Friday, October 23, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270594500059
*Order Full Text [ ]

Title:
Ion and Liquid Dependent Dielectric Failure in Electrowetting Systems

Authors:
Raj, B; Dhindsa, M; Smith, NR; Laughlin, R; Heikenfeld, J

Author Full Names:
Raj, Balaji; Dhindsa, Manjeet; Smith, Neil R.; Laughlin, Robert; Heikenfeld, Jason

Source:
LANGMUIR 25 (20): 12387-12392 OCT 20 2009

Language:
English

Document Type:
Article

KeyWords Plus:
SURFACTANTS; VOLTAGE; WATER; CHIP; LENS

Abstract:
Electrowetting devices often utilize aqueous solutions with ionic surfactants and inorganic salts to modify the electrowetting response. It has been observed in low-voltage electrowetting devices (thin dielectric, < 12V) that a frequent onset of dielectric failure (electrolysis) occurs with use of ionic solutes such as potassium chloride (KCl) or sodium dodecyl sulfate. More detailed current-voltage investigations reveal less dielectric failure for the larger size ions. Specifically, improved resistance to failure is seen for surfactant ions carrying it long alkane chain. Therefore, a catanionic surfactant (in Which both ions are amphiphilic) was Custom Synthesized, and elimination of dielectric failure was observed in both negative and positive voltage. Because water is a small molecule that easily penetrates dielectrics, further experiments were performed to show that dielectric failure can also be eliminated by use of larger size polar molecules such as propylene glycol. !
In addition to these results, important parameters Such as conductivity and interfacial tensions are reported.

Reprint Address:
Heikenfeld, J, Univ Cincinnati, Novel Devices Lab, Dept Elect & Comp Engn, Cincinnati, OH 45221 USA.

Research Institution addresses:
[Raj, Balaji; Dhindsa, Manjeet; Smith, Neil R.; Laughlin, Robert; Heikenfeld, Jason] Univ Cincinnati, Novel Devices Lab, Dept Elect & Comp Engn, Cincinnati, OH 45221 USA

E-mail Address:
heikenjc@ucmail.uc.edu

Cited References:
BAHENA JLR, 2002, SEPAR SCI TECHNOL, V37, P1973.
BARBARA GS, 2008, INVERTEBR NEUROSCI, V8, P19, DOI 10.1007/s10158-007-0062-2.
BERGE B, 2000, EUR PHYS J E, V3, P159.
BERRY S, 2006, J COLLOID INTERF SCI, V303, P517, DOI 10.1016/j.jcis.2006.08.004.
FAIR RB, 2007, MICROFLUID NANOFLUID, V3, P245, DOI 10.1007/s10404-007-0161-8.
GEISSLER PL, 2001, SCIENCE, V291, P2121.
HAYES RA, 2003, NATURE, V425, P383, DOI 10.1038/nature01988.
HEIKENFELD J, 2009, NAT PHOTONICS, V3, P292, DOI 10.1038/NPHOTON.2009.68.
HEIKENFELD J, 2009, OPT PHOTONICS NEWS, V20, P20.
HUMMER G, 2001, NATURE, V414, P188.
JONES TB, 2005, J MICROMECH MICROENG, V15, P1184, DOI 10.1088/0960-1317/15/6/008.
KALER EW, 1992, J PHYS CHEM-US, V96, P6698.
KHAN A, 1997, SPECIALIST SURFACTAN, P37.
KILARU MK, 1990, APPL PHYS LETT, V90, UNSP 212906.
KUIPER S, 2004, P SOC PHOTO-OPT INS, V5523, P100, DOI 10.1117/12.555980.
LAUGHLIN RG, 1996, AQUEOUS PHASE BEHAV.
LI F, 2008, APPL PHYS LETT, V92, ARTN 244108.
MOON H, 2006, LAB CHIP, V6, P1213, DOI 10.1039/b601954d.
MUGELE F, 2005, J PHYS-CONDENS MAT, V17, R705, DOI 10.1088/0953-8984/17/28/R01.
ONO YA, 1995, ELECTROLUMINESCENT D.
QUINN A, 2003, J PHYS CHEM B, V107, P1163, DOI 10.1021/jp0216326.
RACCURT O, 2007, J MICROMECH MICROENG, V17, P2217, DOI 10.1088/0960-1317/17/11/007.
VERHEIJEN HJJ, 1999, LANGMUIR, V15, P6616.
ZHOU K, 2009, J MICROMECH MICROENG, V19, UNSP 065029-065041.

Cited Reference Count:
24

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0743-7463

DOI:
10.1021/la9016933

IDS Number:
504DO

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270670800008
*Order Full Text [ ]

Title:
Effect of Temperature on the Structure and Phase Behavior of Water Confined by Hydrophobic, Hydrophilic, and Heterogeneous Surfaces

Authors:
Giovambattista, N; Rossky, PJ; Debenedetti, PG

Author Full Names:
Giovambattista, Nicolas; Rossky, Peter J.; Debenedetti, Pablo G.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 113 (42): 13723-13734 OCT 22 2009

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; THERMAL-EXPANSION; LIQUID WATER; NANOSCALE CONFINEMENT; REVERSE MICELLES; AQUEOUS-SOLUTION; EWALD SUMMATION; LENGTH SCALES; HYDRATION; PRESSURE

Abstract:
We perform molecular dynamics simulations of water confined between atomically detailed hydrophobic, hydrophilic and heterogeneous (patchy) nanoscale plates. We study the effects of temperature 220 <= T <= 300 K on confined water's behavior at various pressures -0.2 <= P <= 0.2 GPa and plate separations 0.5 <= d <= 1.6 nm. Combining this with our earlier results on the same system [Giovambattista, N.; Rossky, P. J.; Debenedetti, P. G. Phys, Rev. E: Stat., Nordinear, Soft Matter Phys. 2006, 73, 041604; Giovambattista, N.; Rossky, P. J.; Debenedetti, P. G. J. Phys. Chem. C, 2007,11, 1323], where pressure was varied at constant temperature, allows us to compare water's behavior in nanoscale confinement, upon isobaric cooling and isothermal compression, corresponding to paths of interest in protein denaturation. At a fixed temperature, water confined between hydrophobic plates can form vapor, liquid, or crystal (bilayer ice) phases. depending on the values of P and d. The P-d ph!
ase diagrams at T = 300 K and T = 220 K show that cooling, suppresses the vapor phase and stabilizes the liquid and crystal phases. The critical separation d(e)(P), below which vapor forms, shifts to lower values of d and P upon cooling. The density profiles show that, upon cooling, water approaches the hydrophobic plates. Hence, the effective hydrophobicity of the plate decreases as T decreases, consistent with the suppression of the vapor phase upon cooling, However. both the orientation of water's molecules at the interface and the water contact angle on the hydrophobic Surface show practically no temperature dependence. Simulations of water confined by heterogeneous plates decorated with hydrophobic and hydrophilic patches reveal that cooling leads to appreciable blurring of the differences between water densities at hydrophobic and hydrophilic, surfaces. This observation, together with remarkable similarities in confined water's response to isobaric cooling and to isot!
hermal compression, suggests that (fie invasion of hydrophobic!
cavitie
s by water is all important mechanism underlying both pressure and cold denaturation of proteins,

Reprint Address:
Debenedetti, PG, Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA.

Research Institution addresses:
[Giovambattista, Nicolas; Debenedetti, Pablo G.] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA; [Giovambattista, Nicolas] CUNY Brooklyn Coll, Dept Phys, Brooklyn, NY 11210 USA; [Rossky, Peter J.] Univ Texas Austin, Dept Chem & Biochem, Inst Computat Engn & Sci, Austin, TX 78712 USA

E-mail Address:
pdebene@princeton.edu

Cited References:
ALLEN MD, 2004, COMPUTER SIMULATION.
ASHBAUGH HS, 2002, J CHEM PHYS, V116, P2907.
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P159, DOI 10.1103/RevModPhys.78.159.
BALL P, 2008, CHEMPHYSCHEM, V9, P2677, DOI 10.1002/cphc.200800515.
BENNAIM A, 1980, HYDROPHOBIC INTERACT.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BRANDEN C, 1998, INTRO PROTEIN STRUCT.
BRATKO D, 2001, J CHEM PHYS, V115, P3873.
BROOKS CL, 1998, P NATL ACAD SCI USA, V95, P11037.
BROOKS CL, 2001, SCIENCE, V293, P612.
CASTRILLON SRV, 2009, J PHYS CHEM B, V113, P1438, DOI 10.1021/jp809032n.
CHMIOLA J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195.
DAUB CD, 2007, J PHYS CHEM C, V111, P505, DOI 10.1021/jp067395e.
DERJAGUIN BV, 1986, J COLLOID INTERF SCI, V109, P586.
DILL KA, 1990, BIOCHEMISTRY-US, V29, P7133.
DOBSON CM, 1998, ANGEW CHEM INT EDIT, V37, P868.
ERRINGTON JR, 2001, NATURE, V409, P318.
FAEDER J, 2000, J PHYS CHEM B, V104, P1033.
FAEDER J, 2005, J PHYS CHEM B, V109, P6732, DOI 10.1021/jp045202m.
FERSHT AR, 1999, STRUCTURE MECH PROTE.
FROLOFF N, 1997, PROTEIN SCI, V6, P1293.
FUJIYOSHI Y, 2002, CURR OPIN STRUC BIOL, V12, P509.
GAROFALIN SH, 2008, CHEMPHYSCHEM, V9, P1997, DOI 10.1002/cphc.200800455.
GIOVAMBATTISTA N, 2006, SOFT MATTER PHYS, V73, UNSP 041604.
GIOVAMBATTISTA N, 2007, J PHYS CHEM B, V111, P9581, DOI 10.1021/jp071957s.
GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1323.
GIOVAMBATTISTA N, 2008, P NATL ACAD SCI USA, V105, P2274, DOI 10.1073/pnas.0708088105.
GIOVAMBATTISTA N, 2009, PHYS REV LETT, V102, UNSP 056603.
GOEL G, 2008, J PHYS CHEM B, V112, P13193, DOI 10.1021/jp806993b.
HAMMOND C, 2001, BASICS CRYSTALLOGRAP, P31.
HARPHAM NJR, 2004, J CHEM PHYS, V121, P7855.
HARRINGTON S, 1997, J CHEM PHYS, V107, P7443.
HAWLEY SA, 1971, BIOCHEMISTRY-US, V10, P2436.
HONIG B, 1995, ADV PROTEIN CHEM, V46, P27.
HUA L, 2007, J PHYS CHEM B, V111, P9069, DOI 10.1021/jp0707923.
HUANG X, 2003, P NATL ACAD SCI USA, V100, P11953, DOI 10.1073/pnas.1934837100.
HUMMER G, 1998, P NATL ACAD SCI USA, V95, P1552.
HUMMER G, 2001, NATURE, V414, P188.
ILER RK, 1979, CHEM SILICA.
JINESH KB, 2008, PHYS REV LETT, V101, ARTN 036101.
KAUZMANN W, 1999, ADV PROTEIN CHEM, V14, P1.
KOGA K, 1997, PHYS REV LETT, V79, P5262.
KOISHI T, 2005, J CHEM PHYS, V123, ARTN 204707.
KUMAR P, 2005, PHYS REV E 1, V72, ARTN 051503.
LEE CY, 1984, J CHEM PHYS, V80, P4448.
LEE SH, 1994, J CHEM PHYS, V100, P3334.
LEUNG K, 2003, PHYS REV LETT, V90, P65502.
LEVY Y, 2006, ANNU REV BIOPH BIOM, V35, P389, DOI 10.1146/annurev.biophys.35.040405.102134.
LI LW, 2006, J PHYS CHEM B, V110, P10509, DOI 10.1021/jp060718m.
LINSE P, 1993, J AM CHEM SOC, V115, P8793.
LIPOWSKY R, 1995, STRUCTURE DYNAMICS A, V1.
LOMBARDO TG, 2009, FARADAY DISCUSS, V141, P359, DOI 10.1039/b805361h.
LOPEZ CF, 2008, J PHYS CHEM B, V112, P5961, DOI 10.1021/jp075928t.
LU L, 2006, J CHEM PHYS, V124, ARTN 101101.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
LUND M, 2008, PHYS REV LETT, V100, ARTN 258105.
MEYER M, 1999, J PHYS CHEM B, V103, P9728.
NYMAND TM, 2000, J CHEM PHYS, V112, P6152.
OPITZ A, 2002, SURF SCI, V504, P199.
PATEL BA, 2007, BIOPHYS J, V93, P4116, DOI 10.1529/biophysj.107.108530.
POHL P, 2001, P NATL ACAD SCI USA, V98, P9624.
PRIVALOV PL, 1993, J MOL BIOL, V232, P660.
RAJAMANI S, 2005, P NATL ACAD SCI USA, V102, P9475, DOI 10.1073/pnas.0504089102.
RAVINDRA R, 2003, CHEMPHYSCHEM, V4, P359.
RAVIV U, 2002, J PHYS-CONDENS MAT, V14, P9275.
SANZ E, 2004, PHYS REV LETT, V92, ARTN 255701.
STARR FW, 1999, PHYS REV E A, V60, P6757.
STURTEVANT JM, 1977, P NATL ACAD SCI USA, V74, P2236.
TANFORD C, 1980, HYDROPHABIC EFFECT F.
TOUKMAJI AY, 1996, COMPUT PHYS COMMUN, V95, P73.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WIDOM B, 2003, PHYS CHEM CHEM PHYS, V5, P3085, DOI 10.1039/b304038k.
WILLIAMS DH, 1993, P NATL ACAD SCI USA, V90, P1172.
WU JZ, 2008, P NATL ACAD SCI USA, V105, P9512, DOI 10.1073/pnas.0802162105.
XU SY, 2004, MATER RES SOC SYMP P, V790, P85.
YANG B, 1997, BIOCHEMISTRY-US, V36, P7675.
ZANGI R, 2007, J AM CHEM SOC, V129, P4678, DOI 10.1021/ja068305m.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096104.

