Thursday, November 26, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271744700009
*Order Full Text [ ]

Title:
Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective

Authors:
Monticelli, L; Salonen, E; Ke, PC; Vattulainen, I

Author Full Names:
Monticelli, Luca; Salonen, Emppu; Ke, Pu Chun; Vattulainen, Ilpo

Source:
SOFT MATTER 5 (22): 4433-4445 2009

Language:
English

Document Type:
Review

KeyWords Plus:
COARSE-GRAINED MODEL; GATED POTASSIUM CHANNEL; DYNAMICS SIMULATIONS; FORCE-FIELD; COMPUTER-SIMULATION; C-60 FULLERENE; CELL-MEMBRANES; BIOLOGICAL-MEMBRANES; ULTRAFINE PARTICLES; WATER SUSPENSION

Abstract:
We review recent simulation studies of carbon nanoparticles interacting with lipid membranes. We first consider the state-of-the-art methodology associated with atomistic as well as coarse-grained models of carbon nanoparticles and lipid systems, and then discuss recent simulation studies of fullerenes, carbon nanotubes and other carbon-based nanoparticles interacting with biological lipid interfaces. We close this article with a brief consideration of the future challenges guided by experiments.

Reprint Address:
Vattulainen, I, Helsinki Univ Technol, Dept Appl Phys, POB 1100, FI-02015 Helsinki, Finland.

Research Institution addresses:
[Monticelli, Luca; Salonen, Emppu; Vattulainen, Ilpo] Helsinki Univ Technol, Dept Appl Phys, FI-02015 Helsinki, Finland; [Monticelli, Luca; Vattulainen, Ilpo] Tampere Univ Technol, Dept Phys, FI-33101 Tampere, Finland; [Monticelli, Luca] DSIMB, INSERM, UMR S665, F-75739 Paris, France; [Ke, Pu Chun] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA; [Ke, Pu Chun] Clemson Univ, Ctr Opt Mat Sci & Engn Technol, Clemson, SC USA; [Vattulainen, Ilpo] Univ So Denmark, MEMPHYS, Ctr Biomembrane Phys, Odense, Denmark

E-mail Address:
luca.monticelli@inserm.fr

Cited References:
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALIVISATOS AP, 2005, ANNU REV BIOMED ENG, V7, P55, DOI 10.1146/annurev.bioeng.7.060804.100432.
ASHCROFT JM, 2006, NANOTECHNOLOGY, V17, P5033, DOI 10.1088/0957-4484/17//20/001.
AYTON GS, 2009, CURR OPIN STRUC BIOL, V19, P138, DOI 10.1016/j.sbi.2009.03.001.
BAKER GL, 2008, TOXICOL SCI, V101, P122, DOI 10.1093/toxsci/kfm243.
BAOUKINA S, 2007, BIOPHYS J, V93, P3775, DOI 10.1529/biophysj.107.113399.
BAOUKINA S, 2007, LANGMUIR, V23, P12617, DOI 10.1021/la702286h.
BAOUKINA S, 2008, P NATL ACAD SCI USA, V105, P10803, DOI 10.1073/pnas.0711563105.
BARNARD AS, 2009, NAT NANOTECHNOL, V4, P332.
BEDROV D, 2008, J PHYS CHEM B, V112, P2078, DOI 10.1021/jp075149c.
BENSASSON RV, 1994, J PHYS CHEM-US, V98, P3492.
BISHOP KJM, 2009, SMALL, V5, P1600, DOI 10.1002/smll.200900358.
BJELKMAR P, 2009, PLOS COMPUT BIOL, V5, ARTN e1000289.
BOJAN MJ, 1987, LANGMUIR, V3, P1123.
BORM PJ, 2006, PART FIBRE TOXICOL, V3, ARTN 11.
CAO Z, 2009, J PHYS CHEM C, V113, P3096, DOI 10.1021/jp805894g.
CHANG R, 2006, J PHYS CHEM B, V110, P5073, DOI 10.1021/jp0565148.
CHEN X, 2007, P NATL ACAD SCI USA, V104, P8218, DOI 10.1073/pnas.0700567104.
CHEN YJ, 2009, LANGMUIR, V25, P4875, DOI 10.1021/la804124q.
CHOE S, 2008, BIOPHYS J, V95, P4102, DOI 10.1529/biophysj.107.123976.
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179.
CRUTS B, 2008, PART FIBRE TOXICOL, V5, ARTN 4.
DEMARIA P, 2006, SOFT MATTER, V2, P595, DOI 10.1039/b603266d.
DOI Y, 2008, CHEM-EUR J, V14, P8892, DOI 10.1002/chem.200801090.
DROR RO, 2009, P NATL ACAD SCI USA, V106, P4689, DOI 10.1073/pnas.0811065106.
DROZARIO RSG, 2009, NANOTECHNOLOGY, V20, ARTN 115102.
DUNCAN SL, 2008, BIOPHYS J, V94, P2965, DOI 10.1529/biophysj.107.114215.
FANG JS, 2007, ENVIRON SCI TECHNOL, V41, P2636, DOI 10.1021/es062181w.
FRIESNER RA, 2005, ANNU REV PHYS CHEM, V56, P389, DOI 10.1146/annurev.physchem.55.091602.094410.
GAO HJ, 2003, NANO LETT, V3, P471, DOI 10.1021/nl025967a.
GARATE JA, 2009, MOL SIMULAT, V35, P3, DOI 10.1080/08927020802353491.
GINERCASARES JJ, 2008, LANGMUIR, V24, P1823, DOI 10.1021/la7030297.
GINZBURG VV, 2007, NANO LETT, V7, P3716, DOI 10.1021/nl072053l.
GIRIFALCO LA, 1992, J PHYS CHEM-US, V96, P858.
GIRIFALCO LA, 1995, PHYS REV B, V52, P9910.
GUAN JW, 2009, NANOTECHNOLOGY, V20, ARTN 245701.
HEINEY PA, 1991, PHYS REV LETT, V66, P2911.
HU H, 2009, J MOL STRUC-THEOCHEM, V898, P17.
HUANG CH, 1972, BIOCHEMISTRY-US, V11, P735.
HUMMER G, 2001, NATURE, V414, P188.
HUNGERBUHLER H, 1993, J AM CHEM SOC, V115, P3386.
HWANG H, 2009, J PHYS CHEM A, V113, P4780, DOI 10.1021/jp8080657.
HWANG KC, 1992, J AM CHEM SOC, V114, P9705.
HWANG KC, 1993, NATURE, V361, P138.
IKEDA A, 2005, ORG BIOMOL CHEM, V3, P2907.
IKEDA A, 2007, ORG BIOMOL CHEM, V5, P1158, DOI 10.1039/b701767g.
JANOT JM, 2000, J CHEM SOC PERK T 2, P301.
JOHNSON RR, 2008, NANO LETT, V8, P69, DOI 10.1021/nI071909j.
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KAM NWS, 2004, J AM CHEM SOC, V126, P6850, DOI 10.1021/ja0486059.
KAM NWS, 2006, ANGEW CHEM INT EDIT, V45, P577, DOI 10.1002/anie.200503389.
KAZNESSIS YN, 2002, BIOPHYS J, V82, P1731.
KE PC, 2007, J PHYS-CONDENS MAT, V19, ARTN 373101.
KIM H, 2008, J CHEM THEORY COMPUT, V4, P335, DOI 10.1021/ct700211y.
KNECHT V, 2005, J CHEM PHYS, V122, ARTN 024704.
KOMAROV PV, 2008, J CHEM PHYS, V128, ARTN 124909.
KOSTARELOS K, 2007, NAT NANOTECHNOL, V2, P108, DOI 10.1038/nnano.2006.209.
LAM CW, 2006, CRIT REV TOXICOL, V36, P189, DOI 10.1080/10408440600570233.
LEE H, 2006, J PHYS CHEM B, V110, P18204, DOI 10.1021/jp0630830.
LEE H, 2009, MOLECULES, V14, P423, DOI 10.3390/molecules14010423.
LEROUEIL PR, 2007, ACCOUNTS CHEM RES, V40, P335, DOI 10.1021/ar600012y.
LI LW, 2005, J CHEM PHYS, V123, ARTN 204504.
LI LW, 2005, PHYS REV E 1, V71, ARTN 011502.
LI LW, 2006, J PHYS CHEM B, V110, P10509, DOI 10.1021/jp060718m.
LI LW, 2007, J PHYS CHEM B, V111, P4067, DOI 10.1021/jp064982r.
LI Y, 2008, J PHYS CHEM B, V112, P16647, DOI 10.1021/jp8051906.
LIN SJ, 2009, SMALL, V5, P1128, DOI 10.1002/smll.200801556.
LIU B, 2009, NANO LETT, V9, P1386, DOI 10.1021/nl8030339.
LIU JZ, 2008, CHEM RES TOXICOL, V21, P459, DOI 10.1021/tx700392b.
LIU QL, 2009, NANO LETT, V9, P1007, DOI 10.1021/nl803083u.
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI 10.1073/pnas.0400352101.
LU G, 2005, NANO LETT, V5, P897, DOI 10.1021/nl050354u.
LU Q, 2004, NANO LETT, V4, P2473, DOI 10.1021/nl048326j.
LYON DY, 2005, ENVIRON TOXICOL CHEM, V24, P2757.
LYUBARTSEV AP, 1996, J PHYS CHEM-US, V100, P16410.
MACCALLUM JL, 2007, J GEN PHYSIOL, V129, P371, DOI 10.1085/jgp.200709745.
MACIEL C, 2009, J PHYS CHEM B, V113, P7045, DOI 10.1021/jp902265a.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MARCUS Y, 2001, J PHYS CHEM B, V105, P2499.
MARKOVIC Z, 2008, BIOMATERIALS, V29, P3561, DOI 10.1016/j.biomaterials.2008.05.005.
MARRINK SJ, 1994, J PHYS CHEM-US, V98, P4155.
MARRINK SJ, 1996, J PHYS CHEM-US, V100, P16729.
MARRINK SJ, 2004, J PHYS CHEM B, V108, P750, DOI 10.1021/jp036508g.
MARRINK SJ, 2007, J PHYS CHEM B, V111, P7812, DOI 10.1021/jp071097f.
MONTICELLI L, 2004, FEBS LETT, V564, P325, DOI 10.1016/S0014-5793(04)00271-6.
MONTICELLI L, 2008, J CHEM THEORY COMPUT, V4, P819, DOI 10.1021/ct700324x.
MURTOLA T, 2009, PHYS CHEM CHEM PHYS, V11, P1869, DOI 10.1039/b818051b.
NIELSEN SO, 2005, BIOPHYS J, V88, P3822, DOI 10.1529/biophysj.104.057703.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
OBERDORSTER G, 2004, INHAL TOXICOL, V16, P437, DOI 10.1080/08958370490439597.
OBERDORSTER G, 2005, ENVIRON HEALTH PERSP, V113, P823, DOI 10.1289/ehp.7339.
OLLILA OHS, 2009, PHYS REV LETT, V102, ARTN 078101.
OOSTENBRINK C, 2004, J COMPUT CHEM, V25, P1656, DOI 10.1002/jcc.20090.
PANTAROTTO D, 2004, CHEM COMMUN 0107, P16, DOI 10.1039/b311254c.
PEER D, 2007, NAT NANOTECHNOL, V2, P751, DOI 10.1038/nnano.2007.387.
POHORILLE A, 2002, TRENDS BIOTECHNOL, V20, P123.
PRAPROTNIK M, 2008, ANNU REV PHYS CHEM, V59, P545.
QIAO R, 2006, J AM CHEM SOC, V128, P13656, DOI 10.1021/ja063977y.
QIAO R, 2007, NANO LETT, V7, P614, DOI 10.1021/nl062515f.
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024.
REVELL PA, 2006, NANOTECHNOL PERCEPT, V2, P283.
REYNWAR BJ, 2007, NATURE, V447, P461, DOI 10.1038/nature05840.
RIVELINO R, 2006, CARBON, V44, P2925, DOI 10.1016/j.carbon.2006.05.039.
ROITER Y, 2008, NANO LETT, V8, P941, DOI 10.1021/nl0800801.
RUOFF RS, 1993, J PHYS CHEM-US, V97, P3379.
SALONEN E, 2002, NUCL INSTRUM METH B, V193, P603.
SALONEN E, 2008, SMALL, V4, P1986, DOI 10.1002/smll.200701279.
SAYES CM, 2004, NANO LETT, V4, P1881, DOI 10.1021/nl0489586.
SAYES CM, 2005, BIOMATERIALS, V26, P7587, DOI 10.1016/j.biomaterials.2005.05.027.
SEELIG J, 1991, BIOCHEMISTRY-US, V30, P9354.
SEELIG J, 1997, BBA-REV BIOMEMBRANES, V1331, P103.
SHI XH, 2008, ACTA MECH SINICA, V24, P161, DOI 10.1007/s10409-007-0131-0.
SHVEDOVA AA, 2003, J TOXICOL ENV HEAL A, V66, P1909, DOI 10.1080/15287390390231566.
SISSON AL, 2006, CHEM SOC REV, V35, P1269.
SMITH KA, 2007, J CHEM PHYS, V127, ARTN 084703.
SPURLIN TA, 2007, NANO LETT, V7, P531, DOI 10.1021/nl0622707.
STEIN M, 2007, CURR OPIN STRUC BIOL, V17, P166, DOI 10.1016/j.sbi.2007.03.014.
SUN X, 2008, J AM CHEM SOC, V130, P6551, DOI 10.1021/ja8006929.
TIELEMAN DP, 2004, INT J QUANTUM CHEM, V100, P1071, DOI 10.1002/qua.20319.
TYCKO R, 1991, J PHYS CHEM-US, V95, P518.
TYCKO R, 1991, PHYS REV LETT, V67, P1886.
VAKARELSKI IU, 2007, LANGMUIR, V23, P10893, DOI 10.1021/la701878n.
VANGUNSTEREN WF, 1987, GROMOS 87 MANUAL.
WALLACE EJ, 2008, NANO LETT, V8, P2751, DOI 10.1021/nl801217f.
WALLACE EJ, 2009, NANOTECHNOLOGY, V20, ARTN 045101.
WALTHER JH, 2004, CARBON, V42, P1185, DOI 10.1016/j.carbon.2003.12.071.
WANG YB, 2006, J AM CHEM SOC, V128, P95, DOI 10.1021/ja053003q.
WEISS DR, 2008, J PHYS CHEM B, V112, P2981, DOI 10.1021/jp076416h.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WONGEKKABUT J, 2007, BIOPHYS J, V93, P4225, DOI 10.1529/biophysj.107.112565.
WONGEKKABUT J, 2008, NAT NANOTECHNOL, V3, P363, DOI 10.1038/nnano.2008.130.
XIE YH, 2007, J CHEM PHYS, V127, ARTN 225101.
YANG WR, 2007, NANOTECHNOLOGY, V18, ARTN 412001.
YANNONI CS, 1991, J PHYS CHEM-US, V95, P9.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
ZHANG Y, 2008, BIOMED MICRODEVICES, V10, P321, DOI 10.1007/s10544-007-9139-2.
ZHAO XC, 2005, BIOPHYS J, V89, P3856, DOI 10.1529/biophysj.105.064410.
ZHENG M, 2003, NAT MATER, V2, P338, DOI 10.1038/nmat877.
ZIMMERLI U, 2008, BIOPHYS J, V94, P2546, DOI 10.1529/biophysj.106.102467.

