UNSP 056703.
SHEN YR, 2006, CHEM REV, V106, P1140, DOI 10.1021/cr040377d.
SHIRONO K, 2005, J PHYS CHEM B, V109, P3446, DOI 10.1021/jp047293t.
SHIRONO K, 2006, CHEM PHYS LETT, V417, P251, DOI 10.1016/j.cplett.2005.09.130.
SIANTAR DP, 1995, ZEOLITES, V15, P556.
SILVESTRELLI PL, 1999, J CHEM PHYS, V111, P3572.
SMIRNOV KS, 2003, CHEM PHYS, V292, P53, DOI 10.1016/S0301-0104(03)00275-1.
STEITZ R, 2003, LANGMUIR, V19, P2409, DOI 10.1021/la026731p.
TRZPIT M, 2007, LANGMUIR, V23, P10131, DOI 10.1021/la7011205.
TYRELL JWG, 2001, PHYS REV LETT, V87, ARTN 176104.
VUILLEUMIER R, LIQUID WATER D UNPUB.
WALES DJ, CAMBRIDGE CLUSTER DA.
WANG F, 2001, PHYS REV E, V64, UNSP O56101.
WANG FG, 2001, PHYS REV LETT, V86, P2050.
YANAGIDA RY, 1973, J PHYS CHEM-US, V77, P805.
ZHOU CG, 2005, PHYS REV E 2, V72, ARTN 025701.

Cited Reference Count:
93

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical

ISSN:
1364-5498

DOI:
10.1039/b804992k

IDS Number:
444EZ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Zhao, Y

ISI Web of Knowledge Citation Alert

Cited Article: Zhao, Y. Individual water-filled single-walled carbon nanotubes as hydroelectric power converters
Alert Expires: 22 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265939200033
*Order Full Text [ ]

Title:
Hydroelectric Voltage Generation Based on Water-Filled Single-Walled Carbon Nanotubes

Authors:
Yuan, QZ; Zhao, YP

Author Full Names:
Yuan, Quanzi; Zhao, Ya-Pu

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 131 (18): 6374-+ MAY 13 2009

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; CHANNEL; FLOW

Abstract:
A DFT/MD mutual iterative method was employed to give insights into the mechanism of voltage generation based on water-fitted single-walled carbon nanotubes (SWCNTs). Our calculations showed that a constant voltage difference of several mV would generate between the two ends of a carbon nanotube, due to interactions between the water dipole chains and charge carriers in the tube. Our work validates this structure of a water-fitted SWCNT as a promising candidate for a synthetic nanoscale power cell, as well as a practical nanopower harvesting device at the atomic level.

Reprint Address:
Zhao, YP, Chinese Acad Sci, State Key Lab Nonlinear Mech, Inst Mech, Beijing 100190, Peoples R China.

Research Institution addresses:
[Yuan, Quanzi; Zhao, Ya-Pu] Chinese Acad Sci, State Key Lab Nonlinear Mech, Inst Mech, Beijing 100190, Peoples R China

E-mail Address:
yzhao@imech.ac.cn

Cited References:
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503.
BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI 10.1073/pnas.0408098102.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
FRISCH MJ, 2004, GAUSSION 03 REVISION.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GHOSH S, 2004, PHYS REV B, V70, ARTN 205423.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
KRAL P, 2001, PHYS REV LETT, V86, P131.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU YC, 2005, PHYS REV B, V72, ARTN 085420.
MAITI A, 2002, PHYS REV LETT, V88, ARTN 126805.
MANIA D, 2008, MICROFLUID NANOFLUID, V5, P289.
MENG LY, 2008, J CHEM PHYS, V128, ARTN 134703.
NOY A, 2007, NANO TODAY, V2, P22.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
THOMAS JA, 2008, J CHEM PHYS, V128, ARTN 084715.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WON CY, 2006, J CHEM PHYS, V125, ARTN 114701.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2002, BIOPHYS J, V83, P154.

