Friday, December 17, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284707000002
*Order Full Text [ ]

Title:
The structural basis of function in Cys-loop receptors

Authors:
Thompson, AJ; Lester, HA; Lummis, SCR

Author Full Names:
Thompson, Andrew J.; Lester, Henry A.; Lummis, Sarah C. R.

Source:
QUARTERLY REVIEWS OF BIOPHYSICS 43 (4): 449-499 NOV 2010

Language:
English

Document Type:
Review

KeyWords Plus:
NICOTINIC ACETYLCHOLINE-RECEPTOR; GATED ION CHANNELS; PROTEIN-KINASE-C; BENZODIAZEPINE BINDING-SITE; AMINOBUTYRIC ACID(A) RECEPTORS; RECOMBINANT 5-HT3 RECEPTOR; CATION-PI INTERACTIONS; POSITIVE ALLOSTERIC MODULATION; MAJOR INTRACELLULAR DOMAINS; MEMBRANE-SPANNING SEGMENT

Abstract:
Cys-loop receptors are membrane-spanning neurotransmitter-gated ion channels that are responsible for fast excitatory and inhibitory transmission in the peripheral and central nervous systems. The best studied members of the Cys-loop family are nACh, 5-HT3, GABA(A) and glycine receptors. All these receptors share a common structure of five subunits, pseudo-symmetrically arranged to form a rosette with a central ion-conducting pore. Some are cation selective (e.g. nACh and 5-HT3) and some are anion selective (e.g. GABA(A) and glycine). Each receptor has an extracellular domain (ECD) that contains the ligand-binding sites, a transmembrane domain (TMD) that allows ions to pass across the membrane, and an intracellular domain (ICD) that plays a role in channel conductance and receptor modulation. Cys-loop receptors are the targets for many currently used clinically relevant drugs (e.g. benzodiazepines and anaesthetics). Understanding the molecular mechanisms of these receptors co
uld therefore provide the catalyst for further development in this field, as well as promoting the development of experimental techniques for other areas of neuroscience. In this review, we present our current understanding of Cys-loop receptor structure and function. The ECD has been extensively studied. Research in this area has been stimulated in recent years by the publication of high-resolution structures of nACh receptors and related proteins, which have permitted the creation of many Cys loop receptor homology models of this region. Here, using the 5-HT3 receptor as a typical member of the family, we describe how homology modelling and ligand docking can provide useful but not definitive information about ligand interactions. We briefly consider some of the many Cys-loop receptors modulators. We discuss the current understanding of the structure of the TMD, and how this links to the ECD to allow channel gating, and consider the roles of the ICD, whose structure is poo
rly understood. We also describe some of the current methods!
that ar
e beginning to reveal the differences between different receptor states, and may ultimately show structural details of transitions between them.

Reprint Address:
Lummis, SCR, Univ Cambridge, Dept Biochem, Bldg O,Downing Site, Cambridge CB2 1QW, England.

Research Institution addresses:
[Thompson, Andrew J.; Lummis, Sarah C. R.] Univ Cambridge, Dept Biochem, Cambridge CB2 1QW, England; [Lester, Henry A.] CALTECH, Pasadena, CA 91125 USA