Cited Reference Count:
79

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp9018266

IDS Number:
505EB

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, October 16, 2009

ISI Web of Knowledge Alert Expiration Notice

ISI Web of Knowledge Citation Alert Expiration Notice

Cited Article: Zhou, X. Equilibrium and kinetics: Water confined in carbon nanotubes as one-dimensional lattice gas
Alert Expires: 22 OCT 2009
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b

========================================================================
The ISI Web of Knowledge alert will expire on the date shown above. If you wish to continue receiving the alert after that date, please follow the renewal instructions below.

Note: If you have any questions, please visit the Thomson Scientific Help Desk Web page at the URL listed at the end of the e-mail.
========================================================================

*Renewal Instructions*
1. Access ISI Web of Knowledge and Sign In with the e-mail address under which you created the alert.
2. Once Signed In, use the drop-down menu in the top frame to access "Citation Alerts".
3. Click the "Renew" button for each alert you wish to renew. The change takes affect immediately.
4. Log out of ISI Web of Knowledge.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert Expiration Notice

ISI Web of Knowledge Citation Alert Expiration Notice

Cited Article: Song, X. A comparative study on poiseuille flow of simple fluids through cylindrical and slit-like nanochannels
Alert Expires: 22 OCT 2009
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b

========================================================================
The ISI Web of Knowledge alert will expire on the date shown above. If you wish to continue receiving the alert after that date, please follow the renewal instructions below.

Note: If you have any questions, please visit the Thomson Scientific Help Desk Web page at the URL listed at the end of the e-mail.
========================================================================

*Renewal Instructions*
1. Access ISI Web of Knowledge and Sign In with the e-mail address under which you created the alert.
2. Once Signed In, use the drop-down menu in the top frame to access "Citation Alerts".
3. Click the "Renew" button for each alert you wish to renew. The change takes affect immediately.
4. Log out of ISI Web of Knowledge.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert Expiration Notice

ISI Web of Knowledge Citation Alert Expiration Notice

Cited Article: Saparov, S. Mobility of a one-dimensional confined file of water molecules as a function of file length
Alert Expires: 22 OCT 2009
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b

========================================================================
The ISI Web of Knowledge alert will expire on the date shown above. If you wish to continue receiving the alert after that date, please follow the renewal instructions below.

Note: If you have any questions, please visit the Thomson Scientific Help Desk Web page at the URL listed at the end of the e-mail.
========================================================================

*Renewal Instructions*
1. Access ISI Web of Knowledge and Sign In with the e-mail address under which you created the alert.
2. Once Signed In, use the drop-down menu in the top frame to access "Citation Alerts".
3. Click the "Renew" button for each alert you wish to renew. The change takes affect immediately.
4. Log out of ISI Web of Knowledge.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert Expiration Notice

ISI Web of Knowledge Citation Alert Expiration Notice

Cited Article: Maibaum, L. A coarse-grained model of water confined in a hydrophobic tube
Alert Expires: 22 OCT 2009
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b

========================================================================
The ISI Web of Knowledge alert will expire on the date shown above. If you wish to continue receiving the alert after that date, please follow the renewal instructions below.

Note: If you have any questions, please visit the Thomson Scientific Help Desk Web page at the URL listed at the end of the e-mail.
========================================================================

*Renewal Instructions*
1. Access ISI Web of Knowledge and Sign In with the e-mail address under which you created the alert.
2. Once Signed In, use the drop-down menu in the top frame to access "Citation Alerts".
3. Click the "Renew" button for each alert you wish to renew. The change takes affect immediately.
4. Log out of ISI Web of Knowledge.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 22 OCT 2009
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270478000022
*Order Full Text [ ]

Title:
A mechanical model of the gating spring mechanism of stereocilia

Authors:
Lim, K; Park, S

Author Full Names:
Lim, Koeun; Park, Sukyung

Source:
JOURNAL OF BIOMECHANICS 42 (13): 2158-2164 SEP 18 2009

Language:
English

Document Type:
Article

Author Keywords:
Hair cell; Biomimetics; Gating spring; Nonlinear amplification

KeyWords Plus:
SENSORY HAIR BUNDLES; EARS WORKS WORK; TIP LINKS; MECHANOELECTRICAL TRANSDUCTION; SPONTANEOUS OSCILLATION; CELL STEREOCILIA; ADAPTATION; STIFFNESS; AMPLIFICATION; COCHLEA

Abstract:
The stereocilium is the basic sensory unit of nature's mechanotransducers, which include the cochlear and vestibular organs. In noisy environments. stereocilia display high sensitivity to miniscule stimuli, effectively dealing with a situation that is a design challenge in micro systems. The gating spring hypothesis suggests that the mechanical stiffness of stereocilia bundle is softened by tip-link gating in combination with active bundle movement, contributing to the nonlinear amplification of miniscule stimuli. To demonstrate that the amplification is induced mechanically by the gating as hypothesized, we developed a biomimetic model of stereocilia and fabricated the model at the macro scale. The model consists of an inverted pendulum array with bistable buckled springs at its tips, which represent the mechanically gated ion channel. Model simulations showed that at the moment of gating, instantaneous stiffness softening generates an increase in response magnitude, which !
then sequentially occurs as the number of gating increases. This amplification mechanism appeared to be robust to the change of model parameters. Experimental data from the fabricated macro model also showed a significant increase in the open probability and pendulum deflection at the region having a smaller input magnitude. The results demonstrate that the nonlinear amplification of miniscule stimuli is mechanically produced by stiffness softening from channel gating. (C) 2009 Elsevier Ltd. All rights reserved.

Reprint Address:
Park, S, Korea Adv Inst Sci & Technol, Dept Mech Engn, 335 Gwahangno, Taejon 305701, South Korea.

Research Institution addresses:
[Lim, Koeun; Park, Sukyung] Korea Adv Inst Sci & Technol, Dept Mech Engn, Taejon 305701, South Korea

E-mail Address:
sukyungp@kaist.ac.kr

Cited References:
ASSAD JA, 1991, NEURON, V7, P985.
BASHTANOV ME, 2004, J PHYSIOL-LONDON, V559, P287.
BENSON AJ, 1986, AVIAT SPACE ENVIR MD, V57, P1088.
BIBEL G, 2008, BLACK BOX FORENSICS, P340.
CHEN NN, 2007, J MICROELECTROMECH S, V16, P999, DOI 10.1109/JMEMS.2007.902436.
COREY DP, 2004, NATURE, V428, P901, DOI 10.1038/428901a.
CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359.
EATOCK RA, 2000, ANNU REV NEUROSCI, V23, P285.
FETTIPLACE R, 2003, CURR OPIN NEUROBIOL, V13, P446, DOI 10.1016/S0959-4388(03)00094-1.
GALLO E, 2004, NANOENGINEERED NANOF, P311.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GILLESPIE PG, 2001, NATURE, V413, P194.
GILLESPIE PG, 2004, ANNU REV PHYSIOL, V66, P521, DOI 10.1146/annurev.physiol.66.032102.112842.
GOODYEAR RJ, 2005, J COMP NEUROL, V485, P75, DOI 10.1002/cne.20513.
HOWARD J, 1986, HEARING RES, V23, P93.
HOWARD J, 1988, NEURON, V1, P189.
HUDSPETH A, 2005, CR BIOL, V328, P155, DOI 10.1016/j.crvi.2004.12.003.
HUDSPETH AJ, 1989, COCHLEAR MECH STRUCT, P117.
HUDSPETH AJ, 1989, NATURE, V341, P397.
HUDSPETH AJ, 1994, NEURON, V12, P1.
HUDSPETH AJ, 2000, P NATL ACAD SCI USA, V97, P11765.
KACHAR B, 2000, P NATL ACAD SCI USA, V97, P13336.
KENTK G, 1987, AVIAT SPACE ENV MED, V58, P1024.
LEGOFF L, 2005, P NATL ACAD SCI USA, V102, P16996, DOI 10.1073/pnas.0508731102.
MARTIN P, 2000, P NATL ACAD SCI USA, V97, P12026.
MARTIN P, 2001, P NATL ACAD SCI USA, V98, P14386.
MARTIN P, 2003, J NEUROSCI, V23, P4533.
MCGARY, 2006, J APPL PHYS, V99, UNSP 308B310-311-308B310-316.
NAM JH, 2006, BIOPHYS J, V90, P2786, DOI 10.1529/biophysj.105.066027.
NAM JH, 2007, BIOPHYS J.
NAM JH, 2007, BIOPHYS J, V92, P1918, DOI 10.1529/biophysj.106.085076.
NARINS PM, 1984, J ACOUST SOC AM, V76, P1384.
OHMORI H, 1987, J PHYSIOL-LONDON, V387, P589.
PROST J, 2007, BIOPHYS J, V93, P1124, DOI 10.1529/biophysj.106.098038.
SOLLNER C, 2004, NATURE, V428, P955, DOI 10.1038/nature02484.
STRELIOFF D, 1984, HEARING RES, V15, P19.
SUKHAREV S, 2004, SCI STKE.
SVRCEKSEILER WA, 1998, J THEOR BIOL, V193, P623.
TSUPRUN V, 2000, JARO, V1, P224.
TSUPRUN V, 2004, BIOPHYS J, V87, P4106, DOI 10.1529/biophysj.104.049031.
VANNETTEN SM, 1997, BIOPHYS CHEM, V68, P43.
VILFAN A, 2003, BIOPHYS J, V85, P191.
WANG ZL, 2006, SCIENCE, V312, P242, DOI 10.1126/science.1124005.
WHITE RD, 2005, P NATL ACAD SCI USA, V102, P1296, DOI 10.1073/pnas.0407446102.
WILSON VJ, 1979, MAMMALIAN VESTIBULAR.

Cited Reference Count:
45

Times Cited:
0

Publisher:
ELSEVIER SCI LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND

Subject Category:
Biophysics; Engineering, Biomedical

ISSN:
0021-9290

DOI:
10.1016/j.jbiomech.2009.05.040

IDS Number:
502RO

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270243800074
*Order Full Text [ ]

Title:
Carbon nanotube volatile organic liquid sensor

Authors:
Song, Y; Choi, J

Author Full Names:
Song, Youngsik; Choi, Jaewu

Source:
APPLIED PHYSICS LETTERS 95 (12): Art. No. 123122 SEP 21 2009

Language:
English

Document Type:
Article

KeyWords Plus:
WATER; GAS

Abstract:
Volatile organic liquid sensors with two distinct configurations are developed for a future biosensor using laterally grown carbon nanotubes (CNTs) from two isolated metal electrodes. In the first configuration, the CNTs grown from each electrode weakly contact each other, and the charge transport between them is based on tunneling. In the second configuration, the CNTs in the array are covered with a silicone composite paste and strongly contact each other; Ohmic transport behavior is observed. The signal modulation amplitude with exposure to the volatile organic liquid is higher than two orders in magnitude. The sensing mechanism is based on the capillary force between CNTs and the swelling property of the silicone paste induced by the organic liquids. (C) 2009 American Institute of Physics. [doi:10.1063/1.3238325]

Reprint Address:
Choi, J, Kyung Hee Univ, Dept Informat Display, 1 Hoeki Dong Dondaemoon Ku, Seoul 130701, South Korea.

Research Institution addresses:
[Choi, Jaewu] Kyung Hee Univ, Dept Informat Display, Seoul 130701, South Korea; [Song, Youngsik] Wayne State Univ, Dept Elect & Comp Engn, Detroit, MI 48202 USA

E-mail Address:
jaewuchoi@khu.ac.kr

Cited References:
BRADEN M, 2005, EUR POLYM J, V41, P3069, DOI 10.1016/j.eurpolymj.2005.06.001.
CATTANACH K, 2006, NANOTECHNOLOGY, V17, P4123, DOI 10.1088/09957-4484/17/16/022.
CHAKRAPANI N, 2003, J PHYS CHEM B, V107, P9308, DOI 10.1021/jp034970v.
CHAKRAPANI N, 2004, P NATL ACAD SCI USA, V101, P4009, DOI 10.1073/pnas.0400734101.
COLLINS PG, 2000, SCIENCE, V287, P1801.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
KAUFFMAN DR, 2008, ANGEW CHEM INT EDIT, V47, P6550, DOI 10.1002/anie.200704488.
KIM IC, 2002, IND ENG CHEM RES, V41, P5523, DOI 10.1021/ie0202064.
KONG J, 2000, SCIENCE, V287, P622.
LEE AP, 1999, SENSOR ACTUAT B-CHEM, V60, P35.
LIDE DR, 2008, CRC HDB CHEM PHYS.
PENZA M, 2006, IEEE SENS J, V6, P867, DOI 10.1109/JSEN.2006.877974.
ROMERO HE, 2004, J PHYS-CONDENS MAT, V16, P1939, DOI 10.1088/0953-8984/16/12/004.
SANTIAGO F, 2009, P SPIE, V7343.
SONG Y, 2006, APPL PHYS LETT, V88, ARTN 173108.
ZAHAB A, 2000, PHYS REV B, V62, P10000.

Cited Reference Count:
16

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0003-6951

DOI:
10.1063/1.3238325

IDS Number:
499RX

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert Expiration Notice

ISI Web of Knowledge Citation Alert Expiration Notice

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 22 OCT 2009
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b

========================================================================
The ISI Web of Knowledge alert will expire on the date shown above. If you wish to continue receiving the alert after that date, please follow the renewal instructions below.