Cited Reference Count:
25

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja8093372

IDS Number:
443VP

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000265941400049>
*Order Full Text [ ]
AU Hanasaki, I
Yonebayashi, T
Kawano, S
AF Hanasaki, Itsuo
Yonebayashi, Toru
Kawano, Satoyuki
TI Molecular dynamics of a water jet from a carbon nanotube
SO PHYSICAL REVIEW E
LA English
DT Article
DE carbon nanotubes; flow simulation; jets; molecular dynamics method;
nanofluidics; nozzles; pipe flow; water
ID NANOJET; SIMULATIONS; CONDUCTION; CURVATURE; DROPLETS; DIAMETER;
RUPTURE; MODEL; FLOW
AB A carbon nanotube (CNT) can be viewed as a molecular nozzle. It has a
cylindrical shape of atomistic regularity, and the diameter can be even
less than 1 nm. We have conducted molecular-dynamics simulations of
water jet from a (6,6) CNT that confines water in a form of single-file
molecular chain. The results show that the water forms nanoscale
clusters at the outlet and they are released intermittently. The jet
breakup is dominated by the thermal fluctuations, which leads to the
strong dependence on the temperature. The cluster size n decreases and
the release frequency f increases at higher temperatures. The f roughly
follows the reaction kinetics by the transition state theory. The speed
of a cluster is proportional to the 1/root n because of the central
limit theorem. These properties make great contrast with the
macroscopic liquid jets.
C1 [Hanasaki, Itsuo; Yonebayashi, Toru; Kawano, Satoyuki] Osaka Univ, Grad Sch Engn Sci, Dept Mech Sci & Bioengn, Osaka 5608531, Japan.
RP Hanasaki, I, Osaka Univ, Grad Sch Engn Sci, Dept Mech Sci & Bioengn,
Machikaneyama Cho 1-3, Osaka 5608531, Japan.
EM hanasaki@me.es.osaka-u.ac.jp
kawano@me.es.osaka-u.ac.jp
CR ANDERSEN HC, 1983, J COMPUT PHYS, V52, P24
ANDREEV S, 2005, J CHEM PHYS, V123, P94502, ARTN 194502
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
CHOI YS, 2006, PHYS REV E 2, V73, ARTN 016309
EGGERS J, 2002, PHYS REV LETT, V89, ARTN 084502
FANG TH, 2003, J PHYS-CONDENS MAT, V15, P8263
FRISCH MJ, 2004, GAUSSIAN 03 REVISION
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341
HANASAKI I, 2006, J CHEM PHYS, V124, P44708
HANASAKI I, 2006, J CHEM PHYS, V124, P74714, ARTN 174714
HANASAKI I, 2006, MODEL SIMUL MATER SC, V14, S9, DOI
10.1088/0965-0393/14/5/S02
HANASAKI I, 2006, NANOTECHNOLOGY, V17, P2794, DOI
10.1088/0957-4484/17/11/012
HANASAKI I, 2008, J PHYS-CONDENS MAT, V20, P15213, ARTN 015213
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33
IIJIMA S, 1991, NATURE, V354, P56
IIJIMA S, 1992, NATURE, V356, P776
IIJIMA S, 1993, NATURE, V363, P603
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, ARTN 044501
KASSINOS SC, 2004, LECT NOTES COMPUT SC, V39, P215
KAWANO S, 1998, PHYS REV E, V58, P4468
KOGA K, 2001, NATURE, V412, P802
KOPLIK J, 1993, PHYS FLUIDS A-FLUID, V5, P521
MARTI J, 1999, J CHEM PHYS, V110, P6876
MARTI J, 2001, J CHEM PHYS, V114, P10486
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226
MIN DH, 2006, PHYS FLUIDS, V18, P24103, ARTN 024103
MOSELER M, 2000, SCIENCE, V289, P1165
RANGELOW IW, 2001, J VAC SCI TECHNOL B, V19, P2723
RIVERA JL, 2002, NANO LETT, V2, P1427, DOI 10.1021/nl0257566
SAITO R, 1996, PHYS REV B, V53, P2044
SONG F, 2005, PHYS REV LETT, V94, ARTN 093401
VOIGT J, 1999, J VAC SCI TECHNOL B, V17, P2764
VOIGT J, 2000, J VAC SCI TECHNOL B, V18, P3525
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980
WALTHER JH, 2004, PHYS REV E 1, V69, ARTN 062201
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126
NR 40
TC 0
PU AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
DI 10.1103/PhysRevE.79.046307
PD APR
VL 79
IS 4
PN Part 2
AR 046307
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 443WL
UT ISI:000265941400049
ER