E-mail Address:
sl120@cam.ac.uk

Cited References:
ABDELHALIM H, 2008, CHEM BIOL DRUG DES, V71, P306, DOI 10.1111/j.1747.0285.2008.00642.x.
ABSALOM NL, 2009, NEUROCHEM RES, V34, P1805, DOI 10.1007/s11064-009-9971-2.
AKABAS MH, 1992, SCIENCE, V258, P307.
AKABAS MH, 1994, NEURON, V13, P919.
AKABAS MH, 1995, BIOCHEMISTRY-US, V34, P12496.
AKK G, 2000, J PHYSIOL-LONDON, V527, P405.
AMIN J, 1997, MOL PHARMACOL, V51, P833.
ARIAS HR, 2005, CURR PROTEIN PEPT SC, V6, P451.
ARIAS HR, 2006, BIOL BIOPHYSICAL ASP.
ARIAS HR, 2006, BIOLL BIOPHYSICAL AS.
AUERBACH A, 2010, J PHYSIOL-LONDON, V588, P573, DOI 10.1113/jphysiol.2009.182774.
BACHY A, 1993, EUR J PHARMACOL, V237, P299.
BAENZIGER JE, 1995, J BIOL CHEM, V270, P29129.
BAFNA PA, 2008, PLOS ONE, V3, ARTN e2515.
BALDUZZI R, 2002, BBA-BIOMEMBRANES, V1564, P263.
BALI M, 2007, J GEN PHYSIOL, V129, P145, DOI 10.1085/jgp.200609639.
BALLESTERO JA, 2005, MOL PHARMACOL, V68, P822, DOI 10.1124/mol.105.014431.
BARNES NM, 2009, NEUROPHARMACOLOGY, V56, P273, DOI 10.1016/j.neuropharm.2008.08.003.
BARRERA NP, 2005, P NATL ACAD SCI USA, V102, P12595, DOI 10.1073/pnas.0503253102.
BARTOS M, 2009, MOL NEUROBIOL, V40, P236, DOI 10.1007/s12035-009-8084-x.
BAULAC S, 2001, NAT GENET, V28, P46.
BEATO M, 2004, J NEUROSCI, V24, P895, DOI 10.1523/JNEUROSCI.4420-03.2004.
BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y.
BEENE DL, 2002, BIOCHEMISTRY-US, V41, P10262, DOI 10.1021/bi020266d.
BEENE DL, 2004, J NEUROSCI, V24, P9097, DOI 10.1523/JNEUROSCI.2429-04.2004.
BEG AA, 2003, NAT NEUROSCI, V6, P1145, DOI 10.1038/nn1136.
BERA AK, 2002, J BIOL CHEM, V277, P43002, DOI 10.1074/jbc.M206321200.
BEREZHNOY D, 2004, J BIOL CHEM, V279, P3160, DOI 10.1074/jbc.M311371200.
BERTRAND D, 1993, P NATL ACAD SCI USA, V90, P6971.
BERTRAND D, 2008, MOL PHARMACOL, V74, P1407, DOI 10.1124/mol.107.042820.
BHATTACHARYA A, 2004, J NEUROSCI, V24, P5537, DOI 10.1523/JNEUROSCI.5658-03.2004.
BIANCHI MT, 2001, J NEUROSCI, V21, P1127.
BLANTON MP, 1992, BIOCHEMISTRY-US, V31, P3738.
BLANTON MP, 1994, BIOCHEMISTRY-US, V33, P2859.
BLANTON MP, 1998, BIOCHEMISTRY-US, V37, P14545.
BOCQUET N, 2007, NATURE, V445, P116, DOI 10.1038/nature05371.
BOCQUET N, 2009, NATURE, V457, P111, DOI 10.1038/nature07462.
BOESS FG, 1997, NEUROPHARMACOLOGY, V36, P637.
BOILEAU AJ, 1999, J NEUROSCI, V19, P10213.
BOUZAT C, 1994, NEURON, V13, P1395.
BOUZAT C, 1998, MOL PHARMACOL, V54, P146.
BOUZAT C, 2000, J GEN PHYSIOL, V115, P663.
BOUZAT C, 2004, NATURE, V430, P896, DOI 10.1038/nature02753.
BOUZAT CB, 2002, BIOPHYS J 2, V82, A214.
BOWER KS, 2008, EUR J PHARMACOL, V580, P291, DOI 10.1016/j.ejphar.2007.11.014.
BOYD GW, 2002, MOL CELL NEUROSCI, V21, P38, DOI 10.1006/mcne.2002.1160.
BRADY CA, 2001, NEUROPHARMACOLOGY, V41, P282.
BREJC K, 2001, NATURE, V411, P269.
BROAD LM, 2002, EUR J PHARMACOL, V452, P137.
BROAD LM, 2006, J PHARMACOL EXP THER, V318, P1108, DOI 10.1124/jpet.106.104505.
BROWN AM, 1998, J PHYSIOL-LONDON, V507, P653.
BRUSS M, 2000, N-S ARCH PHARMACOL, V362, P392.
BUHR A, 1997, J BIOL CHEM, V272, P11799.
BUHR A, 1997, MOL PHARMACOL, V52, P676.
BUHR A, 1997, P NATL ACAD SCI USA, V94, P8824.
BUTLER AS, 2009, NEUROPHARMACOLOGY, V56, P292, DOI 10.1016/j.neuropharm.2008.08.017.
CAMPOSCARO A, 1996, P NATL ACAD SCI USA, V93, P6118.
CARLAND JE, 2004, J BIOL CHEM, V279, P54153, DOI 10.1074/jbc.M410625200.
CARLAND JE, 2009, J BIOL CHEM, V284, P2023, DOI 10.1074/jbc.M806618200.
CASHIN AL, 2005, J AM CHEM SOC, V127, P350, DOI 10.1021/ja0461771.
CASTALDO P, 2004, J BIOL CHEM, V279, P25598, DOI 10.1074/jbc.M311021200.
CEDERHOLM JME, 2009, EUR BIOPHYS J BIOPHY, V39, P37, DOI 10.1007/s00249-009-0452-y.
CELIE PHN, 2004, NEURON, V41, P907.
CELIE PHN, 2005, J BIOL CHEM, V280, P26457, DOI 10.1074/jbc.M414476200.
CELIE PHN, 2005, NAT STRUCT MOL BIOL, V12, P582, DOI 10.1038/nsmb951.
CENS T, 1997, RECEPTOR CHANNEL, V5, P29.
CHAKRAPANI S, 2003, J GEN PHYSIOL, V122, P521.
CHAMPTIAUX N, 2003, J NEUROSCI, V23, P7820.
CHANG G, 1998, SCIENCE, V282, P2220.
CHANG YC, 1998, MOL PHARMACOL, V53, P511.
CHANG YC, 2002, NAT NEUROSCI, V5, P1163, DOI 10.1038/nn926.
CHANG YC, 2009, ACTA PHARMACOL SIN, V30, P663, DOI 10.1038/aps.2009.51.
CHANGEUX JP, 1984, SCIENCE, V225, P1335.
CHARNET P, 1990, NEURON, V4, P87.
CHEN L, 2010, J PHYSIOL-LONDON, V588, P557, DOI 10.1113/jphysiol.2009.184085.
COHEN BN, 1992, J GEN PHYSIOL, V100, P373.
CONNOLLY CN, 2008, MOL MEMBR BIOL, V25, P293, DOI 10.1080/09687680801898503.
CORBIN J, 1998, J BIOL CHEM, V273, P771.
CORRADI J, 2009, BIOPHYS J, V97, P1335, DOI 10.1016/j.bpj.2009.06.018.
CORRINGER PJ, 1999, NEURON, V22, P831.
CORRINGER PJ, 2010, J PHYSIOL-LONDON, V588, P565, DOI 10.1113/jphysiol.2009.183160.
COULTRAP SJ, 2002, RECEPTOR CHANNEL, V8, P63.
CROMER BA, 2002, TRENDS BIOCHEM SCI, V27, P280.
CRUZMARTIN A, 2001, J MEMBRANE BIOL, V183, P61.
CULLY DF, 1994, NATURE, V371, P707.
CULLY DF, 1996, J BIOL CHEM, V271, P20187.
CUTTING GR, 1991, P NATL ACAD SCI USA, V88, P2673.
CYMES GD, 2005, NATURE, V438, P975, DOI 10.1038/nature04293.
CYMES GD, 2008, NAT STRUCT MOL BIOL, V15, P389, DOI 10.1038/nsmb.1407.
DACOSTA CJB, 2009, J BIOL CHEM, V284, P17819, DOI 10.1074/jbc.M900030200.
DAHAN DS, 2004, P NATL ACAD SCI USA, V101, P10195, DOI 10.1073/pnas.0301885101.
DANG H, 2000, MOL PHARMACOL, V57, P1114.
DAVIES PA, 1999, NATURE, V397, P359.
DAVIES PA, 2003, J BIOL CHEM, V278, P712, DOI 10.1074/jbc.M208814200.
DEANE CM, 2001, J BIOL CHEM, V276, P37962.
DEEB TZ, 2007, J BIOL CHEM, V282, P6172, DOI 10.1074/jbc.M607698200.
DELLISANTI CD, 2007, NAT NEUROSCI, V10, P953, DOI 10.1038/nn1942.
DEMURO A, 2005, J GEN PHYSIOL, V126, P179, DOI 10.1085/jgp.200509331.
DEPLANQUE MRR, 2004, MAGN RESON CHEM, V42, P148, DOI 10.1002/mrc.1326.
DERKACH V, 1989, NATURE, V339, P706.
DEROSA MJ, 2002, MOL PHARMACOL, V62, P406.
DOUGHERTY DA, 2008, CHEM REV, V108, P1642, DOI 10.1021/cr078207z.
DRISDEL RC, 2004, J NEUROSCI, V24, P10502, DOI 10.1523/JNEUROSCI.3315-04.2004.
DRISDEL RC, 2008, J BIOL CHEM, V283, P9659, DOI 10.1074/jbc.M703672200.
DUBIN AE, 1999, J BIOL CHEM, V274, P30799.
DUNNE EL, 2002, BRIT J PHARMACOL, V137, P29.
EDDINS D, 2002, AM J PHYSIOL-CELL PH, V282, C796.
EDDINS D, 2002, AM J PHYSIOL-CELL PH, V283, C1454, DOI 10.1152/ajpcell.00204.2002.
EDELSTEIN SJ, 1996, BIOL CYBERN, V75, P361.
EISELE JL, 1993, NATURE, V366, P479.
EMERIT MB, 2002, MOL CELL NEUROSCI, V20, P110.
ENGBLOM AC, 2002, J BIOL CHEM, V277, P17438.
ENGLAND PM, 1999, CELL, V96, P89.
ENZ R, 1999, EUR J NEUROSCI, V11, P41.
EVERITT AB, 2009, FASEB J, V23, P4361, DOI 10.1096/fj.09-137042.
FAGHIH R, 2008, J MED CHEM, V51, P701, DOI 10.1021/jm070256g.
FATIMASHAD K, 1993, P R SOC B, V253, P69.
FILATOV GN, 1995, MOL PHARMACOL, V48, P379.
FILIPPOVA N, 2000, MOL PHARMACOL, V57, P847.
FILIPPOVA N, 2004, J BIOL CHEM, V279, P20906, DOI 10.1074/jbc.M401012200.
FINERMOORE J, 1984, P NATL ACAD SCI-BIOL, V81, P155.
FISHER JL, 1998, J NEUROSCI, V18, P2944.
FISHER JL, 2002, NEUROPHARMACOLOGY, V42, P922.
FLOOD P, 1997, ANESTHESIOLOGY, V86, P859.
FLUDZINSKI P, 1987, J MED CHEM, V30, P1535.
FUJIMOTO K, 2008, BIOORG MED CHEM LETT, V18, P1106, DOI 10.1016/j.bmcl.2007.12.002.
GAIMARRI A, 2007, BRAIN RES REV, V55, P134, DOI 10.1016/j.brainresrev.2007.02.005.
GALLIVAN JP, 1999, P NATL ACAD SCI USA, V96, P9459.
GALZI JL, 1992, NATURE, V359, P500.
GALZI JL, 1996, EMBO J, V15, P5824.
GAO F, 2006, MOL PHARMACOL, V70, P1230, DOI 10.1124/mol.106.027185.
GAY EA, 2007, J PHYSIOL-LONDON, V584, P727, DOI 10.1113/jphysiol.2007.142554.
GERZANICH V, 1998, J PHARMACOL EXP THER, V286, P311.
GILL CH, 1995, BRIT J PHARMACOL, V114, P1211.
GLEITSMAN KR, 2009, CHEMBIOCHEM, V10, P1385, DOI 10.1002/cbic.200900092.
GOREN EN, 2004, J BIOL CHEM, V279, P11198, DOI 10.1074/jbc.M314050200.
GORNETSCHELNOKO.U, 1994, EMBO J, V13, P338.
GOTTI C, 2007, BIOCHEM PHARMACOL, V74, P1102, DOI 10.1016/j.bcp.2007.05.023.
GRAILHE R, 2004, EUR J NEUROSCI, V19, P855, DOI 10.1111/j.1460-9568.2004.03153.x.
GREEN T, 1995, J BIOL CHEM, V270, P6056.
GREENFIELD JRLJ, 2002, NEUROPHARMACOLOGY, V42, P502.
GRONLIEN JH, 2007, MOL PHARMACOL, V72, P715, DOI 10.1124/mol.107.035410.
GROSMAN C, 2000, J GEN PHYSIOL, V116, P327.
GROSMAN C, 2000, NATURE, V403, P773.
GRUTTER T, 2005, CR BIOL, V328, P223, DOI 10.1016/j.crvi.2004.11.004.
GRUTTER T, 2005, P NATL ACAD SCI USA, V102, P18207, DOI 10.1073/pnas.0509024102.
GUNTHORPE MJ, 2001, J BIOL CHEM, V276, P21990.
GURLEY DA, 1998, NEUROSCI LETT, V247, P107.
GUZMAN GR, 2003, BIOCHEMISTRY-US, V42, P12243, DOI 10.1021/bi034764d.
HAEGER S, 2010, NAT STRUCT MOL BIOL, V17, P90, DOI 10.1038/nsmb.1721.
HALES TG, 2006, J BIOL CHEM, V281, P8062, DOI 10.1074/jbc.M513222200.
HANEK AP, 2010, MOL PHARMACOL, V78, P29, DOI 10.1124/mol.109.059832.
HANSEN SB, 2005, EMBO J, V24, P3635, DOI 10.1038/sj.emboj.7600828.
HANSEN SB, 2007, J MOL BIOL, V369, P895, DOI 10.1016/j.jmb.2007.03.067.
HANSON SM, 2008, J NEUROSCI, V28, P3490, DOI 10.1523/JNEUROSCI.5727-07.2008.
HAWTHORNE R, 2006, BIOL BIOPHYSICAL ASP, P35836.
HIBBS RE, 2009, EMBO J, V28, P3040, DOI 10.1038/emboj.2009.227.
HILF RJC, 2008, NATURE, V452, P375, DOI 10.1038/nature06717.
HOGG RC, 2003, REV PHYSIOL BIOCH P, V147, P1, DOI 10.1007/s10254-003-0005-1.
HOGG RC, 2007, BIOCHEM PHARMACOL, V73, P459, DOI 10.1016/j.bcp.2006.08.010.
HOLBROOK JD, 2009, J NEUROCHEM, V108, P384, DOI 10.1111/j.1471-4159.2008.05775.x.
HORENSTEIN J, 1998, MOL PHARMACOL, V53, P870.
HORENSTEIN J, 2001, NAT NEUROSCI, V4, P477.
HOSIE AM, 2003, NAT NEUROSCI, V6, P362, DOI 10.1038/nn1030.
HOVIUS R, 1999, J RECEPT SIGNAL TR R, V19, P533.
HSIAO B, 2006, MOL PHARMACOL, V69, P27, DOI 10.1124/mol.105.015164.
HU XQ, 2003, J BIOL CHEM, V278, P46583, DOI 10.1074/jbc.M308974200.
HU XQ, 2005, J PHYSIOL-LONDON, V568, P381, DOI 10.1113/jphysiol.2005.092866.
HU XQ, 2008, J BIOL CHEM, V283, P6826, DOI 10.1074/jbc.M707571200.
HUANG RQ, 2006, BIOL BIOPHYSICAL ASP, P171.
HUBBARD PC, 2000, EUR J PHARMACOL, V394, P189.
HUBBARD PC, 2000, MOL BRAIN RES, V81, P101.
HUMMER G, 2001, NATURE, V414, P188.
HUSSY N, 1994, J PHYSIOL-LONDON, V481, P311.
ILEGEMS E, 2004, J BIOL CHEM, V279, P53346, DOI 10.1074/jbc.M407467200.
JACKSON MB, 1984, P NATL ACAD SCI-BIOL, V81, P3901.
JACKSON MB, 1986, BIOPHYS J, V49, P663.
JANSEN M, 2008, J GEN PHYSIOL, V131, P137, DOI 10.1085/jgp.200709896.
JENSEN AA, 2008, TRENDS PHARMACOL SCI, V29, P437, DOI 10.1016/j.tips.2008.06.001.
JENSEN ML, 2002, J BIOL CHEM, V277, P41438, DOI 10.1074/jbc.M205645200.
JENSEN ML, 2005, J NEUROCHEM, V92, P217, DOI 10.1111/j.1471-4159.2004.02883.x.
JENSEN ML, 2005, J NEUROCHEM, V92, P962, DOI 10.1111/j.1471-4159.2004.02970.x.
JONESDAVIS DM, 2005, J NEUROSCI, V25, P8056, DOI 10.1523/JNEUROSCI.0348-05.2005.
JOSHI PR, 2006, BIOCHEMISTRY-US, V45, P1099, DOI 10.1021/bi051676f.
KANEEZ FS, 2004, J BIOMEDICAL BIOTECH, V1, P10.
KAPUR J, 1997, J NEUROSCI, V17, P7532.
KARLIN A, 1983, J BIOL CHEM, V258, P6678.
KASH TL, 2003, NATURE, V421, P272, DOI 10.1038/nature01280.
KASH TL, 2004, J BIOL CHEM, V279, P4887, DOI 10.1074/jbc.M311441200.
KELLEY SP, 2003, NATURE, V424, P321, DOI 10.1038/nature01788.
KERAMIDAS A, 2000, BIOPHYS J, V79, P247.
KERAMIDAS A, 2002, J GEN PHYSIOL, V119, P393.
KERAMIDAS A, 2004, PROG BIOPHYS MOL BIO, V86, P161, DOI 10.1016/j.pbiomolbio.2003.09.002.
KNEUSSEL M, 2007, BIOL CELL, V99, P297, DOI 10.1042/BC20060120.
KONNO T, 1991, P ROY SOC LOND B BIO, V244, P69.
KORPI ER, 2002, PROG NEUROBIOL, V67, P113.
KUCKEN AM, 2000, MOL PHARMACOL, V57, P932.
KUSAMA T, 1994, NEUROREPORT, V5, P1209.
LABARCA C, 1995, NATURE, V376, P514.
LAMBERT JJ, 1989, BRIT J PHARMACOL, V97, P27.
LANKIEWICZ S, 2000, RECEPTOR CHANNEL, V7, P9.
LAPE R, 2008, NATURE, V454, P722, DOI 10.1038/nature07139.
LASALDE JA, 1996, BIOCHEMISTRY-US, V35, P14139.
LAW RJ, 2000, PROTEINS, V39, P47.
LEE WY, 2005, NATURE, V438, P243, DOI 10.1038/nature04156.
LEE WY, 2008, J GEN PHYSIOL, V132, P265, DOI 10.1085/jgp.200810014.
LEE WY, 2009, J NEUROSCI, V29, P3189, DOI 10.1523/JNEUROSCI.6185-08.2009.
LEE YH, 1994, BIOPHYS J, V66, P646.
LEITE JF, 2003, P NATL ACAD SCI USA, V100, P13054, DOI 10.1073/pnas.2133028100.
LENOVERE N, 2002, P NATL ACAD SCI USA, V99, P3210.
LEONARD RJ, 1988, SCIENCE, V242, P1578.
LESTER HA, 1992, ANNU REV BIOPH BIOM, V21, P267.
LEWIS TM, 1998, J PHYSIOL-LONDON, V507, P25.
LI P, 2002, FEBS LETT, V528, P77.
LIMAPICHAT W, 2010, J BIOL CHEM, V285, P8976, DOI 10.1074/jbc.M109.060939.
LIVESEY MR, 2008, J BIOL CHEM, V283, P19301, DOI 10.1074/jbc.M802406200.
LOBITZ N, 2001, MOL PHARMACOL, V59, P844.
LOBO IA, 2004, J BIOL CHEM, V279, P33919, DOI 10.1074/jbc.M313941200.
LOCHNER M, 2010, BIOPHYS J, V98, P1494, DOI 10.1016/j.bpj.2009.12.4313.
LOPES C, 2007, J PHARMACOL EXP THER, V322, P48, DOI 10.1124/jpet.107.123109.
LUGOVSKOY AA, 1998, EUR J BIOCHEM, V255, P455.
LUMMIS SCR, 2005, CHEM BIOL, V12, P993, DOI 10.1016/j.chembiol.2005.06.012.
LUMMIS SCR, 2005, NATURE, V438, P248, DOI 10.1038/nature04130.
LYNCH JW, 1997, EMBO J, V16, P110.
LYNCH JW, 2001, J NEUROSCI, V21, P2589.
LYNCH JW, 2004, PHYSIOL REV, V84, P1051, DOI 10.1152/physrev.00042.2003.
LYNCH JW, 2009, NEUROPHARMACOLOGY, V56, P303, DOI 10.1016/j.neuropharm.2008.07.034.
MA DJ, 2005, BIOCHEMISTRY-US, V44, P8790, DOI 10.1021/bi050256n.
MACHU TK, 1994, J PHARMACOL EXP THER, V271, P898.
MACOR JE, 2001, BIOORG MED CHEM LETT, V11, P319.
MAKSAY G, 2003, J RECEPT SIG TRANSD, V23, P255, DOI 10.1081/RRS-120025568.
MALONE HM, 1991, NEUROPEPTIDES, V19, P25.
MCDONALD BJ, 1994, J BIOL CHEM, V269, P18111.
MCDONALD BJ, 1997, NEUROPHARMACOLOGY, V36, P1377.
MCKERNAN RM, 1998, MOL PHARMACOL, V54, P33.
MELIS C, 2008, BIOPHYS J, V95, P4115, DOI 10.1529/biophysj.107.127589.
MELZER N, 2010, J BIOL CHEM, V285, P3730, DOI 10.1074/jbc.M109.030460.
MENARD C, 2005, J BIOL CHEM, V280, P27502, DOI 10.1074/jbc.M501624200.
METHOT N, 1994, BIOCHEMISTRY-US, V33, P7709.
MIHIC SJ, 1994, J BIOL CHEM, V269, P32768.
MILLAR NS, 2008, BRIT J PHARMACOL S1, V153, S177, DOI 10.1038/sj.bjp.0707661.
MILLAR NS, 2008, MOL MEMBR BIOL, V25, P279, DOI 10.1080/09687680802035675.
MILLAR NS, 2009, NEUROPHARMACOLOGY, V56, P237, DOI 10.1016/j.neuropharm.2008.07.041.
MILLER JC, 1998, NEURON, V20, P619.
MIYAZAWA A, 1999, J MOL BIOL, V288, P765.
MIYAZAWA A, 2003, NATURE, V423, P949, DOI 10.1038/nature01748.
MOCHIZUKI S, 2000, EUR J PHARMACOL, V399, P97.
MOORHOUSE AJ, 2002, J GEN PHYSIOL, V119, P411.
MORONI M, 2006, J MOL NEUROSCI, V30, P95, DOI 10.1385/JMN/30:1-2:95.
MORONI M, 2006, MOL PHARMACOL, V70, P755, DOI 10.1124/mol.106.023044.
MOSS SJ, 1992, J BIOL CHEM, V267, P14470.
MOSS SJ, 1996, NEUROPHARMACOLOGY, V35, P1023.
MOUNSEY KE, 2007, INVERTEBR NEUROSCI, V7, P149, DOI 10.1007/s10158-007-0050-6.
MU TW, 2003, J AM CHEM SOC, V125, P6850, DOI 10.1021/ja0348086.
MUROI Y, 2006, BIOCHEMISTRY-US, V45, P7013, DOI 10.1021/bi060222v.
NAKAZAWA K, 1995, CELL MOL NEUROBIOL, V15, P495.
NASS MM, 1978, BIOPHYS J, V24, P135.
NAVEDO M, 2004, BIOCHEMISTRY-US, V43, P78, DOI 10.1021/bi0356496.
NEVIN ST, 2003, J BIOL CHEM, V278, P28985, DOI 10.1074/jbc.M300097200.
NG HJ, 2007, P NATL ACAD SCI USA, V104, P8059, DOI 10.1073/pnas.0701321104.
NIEMEYER MI, 2001, EUR J PHARMACOL, V428, P153.
NIESLER B, 2003, GENE, V310, P101, DOI 10.1016/S0378-1119(03)00503-1.
NIESLER B, 2007, MOL PHARMACOL, V72, P8, DOI 10.1124/mol.106.032144.
NISHIZAKI T, 1995, BRAIN RES, V687, P214.
NISHIZAKI T, 1998, BRAIN RES, V812, P242.
NOAM Y, 2008, J PHYSIOL-LONDON, V586, P3629, DOI 10.1113/jphysiol.2008.153486.
NODA M, 1982, NATURE, V299, P793.
NURY H, 2009, J MOL BIOL, V395, P1114.
OLSEN L, 2004, J COMPUT AID MOL DES, V18, P287.
OLSEN RW, 2004, BIOCHEM PHARMACOL, V68, P1675, DOI 10.1016/j.bcp.2004.07.026.
OLSEN RW, 2009, NEUROPHARMACOLOGY, V56, P141, DOI 10.1016/j.neuropharm.2008.07.045.
ORTIZMIRANDA SI, 1997, J MEMBRANE BIOL, V158, P17.
OSHEA SM, 2000, J BIOL CHEM, V275, P22764.
PADGETT CL, 2007, J NEUROSCI, V27, P886, DOI 10.1523/JNEUROSCI.4791-06.2007.
PADGETT CL, 2008, J BIOL CHEM, V283, P2702, DOI 10.1074/jbc.M705699200.
PANICKER S, 2002, J NEUROSCI, V22, P1629.
PANICKER S, 2004, J BIOL CHEM, V279, P28149, DOI 10.1074/jbc.M403545200.
PANTOJA R, 2009, BIOPHYS J, V96, P226, DOI 10.1016/j.bpj.2008.09.034.
PETERS JA, 2004, BIOCHEM SOC T 3, V32, P547.
PETERS JA, 2005, TRENDS PHARMACOL SCI, V26, P587, DOI 10.1016/j.tips.2005.09.011.
PETERS JA, 2010, J PHYSIOL-LONDON, V588, P587, DOI 10.1113/jphysiol.2009.183137.
PLESS SA, 2007, J BIOL CHEM, V282, P36057, DOI 10.1074/jbc.M706468200.
PLESS SA, 2008, CLIN EXP PHARMACOL P, V35, P1137.
PLESS SA, 2008, J NEUROSCI, V28, P10937, DOI 10.1523/JNEUROSCI.2540-08.2008.
PLESS SA, 2009, J NEUROCHEM, V108, P1585, DOI 10.1111/j.1471-4159.2009.05930.x.
PRICE KL, 2007, J BIOL CHEM, V282, P25623, DOI 10.1074/jbc.M702524200.
PRICE KL, 2008, BIOCHEMISTRY-US, V47, P6370, DOI 10.1021/bi800222n.
PUROHIT P, 2007, NATURE, V446, P930, DOI 10.1038/nature05721.
QUIRK PL, 2004, J NEUROSCI RES, V77, P498, DOI 10.1002/jnr.20185.
RAJENDRA S, 1995, NEURON, V14, P169.
RANGANATHAN R, 2000, NATURE, V408, P470.
RAYES D, 2009, J NEUROSCI, V29, P6022, DOI 10.1523/JNEUROSCI.0627-09.2009.
REEVES DC, 2001, J BIOL CHEM, V276, P42035.
REEVES DC, 2002, MOL MEMBR BIOL, V19, P11.
REEVES DC, 2003, BIOPHYS J, V84, P2338.
ROE DC, 1995, J COMPUT AID MOL DES, V9, P269.
ROMANELLI MN, 2007, CHEMMEDCHEM, V2, P746, DOI 10.1002/cmdc.200600207.
ROVIRA JC, 1998, FEBS LETT, V433, P89.
ROVIRA JC, 1999, PFLUG ARCH EUR J PHY, V439, P86.
RUDOLPH U, 2001, TRENDS PHARMACOL SCI, V22, P188.
RUIZGOMEZ A, 1991, J BIOL CHEM, V266, P559.
RUNDSTROM N, 1994, P NATL ACAD SCI USA, V91, P8950.
SALI A, 1993, J MOL BIOL, V234, P779, DOI 10.1006/JMBI.1993.1626.
SARTOJACKSON I, 2008, MOL MEMBR BIOL, V25, P302, DOI 10.1080/09687680801914516.
SAUL B, 1999, J NEUROSCI, V19, P869.
SCHAPIRA M, 2002, BMC STRUCT BIOL, V2, P1.
SCHARER K, 2005, ANGEW CHEM INT EDIT, V44, P4400, DOI 10.1002/anie.200500883.
SCHMIDT AW, 1989, MOL PHARMACOL, V36, P505.
SCHOFIELD CM, 2003, J BIOL CHEM, V278, P34079, DOI 10.1074/jbc.M302416200.
SCHREITER C, 2003, J BIOL CHEM, V278, P22709, DOI 10.1074/jbc.M301801200.
SCHULTE MK, 2006, BIOL BIOPHYSICAL ASP, P127.
SEDELNIKOVA A, 2002, INT J DEV NEUROSCI, V20, P237.
SEDELNIKOVA A, 2005, J BIOL CHEM, V280, P1535, DOI 10.1074/jbc.M409908200.
SESSOMSSIKES JS, 2003, J PHARMACOL EXP THER, V306, P595, DOI 10.1124/jpet.103.050542.
SHAN Q, 2001, J NEUROCHEM, V76, P1109.
SHAN Q, 2002, J BIOL CHEM, V277, P44845, DOI 10.1074/jbc.M208647200.
SHERIDAN RE, 1982, J GEN PHYSIOL, V80, P499.
SHI JY, 2001, J MOL BIOL, V310, P243.
SIGEL E, 1997, TRENDS PHARMACOL SCI, V18, P425.
SIGEL E, 1999, J NEUROCHEM, V73, P1758.
SIGEL E, 2002, CURR TOP MED CHEM, V2, P833.
SINE SM, 2010, J MOL NEUROSCI, V40, P70, DOI 10.1007/s12031-009-9260-1.
SLIMKO EM, 2002, J NEUROSCI, V22, P7373.
SLIMKO EM, 2003, J NEUROSCI METH, V124, P75, DOI 10.1016/S0165-0270(02)00362-X.
SMART OS, 1993, BIOPHYS J, V65, P2455.
SPIER AD, 2000, J BIOL CHEM, V275, P5620.
SPITZMAUL G, 2004, MOL MEMBR BIOL, V21, P39, DOI 10.1080/09687680310001607341.
SULLIVAN NL, 2006, MOL MEMBR BIOL, V23, P1.
SUN H, 2003, J BIOL CHEM, V278, P34150, DOI 10.1074/jbc.M303584200.
SUNESEN M, 2006, J BIOL CHEM, V281, P14875, DOI 10.1074/jbc.M511657200.
SURYANARAYANAN A, 2005, BIOCHEMISTRY-US, V44, P9140, DOI 10.1021/bi050661e.
SUZUKI T, 2002, ANESTHESIOLOGY, V96, P699.
TAMAMIZU S, 1999, J MEMBRANE BIOL, V170, P157.
TAMAMIZU S, 2000, BIOCHEMISTRY-US, V39, P4666.
TAN KR, 2007, FEBS LETT, V581, P4718, DOI 10.1016/j.febslet.2007.08.068.
TAPIA L, 2007, MOL PHARMACOL, V71, P769, DOI 10.1124/mol.106.030445.
TEISSERE JA, 2001, J NEUROSCI, V21, P4977.
THOMPSON AJ, 2003, BRIT J PHARMACOL, V140, P359, DOI 10.1038/sj.bjp.0705424.
THOMPSON AJ, 2005, J BIOL CHEM, V280, P20476, DOI 10.1074/jbc.M413610200.
THOMPSON AJ, 2006, BIOPHYS J, V90, P1979, DOI 10.1529/biophysj.105.069385.
THOMPSON AJ, 2006, CURR PHARM DESIGN, V12, P3615.
THOMPSON AJ, 2006, J BIOL CHEM, V281, P16576, DOI 10.1074/jbc.M60265200.
THOMPSON AJ, 2008, BIOPHYS J, V95, P5728, DOI 10.1529/biophysj.108.135624.
THOMPSON AJ, 2008, BRIT J PHARMACOL, V153, P1686, DOI 10.1038/bjp.2008.34.
THOMPSON AJ, 2008, NEUROPHARMACOLOGY, V56, P285.
TIKHONOV DB, 2004, BIOPHYS J, V87, P159, DOI 10.1529/biophysj.103.037457.
TRUDELL JR, 2004, J MOL GRAPH MODEL, V23, P39, DOI 10.1016/j.jmgm.2004.03.004.
TZVETKOV MV, 2007, GENE, V386, P52, DOI 10.1016/j.gene.2006.08.002.
ULBRICH MH, 2007, NAT METHODS, V4, P319, DOI 10.1038/NMETH1024.
UNWIN N, 1993, J MOL BIOL, V229, P1101.
UNWIN N, 1995, NATURE, V373, P37.
UNWIN N, 2000, PHILOS T ROY SOC B, V355, P1813.
UNWIN N, 2002, J MOL BIOL, V319, P1165.
UNWIN N, 2005, J MOL BIOL, V346, P967, DOI 10.1016/j.jmb.2004.12.031.
URBAN BW, 2006, PHARMACOL THERAPEUT, V111, P729, DOI 10.1016/j.pharmthera.2005.12.005.
VAELLO ML, 1994, J BIOL CHEM, V269, P2002.
VANHOOFT JA, 1995, RECEPTOR CHANNEL, V3, P7.
VANHOOFT JA, 2003, J NEUROPHYSIOL, V89, P1864, DOI 10.1152/jn.00948.2002.
VASSILATIS DK, 1997, J BIOL CHEM, V272, P33167.
VENKATARAMAN P, 2002, BMC BIOCH, V3, P15.
VENKATARAMAN P, 2002, BMC BIOCH, V3, P16.
VERNEKAR SKV, 2010, J MED CHEM, V53, P2324, DOI 10.1021/jm901827x.
VERNINO S, 1992, NEURON, V8, P127.
VILLMANN C, 2009, J NEUROSCI, V29, P2440, DOI 10.1523/JNEUROSCI.4400-08.2009.
VIOLET JM, 1997, ANESTHESIOLOGY, V86, P866.
WANG F, 1992, P ROY SOC LOND B BIO, V250, P11.
WANG HL, 1999, NAT NEUROSCI, V2, P226.
WANG J, 2007, J BIOL CHEM, V282, P26210, DOI 10.1074/jbc.M702314200.
WANG MD, 1994, DEV DYNAM, V201, P29.
WEBB TI, 2007, CURR PHARM DESIGN, V13, P2350.
WECKER L, 2001, J NEUROCHEM, V76, P711.
WERNER P, 1994, MOL BRAIN RES, V26, P233.
WILLIAMS DB, 1999, BIOPHYS J, V77, P2563.
WILSON GG, 1998, NEURON, V20, P1269.
WILSON GG, 2000, J GEN PHYSIOL, V115, P93.
WILSON GG, 2001, P NATL ACAD SCI USA, V98, P1241.
WOTRING VE, 2003, J PHYSIOL-LONDON, V548, P527, DOI 10.1113/jphysiol.2002.032045.
WOTRING VE, 2008, J GEN PHYSIOL, V131, P87, DOI 10.1085/jgp.200609701.
WU DF, 2010, J PHYSIOL-LONDON, V588, P603, DOI 10.1113/jphysiol.2009.181719.
XIU XA, 2009, NATURE, V458, P534, DOI 10.1038/nature07768.
XIU XN, 2005, J BIOL CHEM, V280, P41655, DOI 10.1074/jbc.M508635200.
XU M, 1993, J BIOL CHEM, V268, P21505.
XU M, 1995, BIOPHYS J, V69, P1858.
XU M, 1996, J GEN PHYSIOL, V107, P195.
YAKEL JL, 1990, BRAIN RES, V533, P46.
YAKEL JL, 2010, J PHYSIOL-LONDON, V588, P597, DOI 10.1113/jphysiol.2009.182691.
YAMAKURA T, 2001, ANNU REV PHARMACOL, V41, P23.
YAN D, 1999, J BIOL CHEM, V274, P5537.
YAN D, 2005, MOL PHARMACOL, V68, P365, DOI 10.1124/mol.105.011957.
YANG J, 1990, J GEN PHYSIOL, V96, P1177.
YU XM, 1994, NEURON, V13, P247.
ZHANG DQ, 2006, J AM CHEM SOC, V128, P3019, DOI 10.1021/ja057292u.
ZHANG H, 1997, BIOCHEMISTRY-US, V36, P15856.
ZHANG H, 1998, BIOCHEMISTRY-US, V37, P7952.
ZHANG L, 1997, BRIT J PHARMACOL, V120, P353.
ZHENG J, 2003, SCI STKE, V176, PL7.
ZHENG YC, 2002, J BIOL CHEM, V277, P2000.
ZUO Y, 2002, ALCOHOL CLIN EXP RES, V26, P779.