Note: If you have any questions, please visit the Thomson Scientific Help Desk Web page at the URL listed at the end of the e-mail.
========================================================================

*Renewal Instructions*
1. Access ISI Web of Knowledge and Sign In with the e-mail address under which you created the alert.
2. Once Signed In, use the drop-down menu in the top frame to access "Citation Alerts".
3. Click the "Renew" button for each alert you wish to renew. The change takes affect immediately.
4. Log out of ISI Web of Knowledge.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270410800001
*Order Full Text [ ]

Title:
Noble metal nanoparticles for water purification: A critical review

Authors:
Pradeep, T; Anshup

Author Full Names:
Pradeep, T.; Anshup

Source:
THIN SOLID FILMS 517 (24): 6441-6478 OCT 30 2009

Language:
English

Document Type:
Review

Author Keywords:
Water purification; Nanotechnology; Noble metals; Nanoparticles; Pesticides; Heavy metal ions; Micro-organisms; Drinking water

KeyWords Plus:
SURFACE-ENHANCED RAMAN; FUNCTIONALIZED GOLD NANOPARTICLES; COLLOIDAL SILVER NANOPARTICLES; FUNDAMENTAL-STUDIES RANKING; SELF-ASSEMBLED MONOLAYERS; CORE-SHELL NANOPARTICLES; OPTICAL-PROPERTIES; COLORIMETRIC DETECTION; NANOCLUSTER FORMATION; ESCHERICHIA-COLI

Abstract:
Water is one of the essential enablers of life on earth. Beginning with the origin of the earliest form of life in seawater, it has been central to the evolution of human civilizations. Noble metals have been similarly associated with the prosperity of human civilizations through their prominent use in jewellery and medical applications. The most important reason for the use of noble metals is the minimal reactivity at the bulk scale, which can be explained by a number of concepts such as electrochemical potential, relativisitic contraction, molecular orbital theory, etc. Recently, water quality has been associated with the development index of society. A number of chemical and biological contaminants have endangered the quality of drinking water. An overview of important events during last 200 years in the area of drinking water purification is presented. Realizing the molecular nature of contamination in drinking water, significant progress has been made to utilize the che!
mistry of nanomaterials for water purification. This article summarizes recent efforts in the area of noble metal nanoparticle synthesis and the origin of their reactivity at the nanoscale. The application of noble metal nanoparticle based chemistry for drinking water purification is summarized for three major types of contaminants: halogenated organics including pesticides, heavy metals and microorganisms. Recent efforts for the removal, as well as ultralow concentration detection of such species, using noble metal nanoparticles are summarized. important challenges during the commercialization of nano-based products are highlighted through a case study of pesticide removal using noble metal nanoparticles. Recent efforts in drinking water purification using other forms of nanomaterials are also summarized. The article concludes with recent investigations on the issue of nanotoxicity and its implications for the future. (C) 2009 Elsevier B.V. All rights reserved.

Reprint Address:
Pradeep, T, Indian Inst Technol, Dept Chem, Madras 600036, Tamil Nadu, India.

Research Institution addresses:
[Pradeep, T.] Indian Inst Technol, Dept Chem, Madras 600036, Tamil Nadu, India; Indian Inst Technol, Sophisticated Analyt Instrument Facil, Madras 600036, Tamil Nadu, India

