Thursday, February 25, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274516400023
*Order Full Text [ ]

Title:
Dynamics of water at the nanoscale hydrophobic confinement

Authors:
Choudhury, N

Author Full Names:
Choudhury, Niharendu

Source:
JOURNAL OF CHEMICAL PHYSICS 132 (6): Art. No. 064505 FEB 14 2010

Language:
English

Document Type:
Article

Author Keywords:
hydrophobicity; molecular dynamics method; organic compounds; surface dynamics; surface segregation; translational states; water

KeyWords Plus:
PROTEIN-SOLVENT INTERFACE; MOLECULAR-DYNAMICS; DEWETTING TRANSITION; LENGTH SCALES; HYDRATION; SIMULATION; SURFACE; SOLVATION; DIFFUSION; COLLAPSE

Abstract:
We investigate the effect of solute surface topology created by considering various intermolecular separations of the hydrophobic, paraffinlike plates on the dynamics of water confined between two such plates. The solute plates are made up of 5 n-C18H38 molecules arranged in parallel in such a way that all the carbon atoms of the paraffin molecule are lying on the same plane. Results are obtained from extensive molecular dynamics simulations of aqueous solutions of paraffinlike plates in the isothermal-isobaric ensemble. A strong dependence of the translational as well as vibrational dynamics of the confined water molecules on surface topology (intermolecular distance within the paraffinlike plate) has been observed. Analysis of mean squared displacement reveals anomalous nonlinear behavior of the water molecules in the nanoconfined environment.

Reprint Address:
Choudhury, N, Bhabha Atom Res Ctr, Chem Grp, Theoret Chem Sect, Bombay 400085, Maharashtra, India.

Research Institution addresses:
Bhabha Atom Res Ctr, Chem Grp, Theoret Chem Sect, Bombay 400085, Maharashtra, India

E-mail Address:
nihcho@barc.gov.in

Cited References:
ALLEN P, 1987, COMPUTER SIMULATION.
ASHBAUGH HS, 2001, J AM CHEM SOC, V123, P10721, DOI 10.1021/ja016324k.
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P159, DOI 10.1103/RevModPhys.78.159.
BAGCHI B, 2005, CHEM REV, V105, P3197, DOI 10.1021/cr020661+.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BALL P, 2008, CHEMPHYSCHEM, V9, P2677, DOI 10.1002/cphc.200800515.
BALUCANI U, 1996, J PHYS-CONDENS MAT, V8, P6139.
BELLISSENTFUNEL MC, 1996, FARADAY DISCUSS, V103, P281.
BENJAMIN I, 1992, J CHEM PHYS, V97, P1432.
BERARD DR, 1993, J CHEM PHYS, V98, P7236.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BIZZARRI AR, 2002, J PHYS CHEM B, V106, P6617.
CASTRILLON SRV, 2009, J PHYS CHEM B, V113, P7973, DOI 10.1021/jp9025392.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
CHOUDHURY N, 2005, J PHYS CHEM B, V109, P6422, DOI 10.1021/jp045439i.
CHOUDHURY N, 2007, J AM CHEM SOC, V129, P4847, DOI 10.1021/ja069242a.
CHOUDHURY N, 2007, J PHYS CHEM B, V111, P10474, DOI 10.1021/jp073571n.
CHOUDHURY N, 2007, J PHYS CHEM C, V111, P2565, DOI 10.1021/jp066883j.
CHOUDHURY N, 2008, J PHYS CHEM B, V112, P6296, DOI 10.1021/jp801852v.
CHOUDHURY N, 2009, J CHEM PHYS, V131, ARTN 014507.
CHOWDHARY J, 2008, J PHYS CHEM B, V112, P6259, DOI 10.1021/jp0769025.
DANISOV VP, 1996, FARADAY DISCUSS, V103, P227.
DELLERUE S, 2000, CHEM PHYS, V258, P315.
DENISOV VP, 1996, NAT STRUCT BIOL, V3, P505.
DENISOV VP, 1999, NAT STRUCT BIOL, V6, P253.
HUA L, 2007, J PHYS CHEM B, V111, P9069, DOI 10.1021/jp0707923.
HUANG X, 2003, P NATL ACAD SCI USA, V100, P11953, DOI 10.1073/pnas.1934837100.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JORGENSEN WL, 1984, J AM CHEM SOC, V106, P6638.
KAUZMANN W, 1959, ADV PROTEIN CHEM, V14, P1.
KOISHI T, 2004, PHYS REV LETT, V93, ARTN 185701.
LIU P, 2004, J PHYS CHEM B, V108, P6595, DOI 10.1021/jp0375057.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
LOUNNAS V, 1994, BIOPHYS J, V66, P601.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
MAKAROV V, 2002, ACCOUNTS CHEM RES, V35, P376.
NANDI N, 2000, CHEM REV, V100, P2013.
PAL SK, 2002, J PHYS CHEM B, V106, P12376, DOI 10.1021/jp0213506.
POLNASZEK CF, 1984, J AM CHEM SOC, V106, P428.
PRATT LR, 2002, CHEM REV, V102, P2671, DOI 10.1021/cr000692+.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
SCHULTZ CP, 2000, NAT STRUCT BIOL, V7, P7.
SETTLES M, 1996, FARADAY DISCUSS, V103, P269.
STILLINGER FH, 1971, J CHEM PHYS, V55, P3449.
TANFORD C, 1973, HYDROPHOBIC EFFECT F.
TROULLIER A, 2000, NAT STRUCT BIOL, V7, P78.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WALLQVIST A, 1995, J PHYS CHEM-US, V99, P2893.
WERNET P, 2004, SCIENCE, V304, P995, DOI 10.1126/science.1096205.
ZHOU RH, 2004, SCIENCE, V305, P1605.
ZICHI DA, 1986, J CHEM PHYS, V84, P2814.
ZUBAVICUS Y, 2004, SCIENCE, V304, P974.

Cited Reference Count:
54

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3319504

IDS Number:
555MR

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274432400003
*Order Full Text [ ]

Title:
Distributions of extreme contributions to binding energies of molecules in liquids

Authors:
Chempath, S; Pratt, LR; Paulaitis, ME

Author Full Names:
Chempath, Shaji; Pratt, Lawrence R.; Paulaitis, Michael E.

Source:
CHEMICAL PHYSICS LETTERS 487 (1-3): 24-27 FEB 25 2010

Language:
English

Document Type:
Article

KeyWords Plus:
WATER; DENSITY

Abstract:
Strong intermolecular interactions in liquids are characterized by determining the distributions of maximum and minimum molecular contributions to the energies binding a molecule to a liquid. Extreme-value concepts help in understanding the shapes of these distributions, and therefore provides insight into molecular mechanisms of solvation behavior. The Gumbel distribution works satisfactorily for the maximum (least favorable) contribution. The minimum (most favorable) contribution conforms to another extreme-value distribution, a Weibull distribution. Simulation data for models of CF4(aq), Nd(CH3)(4)(+) (aq), and H2O (liquid water) support the view that distributions of extreme values exhibit significant commonality for different molecules in liquid water. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Pratt, LR, Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA.

Research Institution addresses:
[Pratt, Lawrence R.] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA; [Chempath, Shaji] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA; [Paulaitis, Michael E.] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA

E-mail Address:
shaji.chempath@gmail.com; lpratt@tulane.edu; paulaitis.1@osu.edu

Cited References:
ASTHAGIRI D, 2007, J AM CHEM SOC, V129, UNSP 101330.
ASTHAGIRI D, 2008, J CHEM PHYS, V128, ARTN 244512.
ASTHAGIRI D, 2010, CHEM PHYS LETT, V485, P1, DOI 10.1016/j.cplett.2009.12.013.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BRAMWELL ST, 2000, PHYS REV LETT, V84, P3744.
CASTILLO E, 2005, EXTREME VALUE RELATE.
CHEMPATH S, 2009, J CHEM PHYS, V130, ARTN 054113.
CHEMPATH S, 2009, J PHYS CHEM B, V113, P4147, DOI 10.1021/jp806858z.
EISENBERG D, 1969, STRUCTURE PROPERTIES, CH5.
FENNELL CJ, 2006, J CHEM PHYS, V124, ARTN 234104.
GUMBEL EJ, 1958, STAT EXTREMES.
GUPTA A, 2003, MOL SIMULAT, V29, P29, DOI 10.1080/0892702031000065719.
HUMMER G, 2001, NATURE, V414, P188.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MORROW TI, 2004, FLUID PHASE EQUILIBR, V217, P97, DOI 10.1016/j.fluid.2003.08.020.
NANDA H, 2005, J CHEM PHYS, V122, ARTN 134110.
PALIWAL A, 2006, J CHEM PHYS, P124.
PASCHEK D, 2004, J CHEM PHYS, V120, P6674, DOI 10.1063/1.1652015.
PRATT LR, 2006, FREE ENERGY CALCULAT, P323.
SHAH JK, 2007, J CHEM PHYS, V127, ARTN 144508.