Cited Reference Count:
398

Times Cited:
0

Publisher:
CAMBRIDGE UNIV PRESS; 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA

Subject Category:
Biophysics

ISSN:
0033-5835

DOI:
10.1017/S0033583510000168

IDS Number:
686PA

========================================================================

*Record 2 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284765300001
*Order Full Text [ ]

Title:
Single-file water as a one-dimensional Ising model

Authors:
Kofinger, J; Dellago, C

Author Full Names:
Koefinger, Juergen; Dellago, Christoph

Source:
NEW JOURNAL OF PHYSICS 12: Art. No. 093044 SEP 27 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; ICE-NANOTUBES; ORDERED WATER; CONDUCTION; PERMEATION; TRANSPORT; CHANNEL; PORES

Abstract:
We show that single-file water in nanopores can be viewed as a one-dimensional (1D) Ising model, and we investigate, on the basis of this, the static dielectric response of a chain of hydrogen-bonded water molecules to an external field. To achieve this, we use a recently developed dipole lattice model that accurately captures the free energetics of nanopore water. In this model, the total energy of the system can be expressed as the sum of the effective interactions of chain ends and orientational defects. Neglecting these interactions, we essentially obtain the 1D Ising model, which allows us to derive analytical expressions for the free energy as a function of the total dipole moment and for the dielectric susceptibility. Our expressions, which agree very well with simulation results, provide the basis for the interpretation of future dielectric spectroscopy experiments on water-filled nanopore membranes.