Cited Reference Count:
140

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science

ISSN:
1744-683X

DOI:
10.1039/b912310e

IDS Number:
519DH

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271616400013
*Order Full Text [ ]

Title:
Dequantization, Statistical Mechanics and Econophysics

Authors:
Maslov, V

Author Full Names:
Maslov, Victor

Source:
TROPICAL AND IDEMPOTENT MATHEMATICS 495: 239-279 2009

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Dequantization; econophysics; financial crisis; statistical mechanics; Maxwell distribution; Gibbs paradox; clusterization; Lennard-Jones potential

KeyWords Plus:
LINEAR INEQUALITY; QUASI-PARTICLES; LAW; SUPERFLUIDITY; QUANTIZATION; INFLATION; AVERAGES; NANOTUBE; CRISIS

Abstract:
In this paper, using a rigorous statement and rigorous proof of the Maxwell distribution as an example, we establish estimates of the distribution depending on the parameter N, the number of particles. Further, we consider the problem of the occurrence of dimers in a classical gas as an analog of the Bose condensation and establish estimates of the lower level of the analog of the Bose condensation. Using dequantization principles, we find the relationship of this level to "capture" theory in the scattering problem corresponding to an interaction of the form of the Lennard-Jones potential. This also solves the problem of the Gibbs paradox.
We derive the equation of state for a non-ideal gas as a result of pair interactions of particles in Lennard-Jones models and, for classical gases, discuss the lambda transition to the condensed state (the state in which V-sp does not vary with increasing pressure; for heat capacity, this is the lambda point).
We use econophysics to explain the nature of a financial crisis.

Reprint Address:
Maslov, V, Moscow MV Lomonosov State Univ, Fac Phys, MSU, 1 Bldg 2 GSP 2, Moscow 119992, Russia.

Research Institution addresses:
Moscow MV Lomonosov State Univ, Fac Phys, MSU, Moscow 119992, Russia

Cited References:
ALEKSEEV VA, 2001, J EXP THEOR PHYS+, V92, P608.
AMBARTSUMYAN RV, 1989, INTRO STOCHASTIC GEO.
ANDREWS GE, 1976, ENCY MATH APPL, V2.
BERTRAND J, 1889, CALCUL PROBABILITES.
BOGOLYUBOV NN, 1947, IZV AN SSSR FIZ, V11, P77.
BURSHTEIN AI, 1986, MOL PHYS.
ERDOS P, 1946, B AM MATH SOC, V52, P185.
HUMMER G, 2001, NATURE, V414, P188.
KLAIN DA, 1997, INTRO GEOMETRIC PROB.
KOLMOGOROV AN, 1969, PROBLEMS INFORM TRAN, V5, P1.
KOLMOGOROV AN, 1985, SELECTED WORKS MATH.
KOZLOV VV, 2002, THERMAL EQUILIBRIUM.
LANDA PS, 2001, J COMMUN TECHNOL EL+, V46, P1068.
LANDAU LD, 1968, STAT PHYS.
MASLOV VP, 1979, MATH USSR IZV, V13, P349.
MASLOV VP, 1995, RUSS J MATH PHYS, V3, P123.
MASLOV VP, 1995, RUSSIAN J MATH PHYS, V2, P527.
MASLOV VP, 1995, RUSSIAN J MATH PHYS, V3, P272.
MASLOV VP, 1998, SB MATH+, V189, P901.
MASLOV VP, 2001, QUANTIZATION THERMOD.
MASLOV VP, 2003, MATH NOTES+, V74, P893.
MASLOV VP, 2004, THEOR PROBAB APPL, V48, P723.
MASLOV VP, 2005, MATH NOTES+, V78, P347.
MASLOV VP, 2005, RUSS J MATH PHYS, V12, P483.
MASLOV VP, 2005, THEOR MATH PHYS+, V143, P741.
MASLOV VP, 2006, MATH NOTES+, V80, P679.
MASLOV VP, 2006, MATH NOTES+, V80, P806.
MASLOV VP, 2006, QUANTUM EC.
MASLOV VP, 2006, RUSS J MATH PHYS, V13, P315.
MASLOV VP, 2007, THEOR MATH PHYS+, V153, P1677, DOI 10.1007/s11232-007-0140-y.
MASLOV VP, 2008, ARXIV08022650.
MASLOV VP, 2008, MATH NOTES+, V83, P211, DOI 10.1134/S0001434608010239.
MASLOV VP, 2008, MATH NOTES+, V83, P345, DOI 10.1134/S0001434608030061.
MASLOV VP, 2008, MATH NOTES+, V83, P512, DOI 10.1134/S0001434608030255.
MASLOV VP, 2008, MATH NOTES+, V83, P716, DOI 10.1134/S0001434608050167.
MASLOV VP, 2008, MATH NOTES+, V83, P790, DOI 10.1134/S0001434608050258.
MASLOV VP, 2008, MATH NOTES+, V83, P804, DOI 10.1134/S000143460805026X.
MASLOV VP, 2008, MATH NOTES+, V84, P73, DOI 10.1134/S0001434608070079.
MASLOV VP, 2008, RUSSIAN J MATH PHYS, V15, P401.
MASLOV VP, 2008, THEOR MATH PHYS+, V156, P1101.
MASLOV VP, 2009, MATH NOTES+, V85, P146, DOI 10.1134/S0001434609010180.
MASLOV VP, 2009, RUSS J MATH PHYS, V16, P103, DOI 10.1134/S1061920809010087.
PONTRYAGIN L, 1933, ZH EKSP TEOR FIZ, V3, P165.
QUADRAT JP, 1997, MARKOV PROCESSES REL, V3, P565.
SHIRYAEV AN, 1984, PROBABILITY.
VERSHIK AM, 1996, FUNCT ANAL APPL+, V30, P90.
VYUGIN VV, 2005, PROBL INF TRANSM, V41, P134.

Cited Reference Count:
47

Times Cited:
0

Publisher:
AMER MATHEMATICAL SOC; P.O. BOX 6248, PROVIDENCE, RI 02940 USA

ISSN:
0271-4132

IDS Number:
BLZ81

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271794700005
*Order Full Text [ ]

Title:
STUDY OF NANOSCALE PRESSURE-DRIVEN ELECTROKINETIC FLOW WITH EFFECTS OF WALL LATTICE PLANE

Authors:
Yen, TH; Soong, CY; Tzeng, PY

Author Full Names:
Yen, T. -H.; Soong, C. -Y.; Tzeng, P. -Y.

Source:
JOURNAL OF MECHANICS 25 (4): 363-378 DEC 2009

Language:
English

Document Type:
Article

Author Keywords:
Nanofluidics; Molecular dynamics simulation; Electrokinetic flow; Electric double layer; Lattice plane

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; ELECTROCHEMICAL DOUBLE-LAYER; ELECTROOSMOTIC FLOW; LIQUID FLOW; BOUNDARY; SLIP; SURFACES

Abstract:
The objective of the present study is to explore pressure-driven flows with the presence of electric double layer (EDL) in nanochannels of various wall lattice planes. Three face-centered cubic (fcc) lattice planes, i.e. fcc(111), fcc(100), and fcc(110), of the channel wall are considered. The structure of diffuse EDL and electrokinetic flow characteristics are dealt with in an atomistic view. Fluid and charge density layering phenomena and their influences on the Stem layer are investigated with the molecular dynamic simulation results. In most of the simulations, a monatomic molecule, W, is used as the solvent model and the charged particles W+ and W- of the same size as the ions. To examine behaviors of the dissimilar particles, a simulation with the aqueous model W for fluid, Na+ for cation and Cl- for anion is also performed. Effects of ion concentrations, wall-fluid interaction energy, and surface charge density on the electro-hydrodynamics are studied. In addition, ba!
sed on the continuum theory, two analytic expressions for zeta potential with the presence of fluid slippage are derived and analyzed. The present results disclose interesting physics about the influences of wall lattice-fluid interactions, which are significant in further understanding and applications of the nanoscale electrokinetic flows.

Reprint Address:
Soong, CY, Feng Chia Univ Seatwen, Dept Aerosp & Syst Engn, Taichung 40724, Taiwan.

Research Institution addresses:
[Soong, C. -Y.] Feng Chia Univ Seatwen, Dept Aerosp & Syst Engn, Taichung 40724, Taiwan; [Yen, T. -H.] Chinese Naval Acad Zuoying, Dept Elect Engn, Kaohsiung 81300, Taiwan; [Tzeng, P. -Y.] Natl Def Univ, Chung Cheng Inst Technol, Dept Mechatron Energy & Aerosp Engn, Tao Yuan 33509, Taiwan

Cited References:
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BEHRENS SH, 2001, J CHEM PHYS, V115, P6716.
CHURAEV NV, 2002, ADV COLLOID INTERFAC, V96, P265.
CUI ST, 2004, MOL SIMULAT, V30, P259, DOI 10.1080/08927020410001659367.
EVANS DJ, 1985, J CHEM PHYS, V83, P4069.
FRENKEL D, 1996, UNDERSTANDING MOL SI.
FREUND JB, 2002, J CHEM PHYS, V116, P2194.
GALEA TM, 2004, LANGMUIR, V20, P3477, DOI 10.1021/la035880k.
GUO ZL, 2005, PHYS REV E 2, V72, ARTN 036301.
HEINBUCH U, 1989, PHYS REV A, V40, P1144.
ISRAELACHVILI JN, 1992, INTERMOLECULAR SURFA.
JOLY L, 2004, PHYS REV LETT, V93, ARTN 257805.
JOLY L, 2006, J CHEM PHYS, V125, ARTN 204716.
KIM D, 2006, PHYS REV E 1, V73, ARTN 051203.
LAUGA E, 2005, HDB EXPT FLUID DYNAM, CH15.
MAITLAND GC, 1981, INTERMOLECULAR FORCE.
QIAN R, 2005, LANGMUIR, V21, P8972.
SOONG CY, 2003, J COLLOID INTERF SCI, V265, P202, DOI 10.1016/S0021-9797(03)00513-7.
SOONG CY, 2004, PHYS FLUIDS, V16, P2814, DOI 10.1063/1.1751402.
SOONG CY, 2007, PHYS REV E 2, V76, ARTN 036303.
SPOHR E, 1999, ELECTROCHIM ACTA, V44, P1697.
SPOHR E, 2002, SOLID STATE IONICS, V150, P1.
THOMPSON AP, 2003, J CHEM PHYS, V119, P7503, DOI 10.1063/1.1609194.
THOMPSON PA, 1990, PHYS REV A, V41, P6380.
THOMPSON PA, 1997, NATURE, V389, P360.
VANNITSEM S, 1995, PHYS REV E A, V51, P5564.
ZHOU JD, 2003, MOL PHYS, V101, P1089, DOI 10.1080/0026897031000068479.
ZHU W, 2005, PHYS REV E 1, V71, ARTN 041501.