Cited Reference Count:
20

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
0009-2614

DOI:
10.1016/j.cplett.2010.01.023

IDS Number:
554JX

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274424800033
*Order Full Text [ ]

Title:
CORE-TUBE MORPHOLOGY OF MULTIWALL CARBON NANOTUBES

Authors:
Sato, M; Shima, H; Iiboshi, K

Author Full Names:
Sato, Motohiro; Shima, Hiroyuki; Iiboshi, Kohtaroh

Source:
INTERNATIONAL JOURNAL OF MODERN PHYSICS B 24 (1-2): 288-294 JAN 20 2010

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Carbon nanotube; cross-sectional deformation; hydrostatic pressure

KeyWords Plus:
HYDROSTATIC-PRESSURE; SENSORS; MODEL; FLOW

Abstract:
The present paper investigates the cross-sectional morphology of Multiwalled Carbon Nanotubes (MWNTs) restrained radially and circumferentially by an infinite surrounding elastic medium, subjected to uniform external hydrostatic pressure. In this study, a two-dimensional plane strain model is developed, assuming no variation of load and deformation along the tube axis. We find some characteristic cross-sectional shapes from the elastic buckling analysis. The effect of the surrounded elastic medium on the cross-sectional shape which occurs due to pressure buckling is focused on by the comparison with the shape for no elastic medium case in our discussion. It is suggested that in no embedded elastic medium cases, the cross-sectional shapes of inner tubes maintain circle or oval; on the other hand, an embedded medium may cause inner tube corrugation modes especially when the number of shells for MWNTs is small.

Reprint Address:
Sato, M, Hokkaido Univ, Grad Sch Engn, Dept Socioenvironm Engn, Sapporo, Hokkaido 0608628, Japan.

Research Institution addresses:
[Sato, Motohiro; Iiboshi, Kohtaroh] Hokkaido Univ, Grad Sch Engn, Dept Socioenvironm Engn, Sapporo, Hokkaido 0608628, Japan; [Shima, Hiroyuki] Hokkaido Univ, Grad Sch Engn, Dept Appl Phys, Sapporo, Hokkaido 0608628, Japan; [Shima, Hiroyuki] Univ Politecn Cataluna, Dept Appl Math 3, LaCaN, ES-08034 Barcelona, Spain

E-mail Address:
tayu@eng.hokudai.ac.jp; shima@eng.hokudai.ac.jp; iiboshi@eng.hokudai.ac.jp

Cited References:
ARIAS I, 2008, PHYS REV LETT, V100, ARTN 085503.
ARROYO M, 2008, J MECH PHYS SOLIDS, V56, P1224, DOI 10.1016/j.jmps.2007.10.001.
BARBOZA APM, 2008, PHYS REV LETT, V100, ARTN 256804.
CAI JZ, 2006, PHYS REV LETT, V97, ARTN 026402.
CHANG TC, 2008, APPL PHYS LETT, V93, ARTN 061901.
DACOSTA RCT, 1981, PHYS REV A, V23, P1982.
DEACON RS, 2006, PHYS REV B, V74, ARTN 201402.
FRACKOWIAK E, 2002, CARBON, V40, P1775.
GOMEZNAVARRO C, 2006, PHYS REV LETT, V96, ARTN 076803.
HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303, DOI 10.1016/j.jmps.2004.08.003.
HUANG Y, 2006, PHYS REV B, V74, ARTN 245413.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KHOSRAVIAN N, 2008, NANOTECHNOLOGY, V19, ARTN 275703.
LEBEDKIN S, 2006, PHYS REV B, V73, ARTN 094109.
LI C, 2008, COMPOS SCI TECHNOL, V68, P1227, DOI 10.1016/j.compscitech.2008.01.006.
LONGHURST MJ, 2007, PHYS REV LETT, V98, ARTN 145503.
LU WB, 2009, APPL PHYS LETT, V94, ARTN 101917.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
MONTEVERDE M, 2006, PHYS REV LETT, V97, ARTN 176401.
MONTHIOUX M, 2002, CARBON, V40, P1809.
NISHIO T, 2008, APPL PHYS LETT, V92, ARTN 063117.
NOY A, 2007, NANO TODAY, V2, P22.
ONO S, 2009, PHYS REV B, V79, ARTN 235407.
ONO S, 2010, PHYSICA E, DOI 10.1016/J.PHYSE.2009.11.103.
PARK CJ, 1999, PHYS REV B, V60, P10656.
PENG J, 2008, J MECH PHYS SOLIDS, V56, P2213, DOI 10.1016/j.jmps.2008.01.004.
POPOV VN, 2004, MAT SCI ENG R, V43, P61, DOI 10.1016/j.mser.2003.10.001.
REN Y, 2009, APPL PHYS LETT, V94, ARTN 183506.
RU CQ, 2000, PHYS REV B, V62, P16962.
SATO M, 2009, INTERACT MULTI MECH, V2, P209.
SEARS A, 2004, PHYS REV B, V69, ARTN 235406.
SHANAVAS KV, 2009, PHYS REV B, V79, ARTN 155425.
SHEN HS, 2004, INT J SOLIDS STRUCT, V41, P2643, DOI 10.1016/j.ijsolstr.2003.11.028.
SHIMA H, UNPUB.
SHIMA H, 2008, NANOTECHNOLOGY, V19, ARTN 495705.
SHIMA H, 2009, PHYS REV B, V79, ARTN 201401.
SHIMA H, 2009, PHYS STATUS SOLIDI A, V206, P2228, DOI 10.1002/pssa.200881706.
SHIMA H, 2010, PHYS E IN PRESS, DOI 10.1016/J.PHYSE.2009.10.030.
SINHA N, 2006, J NANOSCI NANOTECHNO, V6, P573, DOI 10.1166/jnn.2006.121.
TAIRA H, J PHYS CONDENS UNPUB.
TANG J, 2000, PHYS REV LETT, V85, P1887.
TASIS D, 2006, CHEM REV, V106, P1105, DOI 10.1021/cr050569o.
VENKATESWARAN UD, 1999, PHYS REV B, V59, P10928.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
YANG CK, 2003, PHYS REV LETT, V90, ARTN 257203.
YAO MG, 2008, PHYS REV B, V78, ARTN 205411.
ZHANG SL, 2006, PHYS REV B, V73, ARTN 075423.
ZHANG T, 2008, NANOTECHNOLOGY, V19, ARTN 332001.
ZOU J, 2009, J APPL PHYS, V105, ARTN 033516.

Cited Reference Count:
50

Times Cited:
0

Publisher:
WORLD SCIENTIFIC PUBL CO PTE LTD; 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE

Subject Category:
Physics, Applied; Physics, Condensed Matter; Physics, Mathematical

ISSN:
0217-9792

DOI:
10.1142/S0217979210064228

IDS Number:
554GZ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, February 19, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274092200003
*Order Full Text [ ]

Title:
Molecular Transport through a Bottleneck Driven by External Force

Authors:
Nakajima, C; Hayakawa, H

Author Full Names:
Nakajima, Chihiro; Hayakawa, Hisao

Source:
PROGRESS OF THEORETICAL PHYSICS 122 (6): 1377-1390 DEC 2009

Language:
English

Document Type:
Article

KeyWords Plus:
DYNAMICS SIMULATION; FLOW; CONDUCTION; SYSTEMS; CHANNEL; MODEL

Abstract:
The transport phenomena of Lennard-Jones molecules through a structural bottleneck driven by all external force are investigated by molecular dynamics simulations. We observe two distinct molecular flow regimes distinguished by a critical external force F-c and find scaling behaviors between external forces and flow rates. Below the threshold F-c, molecules are essentially stuck in the bottleneck due to the attractive interaction between the molecules, while above F-c, molecules can smoothly move in the pipe. A critical flow rate q(c) corresponding to F-c satisfies a simple relationship with angles, and the value of q(c) can be estimated from a simple argument. We further clarify the role of the temperature dependence in the molecular flows through the bottleneck.

Reprint Address:
Nakajima, C, Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan.