PT J
*Record 2 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266038200011>
*Order Full Text [ ]
AU Zhang, LL
Park, IS
Shqau, K
Ho, WSW
Verweij, H
AF Zhang, Lanlin
Park, In-Soo
Shqau, Krenar
Ho, W. S. Winston
Verweij, Henk
TI Supported Inorganic Membranes: Promises and Challenges
SO JOM
LA English
DT Article
ID GAMMA-ALUMINA MEMBRANES; FAST MASS-TRANSPORT; HYDROGEN SEPARATION;
CERAMIC MEMBRANE; MICROPOROUS SILICA; ZEOLITE MEMBRANES; THIN-FILMS;
PERMEATION; GAS; PERMEABILITY
AB Supported inorganic membranes hold the promise of highly effective
separation and purification, and stable operation in harsh
environments. Examples are thin films of paladium alloy for H-2, mixed
conducting oxides for O-2, amorphous silica for CO2 and zeolites for
hydro-carbons, and meso-porous titania for water purification. How
ever, compared to organic membranes, large-scale production of
inorganic membranes requires improvements in reproducibility and cost
processes. This short overview provides terminology, concepts, and
important criteria for performance, stability, reproducibility, and
cost of supported inorganic membranes. Also discussed are possible
approaches to address the challenges, and examples for designing gas
separation and water purification.
C1 [Zhang, Lanlin; Park, In-Soo; Shqau, Krenar; Verweij, Henk] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA.
[Ho, W. S. Winston] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA.
RP Zhang, LL, Ohio State Univ, Dept Mat Sci & Engn, 116 W 19Th Ave,
Columbus, OH 43210 USA.
EM Verweij@matsceng.ohio-state.edu
CR IND STAT STAT HIGHLI
*US DOE, 2008, DEPS2608NT00134 US D
BENES NE, 2002, CHEM ENG SCI, V57, P2673
BIESHEUVEL PM, 1999, J MEMBRANE SCI, V156, P141
BONEKAMP BC, 1996, MEMBR SCI T, V4, P141
BOUNACEUR R, 2006, ENERGY, V31, P2556, DOI 10.1016/j.energy.2005.10.038
CHEN CS, 1995, SOLID STATE IONICS, V76, P23
COLLINGS CW, 2004, 20040004040, US, APPL
CORMA J, 2005, PROSPECTIVE EVALUATI
DEVOS RM, 1998, J MEMBRANE SCI, V143, P37
ELDRIDGE RB, 1993, IND ENG CHEM RES, V32, P2208
ELTONI AM, 2008, J AM CERAM SOC, V91, P346, DOI
10.1111/j.1551-2916.2007.02151.x
FOTOU GP, 1995, J MATER SCI, V30, P2803
GEDANKEN A, 2004, ULTRASON SONOCHEM, V11, P47, DOI
10.1016/j.ultsonch.2004.01.037
GONZALEZCUENCA M, 2000, AICHE J, V46, P626
GU XH, 2008, MICROPOR MESOPOR MAT, V111, P441, DOI
10.1016/j.micromeso.2007.08.039
GU YF, 2007, ADV MATER, V19, P1636, DOI 10.1002/adma.200602637
HO WSW, 1984, PERRYS CHEM ENG HDB, P14
HO WSW, 1992, MEMBRANE HDB, CH28
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HSUEH CH, 2008, J MATER SCI, V43, P6223, DOI 10.1007/s10853-008-2920-7
HUMPHREY JL, 1991, DE91010024 DOE
JUDKINS RR, 2001, P 21 ANN INT PITTSB
KOROS WJ, 1996, PURE APPL CHEM, V68, P1479
KOROS WJ, 2004, AICHE J, V50, P2326, DOI 10.1002/aic.10330
KOROS WJ, 2008, MACR 2008 POL FRONT
KUIPER S, 1999, J MICROMECH MICROENG, V9, P170
KULPRATHIPANJA A, 2005, J MEMBRANE SCI, V254, P49, DOI
10.1016/j.memsci.2004.11.031
KUZNIATSOVA T, 2008, J MEMBRANE SCI, V316, P80, DOI
10.1016/j.memsci.2007.11.047
LANKHORST MHR, 1997, J AM CERAM SOC, V80, P2175
MARKS DH, 2004, REV DESALINATION WAT
MORISSETTE SL, 2000, J AM CERAM SOC, V83, P2409
MOTTERN ML, 2007, INT J HYDROGEN ENERG, V32, P3713
MOTTERN ML, 2007, THIN SOLID FILMS, V515, P3918, DOI
10.1016/j.tsf.2006.11.015
MOTTERN ML, 2008, INT J HYDROGEN ENERG, V33, P3903, DOI
10.1016/j.ijhydene.2007.11.016
MOTTERN ML, 2008, J MEMBRANE SCI, V313, P2, DOI
10.1016/j.memsci.2007.08.053
MULDER M, 1996, BASIC PRINCIPLES MEM, CH3
NIJMEIJER A, 1998, AM CERAM SOC BULL, V77, P95
NIJMEIJER A, 2001, J AM CERAM SOC, V84, P136
OMATETE OO, 1997, J EUR CERAM SOC, V17, P407
PANKRATZ TM, 2003, DESALINATION COM ENV
ROA F, 2003, CHEM ENG J, V93, P11
ROBESON LM, 1991, J MEMBRANE SCI, V62, P165
SHI JY, 2006, P 9 INT C IN MEMBR L, P69
SHIRAI T, 2008, J AM CERAM SOC, V91, P2367, DOI
10.1111/j.1551-2916.2008.02398.x
SHQAU K, 2006, J AM CERAM SOC, V89, P1790, DOI
10.1111/j.1551-2916.2006.01037.x
SMITH PA, 1996, J AM CERAM SOC, V79, P2515
SUNARSO J, 2008, J MEMBRANE SCI, V320, P13, DOI
10.1016/j.memsci.2008.03.074
TANAKA DAP, 2008, J MEMBRANE SCI, V320, P436, DOI
10.1016/j.memsci.2008.04.044
TENG XW, 2005, ADV MATER, V17, P2237, DOI 10.1002/adma.200500614
VERWEIJ H, 2003, J MATER SCI, V38, P4677
VERWEIJ H, 2006, MRS BULL, V31, P756
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368
WANG HH, 2005, ANGEW CHEM INT EDIT, V44, P6906, DOI
10.1002/anie.200501914
WOUDENBERG FCM, 2004, J AM CERAM SOC, V87, P1430
YU D, 2005, P PCM 2005
YU D, 2006, P COMSOL C 2006 BURL
NR 57
TC 0
PU SPRINGER; 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
PD APR
VL 61
IS 4
BP 61
EP 71
SC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
GA 445GK
UT ISI:000266038200011
ER