Cited Reference Count:
28

Times Cited:
0

Publisher:
SOC THEORETICAL APPLIED MECHANICS, R O C; NATIONAL TAIWAN UNIV, TJINGLING INDUSTRIAL RES INST, TAIPEI 106, TAIWAN

Subject Category:
Mechanics

ISSN:
1727-7191

IDS Number:
519UP

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 1.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000271680700027>
*Order Full Text [ ]
AU Khulbe, KC
Feng, C
Matsuura, T
AF Khulbe, K. C.
Feng, C.
Matsuura, T.
TI The Art of Surface Modification of Synthetic Polymeric Membranes
SO JOURNAL OF APPLIED POLYMER SCIENCE
LA English
DT Review
DE synthetic membrane; surface modification; filtration; liquid
separation; water treatment; gas separation
ID HOLLOW-FIBER MEMBRANES; ATOMIC-FORCE MICROSCOPY; LOW-TEMPERATURE
PLASMA; INDUCED GRAFT-POLYMERIZATION; GAS SEPARATION PERFORMANCE;
POLYETHERSULFONE ULTRAFILTRATION MEMBRANES; MIXED MATRIX MEMBRANES;
POLYSTYRENE/POLY(METHYL METHACRYLATE) BLENDS; MICROPOROUS POLYPROPYLENE
MEMBRANES; COMPOSITE NANOFILTRATION MEMBRANES
AB The development in the area of surface modification of polymeric
synthetic membranes since 2000 is reviewed. Many patents, articles, and
reviews have been written on the development in the area of surface
modification of polymeric synthetic membranes subjected to RO, UF, NF,
gas separation (GS), and biomedical applications, mainly since 2000,
but recently more attention has been given to the modification of their
surfaces to obtain desirable results. In particular, most emphasis has
been given to plasma treatment, grafting of polymers on the surface,
and modifying the surfaces by adding SMMs (surface-modifying
molecules). New additives are synthesized to make the polymeric
membrane surfaces either to be more hydrophilic or hydrophobic, aimed
at improvement in selectivity and permeability of the membranes for GS,
NF, and RO. Improvement in antifouling by surface modification is also
a popular topic in the membrane industries. In the last 8 years,
tremendous research efforts have been made on the development of
antifouling membranes. (C) 2009 Wiley Periodicals, Inc. J Appl Polym
Sci 115: 855-895, 2010
C1 [Khulbe, K. C.; Feng, C.; Matsuura, T.] Univ Ottawa, Dept Chem & Biol Engn, Ind Membrane Research Lab, Ottawa, ON K1N 6N5, Canada.
RP Khulbe, KC, Univ Ottawa, Dept Chem & Biol Engn, Ind Membrane Research
Lab, Ottawa, ON K1N 6N5, Canada.
EM khulbe@eng.uottawa.ca
CR 6884350, US
7404896, US
AFFROSSMAN S, 1996, MACROMOLECULES, V29, P5010
AFFROSSMAN S, 1999, MACROMOLECULES, V32, P2721
AGARWAL AK, 2003, 20030066796, US
ALBRECHT W, 2005, J MEMBRANE SCI, V262, P69, DOI
10.1016/j.memsci.2005.03.042
ALLEGREZZA AE, 1992, 5079272, US
ALLEGREZZA AE, 1992, 5158721, US
AMERI A, 2004, IRAN J PUBLIC HEALTH, V33, P49
APPLEGATE LE, 1984, CHEM ENG, V91, P168
ARIZA MJ, 2003, SURF INTERFACE ANAL, V35, P360, DOI 10.1002/sia.1542
ASAKELAND PA, 2000, P 23 ANN M ADH SOC M, P97
ASATEKIN A, 2007, J MEMBRANE SCI, V298, P136, DOI
10.1016/j.memsci.2007.04.011
ASFARDJANI K, 1991, J APPL POLYM SCI, V43, P271
BARSEMA JN, 2003, J MEMBRANE SCI, V216, P195, DOI
10.1016/S0376-7388(03)00071-1
BASHEER C, 2004, J CHROMATOGR A, V1033, P213, DOI
10.1016/j.chroma.2004.01.050
BELFER S, 1999, DESALINATION, V124, P175
BERDICHEVSKY Y, 2004, SENSOR ACTUAT B-CHEM, V97, P402, DOI
10.1016/j.snb.2003.09.022
BHURKE AS, 2000, P 23 ANN M ADH SOC M, P285
BRIDGE MJ, 2002, J MEMBRANE SCI, V195, P51
CAO C, 2003, J MEMBRANE SCI, V216, P257, DOI
10.1016/S0376-7388(03)00080-2
CEN L, 2004, SURF INTERFACE ANAL, V36, P716, DOI 10.1002/sia.1745
CHAN SS, 2002, J MEMBRANE SCI, V210, P55
CHARKOUDIAN J, 2002, J MRS P, V752
CHARKOUDIAN J, 2003, 2003008011, WO
CHEN H, 1999, J APPL POLYM SCI, V72, P1699
CHENNAMSETTY R, 2006, DESALINATION, V188, P203, DOI
10.1016/j.desal.2005.04.118
CHO DL, 2004, MACROMOL RES, V12, P553
CHU LY, 2005, MACROMOL CHEM PHYSIC, V206, P1934, DOI
10.1002/macp.200500324
CHUNG TS, 2000, 6015516, US
CHUNG TS, 2002, J MEMBRANE SCI, V196, P251
CHUNG TS, 2003, J MEMBRANE SCI, V211, P91
CHUNG TS, 2003, J MEMBRANE SCI, V214, P57
CHUNG TS, 2006, MACROMOL RAPID COMM, V27, P998, DOI
10.1002/marc.200600147
CLARK MB, 1991, MACROMOLECULES, V24, P799
COHEN SM, 1989, J CHEM PHYS, V90, P5749
CONG HL, 2007, J MEMBRANE SCI, V294, P178, DOI
10.1016/j.memsci.2007.02.035
DAI QW, 2004, CHINESE J POLYM SCI, V22, P369
DITTER J, 2003, 2003089120, WO
DREUX F, 2003, MATER RES INNOV, V7, P183, DOI 10.1007/s10019-003-0247-1
DUPUTELL D, 1993, J MEMBRANE SCI, V78, P45
EGITTO FD, 1994, IBM J RES DEV, V38, P423
EMRICK TS, 2004, 2008142454, US
ESPINOZAGOMEZ H, 2001, POLYM BULL, V47, P297
EYNDE XV, 1999, APPL SURF SCI, V141, P1
FAVVAS EP, 2008, J POROUS MAT, V15, P625, DOI 10.1007/s10934-007-9142-2
FINOT E, 2002, APPL SURF SCI, V187, P326
FREGER V, 2002, J MEMBRANE SCI, V209, P283
FRIEBE A, 2007, LANGMUIR, V23, P10316, DOI 10.1021/la7016962
FRITZSCHE AK, 1990, APPL POLYM SCI, V41, P713
FRITZSCHE AK, 1990, J APPL POLYM SCI, V40, P19
FRITZSCHE AK, 1991, J APPL POLYM SCI, V39, P1915
FU XY, 2006, SEP PURIF TECHNOL, V52, P363, DOI
10.1016/j.seppur.2006.05.018
FUJIMOTO K, 1993, J POLYM SCI POL CHEM, V31, P1035
GARBASSI F, 1998, POLYM SURFACES PHYS
GAWENDA M, 2006, DESALINATION, V200, P29, DOI
10.1016/j.desal.2006.03.230
GENGENBACH TR, 1994, J ADHES SCI TECHNOL, V8, P305
GHOLAMI M, 2003, DESALINATION, V155, P293
GILMAN AB, 2003, HIGH ENERG CHEM+, V37, P17
GILRON J, 2001, DESALINATION, V140, P167
GOMABILONGO T, 2006, J MEMBRANE SCI, V278, P308, DOI
10.1016/j.memsci.2005.11.013
GOOD K, 2002, DESALINATION, V146, P259
GORDANO A, 2004, DESALINATION, V163, P127
GRACE JM, 2003, J DISPER SCI TECHNOL, V24, P305, DOI
10.1081/DIS-120021793
GRIESSER HJ, 1990, PROGR BIOMEDICAL POL
GRULL H, 2000, EUROPHYS LETT, V50, P107
GUIVER MD, 2003, 6605140, US
HAMAD F, 2005, J MEMBRANE SCI, V253, P183, DOI
10.1016/j.memsci.2004.11.036
HAMAD F, 2005, J MEMBRANE SCI, V256, P29, DOI
10.1016/j.memsci.2004.12.050
HAMZA A, 1997, J MEMBRANE SCI, V131, P217
HAN WL, 1999, J APPL POLYM SCI, V74, P1271
HAYAMA M, 2004, J MEMBRANE SCI, V234, P41, DOI
10.1016/j.memsci.2004.01.020
HE DM, 2006, J MATER CHEM, V16, P1860, DOI 10.1039/b601546h
HE T, 2003, J APPL POLYM SCI, V87, P2151, DOI 10.1002/app.11591
HESTER JF, 2002, MACROMOLECULES, V35, P7652, DOI 10.1021/ma0122270
HILAL N, 2002, SURF INTERFACE ANAL, V33, P672, DOI 10.1002/sia.1434
HILAL N, 2006, SEPAR SCI TECHNOL, V41, P403, DOI
10.1080/0149639050024586
HILL JM, 1995, J ADHES SCI TECHNOL, V9, P1575
HO Y, 2000, J BIOMATER SCI, V11, P1085
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUANG XJ, 2005, LANGMUIR, V21, P2941, DOI 10.1021/la047419d
HUANG XJ, 2006, POLYMER, V47, P3142
HUSSAIN S, 2007, J MEMBRANE SCI, V288, P195
HUTCHINGS LR, 2008, POLYM INT, V57, P163, DOI 10.1002/pi.2334
IDRIS A, 2002, SEP PURIF TECHNOL, V29, P217
ISMAIL AF, 2002, J SCI TECHNOL, V24, P1025
JIANG LY, 2007, CARBON, V45, P166, DOI 10.1016/j.carbon.2006.07.008
JIN T, 2001, CHEM COMMUN R SOC CH, V99
KANG ET, 2000, ADV MATER, V12, P1481
KANG GD, 2007, POLYMER, V48, P1165, DOI 10.1016/j.polymer.2006.12.046
KAPANTAIDAKIS GC, 2002, DESALINATION, V144, P121
KAPANTAIDAKIS GC, 2002, DESALINATION, V145, P353
KAPANTAIDAKIS GC, 2002, J MEMBRANE SCI, V204, P153
KAZAMA S, 2004, J MEMBRANE SCI, V243, P59, DOI
10.1016/j.memsci.2004.06.012
KHAYET M, 2002, POLYMER, V43, P3879
KHAYET M, 2003, J APPL POLYM SCI, V89, P2902, DOI 10.1002/app.12231
KHAYET M, 2003, J MEMBRANE SCI, V213, P159
KHAYET M, 2004, APPL SURF SCI, V238, P269, DOI
10.1016/j.apsusc.2004.05.259
KHAYET M, 2007, SURF SCI, V601, P885, DOI 10.1016/j.susc.2006.11.024
KHULBE KC, 1997, J MEMBRANE SCI, V135, P211
KHULBE KC, 2000, J MEMBRANE SCI, V171, P273
KHULBE KC, 2003, J MEMBRANE SCI, V226, P63, DOI
10.1016/j.memsci.2003.08.011
KHULBE KC, 2007, J APPL POLYM SCI, V104, P710, DOI 10.1002/app.24853
KIM DS, 2003, SEPAR SCI TECHNOL, V38, P591, DOI 10.1081/SS-120016653
KIM JH, 2001, J MEMBRANE SCI, V193, P209
KIM KJ, 2003, J MEMBRANE SCI, V211, P41
KIM KS, 2002, J MEMBRANE SCI, V199, P135
KIM S, 2006, DESALINATION, V192, P330, DOI 10.1016/j.desa1.2005.03.098
KIR E, 2006, APPL SURF SCI, V252, P3574, DOI
10.1016/j.apsusc.2005.05.027
KNOELL T, 1999, J MEMBRANE SCI, V157, P117
KOCHKODAN V, 2003, CHEM ENG TECHNOL, V26, P463
KOCHKODAN VM, 2006, COLLOID J+, V68, P267, DOI 10.1134/S1061933X06030021
KOH SK, 2001, 2001092384, WO
KORIKOV AR, 2006, J MEMBRANE SCI, V279, P588, DOI
10.1016/j.memsci.2005.12.051
KOROS WJ, 2001, J MEMBRANE SCI, V181, P157
KOU RQ, 2003, LANGMUIR, V19, P6869, DOI 10.1021/la0345486
KOZLOV M, 2008, 1859855, EP
KRAVETS LI, 2007, J PHYS C SOLID STATE, V63, P1
KRIESEL JW, 2004, 0106741, US
KRIESEL JW, 2008, 7432371, US
KUJAWSKI W, 2000, POL J ENVIRON STUD, V9, P13
KUKOVICIC I, 2000, ACTA CHIM SLOV, V47, P339
KULL KR, 2005, J MEMBRANE SCI, V246, P203, DOI
10.1016/j.memsci.2004.08.019
KURTH CJ, 2007, 20070037933, US
KUSUMOCAHYO SP, 2006, J APPL POLYM SCI, V102, P4372, DOI
10.1002/app.24991
KWAK SY, 2001, ENVIRON SCI TECHNOL, V35, P4334
LAFRENIERE LY, 1987, IND ENG CHEM RES, V26, P2385
LANDETERUIZ MD, 2005, INT J ADHES ADHES, V25, P139, DOI
10.1016/j.ijadhadh.2004.06.001
LAURENCIN CT, 2007, 7235295, US
LEONG PJ, 2000, 20000040321, WO
LI DF, 2002, J MEMBRANE SCI, V198, P211
LI DF, 2004, IND ENG CHEM RES, V43, P1553
LI DF, 2004, J MEMBRANE SCI, V243, P155, DOI
10.1016/j.memsci.2004.06.014
LI K, 2002, CHEM ENG TECHNOL, V25, P203
LI XF, 2005, CHINESE J POLYM SCI, V23, P203
LI Y, 2004, J MEMBRANE SCI, V245, P53, DOI 10.1016/j.memsci.2004.08.002
LIJIMA S, 1991, NATURE, V354, P56
LIU SL, 2002, J MEMBRANE SCI, V202, P165