Research Institution addresses:
[Nakajima, Chihiro; Hayakawa, Hisao] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan

Cited References:
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
BONTHUIS DJ, 2006, PHYS REV LETT, V97, ARTN 128104.
BURRIEL P, 2008, PHYS REV LETT, V100, ARTN 134503.
CARMINATI A, 2007, PHYS REV E 2, V76, ARTN 026311.
CRACKNELL RF, 1995, PHYS REV LETT, V74, P2463.
DOYLE DA, 1998, SCIENCE, V280, P69.
GREULICH P, 2008, J STAT MECH-THEORY E, V4, UNSP P04009.
GRUENER S, 2008, PHYS REV LETT, V100, ARTN 064502.
HEFFELFINGER GS, 1994, J CHEM PHYS, V100, P7548.
HELBING D, 2001, REV MOD PHYS, V73, P1067.
HELBING D, 2006, PHYS REV LETT, V97, ARTN 168001.
HIMENO A, 2005, APPL PHYS LETT, V87, ARTN 243108.
HORLUCK S, 2003, PHYS REV E 1, V67, ARTN 021304.
HUMMER G, 2001, NATURE, V414, P188.
ISOBE M, 2004, PHYS REV E 2, V69, ARTN 066132.
JEPPS OG, 2003, PHYS REV LETT, V91, ARTN 126102.
KOGA K, 2001, NATURE, V412, P802.
KONIG C, 2007, PHYS REV B, V75, ARTN 144428.
KOYAMA T, 2008, APPL PHYS EXPRESS, V1, ARTN 101303.
KRETZ T, 2006, J STAT MECH-THEORY E, V10, UNSP P10014.
LIEPMANN HW, 1957, ELEMENTS GAS DYNAMIC.
LONGHI E, 2002, PHYS REV LETT, V89, ARTN 045501.
MIDGLEY S, 2001, PHYS REV B, V64, ARTN 153304.
NAGAI R, 2006, PHYSICA A, V367, P449, DOI 10.1016/j.physa.2005.11.031.
NAGATANI T, 2001, PHYSICA A, V300, P558.
NAGATANI T, 2002, REP PROG PHYS, V65, P1331.
NHISHINO TH, 2005, J PHYS SOC JPN, V74, P2655.
PENNEC TL, 1996, PHYS REV E, V53, P2257.
PIEROBON P, 2006, PHYS REV E 1, V74, ARTN 031906.
POPKOV V, 1999, EUROPHYS LETT, V48, P257.
SMIT B, 1991, J CHEM PHYS, V94, P5663.
SREENIVASAN S, 2007, PHYS REV E 2, V75, ARTN 036105.
TAJIMA Y, 2001, PHYSICA A, V292, P545.
TANIGAWA H, 2006, J APPL PHYS, V99, ARTN 08G520.
TO KW, 2005, PHYS REV E 1, V71, ARTN 060301.
VARGIAMIDIS V, 2005, PHYS REV B, V71, ARTN 075301.
VEJE CT, 1997, PHYS REV E, V56, P4376.
WALLACHER D, 2004, PHYS REV LETT, V92, ARTN 195704.
YAMAMOTO S, 2006, J PHYS SOC JPN, V75, ARTN 114601.
ZHANG J, 2005, PHYS REV LETT, V95, ARTN 148101.

Cited Reference Count:
40

Times Cited:
0

Publisher:
PROGRESS THEORETICAL PHYSICS PUBLICATION OFFICE; C/O KYOTO UNIV, YUKAWA HALL, KYOTO, 606-8502, JAPAN

Subject Category:
Physics, Multidisciplinary

ISSN:
0033-068X

IDS Number:
549YT

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274270100025
*Order Full Text [ ]

Title:
Classical Density-Functional Theory of Inhomogeneous Water Including Explicit Molecular Structure and Nonlinear Dielectric Response

Authors:
Lischner, J; Arias, TA

Author Full Names:
Lischner, Johannes; Arias, T. A.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (5): 1946-1953 FEB 11 2010

Language:
English

Document Type:
Article

KeyWords Plus:
NONUNIFORM POLYATOMIC SYSTEMS; FREEZING TRANSITION; ELECTRIC-FIELDS; LIQUID WATER; DYNAMICS; INTERFACE; SIMULATIONS; POTENTIALS; SOLVATION; FORCES

Abstract:
We present an accurate free-energy functional for liquid water written in terms of a set of effective potential fields in which fictitious noninteracting water molecules move. The functional contains an exact expression of the entropy of noninteracting molecules and thus provides an ideal starting point for the inclusion of complex intermolecular interactions which depend on the orientation of the interacting molecules. We show how an excess free-energy functional can be constructed to reproduce the following properties of water: the dielectric response; the experimental site-site correlation functions; the surface tension; the bulk modulus of the liquid and the variation of this modulus with pressure; the density of the liquid and the vapor phase; and liquid-vapor coexistence. As a demonstration, we present results for the application of this theory to the behavior of liquid water in a parallel plate capacitor. In particular, we make predictions for the dielectric response !
of water in the nonlinear regime, finding excellent agreement with known data.

Reprint Address:
Lischner, J, Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA.

Research Institution addresses:
[Lischner, Johannes; Arias, T. A.] Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA

E-mail Address:
jl597@cornell.edu

Cited References:
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P159, DOI 10.1103/RevModPhys.78.159.
ASHCROFT NW, 1996, AUST J PHYS, V49, P3.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BOOTH F, 1951, J CHEM PHYS, V19, P391.
CAMMI R, 1995, J COMPUT CHEM, V16, P1449.
CHANDLER D, 1986, J CHEM PHYS, V85, P5971.
CHANDLER D, 1986, J CHEM PHYS, V85, P5977.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CURTIN WA, 1985, PHYS REV A, V32, P2909.
CURTIN WA, 1986, PHYS REV LETT, V56, P2775.
DING KJ, 1987, PHYS REV LETT, V59, P1698.
EBNER C, 1976, PHYS REV A-GEN PHYS-, V14, P2264.
FIELD MJ, 1990, J COMPUT CHEM, V11, P700.
FORSMAN J, 2006, MACROMOLECULES, V39, P1261, DOI 10.1021/ma051934g.
HANSEN JP, 2006, THEORY SIMPLE LIQUID.
HODAK M, 2008, J CHEM PHYS, V128, ARTN 014101.
HUMMER G, 2001, NATURE, V414, P188.
HYUN JK, 1998, J CHEM PHYS, V109, P1074.
KOHN W, 1965, PHYS REV, V140, A1133, DOI 10.1103/PHYSREV.140.A1133.
KUSALIK PG, 1994, SCIENCE, V265, P1219.
LENG YS, 2005, PHYS REV LETT, V94, ARTN 026101.
LIDE DR, 2005, CRC HDB CHEM PHYS.
LISCHNER J, 2008, PHYS REV LETT, V101, ARTN 216401.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
MCCOY JD, 1987, J CHEM PHYS, V87, P4853.
MCCOY JD, 1991, J CHEM PHYS, V95, P9348.
MERMIN ND, 1965, PHYS REV, V137, A1441.
MIERTUS S, 1981, CHEM PHYS, V55, P117.
NATH SK, 1997, J CHEM PHYS, V106, P1950.
RAGHAVAN K, 1991, J CHEM PHYS, V94, P2110.
REDDY G, 2003, J CHEM PHYS, V119, P13012, DOI 10.1063/1.1627326.
ROSENFELD Y, 1989, PHYS REV LETT, V63, P980.
SEN S, 1994, J CHEM PHYS, V101, P9010.
SINGH UC, 1986, J COMPUT CHEM, V7, P718.
SOPER AK, 1994, J CHEM PHYS, V101, P6888.
SOPER AK, 2000, CHEM PHYS, V258, P121.
SUTMANN G, 1998, J ELECTROANAL CHEM, V450, P289.
SVISHCHEV IM, 1994, J PHYS CHEM-US, V98, P728.
TALMAN JD, 1976, PHYS REV A, V14, P36.
TANSEL T, 2006, PHYS REV LETT, V96, ARTN 026101.
TAREK M, 2002, PHYS REV LETT, V88, UNSP 138101.
TONEY MF, 1994, NATURE, V368, P444.
WARSHEL A, 1976, J MOL BIOL, V103, P227.
WEEKS JD, 1998, PHYS REV LETT, V81, P4400.
WILHELM E, 1975, J CHEM PHYS, V63, P3379.
WOODWARD CE, 1990, J CHEM PHYS, V94, P3183.
WOODWARD CE, 1994, J CHEM PHYS, V100, P3181.
XIA XF, 1995, PHYS REV LETT, V74, P3193.
YEH IC, 1999, J CHEM PHYS, V110, P7935.
YETHIRAJ A, 1995, J CHEM PHYS, V102, P5499.
YETHIRAJ A, 2001, J CHEM PHYS, V114, P4323.