PT J
*Record 3 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266093800025>
*Order Full Text [ ]
AU Huang, P
Schwegler, E
Galli, G
AF Huang, Patrick
Schwegler, Eric
Galli, Giulia
TI Water Confined in Carbon Nanotubes: Magnetic Response and Proton
Chemical Shieldings
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID 1ST PRINCIPLES SIMULATIONS; DENSITY-FUNCTIONAL THEORY; LIQUID WATER;
AB-INITIO; NMR; SHIFTS; ACCURACY
AB We study the proton nuclear magnetic resonance of a model system
consisting of liquid water confined in carbon nanotubes (CNTs).
Chemical shieldings are evaluated from linear response theory, where
the electronic structure is derived from density functional theory with
plane-wave basis sets and periodic boundary conditions. The shieldings
are sampled from trajectories generated via first-principles molecular
dynamics simulations at ambient conditions for water confined in (14,0)
and (19,0) CNTs with diameters d = 11 and 14.9 angstrom, respectively.
We find that confinement within the CNT leads to a large (ca. -23 ppm)
upfield shift relative to bulk liquid water. This shift is a
consequence of strongly anisotropic magnetic fields induced in the CNT
by an applied magnetic field.
C1 [Huang, Patrick; Schwegler, Eric] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA.
[Galli, Giulia] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA.
RP Huang, P, Lawrence Livermore Natl Lab, Phys & Life Sci Directorate,
7000 E Ave, Livermore, CA 94551 USA.
EM huang26@llnl.gov
CR BESLEY NA, 2008, J CHEM PHYS, V128, ARTN 101102
CHEN Q, 2008, NANO LETT, V8, P1902, DOI 10.1021/nl080569e
CICERO G, 2008, J AM CHEM SOC, V130, P1871
DITCHFIELD R, 1976, J CHEM PHYS, V65, P3123
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
10.1073/pnas.0710437105
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9
GROSSMAN JC, 2004, J CHEM PHYS, V120, P300, DOI 10.1063/1.1630560
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
MARQUES MAL, 2006, PHYS REV B, V73, ARTN 125433
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415
MAURI F, 1996, PHYS REV LETT, V76, P4246
MAURI F, 1996, PHYS REV LETT, V77, P5300
MODIG K, 2002, J AM CHEM SOC, V124, P12031, DOI 10.1021/ja026981s
MODIG K, 2003, PHYS REV LETT, V90, ARTN 075502
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PFROMMER BG, 2000, J AM CHEM SOC, V122, P123
PICKARD CJ, 2001, PHYS REV B, V63, ARTN 245101
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713
SCHWEGLER E, 2004, J CHEM PHYS, V121, P5400, DOI 10.1063/1.1782074
SEBASTIANI D, 2002, CHEMPHYSCHEM, V3, P675
SEBASTIANI D, 2006, CHEMPHYSCHEM, V7, P164, DOI 10.1002/cphc.200500438
SEBASTIANI D, 2008, ACS NANO, V2, P661, DOI 10.1021/nn700147w
SEKHANEH W, 2006, CHEM PHYS LETT, V428, P143, DOI
10.1016/j.cplett.2006.06.105
SILVESTRELLI PL, 1997, CHEM PHYS LETT, V277, P478
SPRIK M, 1996, J CHEM PHYS, V105, P1142
STONE AJ, 1986, CHEM PHYS LETT, V128, P501
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412
ZUREK E, 2006, J PHYS CHEM A, V110, P11995, DOI 10.1021/jp064540f
NR 29
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
DI 10.1021/jp811060y
PD MAY 21
VL 113
IS 20
BP 8696
EP 8700
SC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
GA 446AY
UT ISI:000266093800025
ER