LIU SX, 2008, J FOOD SCI, V75, E143
LIU Y, 2003, 66660062, US
LIU Y, 2003, J MEMBRANE SCI, V214, P83
LIU Y, 2003, J PHYS CHEM B, V107, P9774, DOI 10.1021/jp0277513
LIU ZM, 2006, CHINESE J POLYM SCI, V24, P529
LU XF, 2002, J MEMBRANE SCI, V210, P3
LUO ML, 2005, APPL SURF SCI, V249, P76, DOI 10.1016/j.apsusc.2004.11.054
MA HM, 2001, SEPAR SCI TECHNOL, V36, P1557
MACMANUS LF, 1999, J POLYM SCI POL CHEM, V37, P2489
MAEKAWA Y, 2004, CHEM LETT, V33, P150, DOI 10.1246/cl.2004.150
MAHMUD H, 2001, J APPL POLYM SCI, V79, P183
MATHIESON I, 1996, INT J ADHES ADHES, V16, P29
MAYA EM, 2006, DESALINATION, V199, P188, DOI 10.1016/j.desal.2006.03.042
MAYES AM, 2002, 0222712, WO
MELNIG V, 2005, J OPTOELECTRON ADV M, V7, P2521
MENG B, 2005, CHINESE J POLYM SCI, V23, P75
MITTAL KL, 1996, POLYM SURFACE MODIFI
MIYANO T, 1993, CHEM ENG COMMUN, V119, P23
MOHAMMAD AW, 2003, DESALINATION, V158, P73
MOLONEY MG, 2008, J PHYS D APPL PHYS, V41, ARTN 174006
MORAO A, 2005, ENVIRON PROG, V24, P367
MOSBACH K, 1996, BIOTECHNOL, V14, P153
MOSQUEDAJIMENEZ DB, 2004, J ENVIRON ENG-ASCE, V130, P1450, DOI
10.1061/(ASCE)0733-9372(2004)130:12(1450)
MOSQUEDAJIMENEZ DB, 2004, SEP PURIF TECHNOL, V37, P51, DOI
10.1016/j.seppur.2003.07.003
MOSQUEDAJIMENEZ DB, 2006, J APPL POLYM SCI, V99, P2978, DOI
10.1002/app.22993
MOYA W, 1996, 5554414, US
MOYA W, 2004, 2001058577, WO
MOYA W, 2006, 20060255274, EP
MUHLEN LV, 2005, MICROSC MICROANAL, V11, P162
MUKHERJEE P, 2005, J MEMBRANE SCI, V254, P303, DOI
10.1016/j.memsci.2005.01.004
MULLER H, 2007, 7226541, US
MULLER HJ, 2006, 2428457, CA
MULLETTE D, 2003, 2003068374, WO
NAKANISHI H, 1983, J CHEM PHYS, V79, P997
NELSON DD, 2008, 20080179188, US
NGUYEN AH, 2007, J ENVIRON ENG-ASCE, V133, P515, DOI
10.1061/(ASCE)0733-9372(2007)133:5(515)
NIE HY, 1999, APPL SURF SCI, V144, P627
NIE HY, 1999, LANGMUIR, V15, P4684
NIE HY, 2000, POLYM SURFACE MODIFI, V2, P377
NIE HY, 2004, J MATER ENG PERFORM, V13, P451, DOI 10.1361/10599490419991
NUNES SP, 2001, MEMBRANE TECHNOLOGY, P34
OCHOA NA, 2001, J MEMBRANE SCI, V187, P227
OH NW, 2001, J APPL POLYM SCI, V80, P1854
PARK HB, 2003, CHEM MATER, V15, P2346, DOI 10.1021/cm030016z
PARK JY, 2006, BIOMATERIALS, V27, P856, DOI
10.1016/j.biomaterials.2005.07.010
PENEZINA O, 2004, 2004022201, WO
PENG N, 2008, J MEMBRANE SCI, V310, P455, DOI
10.1016/j.memsci.2007.11.018
PEREIRA CC, 2003, J MEMBRANE SCI, V226, P35, DOI
10.1016/j.memsci.2003.07.011
PHAM VA, 1999, J APPL POLYM SCI, V73, P363
PINNAU L, 1999, ACS S SERIES, V744
PURO L, 2006, CHEM ENG RES DES, V84, P87, DOI 10.1205/cherd.04036
QI SZ, 1998, J MICROCOLUMN SEP, V10, P605
QIN JJ, 2004, SEP PURIF TECHNOL, V36, P149, DOI
10.1016/S1383-5866(03)00210-7
QIN JJ, 2006, DESALINATION, V193, P8, DOI 10.1016/j.desal.2005.04.136
QIN JJ, 2006, J APPL POLYM SCI, V99, P430
QIN XH, 2006, J APPL POLYM SCI, V102, P1285, DOI 10.1002/app.24361
QIN XH, 2008, J APPL POLYM SCI, V109, P951, DOI 10.1002/app.28003
QIU J, 2006, DESALINATION, V199, P113, DOI 10.1016/j.desal.2006.03.153
QTAISHAT MR, 2008, THESIS U OTTAWA OTTA
RAGHAVAN S, 1996, 5531900, US
RANA D, 2005, 2005016893, US
RANA D, 2005, J MEMBRANE SCI, V249, P103, DOI
10.1016/j.memsci.2004.09.034
RANA D, 2006, J MEMBRANE SCI, V282, P205, DOI
10.1016/j.memsci.2006.05.024
REID BD, 2002, J MEMBRANE SCI, V195, P181
REN JZ, 2002, J MEMBRANE SCI, V207, P227
ROBESON LM, 1991, J MEMBRANE SCI, V62, P165
ROMEROSANCHEZ MD, 2003, J ADHES SCI TECHNOL, V17, P25
ROUALDES S, 1999, PHENOMENA, V45, P1568
SAITO K, 2002, SEPAR SCI TECHNOL, V37, P535
SALAM A, 2007, MACROMOL MATER ENG, V292, P310, DOI
10.1002/mame.200600411
SAUFI SM, 2002, SONGKLANAKARIN J SCI, V24, P843
SCHMIDT I, 1985, J PHYS-PARIS, V46, P1631
SCHMIDT JJ, 1989, MACROMOLECULES, V22, P4489
SCHNYDER B, 2007, J APPL POLYM SCI, V104, P1973, DOI 10.1002/app.25908
SHARP MM, 2006, DESALINATION, V186, P239
SHEIH JJ, 2001, J MEMBRANE SCI, V182, P111
SHI G, 2000, P 23 ANN M ADH SOC M, P282
SHI Q, 2007, J MEMBRANE SCI, V303, P204, DOI
10.1016/j.memsci.2007.07.009
SHIM JK, 2001, J MEMBRANE SCI, V190, P215
SIKDAR SK, 2000, 6117328, US
SIMONETTI JA, 2002, 6451386, US
SONG LM, 2007, IND ENG CHEM RES, V46, P2307, DOI 10.1021/ie0609968
STEEN ML, 2001, J MEMBRANE SCI, V188, P97
STEEN ML, 2002, J MEMBRANE SCI, V204, P341
SUK DE, 2002, MACROMOLECULES, V35, P3017
SUK DE, 2006, J MEMBRANE SCI, V277, P177, DOI
10.1016/j.memsci.2005.10.027
SUSANTO H, 2006, DESALINATION, V199, P384, DOI
10.1016/j.desal.2006.03.087
SUSANTO H, 2007, J MEMBRANE SCI, V288, P157, DOI
10.1016/j.memsci.2006.11.013
TAN XY, 2006, J MEMBRANE SCI, V271, P59, DOI
10.1016/j.memsci.2005.06.057
TAN XY, 2006, SEP PURIF TECHNOL, V52, P110, DOI
10.1016/j.seppur.2006.03.028
TANAKA K, 1995, MACROMOLECULES, V28, P934
TANAKA K, 1996, MACROMOLECULES, V29, P3232
TANIGUCHI M, 2003, CHEM MATER, V15, P3805, DOI 10.1021/cm020283p
TANIGUCHI M, 2003, J MEMBRANE SCI, V222, P59, DOI
10.1016/S0376-7388(03)00192-3
TANIGUCHI M, 2004, J MEMBRANE SCI, V231, P147, DOI
10.1016/j.memsci.2003.11.013
TANIHARA N, 2002, 6395066, US
TASSELLI F, 2004, J APPL POLYM SCI, V91, P841
TASSELLI F, 2005, J MEMBRANE SCI, V255, P22
TENG MY, 2000, EUR POLYM J, V36, P663
TIN PS, 2003, J MEMBRANE SCI, V225, P77, DOI
10.1016/j.memsci.2003.08.005
TONTHAT C, 2000, MACROMOLECULES, V33, P8453
TSAI HA, 2005, J MEMBRANE SCI, V255, P33, DOI
10.1016/j.memsci.2004.09.052
TSAI HA, 2006, J MEMBRANE SCI, V278, P390, DOI
10.1016/j.memsci.2005.11.029
TSARENKO SA, 2007, ZH PRIKL KHIM, V80, P600
TU CY, 2005, EUR POLYM J, V41, P2343, DOI
10.1016/j.eurpolymj.2005.04.022
ULBRICHT M, 1996, J MEMBRANE SCI, V111, P193
ULBRICHT M, 2006, POLYMER, V47, P2217, DOI 10.1016/j.polymer.2006.01.084
UPADHYAY DJ, 2003, PLASMAS POLYM, V8, P237
VANTHOFF JA, 1988, THESIS U TWENTE, P107
VENUGOPAL G, 1992, MACROMOLECULES, V25, P4626
VIDAURRE EFC, 2001, NUCL INSTRUM METH B, V175, P732
VIDAURRE EFC, 2002, MAT RES BRAZ, V5, P1419
VIG JR, 1987, TREATISE CLEAN SURFA, V1, P1
VIJAY YK, 2004, INT J HYDROGEN ENERG, V29, P515, DOI
10.1016/S0360-3199(03)00107-1
VIJAY YK, 2006, J BIOMED NANOTECHNOL, V2, P144, DOI 10.1166/jbn.2006.026
VOLKOV IO, 1998, J APPL POLYM SCI, V68, P517
VOZNYAKOVSKII AP, 2007, TECH PHYS LETT+, V33, P715
WALHEIM S, 1999, POLYM SURFACES INTER, V3
WALLACE DW, 2006, J MEMBRANE SCI, V278, P92, DOI
10.1016/j.memsci.2005.11.001
WALZAK MJ, 1995, J ADHES SCI TECHNOL, V9, P1229
WAN J, 2008, RECENT PATENTS CHEM, V1, P41
WANG DL, 2000, J MEMBRANE SCI, V176, P147
WANG DL, 2002, J MEMBRANE SCI, V204, P247
WANG DL, 2004, SEP PURIF TECHNOL, V35, P125, DOI
10.1016/S1383-5866(03)00135-7
WANG HT, 2001, J MATER CHEM, V11, P1374
WANG IF, 1999, 5906742, US
WANG KY, 2004, J MEMBRANE SCI, V240, P67, DOI
10.1016/j.memsci.2004.04.012
WANG M, 2006, J COLLOID INTERF SCI, V300, P286, DOI
10.1016/j.jcis.2006.03.042
WANG R, 2001, J APPL POLYM SCI, V82, P2166
WANG XF, 2006, J MEMBRANE SCI, V278, P261, DOI
10.1016/j.memsci.2005.11.009
WANG YC, 2002, J MEMBRANE SCI, V208, P3
WAVHAL DS, 2002, J MEMBRANE SCI, V209, P255
WAVHAL DS, 2002, J POLYM SCI POL PHYS, V40, P2473, DOI
10.1002/polb.10308
WAVHAL DS, 2003, LANGMUIR, V19, P79, DOI 10.1021/la020653o
WAVHAL DS, 2005, DESALINATION, V172, P189, DOI
10.1016/j.desal.2004.06.201
WEI X, 2006, J MEMBRANE SCI, V273, P47, DOI 10.1016/j.memsci.2005.11.049
WEIGEL T, 1988, ACTA POLYM, V39, P174
WIDJOJO N, 2007, J MEMBRANE SCI, V294, P132, DOI
10.1016/j.memsci.2007.02.026
WIDJOJO N, 2007, J MEMBRANE SCI, V306, P147, DOI
10.1016/j.memsci.2007.08.038
WITZKO R, 1999, 5856246, US
WON J, 2000, J APPL POLYM SCI, V75, P1554
WU B, 2005, SEPAR SCI TECHNOL, V40, P2679, DOI 10.1080/01496390500283456
WU B, 2006, SEP PURIF TECHNOL, V52, P301, DOI
10.1016/j.seppur.2006.05.013
WULFF G, 1995, ANGEW CHEM INT EDIT, V34, P1812
XIAO Y, 2004, LANGMUIR, V19, P8230
XIULI Y, 1998, J MEMBRANE SCI, V146, P179
XU JA, 2002, J MEMBRANE SCI, V208, P203
XU JW, 2003, POLYMER, V44, P4715, DOI 10.1016/S0032-3861(03)00430-0
XU XL, 1997, J APPL POLYM SCI, V66, P459
XU ZK, 2003, J MEMBRANE SCI, V223, P105, DOI
10.1016/S0376-7388(03)00312-0
XU ZK, 2004, LANGMUIR, V20, P1481, DOI 10.1021/la035930l
YAMAGUCHI T, 2001, J MEMBRANE SCI, V194, P217
YANG Q, 2005, CHEM MATER, V17, P3050, DOI 10.1021/cm048012x
YANG SH, 2001, J MEMBRANE SCI, V184, P107
YE L, 2001, ANAL CHIM ACTA, V435, P187
YE SH, 2004, J BIOMAT SCI-POLYM E, V15, P568
YE SH, 2005, BIOMATERIALS, V26, P5032, DOI
10.1016/j.biomaterials.2005.01.049
YEOW ML, 2002, J MEMBRANE SCI, V203, P137
YEOW ML, 2005, J MEMBRANE SCI, V258, P16, DOI
10.1016/j.memsci.2005.01.015
YOON K, 2006, POLYMER, V47, P2434, DOI 10.1016/j.polymer.2006.01.042
YOSHIDA W, 2004, J MEMBRANE SCI, V229, P27, DOI
10.1016/j.memsci.2003.09.021
YOSHIMUNE M, 2005, CHEM LETT, V34, P958, DOI 10.1246/cl.2005.958
YOSHINO M, 2003, J MEMBRANE SCI, V212, P13
YU DG, 2007, BIOCONJUGATE CHEM, V18, P1521, DOI 10.1021/bc060098s
ZEMAN LJ, 1996, MICROFILTRATION ULTR
ZHAN J, 2004, SEPAR SCI TECHNOL, V39, P2977, DOI 10.1081/SS-200035950
ZHANG L, 2003, J APPL POLYM SCI, V88, P3132, DOI 10.1002/app.12000
ZHANG W, 2003, SEP PURIF TECHNOL, V30, P27
ZHANG YP, 2002, J APPL POLYM SCI, V86, P3389, DOI 10.1002/app.11344
ZHEN HF, 2006, J APPL POLYM SCI, V99, P2497, DOI 10.1002/app.22860
ZHOU C, 2003, J MEMBRANE SCI, V225, P125, DOI
10.1016/j.memsci.2003.07.006
NR 309
TC 0
PU JOHN WILEY & SONS INC; 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0021-8995
DI 10.1002/app.31108
PD JAN 15
VL 115
IS 2
BP 855
EP 895
SC Polymer Science
GA 518HE
UT ISI:000271680700027
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, November 20, 2009