E-mail Address:
pradeep@iitm.ac.in

Cited References:
PESTICIDES IND SALES.
WHO RECOMMENDED CLAS.
1769, DICT CHYMIE.
1954, J AGR FOOD CHEM, V2, P1005.
2004, WORLD SILVER SURVEY.
*FAWZ BAN GEN, EC TECHN ASS DES TEC.
*HLTH SAF EX, 1998, D97 HSE.
*UN, MILL DEV GOAL REP 20.
*US EPA, NAT PRIM DRINK WAT R.
*US EPA, 1989, ENV FAT EFF DIV PEST.
AGRE P, 2002, J PHYSIOL-LONDON, V542, P3.
AHMAD A, 2003, NANOTECHNOLOGY, V14, P824.
AHRENS WH, 1994, HERBICIDE HDB WEED S.
ALONITIS SA, 2003, DESALINATION, V157, P151.
ALVAREZPUEBLA RA, 2005, J PHYS CHEM B, V109, P3787, DOI 10.1021/jp045015o.
ANDREESCU S, 2006, BIOMOL ENG, V2, P1.
ANDRES RP, 1996, SCIENCE, V273, P1690.
ANSHUP J, 2005, LANGMUIR, V21, P11562.
ANSHUP KP, GALVANIC ETCHI UNPUB.
ANTONII F, 1618, PANACEA AUREA AURO P.
ASATEKIN A, 2007, J MEMBRANE SCI, V298, P136, DOI 10.1016/j.memsci.2007.04.011.
ASHCROFT NW, 1976, SOLID STATE PHYS.
ASTRUC D, 2007, NANOPARTICLES CATALY.
AYMONIER C, 2002, CHEM COMMUN, P3018, DOI 10.1039/b208575e.
BAENA MJ, 1992, J AM CHEM SOC, V114, P4182.
BAKER MN, 1981, QUEST PURE WATER HIS, V1.
BAKER MN, 1981, QUEST PURE WATER HIS, V2.
BANHOLZER WF, 1984, J CATAL, V85, P127.
BARNARD AJ, 1959, MICROCHEM J, V3, P43.
BECKER DL, 1980, CARBON ADSORPTION HD, P167.
BELOE W, 1830, HERODOTUS.
BENN TM, 2008, ENVIRON SCI TECHNOL, V42, P7025, DOI 10.1021/es801501j.
BERGER TJ, 1976, ANTIMICROB AGENTS CH, V9, P357.
BEVERIDGE TJ, 1980, J BACTERIOL, V141, P876.
BLAKEMORE RP, 1975, SCIENCE, V190, P377.
BLANK O, 1910, 228697, DE.
BLATCHFORD CG, 1982, SURF SCI LETT, V120, A339.
BOHREN CF, 1983, ABSORPTION SCATTERIN.
BOND GC, 1972, GOLD BULL, V5, P11.
BOND GC, 1973, J CHEM SOC CHEM COMM, V13, B444.
BOND GC, 1997, HDB HETEROGENEOUS CA, V2, P752.
BONHAM AJ, 2007, J AM CHEM SOC, V129, P14572, DOI 10.1021/ja0767837.
BORONINA T, 1995, ENVIRON SCI TECHNOL, V29, P1511.
BOSMAN AW, 1999, CHEM REV, V99, P1665.
BOSS PAM, 2003, APPL SPECTROSC, V57, P1129.
BOUTONNET M, 1982, COLLOID SURFACE, V5, P209.
BRATLIE KM, 2007, NANO LETT, V7, P3097, DOI 10.1021/nl0716000.
BROWN CL, 2007, GOLD BULL, V40, P245.
BROWN DH, 1980, CHEM SOC REV, V9, P217.
BROWN LO, 2001, J PHYS CHEM B, V105, P8911.
BROWN S, 1992, P NATL ACAD SCI USA, V89, P8651.
BROWN S, 1997, NAT BIOTECHNOL, V15, P269.
BROWN S, 2000, J MOL BIOL, V299, P725.
BRUST M, 1994, J CHEM SOC CHEM COMM, P801.
BRUST M, 1995, ADV MATER, V7, P795.
BRUST M, 1995, J CHEM SOC CHEM COMM, P1655.
BUFFAT P, 1976, PHYS REV A, V13, P2287.
BUMPUS JA, 1985, SCIENCE, V228, P1434.
BURDA C, 2005, CHEM REV, V105, P1025, DOI 10.1021/cr030063a.
BURNS C, 2006, TALANTA, V69, P873, DOI 10.1016/j.talanta.2005.11.038.
CAMPION A, 1998, CHEM SOC REV, V27, P241.
CAO G, 2004, NANOSTRUCTURES NANOM.
CARSON R, 1962, SILENT SPRING.
CHAND RS, 2007, SENSOR ACTUAT B-CHEM, V123, P661.
CHANG QY, 2007, LANGMUIR, V23, P11197, DOI 10.1021/1a701006r.
CHANG YC, 2005, J COLLOID INTERF SCI, V283, P446, DOI 10.1016/j.jcis.2004.09.010.
CHEN DH, 2002, J COLLOID INTERF SCI, V255, P299, DOI 10.1006/jcis.2002.8674.
CHEN JH, 2008, NAT NANOTECHNOL, V3, P206, DOI 10.1038/nnano.2008.58.
CHEN JY, 2005, NANO LETT, V5, P2058, DOI 10.1021/nl051652u.
CHEN SW, 1998, SCIENCE, V280, P2098.
CHEN SW, 1999, LANGMUIR, V15, P682.
CHEN SW, 1999, LANGMUIR, V15, P7551.
CHOU WL, 2005, POLYM ADVAN TECHNOL, V16, P600, DOI 10.1002/pat.630.
CLEMENT JL, 1994, METAL BASED DRUGS, V1, P467.
CORBIERRE MK, 2001, J AM CHEM SOC, V123, P10411.
CREIGHTON J, 1979, J CHEM SOC FARADAY T, V2, P790.
CREIGHTON JA, 1991, J CHEM SOC FARADAY T, V87, P3881.
CROOKS RM, 2001, ACCOUNTS CHEM RES, V34, P181.
CROOKS RM, 2001, TOP CURR CHEM, V212, P81.
CROSS KM, 2009, NANOTECHNOLOGY APPL.
CUENOUD B, 1995, NATURE, V375, P611.
CUSHING BL, 2004, CHEM REV, V104, P3893, DOI 10.1021/cr030027b.
DAHL JA, 2007, CHEM REV, V107, P2228, DOI 10.1021/cr050943k.
DANCE IG, 1991, INORG CHEM, V30, P183.
DANIEL MC, 2004, CHEM REV, V104, P293, DOI 10.1021/cr030698+.
DARBHA GK, 2008, J AM CHEM SOC, V130, P8038, DOI 10.1021/ja801412b.
DAS SK, 2007, NANOFLUIDS SCI TECHN.
DASARY SSR, 2008, CHEM PHYS LETT, V460, P187, DOI 10.1016/j.cplett.2008.05.082.
DASGRACAS M, 2006, TALANTA, V69, P16.
DASOG M, 2007, LANGMUIR, V23, P3381, DOI 10.1021/la0627415.
DAVIES RL, 1997, CATAL TODAY, V36, P107.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DESCLAUX JP, 1973, ATOM DATA NUCL DATA, V12, P311.
DU D, 2008, SENSOR ACTUAT B-CHEM, V134, P908, DOI 10.1016/j.snb.2008.06.040.
DUBAS ST, 2006, COLLOID SURFACE A, V289, P105, DOI 10.1016/j.colsurfa.2006.04.012.
DUBAS ST, 2008, MATER LETT, V62, P2661, DOI 10.1016/j.matlet.2008.01.033.
DUBERTRET B, 2001, 200218951, WO, APPL.
DUJARDIN E, 1994, SCIENCE, V265, P1850.
DUMAS DP, 1990, ARCH BIOCHEM BIOPHYS, V277, P155.
DUTEIL A, 1993, CHEM MATER, V5, P341.
EASTOE J, 1996, CURR OPIN COLLOID IN, V1, P800.
EDWARDS PP, 2007, ANGEW CHEM INT EDIT, V46, P5480, DOI 10.1002/anie.200700428.
EISAYED MA, 2001, ACCOUNTS CHEM RES, V34, P257.
ELECHIGUERRA JL, 2005, J NANOBIOTECHNOL, V3, P6.
ESUMI K, 1998, LANGMUIR, V14, P3157.
ETRIS SF, 2003, KIRKOTHMER ENCY CHEM.
EULISS LE, 2003, NANO LETT, V3, P1489, DOI 10.1021/nl034472y.
EVANGELISTA SM, 2007, SURF SCI, V601, P2194, DOI 10.1016/j.susc.2007.03.020.
EVANOFF DD, 2004, J PHYS CHEM B, V108, P13948, DOI 10.1021/jp047565s.
FALICOV LM, 1985, P NATL ACAD SCI USA, V82, P2207.
FARADAY M, 1857, PHILOS T ROY SOC LON, V147, P145.
FELDHEIM DL, 2002, METAL NANOPARTICLES.
FENG QL, 2000, J BIOMED MATER RES, V52, P662.
FERRANDO R, 2008, CHEM REV, V108, P845, DOI 10.1021/cr040090g.
FERRER D, 2008, J MATER CHEM, V18, P2442, DOI 10.1039/b801320a.
FLINK S, 2000, ADV MATER, V12, P1315.
FRANKEL RB, 1979, SCIENCE, V203, P1355.
FRENS G, 1969, KOLLOID-Z, V233, P922.
FRENS G, 1973, NATURE-PHYS SCI, V241, P20.
FRICKER SP, 1996, GOLD BULL, V29, P53.
FROHLICH H, 1937, PHYSICA, V4, P406.
FUJISHIMA A, 2000, J PHOTOCH PHOTOBIO C, V1, P1.
FULHAME, 1794, ESSAY COMBUSTION VIE.
GARCIA ME, 1999, ANAL CHEM, V71, P256.
GERLOCH M, 1994, TRANSITION METAL CHE.
GILLHAM RW, 1994, GROUND WATER, V32, P958.
GITTINS DI, 1999, ADV MATER, V11, P737.
GLAVEE GN, 1992, LANGMUIR, V8, P771.
GLAVEE GN, 1994, LANGMUIR, V10, P4726.
GOIA DV, 1998, NEW J CHEM, V22, P1203.
GOODMAN CM, 2004, BIOCONJUGATE CHEM, V15, P897, DOI 10.1021/bc049951i.
GORGOI SK, 2006, LANGMUIR, V22, P9322.
GRANT IP, 1961, P ROY SOC LOND A MAT, V262, P555.
GREEN M, 2000, CHEM COMMUN, P183.
GROHN F, 2000, MACROMOLECULES, V33, P6042.
GU X, 2004, PHYS REV B, V70, ARTN 205401.
GUTBIER A, 1902, Z ANORG CHEM, V32, P347.
HALL JC, 2001, PESTICIDE BIOTRANSFO.
HALPERIN WP, 1986, REV MOD PHYS, V58, P533.
HAMAKER HC, 1937, PHYSICA, V4, P1058.
HAMMER B, 1995, NATURE, V376, P238.
HAMOUDA T, 2000, J APPL MICROBIOL, V89, P397.
HARFENIST SA, 1996, J PHYS CHEM-US, V100, P13904.
HARUTA M, 1989, J CATAL, V115, P301.
HARUTA M, 1997, CATAL TODAY, V36, P153.
HASSAL KA, 1990, BIOCH USE PESTICIDES.
HAUSER EA, 1940, EXPT COLLOID CHEM.
HE F, 2009, NANOTECHNOLOGY APPLI.
HE ST, 2001, LANGMUIR, V17, P1571.
HELCHER HH, 1718, AURUM POTABILE ODER.
HENGLEIN A, 1989, CHEM PHYS LETT, V154, P473.
HENGLEIN A, 1989, CHEM REV, V89, P1861.
HENGLEIN A, 1992, J PHYS CHEM-US, V96, P2411.
HENGLEIN A, 1993, J PHYS CHEM-US, V97, P5457.
HENGLEIN A, 1997, CHEM MATER, V9, P2164.
HENGLEIN A, 1998, CHEM MATER, V10, P444.
HENGLEIN A, 1998, J PHYS CHEM B, V102, P8364.
HERNANDEZ FE, 2008, 20080081376, US.
HIEMENZ PC, 1997, PRINCIPLES COLLOID S.
HIRAI H, 1976, CHEM LETT, P905.
HIRAI H, 1978, CHEM LETT, P545.
HIRATA Y, 2002, 2002068342, WO.
HOFMEISTER H, 2007, TOP CATAL, V46, P11, DOI 10.1007/s11244-007-0310-z.
HORDERN BK, 2004, ADV COLLOID INTERFAC, V110, P19.
HOSHI N, 1999, J ELECTROANAL CHEM, V467, P67.
HOSTETLER MJ, 1996, J AM CHEM SOC, V118, P4212.
HOSTETLER MJ, 1999, LANGMUIR, V15, P3782.
HOWARD PH, 1991, HDB ENV FATE EXPOSUR.
HUA SQ, 2003, TALANTA, V61, P769.
HUANG CC, 2007, ANGEW CHEM INT EDIT, V46, P6824, DOI 10.1002/anie.200700803.
HUANG CC, 2007, CHEM COMMUN, P1215, DOI 10.1039/b615383f.
HUANG XH, 2006, J AM CHEM SOC, V128, P2115, DOI 10.1021/ja057254a.
HUANG XJ, 2007, SENSOR ACTUAT B-CHEM, V122, P659, DOI 10.1016/j.snb.2006.06.022.
HUMMER G, 2001, NATURE, V414, P188.
HUNG K, HDB PRESCRIPTION EME.
HUTCHISON JE, 2008, ACS NANO, V2, P395, DOI 10.1021/nn800131j.
HYATT AD, 1993, IMMUNOGOLD ELECT MIC.
ILLMAN DL, 2006, ANAL CHEM, V78, P5266.
INGRAM RS, 1997, J AM CHEM SOC, V119, P9175.
JAIN P, 2005, BIOTECHNOL BIOENG, V90, P59, DOI 10.1002/bit.20368.
JANA NR, 1999, J PHYS CHEM B, V103, P115.
JANA NR, 2001, CHEM MATER, V13, P2313.
JANA NR, 2003, J AM CHEM SOC, V125, P14280, DOI 10.1021/ja038219b.
JANSEN JFGA, 1994, SCIENCE, V266, P1226.
JAYARAMAN K, 2007, CHEM WORLD, V4.
KAMAT PV, 1998, J PHYS CHEM B, V102, P3123.
KANG YJ, 2005, ANGEW CHEM INT EDIT, V44, P409, DOI 10.1002/anie.200461119.
KARUNAKARAN CO, 1958, J INDIAN MED ASSOC, V31, P204.
KATSIKAS L, 1996, J PHYS CHEM-US, V100, P11203.
KE XB, 2007, ADV MATER, V19, P785.
KE XB, 2008, J PHYS CHEM B, V112, P5000, DOI 10.1021/jp709837r.
KELLY KL, 2003, J PHYS CHEM B, V107, P668, DOI 10.1021/jp026731y.
KEPNER B, 2006, 2006050477, WO, APPL.
KIELY CJ, 1998, NATURE, V396, P444.
KIM BS, 2005, NANO LETT, V5, P1987, DOI 10.1021/nl0513939.
KIM DJ, 2007, 20070005960, EP.
KIM YJ, 2001, NANO LETTERS, V1, P165.
KITTEL C, 1989, EINFUHRUNG FESTKBRPE.
KLAUS T, 1999, P NATL ACAD SCI USA, V96, P13611.
KNEIPP K, 1997, PHYS REV LETT, V78, P1667.
KNXEIPP K, 1999, CHEM REV, V99, P2957.
KOMIYAMA M, 1983, B CHEM SOC JPN, V56, P2833.
KRAMER U, 1996, NATURE, V379, P635.
KRAUSE GA, 1936, 2046467, US.
KRAUSE N, 2006, COMPREHENSIVE ORGANO, V3.
KREIBIG U, 1995, SPRINGER SERIES MAT.
KREIBIG U, 1997, HDB OPTICAL PROPERTI, V2, P145.
KU Y, 2002, WATER AIR SOIL POLL, V133, P349.
KUBO R, 1962, J PHYS SOC JPN, V17, P975.
KULP JL, 2004, J MATER CHEM, V14, P2325, DOI 10.1039/b401260g.
KUMAR A, 2008, NAT MATER, V7, P236, DOI 10.1038/nmat2099.
KUMAR M, 2007, P NATL ACAD SCI USA, V104, P20719, DOI 10.1073/pnas.0708762104.
KUMAR VRR, 2006, J MATER CHEM, V16, P837, DOI 10.1039/b513487k.
KUMAR VRR, 2007, LANGMUIR, V23, P8667, DOI 10.1021/la701028a.
KUNCKELS J, 1676, NUETLICHE OBSERVATIO.
KUYPER J, 1933, J AM CHEM SOC, V55, P1722.
LAIBINIS PE, 1992, J AM CHEM SOC, V114, P9022.
LANSDOWN ABG, 2006, BIOFUNCTIONAL TEXTIL, V33.
LARESE FF, 2009, TOXICOLOGY, V255, P33, DOI 10.1016/j.tox.2008.09.025.
LARRICK GP, 1953, J AGR FOOD CHEM, V1, P877.
LAU KKS, 2003, NANO LETT, V3, P1701, DOI 10.1021/nl034704t.
LEA MC, 1889, AM J SCI, V37, P476.
LEE CC, 2005, NAT BIOTECHNOL, V23, P1517, DOI 10.1038/nbt1171.
LEE H, 2006, ANGEW CHEM INT EDIT, V45, P7824, DOI 10.1002/anie.200603068.
LEE JS, 2007, ANGEW CHEM INT EDIT, V46, P4093, DOI 10.1002/anie.200700269.
LEE JS, 2008, ANAL CHEM, V80, P6805, DOI 10.1021/ac801046a.
LEE PC, 1982, J PHYS CHEM-US, V86, P3391.
LEFORT TE, 1931, 729952, FR.
LEHNINGER AL, 1993, PRINCIPLES BIOCH.
LEONTIDIS E, 2002, LANGMUIR, V18, P3659.
LEWIS DJ, 2006, CHEM COMMUN, P1433, DOI 10.1039/b518091k.
LI HX, 2004, P NATL ACAD SCI USA, V101, P14036, DOI 10.1073/pnas.0406115101.
LI L, 2006, J COLLOID INTERF SCI, V303, P415, DOI 10.1016/j.jcis.2006.07.059.
LI XQ, 2006, CRIT REV SOLID STATE, V31, P11.
LI XQ, 2006, LANGMUIR, V22, P4638, DOI 10.1021/la060057k.
LI Z, 2003, ANGEW CHEM INT EDIT, V42, P2306, DOI 10.1002/anie.200351231.
LI ZY, 2006, NANOTECHNOLOGY, V17, P917.
LIA Y, 2006, J HOSP INFECT, V62, P58.
LIAU SY, 1997, LETT APPL MICROBIOL, V25, P279.
LIEBARTH JH, 1981, AGENTS ACTIONS, V11, P458.
LIN TJ, 2006, BIOSENS BIOELECTRON, V22, P513, DOI 10.1016/j.bios.2006.05.007.
LIN XM, 1999, CHEM MATER, V11, P198.
LINK S, 1999, J PHYS CHEM B, V103, P3073.
LISHA KP, GOLD B IN PRESS.
LISHA KR, J ENV SCI B IN PRESS.
LIU J, 2005, J AM CHEM SOC, V127, P12677, DOI 10.1021/ja053567u.