Cited Reference Count:
51

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp9012224

IDS Number:
552EG

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274355400015
*Order Full Text [ ]

Title:
Effects of Ligand Density on Hydrophobic Charge Induction Chromatography: Molecular Dynamics Simulation

Authors:
Zhang, L; Zhao, GF; Sun, Y

Author Full Names:
Zhang, Lin; Zhao, Guofeng; Sun, Yan

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (6): 2203-2211 FEB 18 2010

Language:
English

Document Type:
Article

KeyWords Plus:
PHASE LIQUID-CHROMATOGRAPHY; STATIONARY-PHASE; ADSORPTION MECHANISM; RETENTION MECHANISM; SURFACE COVERAGE; FOLDING KINETICS; BETA-HAIRPIN; CHAIN-LENGTH; PROTEIN-A; PURIFICATION

Abstract:
High ligand density is usually required in hydrophobic charge induction chromatography (HCIC) for high adsorption capacity. However, it is not clear to what extent the ligand density alters the adsorption and desorption behaviors, or if this leads to the protein conformational transition within adsorbent pores. In the present study, molecular dynamics simulation is performed to examine the effects of ligand density in HCIC using a 46-bead beta-barrel coarse-grained model protein and a coarse-grained adsorbent pore model established in our earlier work. Four ligand densities (1.474, 1.769, 2.212, and 2.949 mu mol/m(2)) are simulated at 298.15 K. The simulations indicate that both the capacity and irreversibility of adsorption increase with ligand density. However, it is found that the fastest adsorption occurs at a ligand density of 2.212 mu mol/m(2) rather than at the highest density studied. Analyses of adsorption trajectories, protein-ligand interaction energy, and the fre!
e energy map indicate that there is repulsion of protein when unfavorable contacts of the protein and ligands occur. There is an enhanced repulsion at 2.949 mu mol/m(2), which increases the energy barrier to the transition region and reduces the opportunities to get stable adsorption, thus leading to the decreased adsorption rate. At 2.212 mu mol/m(2), however, the repulsion is mild and the high ligand coverage provides abundant opportunities for the protein to get the fastest adsorption and thus causes the maximum unfolding. In the following simulations, complete and irreversible desorption is observed at all ligand densities, in agreement with the easy pH-induced elution behavior of HCIC observed experimentally. It is found that there is a suitable balance between hydrophobic attraction and electrostatic repulsion at 2.212 mu mol/m(2), which leads to the slowest desorption kinetics and causes the maximum unfolding. Moreover, analysis of unfolded protein distribution indic!
ates that unfolding occurs mainly on the ligand surface in bot!
h adsorp
tion and desorption. The behaviors have been comprehensively elucidated by molecular and thermodynamic analyses.

Reprint Address:
Sun, Y, Tianjin Univ, Dept Biochem Engn, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China.

Research Institution addresses:
[Zhang, Lin; Zhao, Guofeng; Sun, Yan] Tianjin Univ, Dept Biochem Engn, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China

E-mail Address:
ysun@tju.edu.cn

Cited References:
ALLEN MP, 1989, COMPUTER SIMULATION.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BOND PJ, 2006, J AM CHEM SOC, V128, P2697, DOI 10.1021/ja0569104.
BOSCHETTI E, 2002, TRENDS BIOTECHNOL, V20, P333.
BURTON SC, 1997, BIOTECHNOL BIOENG, V56, P45.
BURTON SC, 1998, J CHROMATOGR A, V814, P71.
BUSZEWSKI B, 1990, J CHROMATOGR, V499, P305.
CELLMER T, 2005, BIOTECHNOL BIOENG, V89, P78, DOI 10.1002/bit.20302.
COULON D, 2004, J CHROMATOGR B, V808, P111, DOI 10.1016/j.jchromb.2004.03.025.
DISMER F, 2007, J CHROMATOGR A, V1149, P312, DOI 10.1016/j.chroma.2007.03.074.
DRESSELHAUS MS, 2001, TOP APPL PHYS, V80, P1.
DUX MP, 2006, PROTEIN EXPRES PURIF, V45, P359, DOI 10.1016/j.pep.2005.08.015.
FOUQUEAU A, 2007, J PHYS CHEM B, V111, P10208, DOI 10.1021/jp071721o.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
GHOSE S, 2006, J CHROMATOGR A, V1122, P144, DOI 10.1016/j.chroma.2006.04.083.
GRITTI F, 2006, J CHROMATOGR A, V1115, P142, DOI 10.1016/j.chroma.2006.02.095.
GUERRIER L, 2000, BIOSEPARATION, V9, P211.
GUERRIER L, 2001, J CHROMATOGR B, V755, P37.
GUO ZY, 1992, J CHEM PHYS, V97, P525.
GUO ZY, 1995, BIOPOLYMERS, V36, P83.
HENNION MC, 1978, J CHROMATOGR, V166, P21.
HONEYCUTT JD, 1990, P NATL ACAD SCI USA, V87, P3526.
HUMMER G, 2001, NATURE, V414, P188.
JANG HB, 2004, BIOPHYS J 1, V86, P31.
KIKTA EJ, 1976, ANAL CHEM, V48, P1098.
KLIMOV DK, 1998, FOLD DES, V3, P481.
KLIMOV DK, 2002, P NATL ACAD SCI USA, V99, P8019.
LIN FY, 2000, J CHROMATOGR A, V872, P37.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIPPA KA, 2005, ANAL CHEM, V77, P7852, DOI 10.1021/ac0510843.
LIPPA KA, 2005, ANAL CHEM, V77, P7862, DOI 10.1021/ac051085v.
LIPPA KA, 2006, J CHROMATOGR A, V1128, P79, DOI 10.1016/j.chroma.2006.06.043.
LU DN, 2006, BIOPHYS J, V90, P3224, DOI 10.1529/biophysj.105.071761.
LU DN, 2008, J PHYS CHEM B, V112, P2686, DOI 10.1021/jp076940o.
MIYABE K, 2000, J CHROMATOGR A, V903, P1.
NGUYEN PH, 2005, PROTEINS, V61, P795, DOI 10.1002/prot.20696.
RAFFERTY JL, 2007, ANAL CHEM, V79, P6551, DOI 10.1021/ac0705115.
RAFFERTY JL, 2008, J CHROMATOGR A, V1204, P11, DOI 10.1016/j.chroma.2008.07.037.
RAFFERTY JL, 2008, J CHROMATOGR A, V1204, P20, DOI 10.1016/j.chroma.2008.07.038.
RICCARDI E, 2008, J PHYS CHEM B, V112, P7478, DOI 10.1021/jp800078v.
SAYLE RA, 1995, TRENDS BIOCHEM SCI, V20, P374.
SCHWARTZ W, 2001, J CHROMATOGR A, V908, P251.
SENTELL KB, 1989, ANAL CHEM, V61, P930.
SHEA JE, 1998, J CHEM PHYS, V109, P2895.
TAN LC, 1997, J CHROMATOGR A, V775, P1.
VAITHEESWARAN S, 2008, P NATL ACAD SCI USA, V105, P17636, DOI 10.1073/pnas.0803990105.
VEITSHANS T, 1997, FOLD DES, V2, P1.
WEATHERLY GT, 2002, J CHROMATOGR A, V952, P99.
ZAMOLO L, 2008, BIOTECHNOL PROGR, V24, P527, DOI 10.1021/bp070469z.
ZHANG L, 2009, J CHROMATOGR A, V1216, P2483, DOI 10.1016/j.chroma.2009.01.038.
ZHANG L, 2009, J PHYS CHEM B, V113, P6873, DOI 10.1021/jp809754k.
ZHANG X, 2005, J PHYS CHEM B, V109, P21028, DOI 10.1021/jp053421h.
ZHAO GF, 2007, J CHROMATOGR A, V1165, P109, DOI 10.1016/j.chroma.2007.07.067.
ZHAO GF, 2008, J CHROMATOGR A, V1211, P90, DOI 10.1016/j.chroma.2008.09.108.
ZHENG J, 2005, J CHEM PHYS, V122, UNSP 214702-7.