PT J
*Record 4 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266081300002>
*Order Full Text [ ]
AU Bernardo, P
Drioli, E
Golemme, G
AF Bernardo, P.
Drioli, E.
Golemme, G.
TI Membrane Gas Separation: A Review/State of the Art
SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
LA English
DT Review
ID MIXED-MATRIX MEMBRANES; MOLECULAR-SIEVE MEMBRANES; CARBON NANOTUBE
MEMBRANES; HOLLOW-FIBER MEMBRANES; INTRINSIC MICROPOROSITY PIMS;
POLYMER-CHAIN RIGIDIFICATION; FACILITATED OLEFIN TRANSPORT;
PORE-PLUGGING SYNTHESIS; MFI-ALUMINA MEMBRANES; FAST MASS-TRANSPORT
AB In the last years membrane processes for gas separation are gaining a
larger acceptance in industry and in the market are competing with
consolidated operations such as pressure swing absorption and cryogenic
distillation. The key for new applications of membranes in challenging
and harsh environments (e.g., petrochemistry) is the development of new
tough, high performance materials. The modular nature of membrane
operations is intrinsically fit for process intensification, and this
versatility might be a decisive factor to impose membrane processes in
most gas separation fields, in a similar way as today membranes
represent the main technology for water treatment. This review
highlights the most promising areas of research in gas separation, by
considering the materials for membranes, the industrial applications of
membrane gas separations, and finally the opportunities for the
integration of membrane gas separation units in hybrid systems for the
intensification of processes.
C1 [Bernardo, P.; Drioli, E.; Golemme, G.] Univ Calabria, ITM, CNR, I-87030 Arcavacata Di Rende, Italy.
[Drioli, E.; Golemme, G.] Univ Calabria, Dept Chem Engn & Mat, I-87036 Arcavacata Di Rende, Italy.
[Drioli, E.; Golemme, G.] Univ Calabria, INSTM Consortium, I-87036 Arcavacata Di Rende, Italy.
RP Drioli, E, Univ Calabria, ITM, CNR, Via Pietro Bucci,Cubo 17-C, I-87030
Arcavacata Di Rende, Italy.
EM e.drioli@itm.cnr.it
CR ADV PRISM MEMBRANE S
2004, CHINA CHEM REPOR APR
2007, CHINA CHEM REPOR NOV
ACHARYA M, 1999, J MEMBRANE SCI, V161, P1
AHN JY, 2008, J MEMBRANE SCI, V314, P123, DOI
10.1016/j.memsci.2008.01.031
ALENTIEV AY, 1997, J MEMBRANE SCI, V126, P123
ANSON M, 2004, J MEMBRANE SCI, V243, P19, DOI
10.1016/j.memsci.2004.05.008
ARCELLA V, 1999, J MEMBRANE SCI, V163, P203
ARMSTRONG PA, 2005, GAS TECHN 2005 SAN F
ASH R, 1963, P ROY SOC A, V271, P1
ASH R, 1963, P ROY SOC LOND A MAT, V271, P19
ASH R, 1973, PHILOS T ROY SOC LON, V275, P255
ASH R, 1976, J MEMBRANE SCI, V1, P17
AUVIL SR, 1993, 5259869, US
BAKER RW, 2002, IND ENG CHEM RES, V41, P1393
BAKER RW, 2004, MEMBRANE TECHNOLOGY, P287
BAKER RW, 2006, MEMBRANES VAPOR GAS
BAKER RW, 2008, IND ENG CHEM RES, V47, P2109, DOI 10.1021/ie071083w
BAKKER WJW, 1997, AICHE J, V43, P2203
BARRER RM, 1955, P ROY SOC LOND A MAT, V231, P52
BARSEMA JN, 2005, ADV FUNCT MATER, V15, P69, DOI 10.1002/adfm.200305155
BELYAEV AA, 2003, FUEL PROCESS TECHNOL, V80, P119
BERNARDO P, 2004, CLEAN TECHNOL ENVIR, V6, P78
BERNARDO P, 2006, CHEM ENG RES DES, V84, P405, DOI 10.1205/cherd05014
BHIDE BD, 1991, J MEMBRANE SCI, V62, P13
BHIDE BD, 1998, J MEMBRANE SCI, V140, P27
BIKSON B, 2004, 20040000231, US
BLIZZARD G, 2005, OIL GAS J, V103
BLUME I, 1990, 4963165, US
BOUNACEUR R, 2006, ENERGY, V31, P2220
BREDESENA R, 2004, CHEM ENG PROCESS, V43, P1129, DOI
10.1016/j.cep.2003.11.011
BUDD PM, 2004, CHEM COMMUN 0121, P230, DOI 10.1039/b311764b
BUDD PM, 2005, J MATER CHEM, V15, P1977
BUDD PM, 2005, J MEMBRANE SCI, V251, P263, DOI
10.1016/j.memsci.2005.01.009
BURGGRAAF AJ, 1999, J MEMBRANE SCI, V155, P45
CALLISON A, 2007, OIL GAS J, P105
CARO J, 2000, MICROPOR MESOPOR MAT, V38, P3
CARO J, 2005, ADSORPTION, V11, P215, DOI 10.1007/s10450-005-5394-9
CECOPIERIGOMEZ ML, 2007, J MEMBRANE SCI, V293, P53, DOI
10.1016/j.memsci.2007.01.034
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI
10.1016/j.memsci.2005.06.030
CHEN HB, 2006, J PHYS CHEM B, V110, P1971, DOI 10.1021/jp056911i
CHEN YD, 1994, IND ENG CHEM RES, V33, P3146
CHOE JS, 1987, 4701187, US