LIU JW, 2003, J AM CHEM SOC, V125, P6642, DOI 10.1021/ja034775u.
LIU JW, 2004, J AM CHEM SOC, V126, P12298, DOI 10.1021/ja046628h.
LIU Y, 2003, J COLLOID INTERF SCI, V257, P188, DOI 10.1016/S0021-9797(02)00027-9.
LOK CN, 2007, J BIOL INORG CHEM, V12, P527, DOI 10.1007/s00775-007-0208-z.
LOVLEY DR, 1987, NATURE, V330, P252.
LOVLEY DR, 1991, NATURE, V350, P413.
LU Y, 2007, ACCOUNTS CHEM RES, V40, P315, DOI 10.1021/ar600053g.
LUCY CA, 2003, J CHROMATOGR A, V1000, P711, DOI 10.1016/S0021-9673(03)00528-4.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANAS MM, 2003, ACCOUNTS CHEM RES, V36, P638.
MANDAL TK, 2002, NANO LETTERS, V2, P3.
MANEERUNG T, 2008, CARBOHYD POLYM, V72, P43, DOI 10.1016/j.carbpol.2007.07.025.
MANN S, 1984, NATURE, V310, P405.
MANOHAR DM, 2002, WATER RES, V36, P1609.
MASALA O, 2004, ANNU REV MATER RES, V34, P41, DOI 10.1146/annurev.matsci.34.052803.090949.
MATHUR HB, 2005, DOWN EARTH, V14, P27.
MATHUR HB, 2006, DOWN EARTH, V15, P28.
MAURER MS, 2008, ENVIRON SCI TECHNOL, V42, P5843.
MAYNARD AD, 2006, NATURE, V444, P267, DOI 10.1038/444267a.
MCINTOSH D, 1976, INORG CHEM, V15, P2869.
MEGURO K, 1988, B CHEM SOC JPN, V61, P347.
MELAMED D, 2005, ANAL CHIM ACTA, V532, P1, DOI 10.1016/j.aca.2004.10.047.
MIAO F, 2007, SCIENCE, V317, P1530, DOI 10.1126/science.1144359.
MICHAELS AM, 2000, J PHYS CHEM B, V104, P11965.
MIE G, 1908, ANN PHYS-BERLIN, V25, P377.
MIE G, 1908, ANN PHYS-BERLIN, V25, P377.
MOHAMED MB, 2000, CHEM PHYS LETT, V317, P517.
MORONES JR, 2005, NANOTECHNOLOGY, V16, P2346, DOI 10.1088/0957-4484/16/10/059.
MORRIS T, 2002, LANGMUIR, V18, P7261, DOI 10.1021/la020229n.
MOSKOVITS M, 1985, REV MOD PHYS, V57, P783.
MUIR DCG, 2006, ENVIRON SCI TECHNOL, V40, P7157, DOI 10.1021/es061677a.
MUKHERJEE P, 2001, ANGEW CHEM INT EDIT, V40, P3585.
MUKHERJEE P, 2001, NANO LETTERS, V1, P515.
MULVIHILL M, 2008, ANGEW CHEM INT EDIT, V47, P6456, DOI 10.1002/anie.200800776.
MURTHY S, 1997, MATER LETT, V30, P321.
NAGY NM, 2003, J COLLOID INTERF SCI, V263, P13, DOI 10.1016/S0021-9797(03)00284-4.
NAIK RR, 2002, NAT MATER, V1, P169, DOI 10.1038/nmat758.
NAIR AS, 2003, CURR SCI INDIA, V84, P1560.
NAIR AS, 2003, J ENVIRON MONITOR, V5, P363, DOI 10.1039/b300107e.
NAIR AS, 2003, J MATER CHEM, V13, P297, DOI 10.1039/b210734a.
NAIR AS, 2007, COSMOS, V3, P103.
NAIR AS, 2007, J NANOSCI NANOTECHNO, V7, P1871, DOI 10.1166/jnn.2007.733.
NAIR B, 2002, CRYST GROWTH DES, V2, P293.
NAMASIVAYAM C, 1993, WATER RES, V27, P1663.
NARAYANAN R, 2004, NANO LETT, V4, P1343, DOI 10.1021/nl0495256.
NAVARRO RR, 1996, WATER RES, V30, P2488.
NEAL AL, 2008, ECOTOXICOLOGY, V17, P362, DOI 10.1007/s10646-008-0217-x.
NEHL CL, 2008, J MATER CHEM, V18, P2415, DOI 10.1039/b714950f.
NEWKOME GR, 1996, DENDRITIC MOL CONCEP.
NEWMAN JDS, 2007, ANAL CHEM, V79, P3448, DOI 10.1021/ac062165h.
NEWMAN JDS, 2007, ANAL CHIM ACTA, V602, P101, DOI 10.1016/j.aca.2007.08.051.
NICKEL U, 2000, LANGMUIR, V16, P9087.
NIE SM, 1997, SCIENCE, V275, P1102.
NIEMEYER CM, 2001, ANGEW CHEM INT EDIT, V40, P4128.
NIKAIDO H, 1985, MICROBIOL REV, V49, P1.
NOGUEZ C, 2005, OPT MATER, V27, P1204, DOI 10.1016/j.optmat.2004.11.012.
NOGUEZ C, 2007, J PHYS CHEM C, V111, P3806, DOI 10.1021/jp066539m.
NOLAN EM, 2008, CHEM REV, V108, P3443, DOI 10.1021/cr068000q.
NOVER L, 1983, MOL CELL BIOL, V3, P1648.
OLLIS DF, 1985, ENVIRON SCI TECHNOL, V19, P480.
ONO A, 2004, ANGEW CHEM INT EDIT, V43, P4300, DOI 10.1002/anie.200454172.
OSTWALD W, 1909, KOLLOID Z, V4, P5.
OTT LS, 2005, J AM CHEM SOC, V127, P5758, DOI 10.1021/ja0423320.
OTT LS, 2006, INORG CHEM, V45, P8382, DOI 10.1021/ic060876s.
OTT LS, 2006, LANGMUIR, V22, P9357, DOI 10.1021/la060934m.
OTT LS, 2007, INORG CHEM, V46, P10335, DOI 10.1021/ic700976z.
OTT LS, 2007, J NANOSCI NANOTECHNO, V7, P2400, DOI 10.1166/jnn.2007.426.
OVERBEEK J, 1981, COLLOIDAL DISPERSION, P1.
OZKAR S, 2002, J AM CHEM SOC, V124, P5796.
OZKAR S, 2002, LANGMUIR, V18, P7653, DOI 10.1021/la020225i.
OZKAR S, 2003, LANGMUIR, V19, P6247, DOI 10.1021/la0207522.
PACHON LD, 2008, APPL ORGANOMET CHEM, V22, P288, DOI 10.1002/aoc.1382.
PAKNIKAR MK, 2005, 2005120173, WO.
PAL S, 2007, APPL ENVIRON MICROB, V73, P1712, DOI 10.1128/AEM.02218-06.
PANIGRAHI S, 2007, J PHYS CHEM C, V111, P4596, DOI 10.1021/jp067554u.
PAVLOV V, 2005, NANO LETT, V5, P649, DOI 10.1021/nl050054c.
PENG ZM, 2009, NANO TODAY, V4, P143, DOI 10.1016/j.nantod.2008.10.010.
PERENBOOM JAA, 1981, PHYS REP, V78, P173.
PHADTARE S, 2004, BIOTECHNOL BIOENG, V85, P629, DOI 10.1002/bit.10856.
PILLAI ZS, 2004, J PHYS CHEM B, V108, P945, DOI 10.1021/jp037018r.
PINGARRON JM, 2008, ELECTROCHIM ACTA, V53, P5848, DOI 10.1016/j.electacta.2008.03.005.
POLAND CA, 2008, NAT NANOTECHNOL, V3, P423.
PORTER MD, 1987, J AM CHEM SOC, V109, P3559.
PRADEEP T, ROLE ACTIVATED UNPUB.
PRADEEP T, UNPUB.
PRADEEP T, 2005, 2005000022, IN.
PRADEEP T, 2006, 200767, IN.
PRADEEP T, 2007, 879, IN.
PRADEEP T, 2008, NANO ESSENTIALS.
PRADEEP T, 2009, NANOTECHNOLOGY APPL.
PRADEEP TJ, 2007, 20070608, IN.
PRASAD BLV, 2002, LANGMUIR, V18, P7515, DOI 10.1021/la020181d.
PRASAD BLV, 2003, CHEM MATER, V15, P935, DOI 10.1021/cm0206439.
PRIME KL, 1991, SCIENCE, V252, P1164.
PUEBLA RAA, 2007, ANALYST, V132, P1210.
PYYKKO P, 1979, ACCOUNTS CHEM RES, V12, P276.
QIAN M, 2003, APPL CATAL A-GEN, V238, P211.
RAI M, 2009, BIOTECHNOL ADV, V27, P76, DOI 10.1016/j.biotechadv.2008.09.002.
RAO CNR, 2002, CHEM-EUR J, V8, P28.
RAO CNR, 2004, CHEM NANOMATERIALS, V1.
RAO CNR, 2004, CHEM NANOMATERIALS, V2.
RAO CNR, 2005, RSC SERIES NANOSCIEN.
RAO CNR, 2006, ANNU REP PROG CHEM A, V102, P20.
RAO CNR, 2007, DALTON T, P3728, DOI 10.1039/b708342d.
RAO CNR, 2007, NANORNATERIALS CHEM.
RAO CNR, 2007, SPRINGER SERIES MAT.
RENN CE, 1966, 3268444, US.
REX M, 2006, ANAL CHEM, V78, P445, DOI 10.1021/ac051166r.
RHODES FH, 1925, IND ENG CHEM, V17, P909.
RICHARDSON SD, 2007, ANAL CHEM, V79, P4295, DOI 10.1021/ac070719q.
RITCHIE SMC, 2009, NANOTECHNOLOGY APPLI.
ROSEMARY MJ, 2004, CARBON, V42, P2352, DOI 10.1016/j.carbon.2004.05.001.
ROSEMARY MJ, 2006, J CHEM SCI, V118, P375.
ROSEMARY MJ, 2006, LANGMUIR, V22, P10125, DOI 10.1021/la061411h.
ROUCOUX A, 2002, CHEM REV, V102, P3757, DOI 10.1021/cr010350j.
RUSSELL AD, 1994, PROGR MED CHEM.
RUTKOW IM, 1988, HIST SURG US 1775 19.
SABATIER P, 1922, CATALYSIS ORGANIC CH, P64.
SACHTLER WMH, 1981, CATAL REV SCI ENG, V23, P127.
SAJANLAL PR, 2008, ADV MATER, V20, P980, DOI 10.1002/adma.200701790.
SAMBHY V, 2006, J AM CHEM SOC, V128, P9798, ARTN JA061442Z.
SANDHYARANI N, 2000, J MATER CHEM, V10, P981.
SANDHYARANI N, 2000, PHYS REV B, V62, P739.
SANDHYARANI N, 2001, CHEM PHYS LETT, V338, P33.
SANDHYARANI N, 2001, CHEM PHYS LETT, V342, P272.
SANTORO SW, 2000, J AM CHEM SOC, V122, P2433.
SARATHY KV, 1997, CHEM COMMUN 0321, P537.
SARATHY KV, 1997, J PHYS CHEM B, V101, P9876.
SARIKAYA M, 1999, P NATL ACAD SCI USA, V96, P14183.
SARIKAYA M, 2003, NAT MATER, V2, P577.
SARIKAYA M, 2004, ANNU REV MATER RES, V34, P373, DOI 10.1146/annurev.matsci.34.040203.121025.
SASS SL, 1999, SUBSTANCE CIVILIZATI.
SASTRY M, 2003, CURR SCI INDIA, V85, P162.
SASTRY M, 2004, NANOBIOTECHNOLOGY, P126.
SAVAGE G, 1975, GLASS GLASSWARE.
SCHATZ GC, 2007, P NATL ACAD SCI USA, V104, P6885, DOI 10.1073/pnas.0702187104.
SCHIMPF S, 2002, CATAL TODAY, V72, P63.
SCHMID G, 1992, CHEM REV, V92, P1709.
SCHMID G, 1994, CLUSTERS COLLOIDS TH.
SCHMID G, 2004, NANOPARTICLES THEORY.
SENZAKI T, 1988, KOGYO YOSUI, P2.
SENZAKI T, 1989, KOGYO YOSUI, V369, P19.
SERP P, 2001, J MATER CHEM, V11, P1980.
SHAN J, 2003, MACROMOLECULES, V36, P4526, DOI 10.1021/ma034265k.
SHANKAR SS, 2004, NAT MATER, V3, P482, DOI 10.1038/nmat1152.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHAO N, 2006, ANGEW CHEM INT EDIT, V45, P4948.
SHARMA VK, 2009, ADV COLLOID INTERFAC, V145, P83, DOI 10.1016/j.cis.2008.09.002.
SHUKLA G, 2006, ENVIRON INT, V32, P244, DOI 10.1016/j.envint.2005.08.027.
SI S, 2008, CHEMPHYSCHEM, V9, P1578, DOI 10.1002/cphc.200800121.
SILVER S, 1996, GENE, V179, P9.
SILVER S, 2003, FEMS MICROBIOL REV, V27, P341, DOI 10.1016/S0168-6445(03)00047-0.
SILVER S, 2006, J IND MICROBIOL BIOT, V33, P627, DOI 10.1007/s10295-006-0139-7.
SLOBODNIK J, 1995, J CHROMATOGR A, V703, P81.
SLOCIK JM, 2008, SMALL, V4, P548, DOI 10.1002/smll.200700920.
SMITH AL, 1983, PARTICLE GROWTH SUSP.
SMULEAC V, 2005, J MEMBRANE SCI, V251, P169, DOI 10.1016/j.memsci.2004.11.012.
SON WK, 2004, MACROMOL RAPID COMM, V25, P1632, DOI 10.1002/marc.200400323.
SONDI I, 2004, J COLLOID INTERF SCI, V275, P177, DOI 10.1016/j.jcis.2004.02.012.
SOUTHAM G, 1994, GEOCHIM COSMOCHIM AC, V58, P4527.
SREEPRASAD TS, 2008, LANGMUIR, V24, P4589, DOI 10.1021/la703523s.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
STATHIS EC, 1946, IND ENG CHEM ANAL ED, V18, P801.
STATHIS EC, 1958, CHEM IND, V47, P860.
STEENKEN S, 1982, J PHYS CHEM-US, V86, P3661.
STOEVA S, 2002, J AM CHEM SOC, V124, P2305.
STORHOFF JJ, 2000, J AM CHEM SOC, V122, P4640.
SUDEEP PK, 2005, J AM CHEM SOC, V127, P6516, DOI 10.1021/ja051145e.
SUN XY, 2008, TALANTA, V76, P747, DOI 10.1016/j.talanta.2008.04.020.
SURYANARAYANAN V, 2004, J MATER CHEM, V14, P2661, DOI 10.1039/b404408h.
TAKAGI A, 2008, J TOXICOL SCI, V33, P105.
TAN S, 2008, LANGMUIR, V24, P4765, DOI 10.1021/la703831q.
TAO A, 2003, NANO LETT, V3, P1229.
TARABARA VV, 2009, NANOTECHNOLOGY APPLI.
TEMPLETON AC, 1998, J AM CHEM SOC, V120, P1906.
TEMPLETON AC, 2000, ACCOUNTS CHEM RES, V33, P27.
TEPPER F, 2002, FILTR SEPARAT, V39, P16.
TERANISHI T, 1998, ADV MATER, V10, P596.
TERANISHI T, 1999, J PHYS CHEM B, V103, P3818.
THIELE H, 1965, J COLLOID SCI, V20, P679.
TIAN N, 2007, SCIENCE, V316, P732, DOI 10.1126/science.1140484.
TIWARI VS, 2007, CHEM PHYS LETT, V446, P77, DOI 10.1016/j.cplett.2007.07.106.
TORRESDAY JLG, 2002, NANO LETT, V2, P397.
TOSHIMA N, 1993, J CHEM SOC FARADAY T, V89, P2537.
TOSHIMA N, 1998, NEW J CHEM, V22, P1179.
TOSHIMA Y, 2001, ADV FUNCTIONAL MOL P, V2, P65.
TURKEVICH J, 1951, DISCUSS FARADAY SOC, P55.
TURKEVICH J, 1970, SCIENCE, V169, P873.
TWIGG GH, 1946, P ROY SOC LOND A MAT, V188, P105.
TWIGG GH, 1946, P ROY SOC LOND A MAT, V188, P92.
VAARA M, 1992, MICROBIOL REV, V56, P395.
VEERAPANENI S, 2007, J AM WATER WORKS ASS, V99, P95.
VOET D, 2004, BIOCH BIOMOLECULES M.
WACHS IE, 1978, SURF SCI, V76, P531.
WANG CY, 1999, SPECTROCHIM ACTA A, V55, P991.
WANG H, 2008, ANAL CHEM, V80, P9021, DOI 10.1021/ac801382k.
WANG ZD, 2008, ADV MATER, V20, P3263, DOI 10.1002/adma.200703181.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.
WANG ZL, 2002, HDB NANOPHASE NANOST, V1.
WAUCHOPE RD, 1992, REV ENVIRON CONTAM T, V123, P1.
WHETTEN RL, 1996, ADV MATER, V8, P428.
WIELAND H, 1912, BER DTSCH CHEM GES 1, V45, P484.
XIA Y, 2008, ANGEW CHEM INT EDIT, V47, P2.
XUE XJ, 2008, J AM CHEM SOC, V130, P3244, DOI 10.1021/ja76716c.
YANTASEE W, 2007, ENVIRON SCI TECHNOL, V41, P5114, DOI 10.1021/es0705238.
YAVUZ CT, 2006, SCIENCE, V314, P964, DOI 10.1126/science.1131475.
YOOSAF K, 2007, J PHYS CHEM C, V111, P12839, DOI 10.1021/jp073923q.
YU CJ, 2008, LANGMUIR, V24, P12717, DOI 10.1021/la802105b.
YU YY, 1997, J PHYS CHEM B, V101, P6661.
ZAMARION VM, 2008, INORG CHEM, V47, P2934, DOI 10.1021/ic800122v.
ZANG L, 1993, J PHOTOCH PHOTOBIO A, V74, P267.
ZECCHINA A, 2007, CHEM-EUR J, V13, P2440, DOI 10.1002/chem.200600678.
ZENG FW, 1997, CHEM REV, V97, P1681.
ZHANG WX, 2003, J NANOPART RES, V5, P323.
ZHAO MQ, 1998, J AM CHEM SOC, V120, P4877.
ZHAO MQ, 1999, ADV MATER, V11, P217.
ZHAO MQ, 1999, ANGEW CHEM INT EDIT, V38, P364.
ZHENG J, 2002, J AM CHEM SOC, V124, P13982, DOI 10.1021/ja028282l.
ZHOU Y, 2005, WATER RESOUR RES, V41, P1.
ZODROW K, 2009, WATER RES, V43, P715, DOI 10.1016/j.watres.2008.11.014.
ZSIGMONDY RZ, 1968, ANAL CHEM, V40, P697.