Cited Reference Count:
55

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp903852c

IDS Number:
553GV

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274362000007
*Order Full Text [ ]

Title:
Collective properties of water confined in carbon nanotubes: A computer simulation study

Authors:
Garberoglio, G

Author Full Names:
Garberoglio, G.

Source:
EUROPEAN PHYSICAL JOURNAL E 31 (1): 73-80 JAN 2010

Language:
English

Document Type:
Article

KeyWords Plus:
X-RAY-SCATTERING; LIQUID WATER; DYNAMICAL PROPERTIES; FAST SOUND; HYDROGEN STORAGE; LOW-FREQUENCY; BEHAVIOR; DIFFUSION; PHASE; MODE

Abstract:
The collective properties of water confined in the (10,10), (8,8) and (6,6) carbon nanotubes are studied by analysing the longitudinal-current autocorrelation function, calculated from computer-simulated trajectories. The corresponding spectra clearly show the presence of two excitations, but their behaviour is quite different from that observed in the case of bulk water. Instead of the strong positive dispersion of the hydrodynamic sound mode characteristic of bulk water (the fast-sound phenomenon), the sound dispersion relation of confined water is observed to flatten into a non-propagating mode, while a second excitation appears at a higher frequency. This behaviour is analysed in terms of the localized oscillation modes of the hydrogen-bond network.

Reprint Address:
Garberoglio, G, Univ Trent, CNISM, Via Sommarive 14, I-38100 Trento, Italy.

Research Institution addresses:
[Garberoglio, G.] Univ Trent, CNISM, I-38100 Trento, Italy; [Garberoglio, G.] Univ Trent, Dipartimento Fis, I-38100 Trento, Italy

E-mail Address:
garberog@science.unitn.it

Cited References:
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALLEN M, 1987, COMPUTER SIMULATIONS.
ANGELL CA, 1983, ANNU REV PHYS CHEM, V34, P593.
BAGCHI B, 2005, CHEM REV, V105, P3197, DOI 10.1021/cr020661+.
BALUCANI U, 1993, CHEM PHYS LETT, V209, P408.
BALUCANI U, 1993, PHYS REV E, V47, P1677.
BALUCANI U, 1996, J PHYS CONDENS MATT, V8, P6138.
BALUCANI U, 1996, J PHYS-CONDENS MAT, V8, P9269.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BROVCHENKO I, 2003, EUR PHYS J E, V12, P69, DOI 10.1140/epje/i2003-10028-4.
CHENG HM, 2001, CARBON, V39, P1447.
CHU XQ, 2007, PHYS REV E 1, V76, ARTN 021505.
GARBEROGLIO G, 2002, J CHEM PHYS, V117, P3278, DOI 10.1063/1.1493775.
GARBEROGLIO G, 2003, PHYS LETT A, V316, P407, DOI 10.1016/j.physleta.2003.07.001.
GARBEROGLIO G, 2005, J MOL LIQ, V117, P43, DOI 10.1016/j.molliq.2004.08.029.
GARBEROGLIO G, 2007, J CHEM PHYS, V126, ARTN 125103.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
HIRSCHER M, 2002, J ALLOY COMPD, V330, P654.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LEVITT DG, 1973, PHYS REV A, V8, P3050.
MAMONTOV E, 2006, J CHEM PHYS, V124, ARTN 194703.
MARTI J, 2001, J CHEM PHYS, V114, P10486.
MARTI J, 2001, PHYS REV E, V64, UNSP 021504.
MARTI J, 2006, J CHEM PHYS, V124, ARTN 094703.
MIURA S, 1996, MOL PHYS, V87, P1405.
MONACO G, 1999, PHYS REV E A, V60, P5505.
MUDI A, 2004, MOL PHYS, V102, P681, DOI 10.1080/00268970410001698937.
MUKHERJEE B, 2007, J CHEM PHYS, V126, ARTN 124704.
PETRILLO C, 2000, PHYS REV E A, V62, P3611.
PONTECORVO E, 2005, PHYS REV E 1, V71, ARTN 011501.
REICH S, 2005, CARBON NANOTUBES, CH2.
ROVERE M, 2003, EUR PHYS J E, V12, P77, DOI 10.1140/epje/i2003-10027-5.
RUOCCO G, 2008, CONDENS MATTER PHYS, V1, P29.
SACCHETTI F, 2004, PHYS REV E 1, V69, ARTN 061203.
SAENGER W, 1987, ANNU REV BIOPHYS BIO, V16, P93.
SAMPOLI M, 1997, PHYS REV LETT, V79, P1678.
SANTUCCI SC, 2006, PHYS REV LETT, V97, ARTN 225701.
SASTRY S, 1991, J CHEM PHYS, V95, P7775.
SCIORTINO F, 1994, J CHEM PHYS, V100, P3881.
SETTE F, 1995, PHYS REV LETT, V75, P850.
SETTE F, 1996, PHYS REV LETT, V77, P83.
STANLEY HE, 1980, J CHEM PHYS, V73, P3404.
STEELE WA, 1978, J PHYS CHEM-US, V82, P817.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUTMANN G, 1998, J PHYS-CONDENS MAT, V10, P9231.
SWENSON J, 2006, PHYS REV LETT, V96, ARTN 247802.
WOJCIK M, 1986, J CHEM PHYS, V85, P6085.
YINGCHUN L, 2005, PHYS REV B, V72, UNSP 085420.

Cited Reference Count:
50

Times Cited:
0

Publisher:
SPRINGER; 233 SPRING ST, NEW YORK, NY 10013 USA

Subject Category:
Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Polymer Science

ISSN:
0253-2786

DOI:
10.1140/epje/i2010-10552-0

IDS Number:
553JG

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274225700001
*Order Full Text [ ]

Title:
THE FLOW RECTIFICATION OF A VANED MICRODIFFUSER: A NUMERICAL INVESTIGATION

Authors:
Sun, CL; Lin, GC

Author Full Names:
Sun, Chen-Li; Lin, Gu-Chiuan

Source:
JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS 33 (1): 1-13 Sp. Iss. SI JAN 2010

Language:
English

Document Type:
Article

Author Keywords:
vaned microdiffuser; oscillating flow; vane arrangement; half angle; geometric optimization

KeyWords Plus:
DIFFUSER ELEMENTS; LIQUID FLOW; MICROCHANNELS; MICROPUMPS

Abstract:
This paper presents a numerical investigation to characterize the flow rectification of a dynamic vaned microdiffuser pump. To study the impacts of vane configuration in microscale, two vanes stretching from the inlet region to the outlet region are added to divide the microdiffuser into three flowing passages. By imposing a sinusoidal pressure at the inlet, two geometric parameters are considered: half angle of the diverging section. and half angle between adjacent vanes phi. We find that when the angle between adjacent vanes remains the same (fixed phi), net flow rate is augmented with increasing.. In contrast, there exists an optimized vane configuration while the diverging section is unchanged (fixed phi). For phi < theta/3, increase in phi helps to improve flow rectification. For phi > theta/3, further increase of f results in narrower side passages, and net flow rate diminishes consequently. Hence, best flow rectification is achieved when the diverging section is equal!
ly divided by the vanes, i.e. phi = theta/3. The influences of vane configuration in flow rectification can be categorized into three regimes: central passage dominated, best rectification, and side passage dominated.

Reprint Address:
Sun, CL, Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Taipei 106, Taiwan.

Research Institution addresses:
[Sun, Chen-Li; Lin, Gu-Chiuan] Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Taipei 106, Taiwan

E-mail Address:
clsun@mail.ntust.edu.tw

Cited References:
*CFD ACE, 2004, V2004 US MAN.
BLEVINS R, 1984, APPL FLUID DYNAMICS.
COCHRAN DL, 1958, 4309 TN NACA.
FEIL OG, 1964, J BAS ENGNG, V86, P759.
GADELHAK M, 1999, J FLUID ENG-T ASME, V121, P5.
GERLACH T, 1998, SENSOR ACTUAT A-PHYS, V69, P181.
IDELCHIK IE, 1994, HDB HYDRAULIC RESIST.
JIANG XN, 1997, P 1997 IEEE CPMT 1 E, P119.
KOO JM, 2003, J MICROMECH MICROENG, V13, P568.
LARSEN UD, 1997, P TRANSD 97 CHIC JUN, P1319, DOI 10.1109/SENSOR.1997.635479.
LEE GB, 2001, ASME, V123, P672.
LI H, 2006, J FLUID ENG-T ASME, V128, P305, DOI 10.1115/1.2170122.
MILLER DS, 1978, INTERNAL FLOW SYSTEM.
MOORE CA, 1958, 4080 TN NACA.
NGUYEN NT, 2008, BIOMICROFLUIDICS, V2, UNSP 034101-034114.
OLSSON A, 1997, J MICROELECTROMECH S, V6, P161.
OLSSON A, 2000, SENSOR ACTUAT A-PHYS, V84, P165.
SINGHAL V, 2004, SENSOR ACTUAT A-PHYS, V113, P226, DOI 10.1016/j.sna.2004.03.002.
SOBEK D, 1994, P SOL STAT SENS ACT, P260.
SUN CL, 2006, J MICROMECH MICROENG, V16, P1331, DOI 10.1088/0960-1317/16/7/030.
SUN CL, 2007, J MICROMECH MICROENG, V17, P2031, DOI 10.1088/0960-1317/17/10/015.
THOMPSON PA, 1997, NATURE, V389, P360.
WAITMAN BA, 1961, J BASIC ENG, V83, P349.