Reprint Address:
Kofinger, J, NIDDKD, Chem Phys Lab, NIH, Bldg 5, Bethesda, MD 20892 USA.

Research Institution addresses:
[Koefinger, Juergen] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA; [Dellago, Christoph] Univ Vienna, Fac Phys, A-1090 Vienna, Austria

E-mail Address:
koefingerj@mail.nih.gov

Cited References:
ABRAMOWITZ M, 1965, HDB MATH FUNCTIONS.
ANTAL T, 2004, J PHYS A-MATH GEN, V37, P1465.
CAMBRE S, 2010, PHYS REV LETT, V104, ARTN 207401.
CARDY JL, 1981, J PHYS A, V14, P1407.
CHABAN V, 2010, CHEM PHYS LETT, V496, P50, DOI 10.1016/j.cplett.2010.07.003.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DELLAGO C, 2003, PHYS REV LETT, V90, P10590.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
HILLE B, 2001, ION CHANNELS EXCITAB.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOFINGER J, 2009, J CHEM PHYS, V130, ARTN 154110.
KOFINGER J, 2009, PHYS REV LETT, V103, ARTN 080601.
KOFINGER J, 2009, WATER NANOPORES.
KOGA K, 2001, NATURE, V412, P802.
KREUER KD, 2004, CHEM REV, V104, P4637, DOI 10.1021/cr020715f.
LUIJTEN E, 1997, PHYS REV B, V56, P8945.
LUIJTEN E, 2001, PHYS REV LETT, V86, P5305.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MATYUSHOV DV, 2007, J CHEM PHYS, V127, ARTN 054702.
MCQUARRIE DA, 2000, STAT MECH.
MENZL G, UNPUB.
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t.
NELSON DR, 1975, ANN PHYS-NEW YORK, V91, P226.
PATRIA RK, 1972, STAT MECH.
POMES R, 1998, BIOPHYS J, V75, P33.
RUELLE D, 1968, COMMUN MATH PHYS, V9, P267.
SAHA SK, 2006, APPL PHYS LETT, V89, ARTN 043117.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
35

Times Cited:
1

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Multidisciplinary

ISSN:
1367-2630

DOI:
10.1088/1367-2630/12/9/093044

IDS Number:
687FV

========================================================================

*Record 3 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284688700008
*Order Full Text [ ]

Title:
Solvation dynamics of Coumarin 153 in SDS dispersed single walled carbon nanotubes (SWNTs)

Authors:
Sengupta, A; Hazra, P

Author Full Names:
Sengupta, Abhigyan; Hazra, Partha

Source:
CHEMICAL PHYSICS LETTERS 501 (1-3): 33-38 DEC 6 2010

Language:
English

Document Type:
Article

KeyWords Plus:
ANGLE NEUTRON-SCATTERING; ICE-NANOTUBES; LIQUID WATER; MICELLES; SURFACTANTS; SHELL

Abstract:
We have studied the solvation dynamics and rotational relaxation of Coumarin 153 (C-153) in SDS dispersed two different types of single walled carbon nanotubes (SWNTs), namely metallic and semiconducting, using picosecond fluorescence spectroscopy. It has been observed that solvation dynamics of C-153 in SWNTs is severely retarded compared to pure water and SDS micelle. Time resolved fluorescence anisotropy study suggests that C-153 molecules are located on the surface of SWNT, where the rotational motion of the probe is severely hindered compared to SDS micelle due to the restriction imposed by SWNT surface as well as surrounding SDS monomers or SDS half-cylindrical micelles adsorbed on SWNT surface. (C) 2010 Elsevier B. V. All rights reserved.

Reprint Address:
Hazra, P, Indian Inst Sci Educ & Res, Dept Chem, Pune 411021, Maharashtra, India.

Research Institution addresses:
[Sengupta, Abhigyan; Hazra, Partha] Indian Inst Sci Educ & Res, Dept Chem, Pune 411021, Maharashtra, India

E-mail Address:
p.hazra@iiserpune.ac.in

Cited References:
BAGCHI B, 2005, CHEM REV, V105, P3197, DOI 10.1021/cr020661+.
BARBARA PF, 1990, ADV PHOTOCHEM, V15, P1.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
CHAKRABARTY D, 2003, J PHYS CHEM A, V107, P5887, DOI 10.1021/jp0271458.
DUJARDIN E, 1998, ADV MATER, V10, P1472.
FEE RS, 1994, CHEM PHYS, V183, P235.
GORDILLO MC, 2003, PHYS REV B, V67, ARTN 205425.
HAZRA P, 2004, BIOCHEM BIOPH RES CO, V314, P543, DOI 10.1016/j.bbrc.2003.12.118.
HUMMER G, 2001, NATURE, V414, P188.
ISLAM MF, 2003, NANO LETT, V3, P269, DOI 10.1021/nl025924u.
KOGA K, 2001, NATURE, V412, P802.
LEE SH, 1994, J CHEM PHYS, V100, P3334.
MANIWA Y, 1999, JPN J APPL PHYS 2, V38, L668.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MARONCELLI M, 1987, J CHEM PHYS, V86, P6221.
MARTI J, 2003, J CHEM PHYS, V119, P12540, DOI 10.1063/1.1625912.
NANDI N, 1997, J PHYS CHEM B, V101, P10954.
PAL SK, 2001, J PHYS CHEM B, V105, P1438.
PAL SK, 2002, J Phys Chem B, V99, P7995.
RICHARD C, 2003, SCIENCE, V300, P775.
SARKAR N, 1996, J PHYS CHEM-US, V100, P15483, UNSP 148301.
SHIROTA H, 1999, J PHYS CHEM B, V103, P1437.
SHIROTA H, 2004, J PHYS CHEM A, V108, P3244.
SIANO DB, 1969, J CHEM PHYS, V51, P1856.
VAISMAN L, 2006, ADV COLLOID INTERFAC, V128, P37, DOI 10.1016/j.cis.2006.11.007.
VAJDA S, 1995, J CHEM SOC FARADAY T, V91, P867.
WANG H, 2004, NANO LETT, V4, P1789, DOI 10.1021/nl048969z.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
WANG Q, 2008, J PHYS CHEM B, V112, P7227, DOI 10.1021/jp711816c.
XU HF, 2001, J PHYS CHEM B, V105, P11929.
YUREKLI K, 2004, J AM CHEM SOC, V126, P9902, DOI 10.1021/ja047451u.

Cited Reference Count:
31

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
0009-2614

DOI:
10.1016/j.cplett.2010.10.049

IDS Number:
686HZ

========================================================================

*Record 4 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284438000036
*Order Full Text [ ]

Title:
Self-Assembly and Its Impact on Interfacial Charge Transfer in Carbon Nanotube/P3HT Solar Cells

Authors:
Bernardi, M; Giulianini, M; Grossman, JC

Author Full Names:
Bernardi, Marco; Giulianini, Michele; Grossman, Jeffrey C.

Source:
ACS NANO 4 (11): 6599-6606 NOV 2010

Language:
English

Document Type:
Article

Author Keywords:
self assembly; organic photovoltaics; excitonic solar cells; bulk heterojunction; P3HT; conjugation length; carbon nanotube; molecular dynamics; charge transfer

KeyWords Plus:
MOLECULAR-DYNAMICS; FORCE-FIELD; COMPOSITES; MORPHOLOGY; PROGRESS; SYSTEMS

Abstract:
Charge transfer at the interface of conjugated polymer and nanoscale inorganic acceptors is pivotal in determining the efficiency of exatonic solar cells. Despite intense efforts carbon nanotube/polymer solar cells have resulted in disappointing efficiencies (<2%) due in large part to poor charge transfer at the interface. While the interfacial energy level alignment is clearly important, the self assembly and the interface structure also play a major role in facilitating this charge transfer To understand and control this effect to our advantage, we Study the interface of commonly used conductive polymer poly 3 hexylthiophene (P3HT) and single-walled carbon nanotubes (SWNTs) with a combination of Molecular dynamics simulations, absorption spectra experiments, and an analysis of charge transfer effects classical molecular dynamics simulations show that the P3HT wraps around the SWNTs In a number different conformations, including helices, bundles, and more elongated conformat
ions that maximize planar pi-pi stacking, in agreement with recent experimental observations. Snapshots from the MD simulations reveal that the carbo nanotubes play an important templating role of increasing the pi conjugation in the system, an effect deriving from the pi-pi stacking interaction at the interface and the 1 dimensional (1D) nature of the SWNTs, and independent of the SWNT chirality. We show how this increase in the system for improved preparation of polymeric solar cells based on carbon nanotubes and on 1D system conjugation could largely improve the charge transfer in P3HT-SWNT type II heterojunctions support our our results with absorption spectra measurements of mixtures of carbon nanotubes and P3HT. These findings nanomaterials in general

Reprint Address:
Grossman, JC, MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.

Research Institution addresses:
[Bernardi, Marco; Grossman, Jeffrey C.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA; [Giulianini, Michele] Queensland Univ Technol, Sch Engn Syst, Brisbane, Qld 4001, Australia

Cited References:
ALLINGER NL, 1989, J AM CHEM SOC, V111, P8551.
BARDEEN J, 1961, PHYS REV LETT, V6, P57.
BREDAS JL, 1985, J CHEM PHYS, V83, P1323.
BROWN PJ, 2003, PHYS REV B, V67, ARTN 064203.
CHEN LM, 2009, ADV MATER, V21, P1434, DOI 10.1002/adma.200802854.
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179.
ENDO M, 2005, NATURE, V433, P476, DOI 10.1038/433476a.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
GIULIANINI M, EVIDENCE MULTI UNPUB.
GIULIANINI M, 2009, APPL PHYS LETT, V95, ARTN 013304.
GU H, 2008, ADV MATER, V20, P4433, DOI 10.1002/adma.200801062.
HAMADANI BH, 2010, NANO LETT, V10, P1611, DOI 10.1021/nl9040516.
HERSAM MC, 2008, NAT NANOTECHNOL, V3, P387, DOI 10.1038/nnano.2008.135.
HUMMER G, 2001, NATURE, V414, P188.
JENSEN F, 2007, INTRO COMPUTATIONAL.
JOHNSON RR, 2008, NANO LETT, V8, P69, DOI 10.1021/nl071909j.
KANAI Y, 2008, NANO LETT, V8, P908, DOI 10.1021/nl0732777.
KANAI Y, 2010, J MATER CHEM, V20, P1053, DOI 10.1039/b913277p.
KYMAKIS E, 2002, APPL PHYS LETT, V80, P112.
KYMAKIS E, 2002, SYNTHETIC MET, V127, P59.
KYMAKIS E, 2004, SYNTHETIC MET, V142, P161, DOI 10.1016/j.synthmet.2003.08.011.
KYMAKIS E, 2005, ORGANIC PHOTOVOLTAIC.
KYMAKIS E, 2006, NANOTECHNOLOGY LAW B, V3, P405.
LI C, 2007, CHAOS, V17, NI212.
LIU J, 2010, MRS BULL, V35, P315.
MA WL, 2005, ADV FUNCT MATER, V15, P1617, DOI 10.1002/adfm.200500211.
MARCON V, 2004, J PHYS CHEM B, V108, P18053, DOI 10.1021/jp047128d.
MAYER AC, 2007, MATER TODAY, V10, P28.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
TERSOFF J, 1988, PHYS REV B, V37, P6991.
TERSOFF J, 1989, PHYS REV B, V39, P5566.
VUKMIROVIC N, 2009, J PHYS CHEM B, V113, P409, DOI 10.1021/jp808360y.
WEI JQ, 2007, NANO LETT, V7, P2317, DOI 10.1021/nl070961c.
YANG CY, 2006, J AM CHEM SOC, V128, P12007, ARTN JA063707F.
ZHU HW, 2009, SOL ENERG MAT SOL C, V93, P1461, DOI 10.1016/j.solmat.2009.04.006.

Cited Reference Count:
35

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn1018297

IDS Number:
682YD

========================================================================

*Record 5 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284438000076
*Order Full Text [ ]

Title:
High-Performance Separation of Nanoparticles with Ultrathin Porous Nanocrystalline Silicon Membranes

Authors:
Gaborski, TR; Snyder, JL; Striemer, CC; Fang, DZ; Hoffman, M; Fauchet, PM; McGrath, JL

Author Full Names:
Gaborski, Thomas R.; Snyder, Jessica L.; Striemer, Christopher C.; Fang, David Z.; Hoffman, Michael; Fauchet, Philippe M.; McGrath, James L.

Source:
ACS NANO 4 (11): 6973-6981 NOV 2010

Language:
English

Document Type:
Article

Author Keywords:
purification; thin film; semiconductor; microfluidics; nanofluidics

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; ANION-EXCHANGE MEMBRANES; ULTRAFILTRATION MEMBRANES; ANGSTROM RESOLUTION; CRYSTAL-STRUCTURE; PLASMID DNA; FILTRATION; TRANSPORT; WATER; FLOW

Abstract:
Porous nanocystalline silicon (pnc Si) is a 15 nm thin free standing membrane material with Applications in small scale separations, biosensors, cell culture, and lab-on a-chip devices Pnc Si has already been shown to exhibit high permeability to diffusing species and selectivity based on molecular size or charge. In this report, we characterize properties of pc Si In pressurized flows We compare results to long standing theories for through short pores using actual pore distributions kilned directly from electron micrographs The measured water permeability is in agreement with theory over a wide range of pore sizes and porosities and orders of magnitude higher than those exhibited by commercial ultrafiltration and experimental carbon nanotube membranes We also show that pnc Si membranes can be used in dead end filtration to,fractionate gold nanoparticles and protein size ladders with better than 5 nm resolution, insignificant sample loss, and little dilution of the filtrate
These performance characteristics, combined with scalable manufacturing, make pnc Si filtration a straightforward solution to many nanoparticle and biological separation problems

Reprint Address:
McGrath, JL, Univ Rochester, Dept Biomed Engn, 601 Elmwood Ave, Rochester, NY 14627 USA.