Cited Reference Count:
467

Times Cited:
0

Publisher:
ELSEVIER SCIENCE SA; PO BOX 564, 1001 LAUSANNE, SWITZERLAND

Subject Category:
Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter

ISSN:
0040-6090

DOI:
10.1016/j.tsf.2009.03.195

IDS Number:
501VI

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270383400033
*Order Full Text [ ]

Title:
Theory of single-file multiparticle diffusion in narrow pores

Authors:
Kharkyanen, VN; Yesylevskyy, SO

Author Full Names:
Kharkyanen, Valery N.; Yesylevskyy, Semen O.

Source:
PHYSICAL REVIEW E 80 (3): Art. No. 031118 Part 1 SEP 2009

Language:
English

Document Type:
Article

KeyWords Plus:
ION CHANNELS; BROWNIAN DYNAMICS; MOLECULAR-DYNAMICS; POTASSIUM CHANNEL; BIOLOGICAL-MEMBRANES; SELECTIVITY FILTER; CONTINUUM-THEORIES; K+ CHANNEL; CONDUCTION; PERMEATION

Abstract:
Single-file diffusion of multiple strongly interacting particles in a one-dimensional pore is described within a general analytical framework. The theory accounts for nonequilibrium conditions, explicit particle-particle interactions, external potential acting on the particles and the fluctuations of the number of particles due to their exchange with external equilibrium reservoirs. It is shown that the problem can be reduced to a closed hierarchical set of partial differential equations of increasing dimensionality, which can be solved numerically. Our framework allows computing any macroscopic characteristic of multiparticle diffusion in the pore. It is shown that the pore occupancy probabilities and the current are rational functions of external concentrations in the steady state. The theory is tested on a simplified model of the narrow rigid pore inspired by the selectivity filter of biological ion channel. Perspectives and limitations of the theory are discussed.

Reprint Address:
Kharkyanen, VN, Natl Acad Sci Ukraine, Inst Phys, Dept Phys Biol Syst, Prospect Nauki 46, UA-03039 Kiev, Ukraine.

Research Institution addresses:
[Kharkyanen, Valery N.; Yesylevskyy, Semen O.] Natl Acad Sci Ukraine, Inst Phys, Dept Phys Biol Syst, UA-03039 Kiev, Ukraine

Cited References:
AKSIMENTIEV A, 2005, BIOPHYS J, V88, P3745, DOI 10.1529/biophysj.104.058727.
BALESKU R, 1975, EQUILIBRIUM NONEQUIL.
BERNECHE S, 2000, BIOPHYS J, V78, P2900.
BERNECHE S, 2001, NATURE, V414, P73.
CHINAROV VA, 1992, PHYS REV A, V46, P5232.
CHRISTOPHOROV LN, 1995, PHYS LETT A, V205, P14.
CHRISTOPHOROV LN, 2000, CHEM PHYS, V256, P45.
CHRISTOPHOROV LN, 2005, CHEM PHYS, V319, P330, DOI 10.1016/j.chemphys.2005.06.029.
CHUNG SH, 1999, BIOPHYS J, V77, P2517.
CHUNG SH, 2002, BIOPHYS J, V82, P628.
CHUNG SH, 2007, BIOPHYS J, V93, P44, DOI 10.1529/biophysj.106.098954.
COMPOINT M, 2004, BBA-BIOMEMBRANES, V1661, P26, DOI 10.1016/j.bbamem.2003.11.019.
CORRY B, 2000, BIOPHYS J, V78, P2364.
DOYLE DA, 1998, SCIENCE, V280, P69.
EISENBERG B, 1998, CONTEMP PHYS, V39, P447.
GARDINER CW, 2004, HDB STOCHASTIC METHO.
HAKEN H, 1983, ADV SYNERGETICS.
HECKMANN K, 1972, BIOMEMBRANE, V3, P127.
HILLE B, 2001, ION CHANNELS EXCITAB.
HUMMER G, 2001, NATURE, V414, P188.
KORN GA, 1967, MATH HDB SCI ENG.
KURACHI Y, 1999, POTASSIUM ION CHAN N.
LEVITT DG, 1986, ANNU REV BIOPHYS BIO, V15, P29.
MASHL RJ, 2001, BIOPHYS J, V81, P2473.
MCGILL P, 1996, BIOPHYS J, V71, P1723.
MOY G, 2000, BIOPHYS J, V78, P2349.
NADLER B, 2004, J PHYS-CONDENS MAT, V16, S2153, DOI 10.1088/0953-8984/16/22/015.
NELSON PH, 2002, J CHEM PHYS, V117, P11396, DOI 10.1063/1.1522709.
ROUX B, 1999, BIOPHYS J, V77, P139.
SCHUMAKER MF, 2001, BIOPHYS J, V80, P12.
STEPHAN W, 1983, J THEOR BIOL, V105, P287.
TAREK M, 2003, BIOPHYS J, V85, P2287.
WESSELING P, 1992, INTRO MULTIGRID METH.
YESYLEVSKYY SO, 2004, PHYS CHEM CHEM PHYS, V6, P3111, DOI 10.1039/b316452g.
YESYLEVSKYY SO, 2005, CHEM PHYS, V312, P127, DOI 10.1016/j.chemphys.2004.11.031.
ZIMMERLI U, 2008, BIOPHYS J, V94, P2546, DOI 10.1529/biophysj.106.102467.

Cited Reference Count:
36

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Fluids & Plasmas; Physics, Mathematical

ISSN:
1539-3755

DOI:
10.1103/PhysRevE.80.031118

IDS Number:
501LM

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270380800032
*Order Full Text [ ]

Title:
Induced beta-Barrel Formation of the Alzheimer's A beta 25-35 Oligomers on Carbon Nanotube Surfaces: Implication for Amyloid Fibril Inhibition

Authors:
Fu, ZM; Luo, Y; Derreumaux, P; Wei, GH

Author Full Names:
Fu, Zhaoming; Luo, Yin; Derreumaux, Philippe; Wei, Guanghong

Source:
BIOPHYSICAL JOURNAL 97 (6): 1795-1803 SEP 16 2009

Language:
English

Document Type:
Article

KeyWords Plus:
ATOMIC-FORCE MICROSCOPY; MOLECULAR-DYNAMICS; PROTEIN FIBRILLATION; PEPTIDE AGGREGATION; SIMULATIONS; MECHANISM; WATER; NANOPARTICLES; CHAPERONES; FULLERENE

Abstract:
Recent experimental studies show that carbon nanotubes; impact the aggregation process of proteins associated with neurodegenerative diseases. However, the details of molecular interactions between proteins and carbon nanotubes are still not well understood. In this study, we investigate the initial adsorption features and dynamics of the Alzheimer's amyloid-beta peptide spanning residues 25-35 (A beta 25-35) on a single-walled carbon nanotube (SWNT) surface using fully atomic molecular dynamics simulations (MD) in explicit solvent. The initial configurations of the A beta 25-35 peptides consist of two preformed bilayer beta-sheets, each with four or five beta-strands in parallel or mixed antiparallel-parallel orientations. Our simulations show, for what we believe is the first time, that two disjointed A beta 25-35 beta-sheets with mixed antiparallel-parallel strands can assemble into beta-barrels wrapping the SWNT. In contrast, both simulations of A beta 25-35 without SWNT!
, and simulations of SWNT-A beta 25-35 with purely parallel beta-strands, lead to disordered aggregates. We find that A beta 25-35 beta-barrel formation involves at least two steps: i), curving of the A beta 25-35 beta-sheets as a result of strong hydrophobic interactions with carbon nanotube concomitantly with dehydration of the SWNT-peptide interface; and ii), intersheet backbone hydrogen bond formation with fluctuating intrasheet hydrogen bonds, Detailed analysis of the conversion shows that beta-barrel formation on SWNT surface results from the interplay of dehydration and peptide-SWNT/peptide-peptide interactions. Implications of our results on amyloid fibril inhibition are discussed.

Reprint Address:
Wei, GH, Fudan Univ, Surface Phys Lab, Natl Key Lab, Shanghai 200433, Peoples R China.

Research Institution addresses:
[Fu, Zhaoming; Luo, Yin; Wei, Guanghong] Fudan Univ, Surface Phys Lab, Natl Key Lab, Shanghai 200433, Peoples R China; [Fu, Zhaoming; Luo, Yin; Wei, Guanghong] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China; [Derreumaux, Philippe] Inst Biol Physicochim, CNRS, UPR 9080, Lab Biochim Theor, F-75005 Paris, France; [Derreumaux, Philippe] Univ Paris 07, Paris, France

E-mail Address:
ghwei@fudan.edu.cn

Cited References:
BERENDSEN HJC, INTERMOLECULAR FORCE.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
CABALEIROLAGO C, 2008, J AM CHEM SOC, V130, P15437, DOI 10.1021/ja8041806.
CHEN RJ, 2003, P NATL ACAD SCI USA, V100, P4984, DOI 10.1073/pnas.0837064100.
CHERNY I, 2008, ANGEW CHEM INT EDIT, V47, P4062, DOI 10.1002/anie.200703133.
DELAPAZ ML, 2005, J MOL BIOL, V349, P583, DOI 10.1016/j.jmb.2005.03.081.
FAY N, 2003, J BIOL CHEM, V278, P30199, DOI 10.1074/jbc.M303000200.
GHULE AV, 2007, CARBON, V45, P1586, DOI 10.1016/j.carbon.2007.03.043.
GOEDERT M, 2006, SCIENCE, V314, P777, DOI 10.1126/science.1132814.
HECHT MH, 1994, P NATL ACAD SCI USA, V91, P8729.
HESS B, 1997, J COMPUT CHEM, V18, P1463.
HIRCHFELDER JO, 1954, MOL THEORY GASES LIQ.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
IKEDA K, 2006, FEBS LETT, V580, P6587, DOI 10.1016/j.febslet.2006.11.009.
IPPEL JH, 2002, P NATL ACAD SCI USA, V99, P8648.
KANG Y, 2008, J PHYS CHEM B, V112, P4801, DOI 10.1021/jp711392g.
KIM JE, 2003, BIOCHEM BIOPH RES CO, V303, P576, DOI 10.1016/S0006-291X(03)00393-0.
KOSTARELOS K, 2008, NAT BIOTECHNOL, V26, P774, DOI 10.1038/nbt0708-774.
KOWALEWSKI T, 1999, P NATL ACAD SCI USA, V96, P3688.
KRONE MG, 2008, J AM CHEM SOC, V130, P11066, DOI 10.1021/ja8017303.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LINSE S, 2007, P NATL ACAD SCI USA, V104, P8691, DOI 10.1073/pnas.0701250104.
LOMAKIN A, 1997, P NATL ACAD SCI USA, V94, P7942.
LU Y, 2009, PROTEINS, V75, P954, DOI 10.1002/prot.22305.
LUHRS T, 2005, P NATL ACAD SCI USA, V102, P17342, DOI 10.1073/pnas.0506723102.
MA BY, 2006, BIOPHYS J, V90, P3365, DOI 10.1529/biophysj.105.075309.
MA BY, 2006, CURR OPIN CHEM BIOL, V10, P445.
MELQUIOND A, 2005, J CHEM PHYS, V122, ARTN 174904.
MELQUIOND A, 2006, PROTEINS, V65, P180, DOI 10.1002/prot.21100.
MIYAMOTO S, 1992, J COMPUT CHEM, V13, P952.
NGUYEN PH, 2007, P NATL ACAD SCI USA, V104, P111, DOI 10.1073/pnas.0607440104.
OBRIEN EP, 2008, NANO LETT, V8, P3702, DOI 10.1021/nl8019328.
PIKE CJ, 1995, J NEUROCHEM, V64, P253.
PODOLSKI IY, 2007, J NANOSCI NANOTECHNO, V7, P1479.
RELINI A, 2006, J BIOL CHEM, V281, P16521, DOI 10.1074/jbc.M51387200.
ROBERSON ED, 2006, SCIENCE, V314, P781, DOI 10.1126/science.1132813.
RUSCHAK AM, 2007, P NATL ACAD SCI USA, V104, P12341, DOI 10.1073/pnas.0703306104.
SHEN JW, 2008, BIOMATERIALS, V29, P3847, DOI 10.1016/j.biomaterials.2008.06.013.
SORIN EJ, 2006, J AM CHEM SOC, V128, P6316, DOI 10.1021/ja060917j.
TAKAHASHI T, 2008, ACCOUNTS CHEM RES, V41, P1309, DOI 10.1021/ar8000475.
THAUVIN C, 2008, NAT NANOTECHNOL, V3, P743, DOI 10.1038/nnano.2008.318.
TRZASKOWSKI B, 2006, CHEM PHYS LETT, V430, P97, DOI 10.1016/j.cplett.2006.08.125.
VANGUNSTEREN WF, 1996, BIOMOLECULAR SIMULAT.
YANG DS, 1999, J BIOL CHEM, V274, P32970.
YANG GC, 2002, J AM CHEM SOC, V124, P10648, DOI 10.1021/ja027302g.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
ZHENG J, 2008, J PHYS CHEM B, V112, P6856, DOI 10.1021/jp711335b.

Cited Reference Count:
49

Times Cited:
0

Publisher:
CELL PRESS; 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA

Subject Category:
Biophysics

ISSN:
0006-3495

DOI:
10.1016/j.bpj.2009.07.014

IDS Number:
501KO

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270318500010
*Order Full Text [ ]

Title:
Noncoaxial vibration of fluid-filled multi-walled carbon nanotubes

Authors:
Yan, Y; Wang, WQ; Zhang, L

Author Full Names:
Yan, Y.; Wang, W. Q.; Zhang, Lx

Source:
APPLIED MATHEMATICAL MODELLING 34 (1): 122-128 JAN 2010

Language:
English

Document Type:
Article

Author Keywords:
Fluid-filled multi-walled carbon nanotubes; Natural resonant frequency; Intertube resonant frequency; Amplitude ratio; Noncoaxial vibration

KeyWords Plus:
CONVEYING FLUID; CYLINDRICAL-SHELLS; INSTABILITY; FLOW

Abstract:
This paper is concerned with the free vibration of the fluid-filled multi-walled carbon nanotubes (MWCNTs) with simply supported ends. Based on simplified Donnell's cylindrical shell model and potential flow theory, the effect of internal fluid on the coupling vibration of the MWCNTs-fluid system is discussed in detail. The results show that the resonant frequencies are decreased due to the effect of the fluid, and the fluid has only a little influence on the associated amplitude ratio in MWCNTs corresponding to the natural resonant frequency (frequency of the innermost tube), while plays a significant role in the associated amplitude ratios corresponding to the intertube resonant frequency. For the natural resonant frequency, the vibration mode is coaxial. However, for the intertube resonant frequency, the system shows complex noncoaxial vibration, which plays a critical role in electronic and transport properties of carbon nanotubes (CNTs). (C) 2009 Elsevier Inc. All right!
s reserved.

Reprint Address:
Wang, WQ, Kunming Univ Sci & Technol, Dept Engn Mech, 50 E Ring Rd, Kunming 650051, Peoples R China.