CHOI S, 2008, ANGEW CHEM INT EDIT, V47, P552, DOI 10.1002/anie.200703440
CHOI SH, 2008, J MEMBRANE SCI, V316, P145, DOI
10.1016/j.memsci.2007.09.026
CHUNG SJ, 2005, IND ENG CHEM RES, V44, P7999, DOI 10.1021/ie0503141
CHUNG TS, 2007, PROG POLYM SCI, V32, P483, DOI
10.1016/j.progpolymsci.2007.01.008
CLARIZIA G, COMMUNICATION
CLARIZIA G, 2004, POLYMER, V45, P5671, DOI 10.1016/j.polymer.2004.06.001
CLARIZIA G, 2006, AICHE ANN M SAN FRAN
CONG HL, 2007, J MEMBRANE SCI, V294, P178, DOI
10.1016/j.memsci.2007.02.035
CONG HL, 2007, SEP PURIF TECHNOL, V55, P281, DOI
10.1016/j.seppur.2006.12.017
CORBIN DR, 2004, 20040050249, US
CORONAS J, 1999, SEPAR PURIF METHOD, V28, P127
CRISCUOLI A, 2007, IND ENG CHEM RES, V46, P2268, DOI 10.1021/ie0610952
CUSSLER EL, 1988, J MEMBRANE SCI, V38, P161
DAUTZENBERG FM, 2001, CHEM ENG SCI, V56, P251
DAVID LIB, 2003, J MEMBRANE SCI, V213, P285
DAVIS JC, 1993, SEPAR SCI TECHNOL, V28, P463
DESITTER K, 2006, J MEMBRANE SCI, V278, P83, DOI
10.1016/j.memscid.2005.10.046
DESITTER K, 2008, J MEMBRANE SCI, V321, P284, DOI
10.1016/j.memsci.2008.05.005
DORTMUNDT D, 1999, RECENT DEV CO2 REMOV
DOSHI KJ, 1987, 4690695, US
DOSHI KJ, 1989, 4863492, US
DOSHI KJ, 1995, 5411721, US
DUAN SH, 2006, J MEMBRANE SCI, V283, P2, DOI
10.1016/j.memsci.2006.06.026
DUVAL JM, 1993, J MEMBRANE SCI, V80, P189
DUVAL JM, 1994, J APPL POLYM SCI, V54, P409
ESTEVES IAAC, 2007, IND ENG CHEM RES, V46, P5723
FENG XS, 1998, CHEM ENG SCI, V53, P1689
FREEMAN BD, 1999, MACROMOLECULES, V32, P375
FUERTES AB, 1998, J MEMBRANE SCI, V144, P105
FUERTES AB, 1998, MICROPOR MESOPOR MAT, V26, P23
GHALEI B, 2007, MACROMOL SYMP, V249, P330, DOI 10.1002/masy.200750354
GHOSAL AS, 2000, J MEMBRANE SCI, V174, P177
GIANNAKOPOULOS IG, 2007, J MEMBRANE SCI, V302, P332
GIN DL, 29980029735, US, APPL
GOLEMME G, 1999, EURO MEMBR 99 LEUV B, V2, P184
GONZO EE, 2006, J MEMBRANE SCI, V277, P46, DOI
10.1016/j.memsci.2005.10.007
GUR TM, 1994, J MEMBRANE SCI, V93, P283
GUSEV AA, 1993, J CHEM PHYS, V99, P2228
GUSEVA O, 2008, J MEMBRANE SCI, V325, P125, DOI
10.1016/j.memsci.2008.07.030
HAGG MB, 2005, 2005089907, WO
HALE P, ADV MEMBRANE MAT PRO
HAMAD F, 2005, J MEMBRANE SCI, V256, P29, DOI
10.1016/j.memsci.2004.12.050
HATORI H, 1992, CARBON, V30, P305
HAYASHI J, 1997, J MEMBRANE SCI, V124, P243
HAYES RA, 1992, 5141642, US
HE ZJ, 2002, DESALINATION, V146, P11
HESS S, 2006, J MEMBRANE SCI, V275, P52, DOI
10.1016/j.memsci.2005.09.002
HIBSHMAN C, 2003, J MEMBRANE SCI, V211, P25
HIGUCHI A, 2000, J APPL POLYM SCI, V77, P529
HILLOCK AMW, 2008, J MEMBRANE SCI, V314, P193, DOI
10.1016/j.memsci.2008.01.046
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HIRAYAMA Y, 1999, J MEMBRANE SCI, V160, P87
HOFMAN D, 1996, POLYMER, V37, P4773
HOFMANN D, 2002, MACROMOLECULES, V35, P212
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HONG M, 2005, IND ENG CHEM RES, V44, P4035, DOI 10.1021/ie048739v
HOSSEINI SS, 2007, J MEMBRANE SCI, V302, P207, DOI
10.1016/j.memsci.2007.06.062
HU L, 2007, J APPL POLYM SCI, V103, P1670, DOI 10.1002/app.25359
HU Q, 1997, J MEMBRANE SCI, V135, P65
HUSAIN S, 2007, J MEMBRANE SCI, V288, P195, DOI
10.1016/j.memsci.2006.11.016
ISMAIL AF, 2001, J MEMBRANE SCI, V193, P1
IWATA M, 2003, J APPL POLYM SCI, V88, P1752, DOI 10.1002/app.11895
JANSEN JC, 2005, J MEMBRANE SCI, V255, P167, DOI
10.1016/j.memsci.2005.01.032
JANSEN JC, 2007, J MEMBRANE SCI, V287, P132, DOI
10.1016/j.memsci.2006.10.031
JEONG HK, 2004, CHEM MATER, V16, P3838, DOI 10.1021/cm049154u
JIA JP, 1998, J POLYM SCI POL PHYS, V36, P959
JIA MD, 1991, J MEMBRANE SCI, V57, P289
JIANG LY, 2005, J MEMBRANE SCI, V252, P89, DOI
10.1016/j.memsci.2004.12.004
JIANG LY, 2006, AICHE J, V52, P2898, DOI 10.1002/aic.10909
JIANG LY, 2006, J MEMBRANE SCI, V276, P113, DOI
10.1016/j.memsci.2005.09.041
JOLY C, 1997, J MEMBRANE SCI, V130, P63
JONES CW, 1994, CARBON, V32, P1419
KANG SW, 2006, J MEMBRANE SCI, V285, P102, DOI
10.1016/j.memsci.2006.08.005
KATSAROS FK, 1997, MICROPOROUS MATER, V8, P171
KAWAMURA H, 2005, J CHEM ENG JPN, V38, P322
KELLY RM, 1987, 4659343, US
KELMAN SD, 2008, J MEMBRANE SCI, V320, P123, DOI
10.1016/j.memsci.2008.03.064