Research Institution addresses:
[Gaborski, Thomas R.; Hoffman, Michael; McGrath, James L.] Univ Rochester, Dept Biomed Engn, Rochester, NY 14627 USA; [Snyder, Jessica L.] Univ Rochester, Dept Biochem & Biophys, Rochester, NY 14627 USA; [Gaborski, Thomas R.; Striemer, Christopher C.] SiMPore Inc, W Henrietta, NY 14586 USA; [Striemer, Christopher C.; Fang, David Z.; Fauchet, Philippe M.] Univ Rochester, Dept Elect & Comp Engn, Rochester, NY 14627 USA

Cited References:
*MILL CORP, 2008, PROD SEL GUID ULTR S.
AKTHAKUL A, 2005, ADV MATER, V17, P532, DOI 10.1002/adma.200400636.
BHUT BV, 2008, J MEMBRANE SCI, V325, P176, DOI 10.1016/j.memsci.2008.07.028.
BHUT BV, 2009, J MEMBRANE SCI, V337, P215, DOI 10.1016/j.memsci.2009.03.046.
CHERYAN M, 1986, ULTRAFILTRATION HDB.
DAGAN Z, 1982, J FLUID MECH, V115, P505.
DECHADILOK P, 2006, IND ENG CHEM RES, V45, P6953, DOI 10.1021/ie051387n.
DUSHMAN S, 1962, SCI FDN VACUUM TECHN.
ELLIOTT A, 1976, PROC ROY SOC LONDON, V193, P45.
FISSELL WH, 2009, J MEMBRANE SCI, V326, P58, DOI 10.1016/j.memsci.2008.09.039.
FUTABA DN, 2006, NAT MATER, V5, P987, DOI 10.1038/nmat1782.
GHOSH R, 2002, J CHROMATOGR A, V952, P13.
GHOSH R, 2006, J CHROMATOGR B, V844, P163, DOI 10.1016/j.jchromb.2006.07.030.
GREGORIOU M, 1998, PROTEIN SCI, V7, P915.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOWARTH M, 2008, NAT METHODS, V5, P397, DOI 10.1038/NMETH.1206.
HUMMER G, 2001, NATURE, V414, P188.
JUERS DH, 2000, PROTEIN SCI, V9, P1685.
KIM E, 2008, J AM CHEM SOC, V130, P4230, DOI 10.1021/ja711258w.
KUSMANTO R, 2004, PHYS FLUIDS, V16, P4129.
LATULIPPE DR, 2007, J MEMBRANE SCI, V294, P169, DOI 10.1016/j.memsei.2007.02.033.
LATULIPPE DR, 2008, BIOTECHNOL BIOENG, V99, P390, DOI 10.1002/bit.21575.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MARTIN CR, 2004, NAT MATER, V3, P284, DOI 10.1038/nmat1124.
MICHAELS AS, 1980, SEP SCI TECHNOL, V15, P1305.
MOCHIZUKI S, 1993, J MEMBRANE SCI, V82, P211.
PENG XS, 2009, NAT NANOTECHNOL, V4, P353, DOI 10.1038/NNANO.2009.90.
SAITO R, 2004, ACTA CRYSTALLOGR D 4, V60, P792, DOI 10.1107/S0907444904003166.
SCHACHER F, 2009, ADV FUNCT MATER, V19, P1040, DOI 10.1002/adfm.200801457.
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726.
STEIN PE, 1991, J MOL BIOL, V221, P941.
STRIEMER CC, 2007, NATURE, V445, P749, DOI 10.1038/nature05532.
SUGIO S, 1999, PROTEIN ENG, V12, P439.
SWEENEY SF, 2006, J AM CHEM SOC, V128, P3190, DOI 10.1021/ja0558241.
THORMANN A, 2007, SMALL, V3, P1032, DOI 10.1002/smll.200600582.
TONG HD, 2004, NANO LETT, V4, P283, DOI 10.1021/nl0350175.
VANREIS R, 1997, BIOTECHNOL BIOENG, V56, P71.
VLASSIOUK I, 2009, P NATL ACAD SCI USA, V106, P21039, DOI 10.1073/pnas.0911450106.
WANG YJ, 2005, J PROTEOME RES, V4, P36, DOI 10.1021/pr049876l.
YEN BKH, 2003, ADV MATER, V15, P1858, DOI 10.1002/adma.200305162.
YU M, 2009, NANO LETT, V9, P225, DOI 10.1021/nl802816h.
ZEMAN L, 1981, SYNTHETIC MEMBRANES, V2.

Cited Reference Count:
43

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn102064c

IDS Number:
682YD

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, December 10, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284261800041
*Order Full Text [ ]

Title:
Pore opening and closing of a pentameric ligand-gated ion channel

Authors:
Zhu, FQ; Hummer, G

Author Full Names:
Zhu, Fangqiang; Hummer, Gerhard

Source:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 107 (46): 19814-19819 NOV 16 2010

Language:
English

Document Type:
Article

Author Keywords:
ELIC; nicotinic acetylcholine receptor; hydrophobic gate; conformational change; string method

KeyWords Plus:
NICOTINIC ACETYLCHOLINE-RECEPTOR; MOLECULAR-DYNAMICS SIMULATIONS; X-RAY-STRUCTURE; STRING METHOD; CONDUCTION; STATE; PERMEATION; TRANSITION; GRAMICIDIN; HOMOLOG

Abstract:
Nerve signaling in humans and chemical sensing in bacteria both rely on the controlled opening and closing of the ion-conducting pore in pentameric ligand-gated ion channels. With the help of a multiscale simulation approach that combines mixed elastic network model calculations with molecular dynamics simulations, we study the opening and closing of the pore in Gloeobacter violaceus channel GLIC at atomic resolution. In our simulations of the GLIC transmembrane domain, we first verify that the two endpoints of the transition are open and closed to sodium ion conduction, respectively. We then show that a two-stage tilting of the pore-lining helices induces cooperative drying and iris-like closing of the channel pore. From the free energy profile of the gating transition and from unrestrained simulations, we conclude that the pore of the isolated GLIC transmembrane domain closes spontaneously. The mechanical work of opening the pore is performed primarily on the M2-M3 loop. St
rong interactions of this short and conserved loop with the extracellular domain are therefore crucial to couple ligand binding to channel opening.

Reprint Address:
Hummer, G, NIDDKD, Chem Phys Lab, NIH, Bldg 2, Bethesda, MD 20892 USA.

Research Institution addresses:
[Zhu, Fangqiang; Hummer, Gerhard] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA

E-mail Address:
hummer@helix.nih.gov

Cited References:
ALLEN TW, 2006, BIOPHYS J, V90, P3447, DOI 10.1529/biophysj.105.077073.
ANISHKIN A, 2004, BIOPHYS J S 2, V86, A6.
AUERBACH A, 2005, P NATL ACAD SCI USA, V102, P1408, DOI 10.1073/pnas.0406787102.
AUERBACH A, 2010, J PHYSIOL-LONDON, V588, P573, DOI 10.1113/jphysiol.2009.182774.
BECKSTEIN O, 2006, PHYS BIOL, V3, P147, DOI 10.1088/1478-3975/3/2/007.
BERNECHE S, 2005, STRUCTURE, V13, P591, DOI 10.1016/j.str.2004.12.019.
BOCQUET N, 2007, NATURE, V445, P116, DOI 10.1038/nature05371.
BOCQUET N, 2009, NATURE, V457, P111, DOI 10.1038/nature07462.
BRANNIGAN G, 2008, P NATL ACAD SCI USA, V105, P14418, DOI 10.1073/pnas.0803029105.
CAMPOSCARO A, 1996, P NATL ACAD SCI USA, V93, P6118.
CHENG XL, 2009, BIOPHYS J, V96, P4502, DOI 10.1016/j.bpj.2009.03.018.
DEGROOT BL, 2002, BIOPHYS J, V82, P2934.
GAN WX, 2009, BIOPHYS J, V97, L8, DOI 10.1016/j.bpj.2009.06.016.
GROSMAN C, 2000, J GEN PHYSIOL, V116, P327.
HENCHMAN RH, 2005, BIOPHYS J, V88, P2564.
HILF RJC, 2008, NATURE, V452, P375, DOI 10.1038/nature06717.
HILF RJC, 2009, NATURE, V457, P115, DOI 10.1038/nature07461.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2005, NEW J PHYS, V7, ARTN 34.
IMOTO K, 1988, NATURE, V335, P645.
JENSEN MO, 2010, P NATL ACAD SCI USA, V107, P5833, DOI 10.1073/pnas.0911691107.
JHA A, 2009, BIOPHYS J, V96, P4075, DOI 10.1016/j.bpj.2009.02.030.
KHALILIARAGHI F, 2006, BIOPHYS J, V91, L2, DOI 10.1529/biophysj.106.091926.
MARAGLIANO L, 2006, J CHEM PHYS, V125, ARTN 024106.
MILLER TF, 2007, P NATL ACAD SCI USA, V104, P14559, DOI 10.1073/pnas.0705830104.
NURY H, 2010, J MOL BIOL, V395, P1114, DOI 10.1016/j.jmb.2009.11.024.
NURY H, 2010, P NATL ACAD SCI USA, V107, P6275, DOI 10.1073/pnas.1001832107.
REN EW, 2002, PHYS REV B, V66, UNSP 052301.
SINE SM, 2006, NATURE, V440, P448, DOI 10.1038/nature04708.
SMART OS, 1996, J MOL GRAPH MODEL, V14, P354.
TALY A, 2005, BIOPHYS J, V88, P3954, DOI 10.1529/biophysj.104.050229.
UNWIN N, 2005, J MOL BIOL, V346, P967, DOI 10.1016/j.jmb.2004.12.031.
ZHU FQ, 2009, BIOPHYS J, V97, P2456, DOI 10.1016/j.bpj.2009.08.020.

Cited Reference Count:
33

Times Cited:
0

Publisher:
NATL ACAD SCIENCES; 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA

Subject Category:
Multidisciplinary Sciences

ISSN:
0027-8424

DOI:
10.1073/pnas.1009313107

IDS Number:
680UT

========================================================================

*Record 2 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284047800013
*Order Full Text [ ]

Title:
Microscopic properties of nanopore water from its time-dependent dielectric response

Authors:
Kofinger, J; Dellago, C

Author Full Names:
Koefinger, Juergen; Dellago, Christoph

Source:
PHYSICAL REVIEW B 82 (20): Art. No. 205416 NOV 10 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; BORON-NITRIDE NANOTUBE; PROTON CONDUCTION; MASS-TRANSPORT; ISING-MODEL; DYNAMICS; CHANNEL; PERMEATION; SIMULATION; AQUAPORIN-1

Abstract:
We present a simple kinetic model for the orientational dynamics of a chain of hydrogen-bonded molecules due to the diffusion of orientational defects. We derive an event-driven algorithm which allows us to do kinetic simulations for chains from nanoscopic to macroscopic lengths, spanning huge orders of magnitude in time. Our simulations and analytical calculations show that nanopore water exhibits Debye behavior arising from the diffusive dynamics of orientational defects. For the limits of short and long chains we derive analytical expressions for the relaxation times which allow to extract the diffusion constant, the effective interaction, and the excitation energy of these defects from dielectric spectroscopy experiments. We also discuss the possibility to use such experiments to detect if the two possible kinds of orientational defects differ in excitation energy and diffusion constant.

Reprint Address:
Kofinger, J, NIDDK, Chem Phys Lab, NIH, Bldg 5, Bethesda, MD 20892 USA.

Research Institution addresses:
[Koefinger, Juergen] NIDDK, Chem Phys Lab, NIH, Bethesda, MD 20892 USA; [Dellago, Christoph] Univ Vienna, Fac Phys, A-1090 Vienna, Austria

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI 10.1073/pnas.0408098102.
CAMBRE S, 2010, PHYS REV LETT, V104, ARTN 207401.
CHOPRA NG, 1995, SCIENCE, V269, P966.
CHOU T, 2002, J PHYS A-MATH GEN, V35, P4515.
CHOU T, 2004, BIOPHYS J, V86, P2827.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
DENDZIK Z, 2008, J NON-CRYST SOLIDS, V354, P4300, DOI 10.1016/j.jnoncrysol.2008.06.042.
DOOB JL, 1945, T AM MATH SOC, V58, P455.
DUMITRICA T, 2002, CHEM PHYS LETT, V360, P182.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FREDRICKSON GH, 1984, PHYS REV LETT, V53, P1244.
GILLESPIE DT, 1977, J PHYS CHEM-US, V81, P2340, DOI 10.1021/J100540A008.
GLAUBER RJ, 1963, J MATH PHYS, V4, P294.
HARRELL CC, 2003, ANAL CHEM, V75, P6861, DOI 10.1021/ac034602n.
HOHENBERG PC, 1977, REV MOD PHYS, V49, P435.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KARPAN VM, 2004, PHYS REV E, V70, UNSP 056602.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOFINGER J, 2009, J CHEM PHYS, V130, P54110, ARTN 154110.
KOFINGER J, 2009, PHYS REV LETT, V103, ARTN 080601.
KOFINGER J, 2010, NEW J PHYS, V12, P93044, UNSP 093044.
LIANG CD, 2004, ANGEW CHEM INT EDIT, V43, P5785, DOI 10.1002/anie.200461051.
LIU X, 2006, J PHYS CHEM B, V110, P20102, DOI 10.1021/jp0647378.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MATYUSHOV DV, 2007, J CHEM PHYS, V127, P54702, ARTN 054702.
MCQUARRIE DA, 2000, STAT MECH.
METROPOLIS M, 1953, J CHEM PHYS, V21, P1087.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
MUKHERJEE B, 2009, J PHYS CHEM B, V113, P10322, DOI 10.1021/jp904099f.
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946.
POMES R, 2002, BIOPHYS J, V82, P2304.
RITORT F, 2003, ADV PHYS, V52, P219, DOI 10.1080/0001873031000093582.
SAGNELLA DE, 1996, BIOPHYS J, V70, P2043.
SAHA SK, 2006, APPL PHYS LETT, V89, P43117, ARTN 043117.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
STRIEMER CC, 2007, NATURE, V445, P749, DOI 10.1038/nature05532.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
VANKAMPEN NG, 1992, STOCHASTIC PROCESSES.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WON CY, 2006, J CHEM PHYS, V125, P14701, ARTN 114701.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
WON CY, 2008, J PHYS CHEM C, V112, P1812, DOI 10.1021/jp076747u.
ZHOU X, 2004, J CHEM PHYS, V121, P7996, DOI 10.1063/1.1799971.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
53