Research Institution addresses:
[Yan, Y.; Wang, W. Q.; Zhang, Lx] Kunming Univ Sci & Technol, Dept Engn Mech, Kunming 650051, Peoples R China

E-mail Address:
yanyankm@126.com; wwqquan@126.com; zlxzcc@126.com

Cited References:
AMABILI M, 1998, J FLUID STRUCT, V12, P883.
DONG K, 2007, MODEL SIMUL MATER SC, V15, P427, DOI 10.1088/0965-0393/15/5/004.
GADD GE, 1997, SCIENCE, V277, P933.
HE XQ, 2005, INT J SOLIDS STRUCT, V42, P6032, DOI 10.1016/j.ijsolstr.2005.03.045.
HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303, DOI 10.1016/j.jmps.2004.08.003.
HE XQ, 2006, J APPL PHYS, V100, ARTN 124317.
HUMMER G, 2001, NATURE, V414, P188.
KHOSRAVIAN N, 2008, NANOTECHNOLOGY, V19, ARTN 275703.
LEE HL, 2008, J APPL PHYS, V103, ARTN 024302.
LEE SM, 2001, J AM CHEM SOC, V123, P5059.
LIU J, 1998, SCIENCE, V280, P1253.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
NATSUKI T, 2007, J APPL PHYS, V101, ARTN 034319.
RU CQ, 2000, PHYS REV B, V62, P9973.
SAITO R, 2001, CHEM PHYS LETT, V348, P187.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SUN C, 2007, SOLID STATE COMMUN, V143, P202, DOI 10.1016/j.ssc.2007.05.027.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
WANG L, 2008, COMP MATER SCI, V43, P399.
WANG L, 2008, COMP MATER SCI, V44, P821, DOI 10.1016/j.commatsci.2008.06.001.
WANG L, 2008, PHYSICA E, V40, P3179, DOI 10.1016/j.physe.2008.05.009.
WANG X, 2006, ACTA MATER, V54, P2067, DOI 10.1016/j.actamat.2005.12.039.
XU KY, 2006, J APPL PHYS, V99, ARTN 064303.
YAKOBSON BI, 1996, PHYS REV LETT, V76, P2511.
YAN Y, 2007, J APPL PHYS, V102, ARTN 044307.
YAN Y, 2009, APPL MATH MODEL, V33, P1430, DOI 10.1016/j.apm.2008.02.010.
YOON J, 2002, PHYS REV B, V66, ARTN 233402.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.

Cited Reference Count:
29

Times Cited:
0

Publisher:
ELSEVIER SCIENCE INC; 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA

Subject Category:
Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics

ISSN:
0307-904X

DOI:
10.1016/j.apm.2009.03.031

IDS Number:
500QL

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270440500003
*Order Full Text [ ]

Title:
Carbon Nanotubes and Nanofluidic Transport

Authors:
Holt, JK

Author Full Names:
Holt, Jason Knowles

Source:
ADVANCED MATERIALS 21 (35): 3542-3550 SEP 18 2009

Language:
English

Document Type:
Article

KeyWords Plus:
WATER TRANSPORT; GAS-TRANSPORT; LIQUID SLIP; MEMBRANES; FLOW; MOLECULES; CHANNEL; IONS

Abstract:
Recent strides have been made in both the modeling and measurement of fluid flow on the nanoscale. Carbon nanotubes, with their atomic dimensions and atomic smoothness, are ideal materials for studying such flow. This Progress Report describes recent modeling and experimental advances concerning fluid transport in carbon nanotubes. The varied flow characteristics predicted by molecular dynamics are described, as are the roles of defects and chirality on transport. Analytical models are increasingly being used to describe nanofluidic transport by relaxing many of the assumptions commonly used to describe bulk water. Recent experimental studies examine the size dependence of flow enhancements through carbon nanotubes and use varied spectroscopies to probe water structure and dynamics in these systems. Carbon nanotubes are finding increasing applications in biology, from protein filters to platforms for cell interrogation.

Reprint Address:
Holt, JK, NanOasis Technol, 4677 Meade St,Suite 210, Richmond, CA 94804 USA.

Research Institution addresses:
NanOasis Technol, Richmond, CA 94804 USA

E-mail Address:
jason.holt@nanoasisinc.com

Cited References:
ARORA G, 2007, NANO LETT, V7, P565, DOI 10.1021/nl062201s.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
CAO AY, 2005, SCIENCE, V310, P1307, DOI 10.1126/science.1118957.
CHEN Q, 2008, NANO LETT, V8, P1902, DOI 10.1021/nl080569e.
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
EIJKEL J, 2007, LAB CHIP, V7, P299, DOI 10.1039/b700364c.
FAN XB, 2008, NANOTECHNOLOGY, V19, UNSP 509901.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GONG XJ, 2008, CHINESE PHYS B, V17, P2739.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG LL, 2006, PHYS CHEM CHEM PHYS, V8, P3836, DOI 10.1039/b604585p.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784.
JAKOBTORWEIHEN S, 2007, J CHEM PHYS, V127, ARTN 024904.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LEE C, 2008, PHYS REV LETT, V101, ARTN 064501.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LI XS, 2007, SMALL, V3, P595, DOI 10.1002/smll.200600652.
LIU YC, 2008, PHYS REV B, V77.
LONGHURST MJ, 2006, J CHEM PHYS, V124, ARTN 234708.
LONGHURST MJ, 2006, J CHEM PHYS, V125, ARTN 184705.
LONGHURST MJ, 2007, PHYS REV LETT, V98, ARTN 145503.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MARTINI A, 2008, J FLUID MECH, V600, P257, DOI 10.1017/S0022112008000475.
MARTINI A, 2008, PHYS REV LETT, V100, ARTN 206001.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
MEHTA A, 2009, ADV MATER, V21, P102, DOI 10.1002/adma.200801602.
MI WL, 2007, J MEMBRANE SCI, V304, P1, DOI 10.1016/j.memsci.2007.07.021.
MORIARTY NW, 1996, J PHYS CHEM-US, V100, P17791.
NEWSOME DA, 2006, NANO LETT, V6, P2150, DOI 10.1021/nl061181r.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
RIVERA JL, 2007, J PHYS CHEM C, V111, P18899, DOI 10.1021/jp075989r.
SCHRLAU MG, 2008, NANOTECHNOLOGY, V19, ARTN 325102.
SEO Y, 2007, J KOREAN PHYS SOC, V51, P107.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SLOAN J, 2008, ACS NANO, V2, P966, DOI 10.1021/nn7002508.
STRIOLO A, 2007, NANOTECHNOLOGY, V18, ARTN 475704.
THOMAS JA, 2008, J CHEM PHYS, V128, UNSP 0484715.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
YANG FQ, 2007, APPL PHYS LETT, V90, ARTN 133105.
YANG L, 2007, J CHEM PHYS, V126, ARTN 084706.

Cited Reference Count:
55

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
0935-9648

DOI:
10.1002/adma.200900867

IDS Number:
502FH

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000270438100008
*Order Full Text [ ]

Title:
Proton Transport from Dendritic Helical-Pore-Incorporated Polymersomes

Authors:
Kim, AJ; Kaucher, MS; Davis, KP; Peterca, M; Imam, MR; Christian, NA; Levine, DH; Bates, FS; Percec, V; Hammer, DA

Author Full Names:
Kim, Anthony J.; Kaucher, Mark S.; Davis, Kevin P.; Peterca, Mihai; Imam, Mohammad R.; Christian, Natalie A.; Levine, Dalia H.; Bates, Frank S.; Percec, Virgil; Hammer, Daniel A.

Source:
ADVANCED FUNCTIONAL MATERIALS 19 (18): 2930-2936 SEP 23 2009

Language:
English

Document Type:
Article

KeyWords Plus:
VESICLES; COPOLYMERS; DIPEPTIDES; MEMBRANE; SOLUBILITY; LIPOSOMES; DYNAMICS; DIBLOCK; CHANNEL

Abstract:
The ability to add synthetic channels to polymersome (polymer vesicle) membranes could lead to novel membrane composites with unique selectivity and permeability. Proton transport through two different synthetic pores, self-assembled from either a dendritic dipeptide, (6Nf-3,4-3,5)12G2-CH2-Boc-L-Tyr-L-Ala-OMe, or a dendritic ester, (R)-4Bp-3,4-dm8G1-COOMe, incorporated into polymersome membranes are studied. Polymersomes; provide an excellent platform for studying such transport processes due to their robustness and mechanical and chemical stability compared to liposomes. It is found that the incorporated dendritic dipeptide and dendritic ester assemble into stable helical pores in the poly(ethylene oxide)-polybutadiene (PEO-PBD) polymersomes but not in the poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyl oxazoline) (PMOX-PDMS-PMOX) polymersomes. The incorporation is confirmed by circular dichroism (CD), changes in purely synthetic mechanical strength (e.g., area!
l expansion modulus) as assessed by micropipette aspiration, and cryo-TEM. In addition to the structural analyses, a transport measurement shows the incorporated dendritic helical pores allow facile transport of protons across the polymersome membranes after up to one month of storage. This integration of synthetic porous channels with polymersome substrates could provide a valuable tool for studying active transport processes in a composite membrane. These composites will ultimately expand the family of biologically inspired porous-membrane mimics.

Reprint Address:
Kim, AJ, Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA.

Research Institution addresses:
[Kim, Anthony J.; Levine, Dalia H.; Hammer, Daniel A.] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA; [Christian, Natalie A.; Hammer, Daniel A.] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA; [Kaucher, Mark S.; Peterca, Mihai; Imam, Mohammad R.; Percec, Virgil] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA; [Davis, Kevin P.; Bates, Frank S.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA

E-mail Address:
hammer@seas.upenn.edu

Cited References:
BATTAGLIA G, 2005, NAT MATER, V4, P869, DOI 10.1038/nmat1501.
BERMUDEZ H, 2002, MACROMOLECULES, V35, P8203, DOI 10.1021/ma0206691.
CHOI HJ, 2005, NANO LETT, V5, P2538, DOI 10.1021/nl051896e.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DELLAGO C, 2003, PHYS REV LETT, V90, P9021.
DISCHER BM, 1999, SCIENCE, V284, P1143.
DISCHER BM, 2000, CURR OPIN COLLOID IN, V5, P125.
GEHLSEN MD, 1992, MACROMOLECULES, V25, P939.
GHOROGHCHIAN PP, 2006, SOFT MATTER, V2, P973, DOI 10.1039/b604212k.
HUMMER G, 2001, NATURE, V414, P188.
KAUCHER MS, 2006, J AM CHEM SOC, V128, P38, DOI 10.1021/ja056888e.
KAUCHER MS, 2007, J AM CHEM SOC, V129, P11698, DOI 10.1021/ja076066c.
MECKE A, 2006, SOFT MATTER, V2, P751, DOI 10.1039/b605165k.
NARDIN C, 2001, EUR PHYS J E, V4, P403.
PERCEC V, 2004, NATURE, V430, P764, DOI 10.1038/nature02770.
PERCEC V, 2006, P NATL ACAD SCI USA, V103, P2518, DOI 10.1073/pnas.0509676103.
ROTH M, 1990, J POLYM SCI POL PHYS, V28, P2715.
SEIGNEURET M, 1985, FEBS LETT, V188, P101.
SMONDYREV AM, 2002, BIOPHYS J, V82, P1460.
VANKREVELEN DW, 1997, PROPERTIES POLYM.
WANG XC, 1993, P NATL ACAD SCI USA, V90, P4981.
YAMASHITA S, 1979, MAKROMOL CHEM, V180, P705.

Cited Reference Count:
22

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1616-301X

DOI:
10.1002/adfm.200900076

IDS Number:
502EN

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert Expiration Notice

ISI Web of Knowledge Citation Alert Expiration Notice

Cited Article: Zhao, Y. Individual water-filled single-walled carbon nanotubes as hydroelectric power converters
Alert Expires: 22 OCT 2009
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b

========================================================================
The ISI Web of Knowledge alert will expire on the date shown above. If you wish to continue receiving the alert after that date, please follow the renewal instructions below.

Note: If you have any questions, please visit the Thomson Scientific Help Desk Web page at the URL listed at the end of the e-mail.
========================================================================

*Renewal Instructions*
1. Access ISI Web of Knowledge and Sign In with the e-mail address under which you created the alert.
2. Once Signed In, use the drop-down menu in the top frame to access "Citation Alerts".
3. Click the "Renew" button for each alert you wish to renew. The change takes affect immediately.
4. Log out of ISI Web of Knowledge.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert Expiration Notice

ISI Web of Knowledge Citation Alert Expiration Notice

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b

========================================================================
The ISI Web of Knowledge alert will expire on the date shown above. If you wish to continue receiving the alert after that date, please follow the renewal instructions below.

Note: If you have any questions, please visit the Thomson Scientific Help Desk Web page at the URL listed at the end of the e-mail.
========================================================================

*Renewal Instructions*
1. Access ISI Web of Knowledge and Sign In with the e-mail address under which you created the alert.
2. Once Signed In, use the drop-down menu in the top frame to access "Citation Alerts".
3. Click the "Renew" button for each alert you wish to renew. The change takes affect immediately.
4. Log out of ISI Web of Knowledge.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert
Cited Article:   Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires:   21 OCT 2009
Number of Citing Articles:   3 new records this week (3 in this e-mail)
Organization ID:   3b97d1bbc1878baed0ab183d8b03130b

Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.