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271543700023
*Order Full Text [ ]

Title:
Matrix-insensitive protein assays push the limits of biosensors in medicine

Authors:
Gaster, RS; Hall, DA; Nielsen, CH; Osterfeld, SJ; Yu, H; Mach, KE; Wilson, RJ; Murmann, B; Liao, JC; Gambhir, SS; Wang, SX

Author Full Names:
Gaster, Richard S.; Hall, Drew A.; Nielsen, Carsten H.; Osterfeld, Sebastian J.; Yu, Heng; Mach, Kathleen E.; Wilson, Robert J.; Murmann, Boris; Liao, Joseph C.; Gambhir, Sanjiv S.; Wang, Shan X.

Source:
NATURE MEDICINE 15 (11): 1327-U130 NOV 2009

Language:
English

Document Type:
Article

KeyWords Plus:
SPIN-VALVE SENSORS; OVARIAN-CANCER; SUPERPARAMAGNETIC NANOPARTICLES; BIOLOGICAL APPLICATIONS; DNA DETECTION; MICROARRAYS; LACTOFERRIN; BIOMARKER

Abstract:
Advances in biosensor technologies for in vitro diagnostics have the potential to transform the practice of medicine. Despite considerable work in the biosensor field, there is still no general sensing platform that can be ubiquitously applied to detect the constellation of biomolecules in diverse clinical samples (for example, serum, urine, cell lysates or saliva) with high sensitivity and large linear dynamic range. A major limitation confounding other technologies is signal distortion that occurs in various matrices due to heterogeneity in ionic strength, pH, temperature and autofluorescence. Here we present a magnetic nanosensor technology that is matrix insensitive yet still capable of rapid, multiplex protein detection with resolution down to attomolar concentrations and extensive linear dynamic range. The matrix insensitivity of our platform to various media demonstrates that our magnetic nanosensor technology can be directly applied to a variety of settings such as m!
olecular biology, clinical diagnostics and biodefense.

Reprint Address:
Wang, SX, Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA.

Research Institution addresses:
[Hall, Drew A.; Murmann, Boris; Wang, Shan X.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA; [Gaster, Richard S.; Gambhir, Sanjiv S.] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA; [Gaster, Richard S.] Stanford Univ, Med Scientist Training Program, Stanford, CA 94305 USA; [Nielsen, Carsten H.; Gambhir, Sanjiv S.] Stanford Univ, Dept Radiol, Mol Imaging Program Stanford, Stanford, CA 94305 USA; [Nielsen, Carsten H.] Rigshosp, Dept Clin Physiol Nucl Med & Positron Emiss Tomog, Copenhagen, Denmark; [Nielsen, Carsten H.] Univ Copenhagen, DK-1168 Copenhagen, Denmark; [Nielsen, Carsten H.] Tech Univ Denmark, Dept Elect Engn, Sect Biomed Engn, Lyngby, Denmark; [Osterfeld, Sebastian J.; Wilson, Robert J.; Wang, Shan X.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA; [Osterfeld, Sebastian J.; Yu, Heng] MagArray Inc, Sunnyvale, CA USA; [Mach, Kathleen E.; Liao, Joseph C.] Stanford Univ, Dept Urol, Stanford, CA 94305 USA; [Liao, Joseph C.; Gambhir, Sanjiv S!
.; Wang, Shan X.] Stanford Univ, Biox Program, Stanford, CA 94305 USA

E-mail Address:
sgambhir@stanford.edu; sxwang@stanford.edu

Cited References:
ARAO S, 1999, J CLIN MICROBIOL, V37, P553.
BARNAS J, 1990, PHYS REV B A, V42, P8110.
BASELT DR, 1998, BIOSENS BIOELECTRON, V13, P731.
CHAN SM, 2004, NAT MED, V10, P1390, DOI 10.1038/nm1139.
CHEN Z, 2008, NAT BIOTECHNOL, V26, P1285, DOI 10.1038/nbt.1501.
CHENG MMC, 2006, CURR OPIN CHEM BIOL, V10, P11.
CUI Y, 2001, SCIENCE, V293, P1289.
DRUMMOND TG, 2003, NAT BIOTECHNOL, V21, P1192, DOI 10.1038/nbt873.
GEORGANOPOULOU DG, 2005, P NATL ACAD SCI USA, V102, P2273, DOI 10.1073/pnas.0409336102.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GORELIK E, 2005, CANCER EPIDEM BIOMAR, V14, P981.
GRAHAM DL, 2002, J APPL PHYS 2, V91, P7786.
HEATH JR, 2008, ANNU REV MED, V59, P251, DOI 10.1146/annurev.med.59.061506.185523.
JI HF, 2008, ANALYST, V133, P434, DOI 10.1039/b713330h.
LI GX, 2003, J APPL PHYS 2, V93, P7557, DOI 10.1063/1.1540176.
LI GX, 2006, SENSOR ACTUAT A-PHYS, V126, P98, DOI 10.1016/j.sna.2005.10.001.
LOPEZ MF, 2007, CLIN CHEM, V53, P1067, DOI 10.1373/clinchem.2006.080721.
MILLEN RL, 2005, ANAL CHEM, V77, P6581, DOI 10.1021/ac0509049.
MITCHELL P, 2002, NAT BIOTECHNOL, V20, P225.
MUKHERJEE S, 1997, BIOL TRACE ELEM RES, V57, P1.
OSTERFELD SJ, 2008, P NATL ACAD SCI USA, V105, P20637, DOI 10.1073/pnas.0810822105.
PRINZ GA, 1998, SCIENCE, V282, P1660.
SCHOTTER J, 2004, BIOSENS BIOELECTRON, V19, P1149, DOI 10.1016/j.bios.2003.11.007.
SHINGYOJI M, 2005, TALANTA, V67, P472, DOI 10.1016/j.talanta.2005.06.064.
SRINIVAS PR, 2001, CLIN CHEM, V47, P1901.
STERN E, 2007, NATURE, V445, P519, DOI 10.1038/nature05498.
TOM BH, 1976, IN VITRO, V12, P180.
WOLF SA, 2001, SCIENCE, V294, P1488.
WU GH, 2001, NAT BIOTECHNOL, V19, P856.
XU L, 2008, BIOSENS BIOELECTRON, V24, P99, DOI 10.1016/j.bios.2008.03.030.
ZHENG GF, 2005, NAT BIOTECHNOL, V23, P1294, DOI 10.1038/nbt1138.
ZHENG YY, 2007, CLIN CANCER RES, V13, P6984, DOI 10.1158/1078-0432.CCR-07-1409.
ZIMMERMAN R, 1980, CANCER, V46, P1802.

Cited Reference Count:
33

Times Cited:
0

Publisher:
NATURE PUBLISHING GROUP; 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA

Subject Category:
Biochemistry & Molecular Biology; Cell Biology; Medicine, Research & Experimental

ISSN:
1078-8956

DOI:
10.1038/nm.2032

IDS Number:
516LM

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Song, X

ISI Web of Knowledge Citation Alert

Cited Article: Song, X. A comparative study on poiseuille flow of simple fluids through cylindrical and slit-like nanochannels
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271559100003
*Order Full Text [ ]

Title:
Simulation of Liquid Argon Flow along a Nanochannel: Effect of Applied Force

Authors:
Yin, CY; Mohanad, EH

Author Full Names:
Yin Chun-Yang; Mohanad, El-Harbawi

Source:
CHINESE JOURNAL OF CHEMICAL ENGINEERING 17 (5): 734-738 OCT 2009

Language:
English

Document Type:
Article

Author Keywords:
molecular dynamics; large-scale atomic/molecular massively parallel simulator; visual molecular dynamics; nanofluidics; argon

KeyWords Plus:
MOLECULAR-DYNAMICS; POISEUILLE FLOW; FLUIDS

Abstract:
Liquid argon flow along a nanochannel is studied using molecular dynamics (MD) simulation in this work. Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used as the MD simulator. The effects of reduced forces at 0.5, 1.0 and 2.0 on argon flow on system energy in the form of system potential energy, pressure and velocity profile are described. Output in the form of three-dimensional visualization of the system at steady-state condition using Visual Molecular Dynamics (VMD) is provided to describe the dynamics of the argon atoms. The equilibrium state is reached after 16000 time steps. The effects on system energy, pressure and velocity profile due to reduced force of 2.0 (F2) are clearly distinguishable from the other two lower forces where sufficiently high net force along the direction of the nanochannel for F2 renders the attractive and repulsive forces between the argon atoms virtually non-existent. A reduced force of 0.5 (F0.5) provides liquid argon !
flow that approaches Poiseuille (laminar) flow as clearly shown by the n-shaped average velocity profile. The extension of the present MD model to a more practical application affords scientists and engineers a good option for simulation of other nanofluidic dynamics processes.