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Condensed Matter

ISSN:
1098-0121

DOI:
10.1103/PhysRevB.82.205416

IDS Number:
678CS

========================================================================

*Record 3 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284335800001
*Order Full Text [ ]

Title:
Molecular dynamics simulation of nanoscale liquid flows

Authors:
Li, YX; Xu, JL; Li, DQ

Author Full Names:
Li, Yuxiu; Xu, Jinliang; Li, Dongqing

Source:
MICROFLUIDICS AND NANOFLUIDICS 9 (6): 1011-1031 DEC 2010

Language:
English

Document Type:
Review

Author Keywords:
Molecular dynamics simulation; Liquid flow; Nanochannels; Nanofluidics

KeyWords Plus:
FLUID-SOLID INTERFACE; CARBON NANOTUBES; BOUNDARY-CONDITIONS; ELECTROKINETIC TRANSPORT; ATOMISTIC SIMULATION; NANOFLUIDIC CHANNELS; SURFACE-ROUGHNESS; SHEAR-FLOW; WATER; SLIP

Abstract:
Molecular dynamics (MD) simulation is a powerful tool to investigate the nanoscale fluid flow. In this article, we review the methods and the applications of MD simulation in liquid flows in nanochannels. For pressure-driven flows, we focus on the fundamental research and the rationality of the model hypotheses. For electrokinetic-driven flows and the thermal-driven flows, we concentrate on the principle of generating liquid motion. The slip boundary condition is one of the marked differences between the macro- and micro-scale flows and the nanoscale flows. In this article, we review the parameters controlling the degree of boundary slip and the new findings. MD simulation is based on the Newton's second law to simulate the particles' interactions and consists of several important processing methods, such as the thermal wall model, the cut-off radius, and the initial condition. Therefore, we also reviewed the recent improvement in these key methods to make the MD simulation m
ore rational and efficient. Finally, we summarized the important discoveries in this research field and proposed some worthwhile future research directions.

Reprint Address:
Li, DQ, Univ Waterloo, Dept Mech & Mech Engn, Waterloo, ON N2L 3G1, Canada.

Research Institution addresses:
[Li, Dongqing] Univ Waterloo, Dept Mech & Mech Engn, Waterloo, ON N2L 3G1, Canada; [Li, Yuxiu] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Peoples R China; [Xu, Jinliang] N China Elect Power Univ, Beijing Key Lab New & Renewable Energy, Beijing 102206, Peoples R China

E-mail Address:
dongqing@mme.uwaterloo.ca

Cited References:
ALEXANDER FJ, 1997, COMPUT PHYS, V11, P588.
ANDERSEN HC, 1980, J CHEM PHYS, V72, P2384.
BANERJEE S, 2007, CHEM PHYS LETT, V434, P292, DOI 10.1016/j.cplett.2006.12.025.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BENEDICT LX, 1995, PHYS REV B, V52, P8541.
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u.
BIKERMAN JJ, 1970, PHYS SURFACES.
BONACCURSO E, 2003, PHYS REV LETT, V90, ARTN 144501.
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211.
BRANAM RD, 2005, THESIS PENNSYLVANIA.
BUCKINGHAM RA, 1938, PROC R SOC LON SER-A, V168, P264.
CHANDRASEKHAR J, 1984, J AM CHEM SOC, V106, P903.
CHAUDHURY MK, 1992, SCIENCE, V256, P1539.
CHEN SC, 2005, PHYS REV B, V72, ARTN 193412.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
CHURAEV NV, 1984, J COLLOID INTERF SCI, V97, P574.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI 10.1140/epje/i2002-10112-9.
CRAIG VSJ, 2001, PHYS REV LETT, V87, ARTN 054504.
DAIGUJI H, 2004, NANO LETT, V4, P137, DOI 10.1021/nl0348185.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGENNES PG, 2003, CAPILLARITY WETTING.
DUKHIN SS, 1974, ELECTROKINETIC PHENO, V7.
ERMAKOV SV, 1998, ANAL CHEM, V70, P4494.
ERRINGTON JR, 1999, J PHYS CHEM B, V103, P6314.
FAN R, 2003, J AM CHEM SOC, V125, P5254, DOI 10.1021/ja034163.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
FREUND JB, 2002, J CHEM PHYS, V116, P2194.
GALEA TM, 2004, LANGMUIR, V20, P3477, DOI 10.1021/la035880k.
GALLIERO G, 2006, PHYS REV E 1, V73, ARTN 061201.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HAILE JM, 1992, MOL DYNAMICS SIMULAT.
HAN M, 2005, J COLLOID INTERF SCI, V284, P339, DOI 10.1016/j.jcis.2004.09.067.
HAN M, 2008, J MECH SCI TECHNOL, V22, P157, DOI 10.1007/s12206-007-1019-4.
HEINZ TN, 2004, J COMPUT CHEM, V25, P1474, DOI 10.1002/jcc.20071.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HORN RG, 2000, J CHEM PHYS, V112, P6424.
HUMMER G, 2001, NATURE, V414, P188.
JABBARZADEH A, 1999, J CHEM PHYS, V110, P2612.
JAKOBTORWEIHEN S, 2006, J CHEM PHYS, V124, UNSP 154706-1-13.
JOLY L, 2004, PHYS REV LETT, V93, ARTN 257805.
JOLY L, 2006, PHYS REV LETT, V96, ARTN 046101.
JORGENSEN WL, 1982, J AM CHEM SOC, V104, P4584.
KHARE R, 1996, MACROMOLECULES, V29, P7910.
KHARE R, 1997, J CHEM PHYS, V107, P2589.
KIM BH, 2008, MICROFLUID NANOFLUID, V5, P551, DOI 10.1007/s10404-008-0267-7.
KIM CS, 2007, J FLUID ENG-T ASME, V129, P1140, DOI 10.1115/1.2754311.
KIM D, 2006, PHYS REV E 1, V73, ARTN 051203.
KOIKE A, 1998, J PHYS CHEM B, V102, P3669.
KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781.
KUO TC, 2001, LANGMUIR, V17, P6298.
LI TS, 2006, PHYS REV B, V73, ARTN 075432.
LI Y, 2004, 4 IEEE C NAN, P273.
LINKE H, 2006, PHYS REV LETT, V96, ARTN 154502.
LIU L, 2009, PHYS CHEM CHEM PHYS, V11, P6520, DOI 10.1039/b905641f.
LUDWIG KF, 2004, THESIS PENNSYLVANIA.
MAHAR B, 2007, IEEE SENS J, V7, P266, DOI 10.1109/JSEN.2006.886863.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MARTINI A, 2008, J FLUID MECH, V600, P257, DOI 10.1017/S0022112008000475.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MASON DR, 2005, COMPUT PHYS COMMUN, V170, P31, DOI 10.1016/j.cpc.2005.03.111.
MAXIMOVA T, 2006, J COMPUT BIOL, V13, P1041.
MAXWELL JC, 1879, PHILOS T R SOC LONDO, V170, P231, DOI 10.1098/RSTL.1879.0067.
MICCI MM, 2000, 8 INT C LIQ AT SPRAY.
MIGLER KB, 1993, PHYS REV LETT, V70, P287.
MITCHELL MJ, 2000, J MICROELECTROMECH S, V9, P435.
MIYAMOTO S, 1992, J COMPUT CHEM, V13, P952.
MOSELER M, 2000, SCIENCE, V289, P1165.
NIAVARANI A, 2008, J CHEM PHYS, V129, ARTN 144902.
NIAVARANI A, 2008, PHYS REV E 1, V77, ARTN 041606.
NOSE S, 1984, J CHEM PHYS, V81, P511.
NOSE S, 2002, MOL PHYS, V100, P191.
PENNATHUR S, 2005, ANAL CHEM, V77, P6782, DOI 10.1021/ac0508346.
PIT R, 2000, PHYS REV LETT, V85, P980.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
PRIEZJEV NV, 2006, J FLUID MECH, V554, P25, DOI 10.1017/S0022112006009086.
PRIEZJEV NV, 2007, PHYS REV E 1, V75, ARTN 051605.
QIAO R, 2003, J CHEM PHYS, V118, P4692, DOI 10.1063/1.1543140.
QIAO R, 2005, COLLOID SURFACE A, V267, P103, DOI 10.1016/j.colsurfa.2005.06.067.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
QIAO Y, 2009, NANO LETT, V9, P984, DOI 10.1021/nl8030136.
RAVIV U, 2001, NATURE, V413, P51.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
SAITO R, 1992, APPL PHYS LETT, V60, P2204.
SANCHEZREYES J, 2003, LANGMUIR, V19, P3304, DOI 10.1021/la0265326.
SCHMATKO T, 2005, PHYS REV LETT, V94, ARTN 244501.
SCHMATKO T, 2006, LANGMUIR, V22, P6843, DOI 10.1021/la060061w.
SERVICE RF, 2006, SCIENCE, V313, P1088.
SHIN H, 2006, THESIS YONSEI U SEOU.
SOFOS F, 2009, INT J HEAT MASS TRAN, V52, P735, DOI 10.1016/j.ijheatmasstransfer.2008.07.022.
SOONG CY, 2007, PHYS REV E 2, V76, ARTN 036303.
SPOEL DVD, 2004, GROMACS USER MANUAL.
STEIN D, 2004, PHYS REV LETT, V93, ARTN 035901.
STERN MB, 1997, J VAC SCI TECHNOL B, V15, P2887.
STONE AJ, 1996, THEORY INTERMOLECULA.
SUN H, 1998, COMPUT THEOR POLYM 2, V8, P229.
SUTMANN G, 2006, J MOL LIQ, V125, P197, DOI 10.1016/j.molliq.2005.11.029.
TAS NR, 2004, APPL PHYS LETT, V85, P3274, DOI 10.1063/1.1804602.
TENENBAUM A, 1982, PHYS REV A, V25, P2778.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1995, ISR J CHEM, V35, P93.
THOMPSON PA, 1997, NATURE, V389, P360.
TURNER CH, 2002, APPL SURF SCI, V196, P366.
TYRELL JWG, 2001, PHYS REV LETT, V87, ARTN 176104.
VINOGRADOVA OI, 2006, PHYS REV E 2, V73, ARTN 045302.
WANG DB, 2007, COMPUT PHYS COMMUN, V177, P551, DOI 10.1016/j.cpc.2007.05.009.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WHEELER TD, 2008, NATURE, V455, P208, DOI 10.1038/nature07226.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WHITESIDES GM, 2006, NATURE, V442, P368, DOI 10.1038/nature05058.
XU Y, 2008, APPL PHYS LETT, V93, NI324, UNSP 043122-1-3.
XUE YQ, 2006, NANOTECHNOLOGY, V17, P5216, DOI 10.1088/0957-4484/17/20/029.
YANG L, 2007, J CHEM PHYS, V126, P8, ARTN 084706.
YANG SC, 2006, MICROFLUID NANOFLUID, V2, P501, DOI 10.1007/s10404-006-0096-5.
YAO ZH, 2004, COMPUT PHYS COMMUN, V161, P27, DOI 10.1016/j.cpc.2004.04.004.
ZHANG HZ, 2004, FLUID PHASE EQUILIBR, V217, P111, DOI 10.1016/j.fluid.2003.11.002.
ZHANG WF, 2007, MICROFLUID NANOFLUID, V3, P417, DOI 10.1007/s10404-006-0133-4.

Cited Reference Count:
124

Times Cited:
0

Publisher:
SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY

Subject Category:
Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas

ISSN:
1613-4982

DOI:
10.1007/s10404-010-0612-5

IDS Number:
681RZ

========================================================================

*Record 4 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284101100012
*Order Full Text [ ]

Title:
Lubrication by molecularly thin water films confined between nanostructured membranes

Authors:
Kalra, A; Garde, S; Hummer, G

Author Full Names:
Kalra, A.; Garde, S.; Hummer, G.

Source:
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS 189 (1): 147-154 OCT 2010

Language:
English

Document Type:
Article

KeyWords Plus:
BOUNDARY LUBRICATION; LAYERING TRANSITIONS; SUBNANOMETER FILMS; CARBON NANOTUBE; LIQUID-FILMS; DYNAMICS; FLUIDITY; SURFACES; DEPENDENCE; SIMULATION

Abstract:
We use molecular dynamics simulations to study thermal sliding of two nanostructured surfaces separated by nanoscale water films. We find that friction at molecular separations is determined primarily by the effective free energy landscape for motion in the plane of sliding, which depends sensitively on the surface character and the molecular structure of the confined water. Small changes in the surface nanostructure can have dramatic effects on the apparent rheology. Whereas porous and molecularly rough interfaces of open carbon nanotube membranes are found to glide with little friction, a comparably smooth interface of end-capped nanotubes is effectively stuck. The addition of salt to the water layer is found to reduce the sliding friction. Surprisingly, the intervening layers of water remain fluid in all cases, even in the case of high apparent friction between the two membranes.

Reprint Address:
Kalra, A, Shell Oil Co, Houston, TX 77252 USA.