Cited Reference Count:
23

Times Cited:
0

Publisher:
CHINESE INST ENGINEERS; #1, 4TH FL, SEC 2, JEN-AI RD, TAIPEI 10019, TAIWAN

Subject Category:
Engineering, Multidisciplinary

ISSN:
0253-3839

IDS Number:
551RC

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274266000010
*Order Full Text [ ]

Title:
ANALYSIS OF CONTACT MIXING WITH BOUNDARY AND HYDRODYNAMIC FLUID FILMS CONSIDERING BOUNDARY SLIPPAGE

Authors:
Zhang, YB

Author Full Names:
Zhang, Yongbin

Source:
JOURNAL OF THEORETICAL AND APPLIED MECHANICS 48 (1): 191-205 2010

Language:
English

Document Type:
Article

Author Keywords:
boundary film; nanometer-scale thin film; fluid film; boundary slippage

KeyWords Plus:
FLOW FACTOR; ELASTOHYDRODYNAMIC LUBRICATION; INTERFACE; SURFACES; LIQUID

Abstract:
An analysis is presented for a micro-contact where boundary and hydrodynamic fluid films simultaneously occur considering boundary slippage appearance at the upper contact surface in the boundary film area. The contact is one-dimensional, composed of two parallel plane surfaces, which are respectively rough rigid with rectangular projection in profile and ideally smooth rigid. In the outlet zone of the contact a boundary film occurs, and in the inlet zone of the contact a conventional hydrodynamic fluid film emerges. In the boundary film area, the film slips at the upper contact surface due to the limited shear stress capacity of the film-contact interface, while the film does not slip at the lower contact surface due to the shear stress capacity of the film-contact interface, which is large enough. In the boundary film area, the viscosity and density of the film are varied across the film thickness due to the film-contact interactions, and their effective values are used in!
modelling which depends oil the boundary film thickness. In the fluid film area, the film does not slip at either of the contact surfaces.

Reprint Address:
Zhang, YB, Zhejiang Jinlei Elect & Mech Co, Hangzhou, Zhejiang Prov, Peoples R China.

Research Institution addresses:
Zhejiang Jinlei Elect & Mech Co, Hangzhou, Zhejiang Prov, Peoples R China

E-mail Address:
engmech1@sina.com

Cited References:
BEGELINGER A, 1974, WEAR, V28, P103.
BEGELINGER A, 1976, ASME, V98, P575.
BONACCURSO E, 2003, PHYS REV LETT, V90, ARTN 144501.
CHEIKH C, 2003, PHYS REV LETT, V91, ARTN 156102.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
CRAIG VSJ, 2001, PHYS REV LETT, V87, ARTN 054504.
GOGLIA PR, 1984, ASME, V106, P104.
HOLMES MJA, 2003, P I MECH ENG J-J ENG, V217, P305.
JIANG X, 1999, ASME, V121, P481, DOI 10.1115/1.2834093.
LUBRECHT AA, 1988, ASME, V110, P421.
PIT R, 2000, PHYS REV LETT, V85, P980.
SUN M, 1992, PHYS REV LETT, V69, P3491.
TABOR BJ, 1981, ASME, V103, P497.
THOMPSON PA, 1997, NATURE, V389, P360.
ZHANG Y, 2004, IND LUBR TRIBOL, V56, P88, DOI 10.1108/00368790410524047.
ZHANG Y, 2006, IND LUBR TRIBOL, V58, P151, DOI 10.1108/00368790610661999.
ZHANG Y, 2006, IND LUBR TRIBOL, V58, P4, DOI 10.1108/00368790610640064.
ZHANG YB, 2003, INT J FLUID MECH RES, V30, P542.
ZHANG YB, 2003, INT J FLUID MECH RES, V30, P558.
ZHANG YB, 2004, J BAL TRIB ASS, V10, P394.
ZHANG YB, 2005, J MOL LIQ, V116, P43, DOI 10.1016/j.molliq.2004.06.002.
ZHANG YB, 2006, J MOL LIQ, V128, P60, DOI 10.1016/j.molliq.2005.10.007.
ZHANG YB, 2006, J MOL LIQ, V128, P99, DOI 10.1016/j.molliq.2005.12.010.
ZHANG YB, 2007, J APPL SCI, V7, P1249.
ZHANG YB, 2007, J APPL SCI, V7, P1351.
ZHANG YB, 2007, J APPL SCI, V7, P1467.
ZHANG YB, 2009, THEOR COMP FLUID DYN, V23, P239, DOI 10.1007/s00162-009-0105-x.
ZHANG YB, 2009, THEOR COMP FLUID DYN, V23, P255, DOI 10.1007/s00162-009-0121-x.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.

Cited Reference Count:
29

Times Cited:
0

Publisher:
POLISH SOC THEORETICAL & APPLIED MECHANICS; FWARSAW UNIV TECHNOLOGY, FACULTY CIVIL ENGINEERING, AL ARMII LUDOWEJ 15, RM 650, WARSZAWA, 00-637, POLAND

Subject Category:
Mechanics

ISSN:
1429-2955

IDS Number:
552CX

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274090700001
*Order Full Text [ ]

Title:
Stick-Slip Motion of Moving Contact Line on Chemically Patterned Surfaces

Authors:
Wu, CM; Lei, SL; Qian, TZ; Wang, XP

Author Full Names:
Wu, Congmin; Lei, Siulong; Qian, Tiezheng; Wang, Xiaoping

Source:
COMMUNICATIONS IN COMPUTATIONAL PHYSICS 7 (3): 403-422 MAR 2010

Language:
English

Document Type:
Article

Author Keywords:
Moving contact line; slip boundary condition; patterned surface

KeyWords Plus:
FLUID INTERFACE; IRREVERSIBLE-PROCESSES; RECIPROCAL RELATIONS; STEADY MOVEMENT; SOLID-SURFACES; CAPILLARY-TUBE; 2-PHASE FLUID; FLOW; DYNAMICS; LIQUID

Abstract:
Based on our continuum hydrodynamic model for immiscible two-phase flows at solid surfaces, the stick-slip motion has been predicted for moving contact line at chemically patterned surfaces [Wang et al., J. Fluid Mech., 605 (2008), pp. 59-78]. In this paper we show that the continuum predictions can be quantitatively verified by molecular dynamics (MD) simulations. Our MD simulations are carried out for two immiscible Lennard-Jones fluids confined by two planar solid walls in Poiseuille flow geometry. In particular, one solid surface is chemically patterned with alternating stripes. For comparison, the continuum model is numerically solved using material parameters directly measured in MD simulations. From oscillatory fluid-fluid interface to intermittent stick-slip motion of moving contact line, we have quantitative agreement between the continuum and MD results. This agreement is attributed to the accurate description down to molecular scale by the generalized Navier bound!
ary condition in our continuum model. Numerical results are also presented for the relaxational dynamics of fluid-fluid interface, in agreement with a theoretical analysis based on the Onsager principle of minimum energy dissipation.

Reprint Address:
Qian, TZ, Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China.