Reprint Address:
Yin, CY, Univ Teknol MARA, Fac Chem Engn, Shah Alam 40450, Selangor, Malaysia.

Research Institution addresses:
[Yin Chun-Yang] Univ Teknol MARA, Fac Chem Engn, Shah Alam 40450, Selangor, Malaysia; [Mohanad, El-Harbawi] Univ Teknol PETRONAS, Dept Chem Engn, Tronoh 31750, Perak, Malaysia

E-mail Address:
yinyang@salam.uitm.edu.my

Cited References:
BEU TA, 2002, MOL DYNAMICS SIMULAT.
FRIED J, 2007, THESIS VIRGINIA POLY.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JEGAN P, 2007, THESIS CRANFIELD U U.
LENNARDJONES JE, 1931, P PHYS SOC LOND 1, V43, P461.
MEYER M, 1988, J CHEM PHYS, V89, P1067.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
PLIMPTON SJ, 2003, LAMMPS USER MANUAL.
SONG X, 2008, INT J HEAT MASS TRAN, V51, P1770, DOI 10.1016/j.ijheatmasstransfer.2007.07.019.
TRAVIS KP, 2000, J CHEM PHYS, V112, P1984.
XU JL, 2004, HEAT MASS TRANSFER, V40, P859, DOI 10.1007/s00231-003-0483-3.
ZHANG H, 2002, CHEM PHYS LETT, V366, P24.
ZIARANI AS, 2006, MICROFLUID NANOFLUID, V2, P12, DOI 10.1007/s10404-005-0036-9.

Cited Reference Count:
13

Times Cited:
0

Publisher:
CHEMICAL INDUSTRY PRESS; NO. 3 HUIXINLI CHAOYANGQU, BEIJING 100029, PEOPLES R CHINA

Subject Category:
Engineering, Chemical

ISSN:
1004-9541

IDS Number:
516RC

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271471300008
*Order Full Text [ ]

Title:
Computational design and multiscale modeling of a nanoactuator using DNA actuation

Authors:
Hamdi, M

Author Full Names:
Hamdi, Mustapha

Source:
NANOTECHNOLOGY 20 (48): Art. No. 485501 DEC 2 2009

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; STRANDED-DNA; NANOROBOTICS; INSERTION; PROTEIN; DEVICE

Abstract:
Developments in the field of nano-biodevices coupling nanostructures and biological components are of great interest in medical nanorobotics. As the fundamentals of bio/non-bio interaction processes are still poorly understood in the design of these devices, design tools and multiscale dynamics modeling approaches are necessary at the fabrication pre-project stage. This paper proposes a new concept of optimized carbon nanotube based servomotor design for drug delivery and biomolecular transport applications. The design of an encapsulated DNA-multi-walled carbon nanotube actuator is prototyped using multiscale modeling. The system is parametrized by using a quantum level approach and characterized by using a molecular dynamics simulation. Based on the analysis of the simulation results, a servo nanoactuator using ionic current feedback is simulated and analyzed for application as a drug delivery carrier.

Reprint Address:
Hamdi, M, Ecole Natl Ponts & Chaussees, INRIA MICMAC, 6 & 8 Ave Blaise Pascal, F-77455 Champs Sur Marne 2, Marne La Vallee, France.

Research Institution addresses:
Ecole Natl Ponts & Chaussees, INRIA MICMAC, F-77455 Champs Sur Marne 2, Marne La Vallee, France

E-mail Address:
hamdim@cermics.enpc.fr

Cited References:
ARAI F, 2004, IEEE INT CONF ROBOT, P440.
BAUGHMAN RH, 1999, SCIENCE, V284, P1340.
CUMINGS J, 2000, SCIENCE, V289, P602.
DONG LX, 2006, IEEE T AUTOM SCI ENG, V3, P228, DOI 10.1109/TASE.2006.875551.
FREITAS RA, 2002, STUD HLTH TECHNOL IN, V80, P45.
GAO HJ, 2003, NANO LETT, V3, P471, DOI 10.1021/nl025967a.
HAMDI M, 2006, IEEE INT C INT ROB S.
HAMDI M, 2008, MICROELECTRON J, V39, P1051, DOI 10.1016/j.mejo.2007.10.021.
HAMDI M, 2008, MICROELECTRON J, V39, P190, DOI 10.1016/j.mejo.2006.12.003.
HAMDI M, 2009, INT J ROBOT RES, V28, P436, DOI 10.1177/0278364908099888.
HOFF AJ, 2004, BIOPOLYM J, V11, P1289.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KANEKO T, 2007, CONTRIB PLASM PHYS, V47, P57, DOI 10.1002/ctpp.200710009.
LI JWJ, 2002, NANO LETTERS, V2, P315.
MOU TC, 2003, BIOPOLYMERS, V70, P637, DOI 10.1002/bip.10500.
OKADA T, 2006, JPN J APPL PHYS 1, V45, P8335.
PANTAROTTO D, 2004, CHEM COMMUN 0107, P16, DOI 10.1039/b311254c.
PENMAN D, 2003, CARBON NANOTUBES SHO.
SHERMAN WB, 2004, NANO LETT, V4, P1203, DOI 10.1021/nl049527q.
SIMMEL FC, 2001, PHYS REV E, V63, P127.
SINHA N, 2005, IEEE T NANOBIOSCI, V4, P180, DOI 10.1109/TNB.2005.850478.
TANS SJ, 1997, NATURE, V386, P474.
WEI CY, 2003, PHYS REV LETT, V91, ARTN 235901.
WONG SKN, 2004, P NATL ACAD SCI USA, V102, P11600.
YAN H, 2002, NATURE, V415, P62.
ZHENG QS, 2002, PHYS REV LETT, V88, ARTN 045503.

Cited Reference Count:
27

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Engineering, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied

ISSN:
0957-4484

DOI:
10.1088/0957-4484/20/48/485501

IDS Number:
515LF

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271522800036
*Order Full Text [ ]

Title:
How Surface Wettabitity Affects the Binding, Folding, and Dynamics of Hydrophobic Polymers at Interfaces

Authors:
Jamadagni, SN; Godawat, R; Garde, S

Author Full Names:
Jamadagni, Sumanth N.; Godawat, Rahul; Garde, Shekhar

Source:
LANGMUIR 25 (22): 13092-13099 NOV 17 2009

Language:
English

Document Type:
Article

KeyWords Plus:
SELF-ASSEMBLED MONOLAYERS; LIQUID-STATE PROPERTIES; MOLECULAR-DYNAMICS; CARBON NANOTUBE; WATER; ADSORPTION; PROTEINS; TRANSITION; FIBRINOGEN; KINETICS

Abstract:
We present an extensive molecular simulation study of the behavior of a flexible hydrophobic 25-mer polymer at interfaces presenting a range of chemistries from hydrophobic (-CH3) to hydrophilic (-CONH2). We quantify the free energy of adsorption, conformational equilibria, and translational and conformational dynamics of the polymer at these diverse interfaces. Water-mediated interactions drive the polymer to adsorb strongly at a hydrophobic interface and repel it from hydrophilic ones. At hydrophilic surfaces, van der Waals interactions between the polymer and the surface mitigate this water-mediated repulsion, leading to weak adsorption of the polymer. Although the polymer is strongly adsorbed to hydrophobic surfaces, it is also most dynamic there. Translational diffusion and conformational dynamics are faster at hydrophobic surfaces compared to those,it hydrophilic ones. In bulk water, the polymer collapses into compact globular shapes, whereas the thermodynamic stabilit!
y of folded polymers is significantly lowered at hydrophobic Surfaces. The polymer spreads into pancake-like 2D conformations at hydrophobic surfaces and gradually beads up into globular shapes as the surface is made more hydrophilic. Interestingly the binding thermodynamics and dynamics correlate with macroscopic droplet contact angles that characterize the wetting properties of the different interfaces.

Reprint Address:
Garde, S, Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA.

Research Institution addresses:
[Garde, Shekhar] Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA; Rensselaer Polytech Inst, Ctr Biotechnol & Interdisciplinary Studies, Troy, NY 12180 USA

E-mail Address:
gardes@rpi.edu

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
ASHBAUGH HS, 2003, LANGMUIR, V19, P7638, DOI 10.1021/la034559z.
ATHAWALE MV, 2007, P NATL ACAD SCI USA, V104, P733, DOI 10.1073/pnas.0605139104.
BAE SC, 2007, ANNU REV PHYS CHEM, V58, P353, DOI 10.1146/annurev.physchem.58.032806.104527.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BINKS BP, 2002, CURR OPIN COLLOID IN, V7, P21.
CHAKRABORTY AK, 2001, ANNU REV PHYS CHEM, V52, P537.
CHOI I, 2006, BIOMATERIALS, V27, P4655, DOI 10.1016/j.biomaterials.2006.04.023.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
CORNELL WD, 1995, J AM CHEM SOC, V117, P5197.
DICKINSON E, 1999, COLLOID SURFACE B, V15, P161.
DOBRETSOV S, 2006, BIOFOULING, V22, P43, DOI 10.1080/08927010500504784.
EASTOE J, 2000, ADV COLLOID INTERFAC, V85, P103.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FERGUSON AL, 2009, J PHYS CHEM B, V113, P6405, DOI 10.1021/jp811229q.
GENZER J, 2006, BIOFOULING, V22, P339, DOI 10.1080/08927010600980223.
GHOSH T, 2001, J AM CHEM SOC, V123, P10997.
GODAWAT R, UNPUB.
GRANICK S, 2008, SCIENCE, V322, P1477, DOI 10.1126/science.1167219.
GRAY JJ, 2004, CURR OPIN STRUC BIOL, V14, P110, DOI 10.1016/j.sbi.2003.12.001.
HAYDEN O, 2006, ADV FUNCT MATER, V16, P1269, DOI 10.1002/adfm.200500626.
HONEIUE A, 2009, J AM CHEM SOC, V131, P5973.
HUMMER G, 2001, NATURE, V414, P188.
JAMADAGNI SN, 2009, J PHYS CHEM B, V113, P4093, DOI 10.1021/jp806528m.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
LECLECH P, 2006, J MEMBRANE SCI, V284, P17, DOI 10.1016/j.memsci.2006.08.019.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LOVE JC, 2005, CHEM REV, V105, P1103, DOI 10.1021/cr0300789.
MONDELLO M, 1998, J CHEM PHYS, V109, P798.
MRKSICH M, 1997, EXP CELL RES, V235, P305.
NETZ RR, 2003, PHYS REP, V380, P1, DOI 10.1016/S0370-1573(03)00118-2.
NORDE W, 1998, BIOTECHNOL APPL BI 2, V28, P133.
PAULAITIS ME, 1997, CURR OPIN COLLOID IN, V2, P315.
PAVITHRA D, 2008, BIOMED MATER, P3.
PRICE MLP, 2001, J COMPUT CHEM, V22, P1340.
SARUPRIA S, UNPUB.
SCHMIDT DL, 2004, LANGMUIR, V20, P2830, DOI 10.1021/la035385o.
SETHURAMAN A, 2004, PROTEINS, V56, P669, DOI 10.1002/prot.20183.
SHENOGINA N, 2008, J CHEM PHYS, P129.
SHENOGINA N, 2009, PHYS REV LETT, V102, ARTN 156101.
SHI HQ, 1999, NATURE, V398, P593.
SIGAL GB, 1998, J AM CHEM SOC, V120, P3464.
SILIN V, 1997, J COLLOID INTERF SCI, V185, P94.
STILLINGER FH, 1973, J SOLUTION CHEM, V2, P141.
SUKHISHVILI SA, 2000, NATURE, V406, P146.
TENWOLDE PR, 2002, P NATL ACAD SCI USA, V99, P6539.
VITKUP D, 2000, NAT STRUCT BIOL, V7, P34.
VUTUKURU S, 2006, LANGMUIR, V22, P10152, DOI 10.1021/la062093p.
WATKINS EK, 2001, J PHYS CHEM A, V105, P4118.
WERTZ CF, 2001, LANGMUIR, V17, P3006.
WERTZ CF, 2002, LANGMUIR, V18, P706.
WISNIEWSKI N, 2000, COLLOID SURFACE B, V18, P197.
YEBRA DM, 2004, PROG ORG COAT, V50, P75, DOI 10.1016/j.porgcoat.2003.06.001.