Research Institution addresses:
[Kalra, A.; Garde, S.] Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA; [Kalra, A.; Hummer, G.] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA

E-mail Address:
gardes@rpi.edu; gerhard.hummer@nih.gov

Cited References:
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BOCQUET L, 2010, CHEM SOC REV, V39, P1073, DOI 10.1039/b909366b.
BRISCOE WH, 2006, NATURE, V444, P191, DOI 10.1038/nature05196.
BROVCHENKO IV, 2001, FLUID PHASE EQUILIBR, V183, P331.
CUI ST, 2001, J CHEM PHYS, V114, P7189.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DONNELLY SE, 2002, SCIENCE, V296, P507.
GAO JP, 1997, PHYS REV LETT, V79, P705.
GAO JP, 2004, J PHYS CHEM B, V108, P3410, DOI 10.1021/jp036362l.
GRANICK S, 1991, SCIENCE, V253, P1374.
HOMOLA AM, 1989, ASME, V111, P675.
HUMMER G, 2001, NATURE, V414, P188.
ISRAELACHVILI JN, 1988, SCIENCE, V240, P189.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KALRA A, 2004, J PHYS CHEM B, V108, P544, DOI 10.1021/jp035828x.
KLEIN J, 2004, J PHYS-CONDENS MAT, V16, S5437, DOI 10.1088/0953-8984/16/45/008.
KLEIN J, 2007, PHYS REV LETT, V98, ARTN 056101.
KUMACHEVA E, 1998, J CHEM PHYS, V108, P7010.
LENG YS, 2005, PHYS REV LETT, V94, ARTN 026101.
LI TD, 2007, PHYS REV B, V75, ARTN 115415.
MO YF, 2009, NATURE, V457, P1116, DOI 10.1038/nature07748.
MULLER MH, 2001, PHYS REV LETT, V86, P1295.
PEARLMAN DA, 1995, COMPUT PHYS COMMUN, V91, P1.
PERKIN S, 2008, FARADAY DISCUSS, V141, P399.
PERSSON BNJ, 2000, SLIDING FRICTION PHY.
RAVIV U, 2001, NATURE, V413, P51.
RAVIV U, 2002, J CHEM PHYS, V116, P5167.
RAVIV U, 2002, SCIENCE, V297, P1540.
RAVIV U, 2004, LANGMUIR, V20, P5322, DOI 10.1021/la030419d.
THOMPSON PA, 1990, SCIENCE, V250, P792.
URBAKH M, 2004, NATURE, V430, P525, DOI 10.1038/nature02750.
YAMADA S, 2003, LANGMUIR, V19, P7399, DOI 10.1021/la034511l.
YEH IC, 2004, J PHYS CHEM B, V108, P15873, DOI 10.1021/jp0477147.

Cited Reference Count:
34

Times Cited:
0

Publisher:
SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY

Subject Category:
Physics, Multidisciplinary

ISSN:
1951-6355

DOI:
10.1140/epjst/e2010-01317-9

IDS Number:
678SQ

========================================================================

*Record 5 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283453700038
*Order Full Text [ ]

Title:
Control Performance and Biomembrane Disturbance of Carbon Nanotube Artificial Water Channels by Nitrogen-Doping

Authors:
Yang, YL; Li, XY; Jiang, JL; Du, HL; Zhao, LN; Zhao, YL

Author Full Names:
Yang, Yuling; Li, Xiaoyi; Jiang, Jinliang; Du, Huailiang; Zhao, Lina; Zhao, Yuliang

Source:
ACS NANO 4 (10): 5755-5762 OCT 2010

Language:
English

Document Type:
Article

Author Keywords:
N-SWCNT; N-DWCNT; artificial water channel; water flow control; molecular dynamics simulation

KeyWords Plus:
MOLECULAR-DYNAMICS; PERMEATION; TRANSPORT; NANOMATERIALS; SIMULATIONS; AQUAPORIN-1; CONDUCTION; MECHANISM; DIFFUSION; MEMBRANES

Abstract:
To establish ways to control the performance of artificial water channels is a big challenge. With molecular dynamics studies, we found that water flow inside the water channels of carbon nanotubes (CNTs) can be controlled by reducing or intensifying interaction energy between water molecules and the wall of the CNTs channel. A way of example toward this significant goal was demonstrated by the doping of nitrogen into the wall of CNTs. Different ratios of nitrogen doping result in different controllable water performance which is dominated mainly through a gradient of van der Waals forces created by the heteroatom doping in the wall of CNTs. Further results revealed that the nitrogen-doped CNT channels show less influence on the integrality of biomembrane than the pristine one, while the nitrogen-doped double-walled carbon nanotube exhibits fewer disturbances to the cellular membrane integrality than the nitrogen-doped single-walled carbon nanotube when interacting with biome
mbranes.

Reprint Address:
Li, XY, Chinese Acad Sci, Grad Univ, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China.

Research Institution addresses:
[Yang, Yuling; Li, Xiaoyi; Du, Huailiang] Chinese Acad Sci, Grad Univ, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China; [Jiang, Jinliang] Chinese Acad Sci, Grad Univ, Coll Chem & Chem Engn, Beijing 100049, Peoples R China; [Yang, Yuling; Li, Xiaoyi; Zhao, Lina; Zhao, Yuliang] Chinese Acad Sci, Key Lab Biomed Effects Nanomat & Nanosafetey, Inst High Energy Phys, Beijing 100049, Peoples R China; [Yang, Yuling; Li, Xiaoyi; Zhao, Lina; Zhao, Yuliang] Natl Ctr Nanosci & Technol China, Beijing 100049, Peoples R China

E-mail Address:
lixy@gucas.ac.cn; zhaoyuliang@ihep.ac.cn

Cited References:
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
CARREROSANCHEZ JC, 2006, NANO LETT, V6, P1609, DOI 10.1021/nl060548p.
CASTROROMAN F, 2006, J PHYS CHEM B, V110, P24157, DOI 10.1021/jp064746g.
CHAUDHURY MK, 1992, SCIENCE, V256, P1539.
CHEN X, 2007, P NATL ACAD SCI USA, V104, P8218, DOI 10.1073/pnas.0700567104.
DEGENNES PG, 2004, CAPILLARITY WETTING.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
ELIAS AL, 2007, SMALL, V3, P1723, DOI 10.1002/smll.200700331.
ENDO M, 2008, TOP APPL PHYS, V111, P13.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FELLER SE, 2000, J PHYS CHEM B, V104, P7510.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HEISTER E, 2010, ACS NANO, V4, P2615, DOI 10.1021/nn100069k.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
HUSSAIN SM, 2009, ADV MATER, V21, P1549, DOI 10.1002/adma.200801395.
JANG JW, 2004, APPL PHYS LETT, V84, P2877, DOI 10.1063/1.1697624.
JIA G, 2005, ENVIRON SCI TECHNOL, V39, P1378, DOI 10.1021/es048729l.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KLAUDA JB, 2006, J CHEM PHYS, V125, ARTN 144710.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOLOSNJAJ J, 2007, BIOAPPLICATIONS NANO, P181.
LACERDA L, 2007, NANO TODAY, V2, P38.
LEE RS, 2000, PHYS REV B, V61, P4526.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIJIMA S, 1991, NATURE, V354, P56.
LINKE H, 2006, PHYS REV LETT, V96, ARTN 154502.
LIU B, 2009, NANO LETT, V9, P1386, DOI 10.1021/nl8030339.
LIU JZ, 2008, CHEM RES TOXICOL, V21, P459, DOI 10.1021/tx700392b.
MURATA K, 2000, NATURE, V407, P599.
NOY A, 2007, NANO TODAY, V2, P22.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289.
PRATO M, 2008, ACCOUNTS CHEM RES, V41, P60, DOI 10.1021/ar700089b.
SERVICE RF, 2006, SCIENCE, V313, P1088.
STRIOLO A, 2006, J CHEM PHYS, V124, ARTN 074710.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
STRIOLO A, 2007, NANOTECHNOLOGY, V18, ARTN 475704.
TERRONES M, 2008, TOP APPL PHYS, V111, P531.
VANOMMESLAEGHE K, 2009, J COMPUT CHEM, V31, P671.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
WU HC, 2010, J MATER CHEM, V20, P1036, DOI 10.1039/b911099m.
ZANG J, 2009, ACS NANO, V3, P1548, DOI 10.1021/nn9001837.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZHU FQ, 2004, PHYS REV LETT, V93, ARTN 224501.
ZUO G, 2009, ACS NANO, V4, P205.

Cited Reference Count:
54

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn1014825

IDS Number:
670UV

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, December 3, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283651400014
*Order Full Text [ ]

Title:
Translocation events in a single-walled carbon nanotube

Authors:
He, J; Liu, H; Pang, P; Cao, D; Lindsay, S

Author Full Names:
He, Jin; Liu, Hao; Pang, Pei; Cao, Di; Lindsay, Stuart

Source:
JOURNAL OF PHYSICS-CONDENSED MATTER 22 (45): Art. No. 454112 NOV 17 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MASS-TRANSPORT; STRANDED-DNA; WATER; MEMBRANES; CHANNEL; NANOFLUIDICS; MOLECULES; NANOPIPES; NANOPORES; PORE

Abstract:
Translocation of DNA oligomers through a single-walled carbon nanotube was demonstrated recently. Translocation events are accompanied by giant current pulses, the origin of which remains obscure. Here, we show that the introduction of a nucleotide, guanosine triphosphate, alone into the input reservoir of a carbon nanotube nanofluidic device also gives giant current pulses. Taken together with data on oligomer translocation, these new results suggest that the pulse width has a nonlinear, power-law dependence on the number of nucleotides in a DNA molecule. We have also measured the time for the onset of DNA translocation pulses after bias reversal, finding that the time for the onset of translocation is directly proportional to the period of the bias reversal.

Reprint Address:
He, J, Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA.

Research Institution addresses:
[He, Jin; Lindsay, Stuart] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA; [Liu, Hao; Lindsay, Stuart] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA; [Pang, Pei; Cao, Di; Lindsay, Stuart] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA

E-mail Address:
jinhe@asu.edu

Cited References:
BRANTON D, 2008, NAT BIOTECHNOL, V26, P1146, DOI 10.1038/nbt.1495.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CHEN M, 2008, P NATL ACAD SCI USA, V105, P6272, DOI 10.1073/pnas.0711561105.
CORRY B, 2007, J PHYS CHEM B, V112, P1427.
DEKKER C, 2007, NAT NANOTECHNOL, V2, P209, DOI 10.1038/nnano.2007.27.
FAN R, 2005, NANO LETT, V5, P1633, DOI 10.1021/nl0509677.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GAO HJ, 2003, NANO LETT, V3, P471, DOI 10.1021/nl025967a.
GOWTHAM S, 2007, PHYS REV B, V76, ARTN 033401.
HAN A, 2008, ANAL CHEM, V80, P4651, DOI 10.1021/ac7025207.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOWORKA S, 2009, CHEM SOC REV, V38, P2360, DOI 10.1039/b813796j.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
JIN XZ, 2007, LANGMUIR, V23, P13209, DOI 10.1021/la702326v.
JOHNSON RR, 2008, NANO LETT, V8, P69, DOI 10.1021/nl071909j.
KASIANOWICZ JJ, 1996, P NATL ACAD SCI USA, V93, P13770.
KASIANOWICZ JJ, 2001, ANAL CHEM, V73, P2268.
KIM SJ, 2007, PHYS REV LETT, V99, ARTN 044501.
LI J, 2001, NATURE, V412, P166.
LIANG XG, 2008, NANO LETT, V8, P1472, DOI 10.1021/nl080473k.
LIU HT, 2010, SCIENCE, V327, P64, DOI 10.1126/science.1181799.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MANOHAR S, 2008, NANO LETT, V8, P4365, DOI 10.1021/nl8022143.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NOY A, 2007, NANO TODAY, V2, P22.
ROBERT RJ, 2009, SMALL, V6, P31.
ROSSI MP, 2004, NANO LETT, V4, P989, DOI 10.1021/nl049688u.
SAITO R, 1998, PHYS PROPERTIES CARB.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SHASHANK S, 2007, PHYS FLUIDS, V19, UNSP 013603.
SREEKAR B, 2006, NANOTECHNOLOGY, V17, P5080.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
WEI CY, 2003, PHYS REV LETT, V91, ARTN 235901.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XIE YH, 2007, J CHEM PHYS, V127, ARTN 225101.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
ZHENG M, 2003, SCIENCE, V302, P1545.

Cited Reference Count:
41

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Condensed Matter

ISSN:
0953-8984

DOI:
10.1088/0953-8984/22/45/454112

IDS Number:
673HZ

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283651400022
*Order Full Text [ ]

Title:
Hydration properties of mechanosensitive channel pores define the energetics of gating

Authors:
Anishkin, A; Akitake, B; Kamaraju, K; Chiang, CS; Sukharev, S

Author Full Names:
Anishkin, A.; Akitake, B.; Kamaraju, K.; Chiang, C-S; Sukharev, S.

Source:
JOURNAL OF PHYSICS-CONDENSED MATTER 22 (45): Art. No. 454120 NOV 17 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; ESCHERICHIA-COLI MSCS; CAPILLARY EVAPORATION; SMALL-CONDUCTANCE; ACETYLCHOLINE-RECEPTOR; HYDROPHOBIC SURFACES; ION CHANNELS; WATER; MECHANISM; PROTEIN

Abstract:
Opening of ion channels directly by tension in the surrounding membrane appears to be the most ancient and simple mechanism of gating. Bacterial mechanosensitive channels MscL and MscS are the best-studied tension-gated nanopores, yet the key physical factors that define their gating are still hotly debated. Here we present estimations, simulations and experimental results showing that hydration of the pore might be one of the major parameters defining the thermodynamics and kinetics of mechanosensitive channel gating. We associate closing of channel pores with complete dehydration of the hydrophobic gate (occlusion by 'vapor lock') and formation of two water-vapor interfaces above and below the constriction. The opening path is the expansion of these interfaces, ultimately leading to wetting of the hydrophobic pore, which does not appear to be the exact reverse of the closing path, thus producing hysteresis. We discuss specifically the role of polar groups (glycines) buried
in narrow closed conformations but exposed in the open states that change the wetting characteristics of the pore lining and stabilize conductive states of the channels.

Reprint Address:
Anishkin, A, Univ Maryland, Dept Biol, College Pk, MD 20742 USA.