KELMAN SD, 2008, POLYMER, V49, P3029, DOI 10.1016/j.polymer.2008.03.053
KIM H, 2005, J SOL-GEL SCI TECHN, V36, P213
KIM JH, 2001, J MEMBRANE SCI, V193, P209
KIM JH, 2006, J MEMBRANE SCI, V281, P369, DOI
10.1016/j.memsci.2006.04.002
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u
KIM TJ, 2004, J POLYM SCI POL PHYS, V42, P4326, DOI 10.1002/polb.20282
KIM YH, 2005, MACROMOLECULES, V38, P7950, DOI 10.1021/ma047433x
KIM YK, 2004, J MEMBRANE SCI, V243, P9, DOI 10.1016/j.memsci.2004.05.001
KIM YK, 2005, J MEMBRANE SCI, V251, P159, DOI
10.1016/j.memsci.2004.11.011
KIM YK, 2005, J MEMBRANE SCI, V255, P265, DOI
10.1016/j.memsci.2005.02.002
KONG Y, 2002, DESALINATION, V146, P49
KORESH JE, 1983, SEP SCI TECHNOL, V18, P723
KORESH JE, 1987, SEPAR SCI TECHNOL, V22, P973
KOROS B, 2007, J MEMBRANE SCI, V300, P1, DOI
10.1016/j.memsci.2007.05.006
KOROS WJ, 2000, J MEMBRANE SCI, V175, P181
KOVVALI AS, 2000, J AM CHEM SOC, V122, P7594
KOVVALI AS, 2001, IND ENG CHEM RES, V40, P2502
KRISHNA R, 1995, CHEM ENG J BIOCH ENG, V57, P155
KRISHNA R, 2003, SEP PURIF TECHNOL, V33, P213, DOI
10.1016/S1383-5866(03)00008-X
KULKARNI SS, 2003, 6580860, US
KULKARNI SS, 2007, 20070199445, US, APPL
KULPRATHIPANJA S, 1988, 4740219, US
KURAOKA K, 2001, J MEMBRANE SCI, V182, P139
KUSAKABE K, 1997, IND ENG CHEM RES, V36, P649
LAI ZP, 2003, SCIENCE, V300, P456, DOI 10.1126/science.1082169
LEE JB, 2008, J MEMBRANE SCI, V321, P309, DOI
10.1016/j.memsci.2008.05.004
LI WZ, 2005, LANGMUIR, V21, P9386, DOI 10.1021/la051124y
LI Y, 2005, J MEMBRANE SCI, V260, P45, DOI 10.1016/j.memsci.2005.03.019
LI Y, 2006, J MEMBRANE SCI, V275, P17, DOI 10.1016/j.memsci.2005.08.015
LI Y, 2007, AICHE J, V53, P610, DOI 10.1002/aic.11109
LI YS, 1996, J APPL POLYM SCI, V61, P741
LIANG CH, 1999, CARBON, V37, P1391
LIE JA, 2005, CARBON, V43, P2600, DOI 10.1016/j.carbon.2005.05.018
LIN H, 2004, J MEMBRANE SCI, V239, P105, DOI
10.1016/j.memsci.2003.08.031
LIN HQ, 2005, J MOL STRUCT, V739, P57, DOI
10.1016/j.molstruc.2004.07.045
LIN HQ, 2006, ADV MATER, V18, P39, DOI 10.1002/adma.200501409
LIN HQ, 2006, SCIENCE, V311, P639, DOI 10.1126/science.1118079
LIN YS, 2001, SEP PURIF TECHNOL, V25, P39
LIN ZF, 2005, MAR POLLUT BULL, V50, P617, DOI
10.1016/j.marpolbul.2005.01.004
LIU C, 2007, 20070209505, US, APPL
LIU SM, 2005, J MEMBRANE SCI, V246, P103, DOI
10.1016/j.memsci.2004.09.028
LOVALLO MC, 1998, AICHE J, V44, P1903
LOWE CM, 2007, 7166643, US
LOWE CM, 2008, 7405243, US
MACCHIONE M, 2007, POLYMER, V48, P2619, DOI
10.1016/j.polymer.2007.02.068
MAHAJAN R, 2000, IND ENG CHEM RES, V39, P2692
MAHAJAN R, 2002, J APPL POLYM SCI, V86, P881, DOI 10.1002/app.10998
MAHAJAN R, 2002, POLYM ENG SCI, V42, P1420
MAHAJAN R, 2002, POLYM ENG SCI, V42, P1432
MAHESHWARI S, 2008, J AM CHEM SOC, V130, P157
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MASUDA T, 1983, J AM CHEM SOC, V105, P7473
MASUDA T, 2001, MICROPOR MESOPOR MAT, V48, P239
MATSON SL, 1986, J MEMBRANE SCI, V29, P79
MATSUMOTO K, 1993, J APPL POLYM SCI, V47, P1961
MAXWELL C, 1873, TREATISE ELECT MAGNE
MCKEOWN NB, 2005, CHEM-EUR J, V11, P2610, DOI 10.1002/chem.200400860
MCKEOWN NB, 2006, 20060246273, US, APPL
MCLEARY EE, 2006, MICROPOR MESOPOR MAT, V90, P198, DOI
10.1016/j.micromeso.2005.10.050
MERKEL T, 2007, SEPARATION OLEFIN PA
MERKEL T, 2008, INT C MEMBR MEMBR PR, P275
MERKEL TC, 2001, J MEMBRANE SCI, V191, P85
MERKEL TC, 2002, SCIENCE, V296, P519
MERKEL TC, 2003, MACROMOLECULES, V36, P6844, DOI 10.1021/ma0341566
MERKEL TC, 2003, MACROMOLECULES, V36, P8406, DOI 10.1021/ma034975q
MERKEL TC, 2006, MAT SCI MEMBRANES GA, P251
METZ SJ, 2004, MACROMOLECULES, V37, P4590, DOI 10.1021/ma049847w
MI WL, 2007, J MEMBRANE SCI, V304, P1, DOI 10.1016/j.memsci.2007.07.021
MIACHON S, 2006, J MEMBRANE SCI, V281, P228, DOI
10.1016/j.memsci.2006.03.036
MIACHON S, 2007, J MEMBRANE SCI, V298, P71, DOI
10.1016/j.memsci.2007.04.008
MILLER SJ, 2007, 7268094, US
MOADDEB M, 1997, J MEMBRANE SCI, V125, P143
MORIGAMI Y, 2001, SEP PURIF TECHNOL, V25, P251
MORISATO A, 1996, J MEMBRANE SCI, V121, P243
MURUGANANDAM N, 1987, J POLYM SCI POL PHYS, V25, P1999
NAGAI K, 2001, PROG POLYM SCI, V26, P721