Cited Reference Count:
55

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0743-7463

DOI:
10.1021/la9011839

IDS Number:
516DV

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271583600034
*Order Full Text [ ]

Title:
Coulomb Repulsion at the Nanometer-Sized Contact: A Force Driving Superhydrophobicity, Superfluidity, Superlubricity, and Supersolidity

Authors:
Sun, CQ; Sun, Y; Ni, YG; Zhang, X; Pan, JS; Wang, XH; Zhou, J; Li, LT; Zheng, WT; Yu, SS; Pan, LK; Sun, Z

Author Full Names:
Sun, Chang Q.; Sun, Yi; Ni, Yanguang; Zhang, Xi; Pan, Jisheng; Wang, Xiao-Hui; Zhou, Ji; Li, Long-Tu; Zheng, Weitao; Yu, Shansheng; Pan, L. K.; Sun, Zhuo

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (46): 20009-20019 NOV 19 2009

Language:
English

Document Type:
Review

KeyWords Plus:
SCANNING-TUNNELING-MICROSCOPY; CARBON NANOTUBES; BOND-LENGTH; SOLID HE-4; SURFACE; FRICTION; NANOSCALE; STATES; WATER; CLUSTERS

Abstract:
Superhydrophobicity, superfluidity, superlubricity, and supersolidity (4S) at the nanometer-sized liquid-solid or solid-solid contacting interfaces have long been issues of puzzling with the common characteristics of nonsticky and frictionless motion. Although the 4S occurrences have been extensively investigated, the mechanism behind the common characteristics remains unclear. From the perspectives of broken-bond-induced local strain and the skin-depth charge and energy quantum trapping and the associated nonbonding electron polarization, we proposed herewith that the Coulomb repulsion between the "electric monopoles or dipoles locked in the elastic solid skins or the solidlike covering sheets of liquid droplets" forms the key to the 4S. The localized energy densification makes the skin stiffer and the densely and tightly trapped bonding charges polarize nonbonding electrons, if exist, to form locked skin monopoles. In addition, the sp-orbit hybridization of F, O, N, or C u!
pon reacting with solid atoms generates nonbonding lone pairs or Unpaired edge electrons that induce dipoles directing into the open end of a surface. The monopoles and dipoles can be, however, demolished by UV radiation, thermal excitation, or excessively applied compression due to ionization or sp orbit dehybridization. Such a Coulomb repulsion between the negatively charged skins of the contacting objects not only lowers the effective contacting force and hence the friction but also prevents charge from being exchanged between the counterparts of the contact. Being similar to magnetic levitation, such Coulomb repulsion should be the force driving the 4S. Density function theory calculations, X-ray photoelectron spectroscopy, scanning tunneling microscopy/spectroscopy, and very low energy electron diffraction measurements have been conducted to verify the proposal. In particular, agreement between theory predictions and the measured size dependence of the elastic modulus,!
lattice strain, core-electron binding energy shift, and band !
gap expa
nsion of nanostructures evidence the validity of the proposal of interface Coulomb repulsion.

Reprint Address:
Sun, CQ, Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore.

Research Institution addresses:
[Sun, Chang Q.; Ni, Yanguang; Zhang, Xi] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore; [Sun, Yi; Pan, Jisheng] Agcy Sci Technol & Res, Inst Mat Res & Engn, Singapore 117602, Singapore; [Wang, Xiao-Hui; Zhou, Ji; Li, Long-Tu] Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China; [Zheng, Weitao; Yu, Shansheng] Jilin Univ, Dept Mat Sci, Changchun 130012, Peoples R China; [Pan, L. K.; Sun, Zhuo] E China Normal Univ, Dept Phys, Minist Educ, Engn Res Ctr Nanophoton & Adv Instrument, Shanghai 200062, Peoples R China; [Sun, Chang Q.] Xiangtan Univ, Minist Educ, Key Lab Low Dimens Mat & Applicat Technol, Xiangtan 411105, Peoples R China

E-mail Address:
ecqsun@ntu.edu.sg

Cited References:
ABBAS Z, 2008, J PHYS CHEM C, V112, P5715, DOI 10.1021/jp709667u.
ADAM NK, 1957, NATURE, V180, P809.
ANDERSON PW, 2009, SCIENCE, V324, P631, DOI 10.1126/science.1169456.
APAI G, 1979, PHYS REV LETT, V43, P165.
BALDESSARI F, 2008, J COLLOID INTERF SCI, V325, P526, DOI 10.1016/j.jcis.2008.06.007.
BALIBAR S, 2008, J PHYS-CONDENS MAT, V20, P73201.
BARTYNSKI RA, 1989, J VAC SCI TECHNOL 2, V7, P1931.
CAMPBELL IH, 1986, SOLID STATE COMMUN, V58, P739.
CANNARA RJ, 2007, SCIENCE, V318, P780, DOI 10.1126/science.1147550.
CAPUTO G, 2009, PHYS CHEM CHEM PHYS, V11, P3692, DOI 10.1039/b823331d.
CASSIE ABD, 1944, T FARADAY SOC, V40, P546.
CHEN CQ, 2006, PHYS REV LETT, V96, ARTN 075505.
CHUA FM, 1989, PHYS REV LETT, V63, P386.
COEY JMD, 2006, CURR OPIN SOLID ST M, V10, P83, DOI 10.1016/j.cossms.2006.12.002.
CRAIN JN, 2005, SCIENCE, V307, P703, DOI 10.1126/science.1106911.
CRAIN JN, 2006, PHYS REV LETT, V96, ARTN 156801.
CUMINGS J, 2000, SCIENCE, V289, P602.
DAY J, 2007, NATURE, V450, P853, DOI 10.1038/nature06383.
DING Y, 2008, J APPL PHYS, V103, ARTN 084317.
ERDEMIR A, 2007, SUPERLUBRICITY.
FANG BS, 1994, PHYS REV B, V50, P11093.
FANG GP, 2008, LANGMUIR, V24, P11651, DOI 10.1021/la802033q.
GAO XF, 2004, NATURE, V432, P36, DOI 10.1038/432036a.
GNECCO E, 2008, J PHYS-CONDENS MAT, V20, ARTN 354004.
HIBINO H, 2009, PHYS REV B, V79, UNSP 125431.
HOU JG, 2001, PHYS REV LETT, V86, P5321.
HUANG WJ, 2008, NAT MATER, V7, P308, DOI 10.1038/nmat2132.
HUNT B, 2009, SCIENCE, V324, P632, DOI 10.1126/science.1169512.
JAKUBCZYK D, 2009, J PHYS CHEM C, V113, P10598, DOI 10.1021/jp9007812.
JENSEN F, 1990, PHYS REV B, V42, P9206.
KARA A, 1998, PHYS REV LETT, V81, P1453.
KIM E, 2004, NATURE, V427, P225, DOI 10.1038/nature02220.
KIM KJ, 2008, ADV MATER, V20, P3589, DOI 10.1002/adma.200800742.
KIZUKA T, 2008, PHYS REV B, V77, ARTN 155401.
LAFUMA A, 2003, NAT MATER, V2, P457, DOI 10.1038/nmat924.
LEE C, 2008, PHYS REV LETT, V101, ARTN 064501.
LEUNG C, 2009, NANO LETT, V9, P2769, DOI 10.1021/nl9012979.
LI W, 2007, ADV MATER, V19, P3421, DOI 10.1002/adma.200601.764.
LI W, 2008, J PHYS CHEM B, V112, P7234, DOI 10.1021/jp712019y.
LI XM, 2007, CHEM SOC REV, V36, P1350, DOI 10.1039/b602486f.
LIU D, 2009, J PHYS CHEM C, V113, P1168, DOI 10.1021/jp810220f.
LIU SH, 2009, J APPL PHYS, V105, ARTN 124301.
LIU X, 2006, PHYS REV LETT, V97, ARTN 253401.
LIU XJ, 2009, APPL PHYS LETT, V94, ARTN 131902.
MA DDD, 2003, SCIENCE, V299, P1874.
MAGNUSSON MH, 1999, J NANOPART RES, V1, P243.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MATSUDA I, 2007, PHYS REV LETT, V99, ARTN 146805.
MATSUI F, 2008, PHYS REV LETT, V100, ARTN 207201.
MIRONETS O, 2008, PHYS REV LETT, P100.
MO YF, 2009, NATURE, V457, P1116, DOI 10.1038/nature07748.
NAKADA K, 1996, PHYS REV B, V54, P17954.
NASIBULIN AG, 2008, J PHYS CHEM C, V112, P5762, DOI 10.1021/jp7118026.
NIIMI Y, 2006, PHYSICA E, V34, P100, DOI 10.1016/j.physe.2006.02.037.
NOOR A, 2008, ANGEW CHEM INT EDIT, V47, P7246, DOI 10.1002/anie.200801160.
PABISIAK T, 2009, PHYS REV B, V79, P10.
PAN LK, 2002, J PHYS CHEM B, V106, P11725, DOI 10.1021/jp0266805.
PARK JY, 2006, SCIENCE, V313, P186, DOI 10.1126/science.1125017.
PERDEW JP, 1996, PHYS REV LETT, V77, P3865.
PERSHAN PS, 2009, PHYS REV B, V79, ARTN 115417.
PINTO RA, 2009, PHYS REV A, V79, ARTN 052118.
POLLET L, 2008, PHYS REV LETT, V101, ARTN 097202.
PRANDTL L, 1928, ANGEW MATH MECH, V8, P85.
QI WH, 2009, J COMPUT THEOR NANOS, V6, P635, DOI 10.1166/jctn.2009.1085.
QI WH, 2009, NANOSCALE RES LETT, V4, P269, DOI 10.1007/s11671-008-9236-z.
RAO CNR, 2002, CHEM-EUR J, V8, P29.
RASTEI MV, 2007, PHYS REV LETT, V99, ARTN 246102.
RODUNER E, 2006, CHEM SOC REV, V35, P583, DOI 10.1039/b502142c.
SASAKI S, 2006, SCIENCE, V313, P1098, DOI 10.1126/science.1130879.
SAUNDERS J, 2009, SCIENCE, V324, P601, DOI 10.1126/science.1172973.
SCHILLER F, 2004, PHYS REV B, V70, ARTN 125106.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SCHOUTEDEN K, 2009, NANOTECHNOLOGY, V20, ARTN 395401.
SHPYRKO OG, 2004, PHYS REV B, V70, ARTN 224206.
SMIT RHM, 2001, PHYS REV LETT, V87, ARTN 266102.
SOCOLIUC A, 2004, PHYS REV LETT, V92, ARTN 134301.
SOCOLIUC A, 2006, SCIENCE, V313, P207, DOI 10.1126/science.1125874.
SPERL A, 2009, NEW J PHYS, V11, ARTN 063020.
STREET RA, 1991, HYDROGENATED AMORPHO.
SUN CQ, 2001, J APPL PHYS, V90, P2615.
SUN CQ, 2003, J PHYS CHEM B, V107, P7544, DOI 10.1021/jp035070h.
SUN CQ, 2003, PROG MATER SCI, V48, P521.
SUN CQ, 2004, PHYS REV B, V69, ARTN 045105.
SUN CQ, 2007, PROG SOLID STATE CH, V35, P1, DOI 10.1016/j.progsolidstchem.2006.03.001.
SUN CQ, 2008, J PHYS CHEM C, V112, P18927, DOI 10.1021/jp807580t.
SUN CQ, 2009, PROG MATER SCI, V54, P179, DOI 10.1016/j.pmatsci.2008.08.001.
SUN RD, 2001, J PHYS CHEM B, V105, P1984.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
TOMLINSON GA, 1929, PHILOS MAG JUN, V7, P905.
TSAI YC, 2008, ANGEW CHEM INT EDIT, V47, P7250, DOI 10.1002/anie.200801286.
UNTIEDT C, 2002, PHYS REV B, V66, ARTN 085418.
WANG B, 2000, APPL PHYS LETT, V77, P1179.
WANG B, 2004, PHYS REV B, V70, ARTN 205411.
WASSERMAN HJ, 1972, SURF SCI, V32, P168.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
WONG KFV, 2008, NANOTECHNOLOGY, V19, ARTN 345702.
YANG DQ, 2002, APPL SURF SCI, V195, P187.
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372.
ZHENG QS, 2009, J ADHES SCI TECHNOL, V23, P493, DOI 10.1163/156856108X379155.
ZHENG WT, 2006, PROG SOLID STATE CH, V34, P1, DOI 10.1016/j.progsolidstchem.2005.12.001.
ZHENG XP, 2008, J COLLOID INTERF SCI, V323, P133, DOI 10.1016/j.jcis.2008.04.033.