*Record 1 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: Shear rate threshold for the boundary slip in dense polymer films
Authors: Priezjev, NV
Author Full Names: Priezjev, Nikolai V.
Source: PHYSICAL REVIEW E 80 (3): Art. No. 031608 Part 1 SEP 2009
Language: English
Document Type: Article
KeyWords Plus: MOLECULAR-DYNAMICS SIMULATION; FLUID-SOLID INTERFACE; SURFACE-ROUGHNESS; LIQUID FLOW; NO-SLIP; MELTS; BEHAVIOR; WALL; MICROCHANNELS; HEXADECANE
Abstract: The shear rate dependence of the slip length in thin polymer films confined between atomically flat surfaces is investigated by molecular dynamics simulations. The polymer melt is described by the bead-spring model of linear flexible chains. We found that at low shear rates the velocity profiles acquire a pronounced curvature near the wall and the absolute value of the negative slip length is approximately equal to the thickness of the viscous interfacial layer. At higher shear rates, the velocity profiles become linear and the slip length increases rapidly as a function of shear rate. The gradual transition from no-slip to steady-state slip flow is associated with faster relaxation of the polymer chains near the wall evaluated from decay of the time autocorrelation function of the first normal mode. We also show that at high melt densities the friction coefficient at the interface between the polymer melt and the solid wall follows a power-law decay as a function of the sli! p velocity. At large slip velocities the friction coefficient is determined by the product of the surface-induced peak in the structure factor, the temperature, and the contact density of the first fluid layer near the solid wall.
Reprint Address: Priezjev, NV, Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA.
Research Institution addresses: Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
Cited References: ALLEN MP, 1987, COMPUTER SIMULATION.
AOYAGI T, 2001, J CHEM PHYS, V115, P552.
BARRAT JL, 1999, FARADAY DISCUSS, V112, P119.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BAUDRY J, 2001, LANGMUIR, V17, P5232.
BINDER K, 1995, MONTE CARLO MOL DYNA.
BIRD RB, 1987, DYNAMICS POLYM LIQUI.
BITSANIS I, 1990, J CHEM PHYS, V92, P3827.
BITSANIS IA, 1993, J CHEM PHYS, V99, P5520.
BROCHARDWYART F, 1992, LANGMUIR, V8, P3033.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
CHURAEV NV, 1984, J COLLOID INTERF SCI, V97, P574.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI 10.1140/epje/i2002-10112-9.
CRAIG VSJ, 2001, PHYS REV LETT, V87, ARTN 054504.
DEGENNES PG, 1985, REV MOD PHYS, V57, P827.
GALEA TM, 2004, LANGMUIR, V20, P3477, DOI 10.1021/la035880k.
GREST GS, 1986, PHYS REV A, V33, P3628.
HEINBUCH U, 1989, PHYS REV A, V40, P1144.
HORN RG, 2000, J CHEM PHYS, V112, P6424.
IRVING JH, 1950, J CHEM PHYS, V18, P817.
JABBARZADEH A, 1999, J CHEM PHYS, V110, P2612.
KHARE R, 1996, MACROMOLECULES, V29, P7910.
KOIKE A, 1998, J PHYS CHEM B, V102, P3669.
KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781.
KREMER K, 1990, J CHEM PHYS, V92, P5057.
MANIAS E, 1993, EUROPHYS LETT, V24, P99.
MANIAS E, 1996, LANGMUIR, V12, P4587.
MARTINI A, 2008, J FLUID MECH, V600, P257, DOI 10.1017/S0022112008000475.
MARTINI A, 2008, PHYS REV LETT, V100, ARTN 206001.
MATE CM, 2008, TRIBOLOGY SMALL SCAL.
MIGLER KB, 1993, PHYS REV LETT, V70, P287.
MUKHERJI D, 2006, PHYS REV E 1, V74, ARTN 010601.
MULLER M, 2008, J PHYS-CONDENS MAT, V20, P94225, ARTN 494225.
NIAVARANI A, 2008, J CHEM PHYS, V129, P44902, ARTN 144902.
NIAVARANI A, 2008, PHYS REV E 1, V77, ARTN 041606.
PRIEZJEV NV, 2004, PHYS REV LETT, V92, ARTN 018302.
PRIEZJEV NV, 2005, PHYS REV E 1, V71, ARTN 041608.
PRIEZJEV NV, 2006, J FLUID MECH, V554, P25, DOI 10.1017/S0022112006009086.
PRIEZJEV NV, 2007, J CHEM PHYS, V127, P44708, ARTN 144708.
PRIEZJEV NV, 2007, PHYS REV E 1, V75, ARTN 051605.
SANCHEZREYES J, 2003, LANGMUIR, V19, P3304, DOI 10.1021/la0265326.
SCHMATKO T, 2005, PHYS REV LETT, V94, ARTN 244501.
SCHMATKO T, 2006, LANGMUIR, V22, P6843, DOI 10.1021/la060061w.
SERVANTIE J, 2008, PHYS REV LETT, V101, ARTN 026101.
SMITH ED, 1996, PHYS REV B, V54, P8252.
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878.
STEVENS MJ, 1997, J CHEM PHYS, V106, P7303.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1995, ISR J CHEM, V35, P93.
THOMPSON PA, 1997, NATURE, V389, P360.
TOMASSONE MS, 1997, PHYS REV LETT, V79, P4798.
ULMANELLA U, 2008, PHYS FLUIDS, V20, ARTN 101512.
VINOGRADOVA OI, 1995, LANGMUIR, V11, P2213.
VINOGRADOVA OI, 2006, PHYS REV E 2, V73, ARTN 045302.
YANG SC, 2005, MOL SIMULAT, V31, P971, DOI 10.1080/08927020500423778.
ZHU YX, 2001, PHYS REV LETT, V87, P6105.
ZHU YX, 2002, LANGMUIR, V18, P10058, DOI 10.1021/la026016f.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.
Cited Reference Count: 59
Times Cited: 0
Publisher: AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
Subject Category: Physics, Fluids & Plasmas; Physics, Mathematical
ISSN: 1539-3755
DOI: 10.1103/PhysRevE.80.031608
IDS Number: 501LM

*Record 2 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: Flow regimes and parameter dependence in nanochannel flows
Authors: Liu, C; Li, ZG
Author Full Names: Liu, Chong; Li, Zhigang
Source: PHYSICAL REVIEW E 80 (3): Art. No. 036302 Part 2 SEP 2009
Language: English
Document Type: Article
Author Keywords: channel flow; nanofluidics; Poiseuille flow
KeyWords Plus: FLUID-SOLID INTERFACE; MOLECULAR-DYNAMICS; BOUNDARY-CONDITIONS; SLIP LENGTH; LIQUID FLOW; SHEAR-FLOW; SURFACES; PORES
Abstract: Nanoscale fluid flow systems involve both microscopic and macroscopic parameters, which compete with each another and lead to different flow regimes. In this work, we investigate the interactions of four fundamental parameters, including the fluid-fluid, fluid-wall binding energies, temperature of the system, and driving force, and their effects on the flow motion in nanoscale Poiseuille flows. By illustrating the fluid flux as a function of a dimensionless number, which represents the effective surface effect on the fluid, we show that the fluid motion in nanochannels falls into different regimes, each of which is associated with a distinct mechanism. The mechanisms in different situations reveal the effects of the parameters on the fluid dynamics.
Reprint Address: Liu, C, Hong Kong Univ Sci & Technol, Dept Mech Engn, Clear Water Bay, Kowloon, Hong Kong, Peoples R China.
Research Institution addresses: [Liu, Chong; Li, Zhigang] Hong Kong Univ Sci & Technol, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
Cited References: ALLEN MP, 1987, COMPUTER SIMULATION.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BITSANIS I, 1987, J CHEM PHYS, V87, P1733.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
GALEA TM, 2004, LANGMUIR, V20, P3477, DOI 10.1021/la035880k.
HEINBUCH U, 1989, PHYS REV A, V40, P1144.
HIPPLER H, 1983, J CHEM PHYS, V78, P6709.
HUANG CK, 2007, J CHEM PHYS, V126, P24702, ARTN 224702.
KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781.
LI ZG, 2005, PHYS REV LETT, V95, ARTN 014502.
LI ZG, 2006, PHYS FLUIDS, V18, P17102, ARTN 117102.
LI ZG, 2007, J CHEM PHYS, V127, P74706.
LI ZG, 2009, PHYS REV E 2, V79, ARTN 026312.
MARTINI A, 2008, PHYS REV LETT, V100, ARTN 206001.
PRIEZJEV NV, 2007, J CHEM PHYS, V127, P44708, ARTN 144708.
PRIEZJEV NV, 2007, PHYS REV E 1, V75, ARTN 051605.
SOONG CY, 2007, PHYS REV E 2, V76, ARTN 036303.
SUN M, 1992, PHYS REV LETT, V69, P3491.
TAKABA H, 2007, J CHEM PHYS, V127, P54703, ARTN 054703.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1997, NATURE, V389, P360.
TRAVIS KP, 1997, PHYS REV E, V55, P4288.
TRAVIS KP, 2000, J CHEM PHYS, V112, P1984.
VORONOV RS, 2006, J CHEM PHYS, V124, ARTN 204701.
Cited Reference Count: 24
Times Cited: 0
Publisher: AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
Subject Category: Physics, Fluids & Plasmas; Physics, Mathematical
ISSN: 1539-3755
DOI: 10.1103/PhysRevE.80.036302
IDS Number: 501LN

*Record 3 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: Molecular dynamics simulations of polymeric fluids in narrow channels: Methods to enhance mixing
Authors: Dhondi, S; Pereira, GG; Hendy, SC
Author Full Names: Dhondi, Srikanth; Pereira, Gerald G.; Hendy, Shaun C.
Source: PHYSICAL REVIEW E 80 (3): Art. No. 036309 Part 2 SEP 2009
Language: English
Document Type: Article
Author Keywords: channel flow; flow simulation; fluid oscillations; liquid mixtures; molecular dynamics method; polymer solutions; slip flow; wetting
KeyWords Plus: BOUNDARY-CONDITION; SHEAR-FLOW; SLIP; MELTS; MICROFLUIDICS; INTERFACES; HEXADECANE; SOLIDS; LIQUID
Abstract: Mixing of shear thinning polymeric fluids in long channels with patterned boundary conditions is studied through molecular dynamics simulations. Patterned wettability was shown to induce spatially varying slip lengths at the channel walls which in turn induce mixing in the fluid. To quantify the amount of mixing for different wave lengths of patterns, transverse velocity profiles were evaluated. The transverse velocity profiles from the molecular dynamics simulations were then compared with predictions from continuum modeling and good quantitative agreement was found. Offsetting the pattern was shown to produce better mixing in the center of the channel. Transverse flow is found to increase when the radius of gyration of the chains is smaller than the pattern length. We also implement an oscillating (time dependent) body force and find that the transverse flow increases significantly. However, we do not find an increase in transverse flow with frequency of the oscillation as! predicted from continuum modeling and we postulate reasons for this behavior.
Reprint Address: Dhondi, S, Victoria Univ Wellington, Sch Chem & Phys Sci, MacDiarmid Inst Adv Mat & Nanotechnol, Wellington 6011, New Zealand.
Research Institution addresses: [Dhondi, Srikanth; Hendy, Shaun C.] Victoria Univ Wellington, Sch Chem & Phys Sci, MacDiarmid Inst Adv Mat & Nanotechnol, Wellington 6011, New Zealand; [Pereira, Gerald G.] CSIRO Math & Informat Sci, Clayton 3169, Australia
Cited References: ALLEN MP, 1987, COMPUTER SIMULATION.
AOYAGI T, 2000, COMPUT THEOR POLYM S, V10, P317.
AUHL R, 2003, J CHEM PHYS, V119, P12718, DOI 10.1063/1.1628670.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BEEBE DJ, 2002, ANNU REV BIOMED ENG, V4, P261, DOI 10.1146/annurev.bioeng.4.112601.125916.
BIRD RB, 1987, DYNAMICS POLYM LIQUI, V1.
BYUN D, 2008, PHYS FLUIDS, V20, P13601, ARTN 113601.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
COTTINBIZONNE C, 2003, NAT MATER, V2, P237, DOI 10.1038/nmat857.
GRANICK S, 2003, NAT MATER, V2, P221.
GREST GS, 1986, PHYS REV A, V33, P3628.
HENDY SC, 2005, PHYS REV E 2, V72, ARTN 016303.
IRVING JH, 1950, J CHEM PHYS, V18, P817.
JABBARZADEH A, 1999, J CHEM PHYS, V110, P2612.
JABBARZADEH A, 2003, MACROMOLECULES, V36, P5020, DOI 10.1021/ma025782q.
KHARE R, 1996, MACROMOLECULES, V29, P7910.
KUKSENOK O, 2002, PHYS REV E 1, V65, ARTN 031502.
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695.
NAGAYAMA G, 2004, INT J HEAT MASS TRAN, V47, P501, DOI 10.1016/j.ijheatmasstransfer.2003.07.013.
NGUYEN NT, 2005, J MICROMECH MICROENG, V15, R1, DOI 10.1088/0960-1317/15/2/R01.
NIAVARANI A, 2008, PHYS REV E 1, V77, ARTN 041606.
OTTINO JM, 2004, PHILOS T ROY SOC A, V362, P923, DOI 10.1098/rsta.2003.1355.
OU J, 2007, PHYS REV E 2, V76, ARTN 016304.
PEREIRA GG, 2009, J NON-NEWTON FLUID, V157, P197, DOI 10.1016/j.jnnfm.2008.11.012.
PIT R, 2000, PHYS REV LETT, V85, P980.
PRIEZJEV NV, 2004, PHYS REV LETT, V92, ARTN 018302.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1997, NATURE, V389, P360.
TODD BD, 1995, PHYS REV E, V52, P1627.
TRAVIS KP, 1997, PHYSICA A, V240, P315.
ZHU YX, 2001, PHYS REV LETT, V87, P6105.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.
Cited Reference Count: 32
Times Cited: 0
Publisher: AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
Subject Category: Physics, Fluids & Plasmas; Physics, Mathematical
ISSN: 1539-3755
DOI: 10.1103/PhysRevE.80.036309
IDS Number: 501LN

Order Full Text

All Customers
    Please contact your library administrator, or person(s) responsible for document delivery, to find out more about your organization's policy for obtaining the full text of the above articles. If your organization does not have a current document delivery provider, your administrator can contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 or 734-459-8565.
IDS Customers
    IDS customers can purchase the full text of an article (having page number, volume, and issue information) by returning this ENTIRE message as a Reply to Sender or Forward to orders@isidoc.com. Mark your choices with an X in the "Order Full Text: []" brackets for each item. For example, [X].

 Please enter your account number here:

Help Desk Contact Information
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page.