NAKATA M, 2006, J APPL POLYM SCI, V101, P383, DOI 10.1002/app.23850
NAKAYA H, 2001, J AM SOC NEPHROL, V12, P659
NELSON JK, 2003, 6540813, US
NOBLE RD, 2008, INT C MEMBR MEMBR PR, P24
NUNES SP, 2001, MEMBRANE TECHNOLOGY, P1
NUNES SP, 2001, MEMBRANE TECHNOLOGY, P71
OCKWIG NW, 2007, CHEM REV, V107, P4078, DOI 10.1021/cr0501792
ORME CJ, 2004, J MEMBRANE SCI, V238, P47, DOI
10.1016/j.memsci.2004.02.032
ORME CJ, 2005, J MEMBRANE SCI, V253, P243, DOI
10.1016/j.memsci.2004.12.034
PARK HB, 2003, J MEMBRANE SCI, V220, P59, DOI
10.1016/S0376-7388(03)00215-1
PARK HB, 2004, J MEMBRANE SCI, V235, P87, DOI
10.1016/j.memsci.2004.01.025
PARK HB, 2007, SCIENCE, V318, P254, DOI 10.1126/science.1146744
PATEL NP, 2003, ADV MATER, V15, P729, DOI 10.1002/adma.200304712
PATEL NP, 2004, MACROMOLECULES, V37, P2829, DOI 10.1021/ma049975k
PATEL NP, 2004, POLYMER, V45, P5941, DOI 10.1016/j.polymer.2004.06.024
PAUL DR, 1973, J POLYM SCI C, V41, P79
PECHAR TW, 2006, J MEMBRANE SCI, V277, P210, DOI
10.1016/j.memsci.2005.10.031
PETERSEN J, 1997, J MEMBRANE SCI, V131, P85
PINNAU I, 1992, 6361583, US
PINNAU I, 1996, J MEMBRANE SCI, V109, P125
PRABHAKAR RS, 2004, MACROMOLECULES, V37, P7688, DOI 10.1021/ma048909f
PURI PS, 1996, P EC APPL INN MEMBR
ROBESON LM, 1991, J MEMBRANE SCI, V62, P165
ROBESON LM, 2008, J MEMBRANE SCI, V320, P390, DOI
10.1016/j.memsci.2008.04.030
SAUFI SM, 2004, CARBON, V42, P241, DOI 10.1016/j.carbon.2003.10.022
SHANTAROVICH VP, 2000, MACROMOLECULES, V33, P7453
SHIFLETT MB, 1999, SCIENCE, V285, P1902
SHIFLETT MB, 2000, J MEMBRANE SCI, V179, P275
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261
SHUSEN W, 1996, J MEMBRANE SCI, V109, P267
SIMMONS JW, 2005, 6843829, US
SIMMONS JW, 2005, 6860920, US
SIRCAR S, 1999, SEPAR SCI TECHNOL, V34, P2081
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901
SKOULIDAS AI, 2006, J CHEM PHYS, V124, ARTN 054708
SMAIHI M, 1999, J MEMBRANE SCI, V161, P157
SOFFER A, 1995, 5925591, EP
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643
SPILLMANN RW, 1998, EC CONSIDERATIONS ME
SRIDHAR S, 2007, J APPL POLYM SCI, V105, P1749, DOI 10.1002/app.24628
SRINIVASAN R, 1994, J MEMBRANE SCI, V86, P67
STAUDTBICKEL C, 1999, J MEMBRANE SCI, V155, P145
STEIGELMANN EF, 1973, 3758603, US
STEIGELMANN EF, 1976, 3980605, US
STRATHMANN H, 2001, AICHE J, V47, P1077
SUDA H, 1995, J CHEM SOC CHEM COMM, P1179
SUDA H, 1997, J PHYS CHEM B, V101, P3988
SUER MG, 1994, J MEMBRANE SCI, V91, P77
SUZUKI T, 2005, POLYM BULL, V53, P139, DOI 10.1007/s00289-004-0322-9
TAKEICHI T, 1999, CARBON, V37, P569
TAN XY, 2008, J MEMBRANE SCI, V310, P550, DOI
10.1016/j.memsci.2007.11.051
TANAKA K, 2006, MEMBRANES GAS VAPOR, P271
TANTEKINERSOLMAZ SB, 2001, J MEMBRANE SCI, V189, P59
TIN PS, 2004, IND ENG CHEM RES, V43, P6476, DOI 10.1021/ie049606c
TIN PS, 2006, SEP PURIF REV, V35, P285, DOI 10.1080/15422110601003481
TOCCI E, 2001, POLYMER, V42, P521
TOKAREV A, 2006, J POLYM SCI POL PHYS, V44, P832, DOI 10.1002/polb.20725
TURKENBURG WC, 1997, ENERG CONVERS MANA S, V38, S3
VANKELECOM IFJ, 1995, J PHYS CHEM-US, V99, P13187
VANKELECOM IFJ, 1996, J PHYS CHEM-US, V100, P3753
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368
VU DQ, 2003, J MEMBRANE SCI, V211, P311
WANG HT, 2000, J MEMBRANE SCI, V177, P25
WANG HT, 2002, J MATER CHEM, V12, P3640, DOI 10.1039/b207394c
WAY JD, 1987, AICHE J, V33, P480
WIND JD, 2002, IND ENG CHEM RES, V41, P6139, DOI 10.1021/ie0204639
WOO M, 2008, MICROPOR MESOPOR MAT, V110, P330, DOI
10.1016/j.micromeso.2007.06.044
XU XC, 2000, CHEM COMMUN, P603
YAMPOLSKII Y, 2006, MAT SCI MEMBRANES GA, P192
YAMPOLSKII YP, 1991, J MEMBRANE SCI, V64, P191
YANG M, 1999, J MEMBRANE SCI, V156, P1
YONG HH, 2001, J MEMBRANE SCI, V188, P151
ZHOU ZH, 2007, CHINESE CHEM LETT, V18, P455
ZIMMERMAN CM, 1997, J MEMBRANE SCI, V137, P145
ZOLANDZ RR, 1992, MEMBRANE HDB, P78
NR 271
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0888-5885
DI 10.1021/ie8019032
PD MAY 20
VL 48
IS 10
BP 4638
EP 4663
SC Engineering, Chemical
GA 445WD
UT ISI:000266081300002
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================