Research Institution addresses:
[Anishkin, A.; Akitake, B.; Kamaraju, K.; Chiang, C-S; Sukharev, S.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA

E-mail Address:
sukharev@umd.edu

Cited References:
AKITAKE B, 2005, J GEN PHYSIOL, V125, P143, DOI 10.1085/jgp.200409198.
AKITAKE B, 2007, NAT STRUCT MOL BIOL, V14, P1141, DOI 10.1038/nsmb1341.
ANISHKIN A, UNPUB.
ANISHKIN A, 2004, BIOPHYS J, V86, P2883.
ANISHKIN A, 2005, J GEN PHYSIOL, V125, P155, DOI 10.1085/jgp.200409118.
ANISHKIN A, 2008, BIOPHYS J, V94, P1252, DOI 10.1529/biophysj.107.110171.
ANISHKIN A, 2008, J GEN PHYSIOL, V132, P67, DOI 10.1085/jgp.200810000.
ANISHKIN A, 2010, PROTEINS, V78, P932, DOI 10.1002/prot.22618.
BALL P, 2008, CHEMPHYSCHEM, V9, P2677, DOI 10.1002/cphc.200800515.
BASS RB, 2002, SCIENCE, V298, P1582.
BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BECKSTEIN O, 2006, PHYS BIOL, V3, P147, DOI 10.1088/1478-3975/3/2/007.
BELYY V, 2010, J GEN PHYSIOL, V135, P641.
BETANZOS M, 2002, NAT STRUCT BIOL, V9, P704, DOI 10.1038/nsb828.
BLOUNT P, 1996, EMBO J, V15, P4798.
BOWIE JU, 1997, J MOL BIOL, V272, P780.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHANG G, 1998, SCIENCE, V282, P2220.
CHEN YL, 1991, J PHYS CHEM-US, V95, P10736.
CHIANG CS, 2004, BIOPHYS J, V86, P2846.
CHIANG CS, 2005, BIOCHEMISTRY-US, V44, P12589, DOI 10.1021/bi050750r.
CORRY B, 2005, BIOPHYS J, V89, L49, DOI 10.1529/biophysj.105.072009.
CORRY B, 2006, BIOPHYS J, V90, P799, DOI 10.1529/biophysj.105.067868.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGENNES PG, 2003, CAPILLARY WETTING PH.
DILEO JM, 2003, J MOL STRUC-THEOCHEM, V623, P159.
EDWARDS MD, 2005, NAT STRUCT MOL BIOL, V12, P113, DOI 10.1038/nsmb895.
FRACZKIEWICZ R, 1998, J COMPUT CHEM, V19, P319.
GULLINGSRUD JR, 2001, BIOPHYS J 2, V80, A110.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JENSENM O, 2010, P Natl Acad Sci US, V107, P5833.
JIN W, 1997, PHYS REV LETT, V78, P1520.
LEUNG K, 2000, J CHEM PHYS, V113, P5845.
LEUNG K, 2003, PHYS REV LETT, V90, UNSP 065502.
LEVINA N, 1999, EMBO J, V18, P1730.
LUCK WAP, 1998, J MOL STRUCT, V448, P131.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
LUNDBAEK JA, 1996, BIOCHEMISTRY-US, V35, P3825.
LUZAR A, 2000, J CHEM PHYS, V113, P5836.
MACCARINI M, 2007, LANGMUIR, V23, P598, DOI 10.1021/la061943y.
MAKHATADZE GI, 1995, ADV PROTEIN CHEM, V47, P307.
MARSH D, 2008, BBA-BIOMEMBRANES, V1778, P1545, DOI 10.1016/j.bbamem.2008.01.015.
MOE P, 2005, BIOCHEMISTRY-US, V44, P12239, DOI 10.1021/bi0509649.
NIELSEN C, 2000, BIOPHYS J, V79, P2583.
OKADA K, 2002, J BIOL CHEM, V277, P27682.
OU XR, 1998, P NATL ACAD SCI USA, V95, P11471.
PEROZO E, 2002, NATURE, V418, P942, DOI 10.1038/nature00992.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289.
PIVETTI CD, 2003, MICROBIOL MOL BIOL R, V67, P66, DOI 10.1128/MMBR.67.1.66-85.2003.
POMEAU Y, 2006, PHYS TODAY, V59, P39.
ROTH R, 2006, J PHYS-CONDENS MAT, V18, P6517, DOI 10.1088/0953-8984/18/28/007.
ROTH R, 2008, BIOPHYS J, V94, P4282, DOI 10.1529/biophysj.107.120493.
SCATENA LF, 2001, SCIENCE, V292, P908.
SHAPOVALOV G, 2004, J GEN PHYSIOL, V124, P151, DOI 10.1085/jgp.200409087.
SOTOMAYOR M, 2004, BIOPHYS J, V87, P3050, DOI 10.1529/biophysj.104.046045.
SPRONK SA, 2006, BIOPHYS J, V90, P3555, DOI 10.1529/biophysj.105.080432.
STEINBACHER S, 2007, CURR TOP MEMBR, V58, P1, DOI 10.1016/S1063-5823(06)58001-9.
STEITZ R, 2003, LANGMUIR, V19, P2409, DOI 10.1021/la026731p.
SUKHAREV S, 2001, BIOPHYS J, V81, P917.
SUKHAREV S, 2001, NATURE, V409, P720.
SUKHAREV S, 2002, BIOPHYS J, V83, P290.
SUKHAREV SI, 1993, BIOPHYS J, V65, P177.
SUKHAREV SI, 1994, NATURE, V368, P265.
SUKHAREV SI, 1999, J GEN PHYSIOL, V113, P525.
VASQUEZ V, 2008, SCIENCE, V321, P1210, DOI 10.1126/science.1159674.
WESSON L, 1992, PROTEIN SCI, V1, P227.
WHITE SH, 1999, ANNU REV BIOPH BIOM, V28, P319.
WIGGINS P, 2005, BIOPHYS J, V88, P880, DOI 10.1529/biophysj.104.047431.
YOSHIMURA K, 1999, BIOPHYS J, V77, P1960.

Cited Reference Count:
71

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Condensed Matter

ISSN:
0953-8984

DOI:
10.1088/0953-8984/22/45/454120

IDS Number:
673HZ

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283703400016
*Order Full Text [ ]

Title:
Exploring the Changes in the Structure of alpha-Helical Peptides Adsorbed onto a Single Walled Carbon Nanotube Using Classical Molecular Dynamics Simulation

Authors:
Balamurugan, K; Gopalakrishnan, R; Raman, SS; Subramanian, V

Author Full Names:
Balamurugan, K.; Gopalakrishnan, R.; Raman, S. Sundar; Subramanian, V.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (44): 14048-14058 NOV 11 2010

Language:
English

Document Type:
Article

KeyWords Plus:
ALANINE-BASED PEPTIDES; FORCE-FIELD; SECONDARY STRUCTURE; WATER; PROTEINS; POLYPEPTIDES; ALGORITHMS; TRANSITION; ENERGETICS; MEMBRANES

Abstract:
Classical molecular dynamics (MD) simulation has been carried out in an explicit solvent environment to understand the interaction between the single walled carbon nanotube (SWCNT) and alpha-helix. A polyalanine peptide consisting of 40 alanine residues has been chosen as the model for the a-helix (PA(40)). Results reveal that the SWCNT induces conformational changes in PA(40). Furthermore, breakage of hydrogen bonds in the chosen model peptides has been observed, which leads to conformational transitions (alpha -> turns) in different parts of the PA(40). Owing to these transitions, regions of different structural and energetic stability are generated in PA(40) which enable the PA(40) to curl around the surface of the SWCNT. The overall observations obtained from the MD simulations are not significantly influenced by the starting geometry and the choice of the force field. Although the qualities of structural information obtained from the MD simulation using ff03 and OPLS are
different, the overall observation derived from the ff03 is similar to that of PLS. Results from the MD simulation on the interaction of the alpha-helical fragment of the SNARES protein with the SWCNT elicit that the amino acid composition influences the interaction pattern. The wrapping of the a-helical fragment of the SNARES onto the SWCNT is similar to that of PA(40). Overall, there is a considerable decrease in the helical content of peptides upon interaction with SWCNTs, in agreement with the experimental findings.

Reprint Address:
Subramanian, V, Cent Leather Res Inst, Chem Lab, Council Sci & Ind Res, Madras 600020, Tamil Nadu, India.

Research Institution addresses:
[Balamurugan, K.; Gopalakrishnan, R.; Raman, S. Sundar; Subramanian, V.] Cent Leather Res Inst, Chem Lab, Council Sci & Ind Res, Madras 600020, Tamil Nadu, India

E-mail Address:
subuchem@hotmail.com

Cited References:
AGOSTINI FP, 2006, J COMPUT CHEM, V27, P1142, DOI 10.1002/jcc.20428.
BAUGHMAN RH, 1999, SCIENCE, V284, P1340.
BERENDSEN HJ, 1981, SIMPLE POINT CHARGE.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BEST RB, 2008, BIOPHYS J, L7.
BEST RB, 2009, J PHYS CHEM B, V113, P9004, DOI 10.1021/jp901540t.
BUSSI G, 2007, J CHEM PHYS, V126, ARTN 014101.
CHIU CC, 2008, J PHYS CHEM B, V112, P16326, DOI 10.1021/jp805313p.
CHIU CC, 2009, BIOPOLYMERS, V92, P156, DOI 10.1002/bip.21159.
COUCH VA, 2006, J PHYS CHEM B, V110, P3410, DOI 10.1021/jp055209j.
DAURA X, 1999, ANGEW CHEM INT EDIT, V38, P236.
DELANO WL, 2008, PYMOL MOL GRAPHICS S.
DIECKMANN GR, 2003, J AM CHEM SOC, V125, P1770, DOI 10.1021/ja029084x.
DJURDJEVIC DP, 2006, J COMPUT CHEM, V27, P1177, DOI 10.1002/jcc.20440.
DUAN Y, 2003, J COMPUT CHEM, V24, P1999, DOI 10.1002/jcc.10349.
ENKHBAYAR P, 2006, PROTEINS, V64, P691, DOI 10.1002/prot.21026.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FIORI WR, 1993, BIOCHEMISTRY-US, V32, P11957.
GIANESE G, 2009, J PHYS CHEM B, V113, P12105, DOI 10.1021/jp903652v.
HESS B, 1997, J COMPUT CHEM, V18, P1463.
HESS B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JENNESS GR, 2009, J PHYS CHEM C, V113, P10242, DOI 10.1021/jp9015307.
JOB GE, 2006, J AM CHEM SOC, V128, P8227, DOI 10.1021/ja060094y.
JOHNSON RR, 2008, NANO LETT, V8, P69, DOI 10.1021/nl071909j.
JOHNSON RR, 2009, NANO LETT, V9, P537, DOI 10.1021/nl802645d.
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225.
KABSCH W, 1983, BIOPOLYMERS, V22, P2577.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KAMINSKI GA, 2001, J PHYS CHEM B, V105, P6474.
KANG YK, 2009, NANO LETT, V9, P1414, DOI 10.1021/nl8032334.
KARPLUS M, 2002, NAT STRUCT BIOL, V9, P646.
KARPLUS M, 2002, NAT STRUCT BIOL, V9, P788, DOI 10.1038/nsb1002-788a.
KARPLUS M, 2003, BIOPOLYMERS, V68, P350, DOI 10.1002/bip.10266.
KATZ E, 2004, CHEMPHYSCHEM, V5, P1085, DOI 10.1002/cphc.200400193.
KENNEDY RJ, 2005, J AM CHEM SOC, V127, P16961.
KONG J, 2000, SCIENCE, V287, P622.
KUMAR S, 1998, BIOPHYS J, V75, P1935.
LACERDA L, 2006, ADV DRUG DELIVER REV, V58, P1460, DOI 10.1016/j.addr.2006.09.015.
LEVY Y, 2006, J N ANNU REV BIONZOL, V35, P389.
LIN Y, 2004, J MATER CHEM, V14, P527, DOI 10.1039/b314481j.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
MARQUSEE S, 1989, P NATL ACAD SCI USA, V86, P5286.
MATSUURA K, 2006, CHEM PHYS LETT, V429, P497, DOI 10.1016/j.cplett.2006.08.044.
MATTHES D, 2009, BIOPHYS J, V97, P599, DOI 10.1016/j.bpj.2009.04.061.
NOSE S, 1983, MOL PHYS, V50, P1055.
OSHOVSKY GV, 2007, ANGEW CHEM INT EDIT, V46, P2366, DOI 10.1002/anie.200602815.
PACE CN, 1998, BIOPHYS J, V75, P422.
PARRINELLO M, 1981, J APPL PHYS, V52, P7182.
PARTHASARATHI R, 2007, J PHYS CHEM A, V111, P7141.
PASCHEK D, 2005, P NATL ACAD SCI USA, V102, P6765, DOI 10.1073/pnas.0408527102.
PODTELEZHNIKOV AA, 2005, PROTEINS, V61, P94, DOI 10.1002/prot.20513.
RYU JH, 2008, CHEM COMMUN, P1043, DOI 10.1039/b713737k.
SANDEEP S, 2004, LANGMUIR, V20, P11594.
SAZONOVA V, 2004, NATURE, V431, P284, DOI 10.1038/nature02905.
SHERRILL DC, 2009, J COMPUT CHEM, V30, P2187.
SNOW ES, 2005, SCIENCE, V307, P1942, DOI 10.1126/science.1109128.
SPEK EJ, 1999, J AM CHEM SOC, V121, P5571.
SUTTON RB, 1998, NATURE, V395, P347.
TANFORD C, 2000, HYDROPHOBIC EFFECT F.
TOMASIO MS, 2009, J PHYS CHEM C, V113, P8778.
VIJAYAN M, 1999, PERSPECTIVES STRUCTU.
WANG T, 2006, J CHEM THEORY COMPUT, V2, P140, DOI 10.1021/ct0501607.
ZAGROVIC B, 2005, J MOL BIOL, V353, P232, DOI 10.1016/j.jmb.2005.08.053.
ZHAO XC, 2010, J PHYS CHEM B, V114, P5625, DOI 10.1021/jp100903x.

Cited Reference Count:
67

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp106177n

IDS Number:
673ZT

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================