Cited Reference Count:
101

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp907726b

IDS Number:
516ZX

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, November 13, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271222500017
*Order Full Text [ ]

Title:
Water-mediated signal multiplication with Y-shaped carbon nanotubes

Authors:
Tu, YS; Xiu, P; Wan, RZ; Hu, J; Zhou, RH; Fang, HP

Author Full Names:
Tu, Yusong; Xiu, Peng; Wan, Rongzheng; Hu, Jun; Zhou, Ruhong; Fang, Haiping

Source:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 106 (43): 18120-18124 OCT 27 2009

Language:
English

Document Type:
Article

Author Keywords:
confined water; molecular dynamics; molecular signal transmission; Y-shaped nanochannel; signal transduction

KeyWords Plus:
MOLECULAR-DYNAMICS; CHANNEL; MECHANISM; TRANSPORT; CONDUCTION; JUNCTIONS; ELECTRON; LOGIC; FLOW

Abstract:
Molecular scale signal conversion and multiplication is of particular importance in many physical and biological applications, such as molecular switches, nano-gates, biosensors, and various neural systems. Unfortunately, little is currently known regarding the signal processing at the molecular level, partly due to the significant noises arising from the thermal fluctuations and interferences between branch signals. Here, we use molecular dynamics simulations to show that a signal at the single-electron level can be converted and multiplied into 2 or more signals by water chains confined in a narrow Y-shaped nanochannel. This remarkable transduction capability of molecular signal by Y-shaped nanochannel is found to be attributable to the surprisingly strong dipole-induced ordering of such water chains, such that the concerted water orientations in the 2 branches of the Y-shaped nanotubes can be modulated by the water orientation in the main channel. The response to the swit!
ching of the charge signal is very rapid, from a few nanoseconds to a few hundred nanoseconds. Furthermore, simulations with various water models, including TIP3P, TIP4P, and SPC/E, show that the transduction capability of the Y-shaped carbon nanotubes is very robust at room temperature, with the interference between branch signals negligible.

Reprint Address:
Zhou, RH, IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA.

Research Institution addresses:
[Zhou, Ruhong] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA; [Tu, Yusong; Xiu, Peng; Wan, Rongzheng; Hu, Jun; Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Tu, Yusong] Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China; [Xiu, Peng] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China; [Zhou, Ruhong] Columbia Univ, Dept Chem, New York, NY 10027 USA

E-mail Address:
ruhongz@us.ibm.com; fanghaiping@sinap.ac.cn

Cited References:
BACHTOLD A, 2001, SCIENCE, V294, P1317.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BANDARU PR, 2005, NAT MATER, V4, P663, DOI 10.1038/nmat1450.
BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211.
BREWER ML, 2001, BIOPHYS J, V80, P1691.
CHOPRA N, 2005, J ADV FUNCT MAT, V15, P858.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEEPAK FL, 2001, CHEM PHYS LETT, V345, P5.
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GOTHARD N, 2004, NANO LETT, V4, P213, DOI 10.1021/nl0349294.
GROOT BLD, 2001, SCIENCE, V294, P2353.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KOENIG DR, 2008, NAT NANOTECHNOL, V3, P482, DOI 10.1038/nnano.2008.178.
KOGA K, 2001, NATURE, V412, P802.
KOTINGER J, 2008, P NATL ACAD SCI USA, V105, P13218.
KRASHENINNIKOV AV, 2007, NAT MATER, V6, P723.
KRONE MG, 2008, J AM CHEM SOC, V130, P11066, DOI 10.1021/ja8017303.
KWOK KS, 2002, MATER TODAY, V5, P28.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LI WZ, 2001, APPL PHYS LETT, V79, P1879.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LITVINCHUK S, 2007, NAT MATER, V6, P576, DOI 10.1038/nmat1933.
LUNA VM, 2008, BIOCHEMISTRY-US, V47, P4657, DOI 10.1021/bi800045y.
MAJUMDER M, 2005, NATURE, V438, P930, DOI 10.1038/438930b.
MOUSTAFA IM, 2006, J MOL BIOL, V364, P991, DOI 10.1016/j.jmb.2006.09.032.
PAPADOPOULOS C, 2000, PHYS REV LETT, V85, P3476.
POMES R, 2002, BIOPHYS J, V82, P2304.
REITER G, 2006, PHYS REV LETT, V97, ARTN 247801.
SATISHKUMAR BC, 2000, APPL PHYS LETT, V77, P2530.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TERRONES M, 2002, PHYS REV LETT, V89, ARTN 075505.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XU HQ, 2005, NAT MATER, V4, P649, DOI 10.1038/nmat1471.
ZHOU RH, 2004, SCIENCE, V305, P1605.

Cited Reference Count:
42

Times Cited:
0

Publisher:
NATL ACAD SCIENCES; 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA

Subject Category:
Multidisciplinary Sciences

ISSN:
0027-8424

DOI:
10.1073/pnas.0902676106

IDS Number:
512DB

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271350400094
*Order Full Text [ ]

Title:
Effects of fluid flow on the oligonucleotide folding in single-walled carbon nanotubes

Authors:
Lim, MCG; Zhong, ZW

Author Full Names:
Lim, M. C. G.; Zhong, Z. W.

Source:
PHYSICAL REVIEW E 80 (4): Art. No. 041915 Part 1 OCT 2009

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; DNA; high-pressure effects; molecular biophysics; molecular dynamics method; nanobiotechnology; van der Waals forces; water

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATION; SOLID-STATE NANOPORE; DNA TRANSLOCATION; LIQUID WATER; INSERTION; CHANNELS; TRANSPORT; DIAMETER

Abstract:
This paper presents molecular-dynamics (MD) simulations of DNA oligonucleotide and water molecules translocating through carbon nanotube (CNT) channels. An induced pressure difference is applied to the system by pushing a layer of water molecules toward the flow direction to drive the oligonucleotide and other molecules. This MD simulation investigates the changes that occur in the conformation of the oligonucleotide due to water molecules in nanochannels while controlling the temperature and volume of the system in a canonical ensemble. The results show that the oligonucleotide in the (8,8)-(12,12) CNT channel forms a folded state at a lower pressure, whereas the oligonucleotide in the (10,10)-(14,14) CNT channel forms a folded state at a higher pressure instead. The van der Waals forces between the water molecules and the oligonucleotide suggest that the attraction between these two types of molecules results in the linear arrangements of the bases of the oligonucleotide. !
For a larger nanotube channel, the folding of the oligonucleotide is mainly dependent on the solvent (water molecules), whereas pressure, the size of the nanotube junction, and water molecules are the considering factors of the folding of the oligonucleotide at a smaller nanotube channel. For a folded oligonucleotide, the water distribution around the oligonucleotide is concentrated at a smaller range than that for the distribution around an unfolded oligonucleotide.

Reprint Address:
Lim, MCG, Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore.

Research Institution addresses:
[Lim, M. C. G.; Zhong, Z. W.] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore

Cited References:
ARAKI S, 2006, CHEM PHYS LETT, V418, P255, DOI 10.1016/j.cplett.2005.10.115.
BETHUNE DS, 1993, NATURE, V363, P605.
BONTHUIS DJ, 2008, PHYS REV LETT, V101, ARTN 108303.
FOLOGEA D, 2005, NANO LETT, V5, P1734, DOI 10.1021/nl051063o.
GAO HJ, 2003, NANO LETT, V3, P471, DOI 10.1021/nl025967a.
GAO HJ, 2004, ANNU REV MATER RES, V34, P123, DOI 10.1146/annurev.matsci.34.040203.120402.
GIGLIOTTI B, 2006, NANO LETT, V6, P159, DOI 10.1021/nl0518775.
HANASAKI I, 2006, MODEL SIMUL MATER SC, V14, S9, DOI 10.1088/0965-0393/14/5/S02.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
IIJIMA S, 1993, NATURE, V363, P603.
JOHNSON ATC, 2006, PHYS STATUS SOLIDI B, V243, P3252, DOI 10.1002/pssb.200669148.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KATZ E, 2004, CHEMPHYSCHEM, V5, P1084.
LAU EY, 2005, CHEM PHYS LETT, V412, P82, DOI 10.1016/j.cplett.2005.05.129.
LI J, 1998, PHYS REV E, V57, P7259.
LIM MCG, 2008, PHYSICA A, V387, P3111, DOI 10.1016/j.physa.2008.01.111.
LIU GR, 2005, INT J MOD PHYS C, V16, P1239.
LIU Z, 2007, ANGEW CHEM INT EDIT, V46, P2023, DOI 10.1002/anie.200604295.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MUTHUKUMAR M, 1999, J CHEM PHYS, V111, P10371.
NAGUIB NN, 2005, NANOTECHNOLOGY, V16, P567, DOI 10.1088/0957-4484/16/4/038.
OKADA T, 2006, JPN J APPL PHYS 1, V45, P8335.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781.
PONNUSWAMY PK, 1994, J THEOR BIOL, V169, P419.
RATHORE N, 2006, BIOPHYS J, V90, P1767, DOI 10.1529/biophysj.105.071076.
SAITO R, 1996, PHYS REV B, V53, P2044.
SHI XH, 2005, ACTA MECH SINICA, V21, P249, DOI 10.1007/s10409-005-0027-9.
SINHA N, 2005, IEEE T NANOBIOSCI, V4, P180, DOI 10.1109/TNB.2005.850478.
STAR A, 2006, P NATL ACAD SCI USA, V103, P921.
STORM AJ, 2005, NANO LETT, V5, P1193, DOI 10.1021/nl048030d.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUN M, 1992, PHYS REV A, V46, P4813.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WEI C, 2005, INT J NANOSCI, V4, P363.
WONG KY, 2004, BIOPOLYMERS, V73, P570, DOI 10.1002/bip.20004.
XUE YQ, 2006, NANOTECHNOLOGY, V17, P5216, DOI 10.1088/0957-4484/17/20/029.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
ZHANG C, 2008, J CHEM PHYS, V128, P25109, ARTN 225109.
ZHENG J, 2005, J CHEM PHYS, V122, P14702, ARTN 214702.

Cited Reference Count:
42

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Fluids & Plasmas; Physics, Mathematical

ISSN:
1539-3755

DOI:
10.1103/PhysRevE.80.041915

IDS Number:
513UV

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271272000028
*Order Full Text [ ]

Title:
Characterization of Water Wires inside Hydrophobic Tubular Peptide Structures

Authors:
Raghavender, US; Aravinda, S; Shamala, N; Kantharaju; Rai, R; Balaram, P

Author Full Names:
Raghavender, Upadhyayula S.; Aravinda, Subrayashastry; Shamala, Narayanaswamy; Kantharaju; Rai, Rajkishor; Balaram, Padmanabhan

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 131 (42): 15130-+ OCT 28 2009

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; CHANNELS; DYNAMICS

Abstract:
The crystallographic observation of a hydrophobic, empty channel (diameter similar to 5.2 angstrom) in the peptide Boc-(D)Pro-Aib-Leu-Aib-Val-OMe, prompted the investigation of the analog Boc-(D)Pro-Aib-Val-Aib-Val-OMe in which the side chain at position 3 was shortened, resulting in the structure of a channel (diameter similar to 7.5 angstrom) containing a one-dimensional wire of water molecules. Crystallization in the space group P6(5) facilitates formation of a pore tined entirety by hydrocarbon side chains. Two forms of the entrapped water wires, with O center dot center dot center dot O separations of 3.5 and 2.6 angstrom, are discussed. A lone hydrogen bond between the adjacent pairs of water molecules in the wire, with no strong interactions between the second water hydrogen and the hydrophobic walls of the channel, is a feature of the one-dimensional array. The structure provides the first crystallographic characterization of a water wire in a hydrophobic channel wit!
h implications in water and proton transport in membranes and carbon nanotubes

Reprint Address:
Shamala, N, Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India.

Research Institution addresses:
[Raghavender, Upadhyayula S.; Aravinda, Subrayashastry; Shamala, Narayanaswamy] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India; [Kantharaju; Rai, Rajkishor; Balaram, Padmanabhan] Indian Inst Sci, Mol Biophys Unit, Bangalore 560012, Karnataka, India

E-mail Address:
shamala@physics.iisc.ernet.in; pb@mbu.iisc.ernet.in

Cited References:
*ACC INC, 2002, DS VIEWERPRO 5 0.
AGMON N, 1995, CHEM PHYS LETT, V244, P456.
AGRE P, 2002, J PHYSIOL-LONDON, V542, P3.
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P380.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
ENGELS M, 1995, J AM CHEM SOC, V117, P9151.
GHADIRI MR, 1993, NATURE, V366, P324.
GHADIRI MR, 1994, NATURE, V369, P301.
GORBITZ CH, 2007, CHEM-EUR J, V13, P1022, DOI 10.1002/chem.200601427.
HARTGERINK JD, 1996, J AM CHEM SOC, V118, P43.
HILLE B, 1992, ION CHANNELS EXCITAB.
HUMMER G, 2001, NATURE, V414, P188.
JEFFREY GA, 1991, HYDROGEN BONDING BIO.
KARLE IL, 1990, BIOCHEMISTRY-US, V29, P6747.
POMES R, 1996, BIOPHYS J, V71, P19.
RAO CP, 1981, BIOCHEM BIOPH RES CO, V103, P898.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
RECHES M, 2003, SCIENCE, V300, P625.
SAPAROV SM, 2006, PHYS REV LETT, V96, ARTN 148101.
VENKATRAMAN J, 2001, CHEM REV, V101, P3131.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.

Cited Reference Count:
23

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja9038906

IDS Number:
512SX

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================