Research Institution addresses:
[Wu, Congmin; Lei, Siulong; Qian, Tiezheng; Wang, Xiaoping] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China; [Qian, Tiezheng; Wang, Xiaoping] Hong Kong Univ Sci & Technol, Joint KAUST HKUST Micro Nanofluid Lab, Kowloon, Hong Kong, Peoples R China

E-mail Address:
macmin@ust.hk; malsl@ust.hk; maqian@ust.hk; mawang@ust.hk

Cited References:
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BATCHELOR GK, 1967, INTRO FLUID DYNAMICS.
BLAKE TD, 1969, J COLLOID INTERF SCI, V30, P421.
BRIANT AJ, 2004, PHYS REV E 1, V69, ARTN 031603.
CAHN JW, 1958, J CHEM PHYS, V28, P258.
CHELLA R, 1996, PHYS REV E B, V53, P3832.
CHEN HY, 2000, PHYS REV LETT, V85, P1686.
COTTINBIZONNE C, 2003, NAT MATER, V2, P237, DOI 10.1038/nmat857.
COX RG, 1986, J FLUID MECH, V168, P169.
CUBAUD T, 2004, J COLLOID INTERF SCI, V269, P171, DOI 10.1016/j.jcis.2003.08.008.
DARHUBER AA, 2000, J APPL PHYS, V87, P7768.
DUSSAN EB, 1974, J FLUID MECH, V65, P71.
DUSSAN EB, 1979, ANNU REV FLUID MECH, V11, P371.
GAU H, 1999, SCIENCE, V283, P46.
HOCKING LM, 1977, J FLUID MECH, V79, P209.
HUH C, 1971, J COLLOID INTERF SCI, V35, P85.
HUH C, 1977, J FLUID MECH, V81, P401.
JACQMIN D, 2000, J FLUID MECH, V402, P57.
KOPLIK J, 1988, PHYS REV LETT, V60, P1282.
KUKSENOK O, 2003, PHYS REV LETT, V91, ARTN 108303.
KUSUMAATMAJA H, 2006, EUROPHYS LETT, V73, P740, DOI 10.1209/epl/i2005-10452-0.
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695.
ONSAGER L, 1931, PHYS REV, V37, P405.
ONSAGER L, 1931, PHYS REV, V38, P2265.
PHILIP JR, 1972, Z ANGEW MATH PHYS, V23, P960.
PRIEZJEV NV, 2005, PHYS REV E 1, V71, ARTN 041608.
QIAN TZ, 2003, PHYS REV E 2, V68, ARTN 016306.
QIAN TZ, 2004, PHYS REV LETT, V93, ARTN 094501.
QIAN TZ, 2005, PHYS REV E 1, V72, ARTN 022501.
QIAN TZ, 2006, COMMUN COMPUT PHYS, V1, P1.
QIAN TZ, 2006, J FLUID MECH, V564, P333, DOI 10.1017/S0022112006001935.
QIAN TZ, 2008, J FLUID MECH, V611, P333, DOI 10.1017/S0022112008002863.
REN WQ, 2005, J COMPUT PHYS, V204, P1, DOI 10.1016/j.jcp.2004.10.001.
REN WQ, 2007, PHYS FLUIDS, V19, ARTN 022101.
SEPPECHER P, 1996, INT J ENG SCI, V34, P977.
THOMPSON PA, 1989, PHYS REV LETT, V63, P766.
THOMPSON PA, 1997, NATURE, V389, P360.
WANG XP, 2008, J FLUID MECH, V605, P59, DOI 10.1017/S0022112008001456.
ZHOU MY, 1990, PHYS REV LETT, V64, P882.

Cited Reference Count:
39

Times Cited:
0

Publisher:
GLOBAL SCIENCE PRESS; ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA

Subject Category:
Physics, Mathematical

ISSN:
1815-2406

DOI:
10.4208/cicp.2009.09.042

IDS Number:
549YL

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274107900005
*Order Full Text [ ]

Title:
Slip on Superhydrophobic Surfaces

Authors:
Rothstein, JP

Author Full Names:
Rothstein, Jonathan P.

Source:
ANNUAL REVIEW OF FLUID MECHANICS 42: 89-109 2010

Language:
English

Document Type:
Review

Author Keywords:
drag reduction; lotus effect; ultrahydrophobic

KeyWords Plus:
FRICTION DRAG REDUCTION; FLUID-SOLID INTERFACE; NO-SHEAR CONDITIONS; ULTRAHYDROPHOBIC SURFACES; HYDROPHOBIC MICROCHANNELS; BOUNDARY-CONDITION; GROOVED SURFACES; APPARENT SLIP; CONTACT-ANGLE; LENGTH SCALES

Abstract:
This review discusses the use of the combination of surface toughness and hydrophobicity for engineering large slip at the fluid-solid interface. These superhydrophobic surfaces were intially inspired by the unique water-repellent properties of the lotus leaf and can be employed to produce drag reduction in both laminar and turbulent flows, enhance mixing in laminar flows, and amplify diffusion-osmotic flows. We review the current state of experiments, simulations, and theory of flow past superhydrophobic surfaces. In addition, the designs and limitations of these surfaces are discussed, with an eye toward implementing these surfaces in a wide range of applications.

Reprint Address:
Rothstein, JP, Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA.

Research Institution addresses:
Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA

E-mail Address:
rothstein@ccs.umass.edu

Cited References:
AJDARI A, 2006, PHYS REV LETT, V96, ARTN 186102.
BALASUBRAMANIAN AK, 2004, AIAA J, V42, P411.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BARTHLOTT W, 1997, PLANTA, V202, P1.
BARTOLO D, 2006, EUROPHYS LETT, V74, P299, DOI 10.1209/epl/i2005-10522-3.
BATCHELOR GK, 1985, INTRO FLUID DYNAMICS.
BAUDRY J, 2001, LANGMUIR, V17, P5232, DOI 10.1021/la0009994.
BHUSHAN B, 2006, NANOTECHNOLOGY, V17, P2758, DOI 10.1088/0957-4484/17/11/008.
BICO J, 1999, EUROPHYS LETT, V47, P220.
BICO J, 2002, COLLOID SURFACE A, V206, P41.
BLAKE TD, 1990, COLLOID SURF A, V47, P134.
BOCQUET L, 2006, PHYS REV LETT, V97, ARTN 109601.
BOUZIGUES CI, 2008, PHILOS T R SOC A, V366, P1455, DOI 10.1098/rsta.2007.2168.
BUSH JWM, 2008, ADV INSECT PHYSIOL, V34, P117.
CASSIE ABD, 1944, T FARADAY SOC, V40, P546.
CHEN W, 1999, LANGMUIR, V15, P3395.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
CHOI CH, 2006, PHYS FLUIDS, V18, ARTN 087105.
CHOI CH, 2006, PHYS REV LETT, V96, ARTN 066001.
CHOI HC, 1991, PHYS FLUIDS A-FLUID, V3, P1892.
COTTINBIZONNE C, 2003, NAT MATER, V2, P237, DOI 10.1038/nmat857.
COTTINBIZONNE C, 2004, EUR PHYS J E, V15, P427, DOI 10.1140/epje/i2004-10061-9.
COTTINBIZONNE C, 2005, PHYS REV LETT, V94, ARTN 056102.
DANIELLO RJ, 2009, PHYS FLUIDS, V21, ARTN 085103.
DEGENNES PG, 2004, CAPILLARITY WETTING.
DENN MM, 2001, ANNU REV FLUID MECH, V33, P265.
DUSSAN EB, 1979, ANNU REV FLUID MECH, V11, P371.
ELBING BR, 2008, J FLUID MECH, V612, P201, DOI 10.1017/S0022112008003029.
FANG GP, 2008, LANGMUIR, V24, P11651, DOI 10.1021/la802033q.
FREUND JB, 2003, PHYS FLUIDS, V15, L33, DOI 10.1063/1.1565112.
FUKAGATA K, 2006, PHYS FLUIDS, V18, ARTN 051703.
FUKUDA K, 2000, J MAR SCI TECHNOL, V5, P123.
GAO LC, 2006, J AM CHEM SOC, V128, P9052, DOI 10.1021/ja062943n.
GAO LC, 2006, LANGMUIR, V22, P2966, DOI 10.1021/la0532149.
GAO LC, 2006, LANGMUIR, V22, P6234, DOI 10.1021/la060254j.
GAO XF, 2004, NATURE, V432, P36, DOI 10.1038/432036a.
GOGTE S, 2005, PHYS FLUIDS, V17, ARTN 051701.
GOLDSTEIN DB, 1998, J FLUID MECH, V363, P115.
GOLDSTEIN S, 1965, MODERN DEV FLUID DYN.
HAHN S, 2002, J FLUID MECH, V450, P259.
HARTING J, 2006, EUROPHYS LETT, V75, P328, DOI 10.1209/epl/i2006-10107-8.
HENOCH C, 2006, 3 AIAA FLOW CONTR C, V2, P840.
HOCKING LM, 1976, J FLUID MECH, V76, P801.
HUANG DM, 2008, PHYS REV LETT, V101, ARTN 064503.
HYVALUOMA J, 2008, PHYS REV LETT, V100, ARTN 246001.
ISRAELACHVILI JN, 1992, INTERMOLECULAR SURFA.
JIN S, 2004, EXP FLUIDS, V37, P825, DOI 10.1007/s00348-004-0870-7.
JOLY L, 2004, PHYS REV LETT, V93, ARTN 257805.
JOLY L, 2006, PHYS REV LETT, V96, ARTN 046101.
JOSEPH P, 2005, PHYS REV E 2, V71, ARTN 035303.
JOSEPH P, 2006, PHYS REV LETT, V97, ARTN 156104.
KARNIADAKIS G, 2005, MICROFLUIDS NANOFLUI.
KIM J, 2002, IEEE INT C MEMS LAS.
LAFUMA A, 2003, NAT MATER, V2, P457, DOI 10.1038/nmat924.
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695.
LAUGA E, 2007, HDB EXPT FLUID DYNAM, P1219.
LEE C, 2008, PHYS REV LETT, V101, ARTN 064501.
MAHADEVAN L, 1999, PHYS FLUIDS, V11, P2449.
MARTELL MB, 2009, EFFECT REYNOLD UNPUB.
MARTELL MB, 2009, J FLUID MECH, V620, P31, DOI 10.1017/S0022112008004916.
MAXWELL JC, 1879, PHILOS T R SOC LONDO, V170, P231.
MAYNES D, 2007, PHYS FLUIDS, V19, ARTN 093603.
MAYNES D, 2008, J HEAT TRANS-T ASME, V130, ARTN 022402.
MIN TG, 2004, PHYS FLUIDS, V16, L55, DOI 10.1063/1.1755723.
NAVIER CLM, 1823, MEMOIRES ACAD ROYALE, V6, P389.
ONER D, 2000, LANGMUIR, V16, P7777.
OU J, 2004, PHYS FLUIDS, V16, P4635, DOI 10.1063/1.1812011.
OU J, 2005, PHYS FLUIDS, V17, ARTN 103606.
OU J, 2007, PHYS REV E 2, V76, ARTN 016304.
OU J, 2007, THESIS U MASS AMHERS.
PHILIP JR, 1972, Z ANGEW MATH PHYS, V23, P353.
PHILIP JR, 1972, Z ANGEW MATH PHYS, V23, P960.
PIT R, 1999, TRIBOL LETT, V7, P147.
QUERE D, 1998, LANGMUIR, V14, P2213.
QUERE D, 2008, ANNU REV MATER RES, V38, P71, DOI 10.1146/annurev.matsci.38.060407.132434.
REED JC, 1994, J SHIP RES, V38, P133.
REYSSAT M, 2006, EUROPHYS LETT, V74, P306, DOI 10.1209/epl/i2005-10523-2.
REYSSAT M, 2008, EPL-EUROPHYS LETT, V81, ARTN 26006.
RICHARD D, 2000, EUROPHYS LETT, V50, P769.
RICHARDSON S, 1973, J FLUID MECHANICS 4, V59, P707.
SAKAI M, 2006, LANGMUIR, V22, P4906, DOI 10.1021/la060323u.
SANDERS WC, 2006, J FLUID MECH, V552, P353, DOI 10.1017/S0022112006008688.
SBRAGAGLIA M, 2006, PHYS REV LETT, V97, ARTN 204503.
SBRAGAGLIA M, 2007, PHYS FLUIDS, V19, ARTN 043603.
SCHNELL E, 1956, J APPL PHYS, V27, P1149.
SHASTRY A, 2006, LANGMUIR, V22, P6161, DOI 10.1021/la0601657.
STEINBERGER A, 2007, NAT MATER, V6, P665, DOI 10.1038/nmat1962.
STROOCK AD, 2002, ANAL CHEM, V74, P5306, DOI 10.1021/ac0257389.
STROOCK AD, 2002, SCIENCE, V295, P647.
THOMPSON PA, 1997, NATURE, V389, P360.
TOLSTOI DM, 1952, DOKL AKAD NAUK SSSR, V85, P1089.
TRETHEWAY DC, 2002, PHYS FLUIDS, V14, P9.
TRUESDELL R, 2006, PHYS REV LETT, V97, ARTN 044504.
VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31.
VIRK PS, 1975, AICHE J, V21, P625.
VORONOV RS, 2008, IND ENG CHEM RES, V47, P2455, DOI 10.1021/ie0712941.
WALSH MJ, 1990, VISCOUS DRAG REDUCTI, P203.
WATANABE K, 1999, J FLUID MECH, V381, P225.
WENZEL RN, 1936, IND ENG CHEM, V28, P988.
WIER KA, 2006, LANGMUIR, V22, P2433, DOI 10.1021/la0525877.
WOLFRAM E, 1978, WETTING SPREADING AD, P213.
YANG JT, 2006, J MICROELECTROMECH S, V15, P697, DOI 10.1109/JMEMS.2006.876791.
YBERT C, 2007, PHYS FLUIDS, V19, ARTN 123601.
YOUNG T, 1805, PHILOS T R SOC LONDO, V95, P65, DOI 10.1098/RSTL.1805.0005.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.

Cited Reference Count:
106

Times Cited:
0

Publisher:
ANNUAL REVIEWS; 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA

Subject Category:
Mechanics; Physics, Fluids & Plasmas

ISSN:
0066-4189

DOI:
10.1146/annurev-fluid-121108-145558

IDS Number:
550DG

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274347700001
*Order Full Text [ ]

Title:
Purification of Produced Water by Ceramic Membranes: Material Screening, Process Design and Economics

Authors:
Li, LX; Lee, R

Author Full Names:
Li, Liangxiong; Lee, Robert

Source:
SEPARATION SCIENCE AND TECHNOLOGY 44 (15): 3455-3484 2009

Language:
English

Document Type:
Article

Author Keywords:
Beneficial use; inorganic membranes; produced water; purification; reverse osmosis

KeyWords Plus:
CROSS-FLOW MICROFILTRATION; REVERSE-OSMOSIS; ZEOLITE MEMBRANES; CONCENTRATION POLARIZATION; AQUEOUS-SOLUTIONS; CARBON NANOTUBES; GAS-PRODUCTION; CLAY MEMBRANE; SEPARATION; OIL

Abstract:
Produced water, generated from underlying formations during the recovery of hydrocarbons, constitutes the largest waste stream associated with oil and gas production. Currently, over 90% of produced water is reinjected into the formation, either in support of enhanced oil recovery or for disposal. In arid areas, reclamation of produced water for beneficial uses such as irrigation or tower cooling may be an attractive alternative if the produced water can be purified to an adequate quality, specifically through the removal of dissolved components including inorganic compounds (salts, heavy metals, and radiochemicals) and organic compounds (fatty acid, aliphatic, and aromatics). Membranes technologies show advantages in both energy efficiency and high water quality. Due to the presence of dissolved organics, reverse osmosis with organic membranes is highly limited. Research efforts focus on developing new materials that are less prone to fouling and are easy to regenerate. Nov!
el ceramic membranes are relatively new classes of material that show promising application in produced water purification due to their extreme stability in harsh environments and optional choices for regeneration. This paper details the results of investigations of produced water purification by microporous ceramic membranes, including metal oxide membranes, clay membranes, and zeolite membranes. Techniques for membrane fabrication, process design, and economic aspects are also discussed.

Reprint Address:
Li, LX, New Mexico Inst Min & Technol, Petr Recovery Res Ctr, Socorro, NM 87801 USA.

Research Institution addresses:
[Li, Liangxiong; Lee, Robert] New Mexico Inst Min & Technol, Petr Recovery Res Ctr, Socorro, NM 87801 USA

E-mail Address:
Li@prrc.nmt.edu

Cited References:
*US EPA, 2004, EPA625R04108.
ABOUSAYED AS, 2007, SPE PROD OPER, V22, P59.
ALANEZI K, 2007, DESALINATION, V204, P385, DOI 10.1016/j.desal.2006.04.036.
ASHAGHI KS, 2007, OPEN ENV J, V1, P1.
BHAVE RR, 1991, INORGANIC MEMBRANES.
CARO J, 2005, ADSORPTION, V11, P215, DOI 10.1007/s10450-005-5394-9.
CIARAPICA FE, 2003, 5 INT MEMBR SCI TECH.
DEKANY I, 2000, CLAY MINER, V35, P763.
DELGADO JD, 2008, DESALINATION RES PRO.
FRANKIEWICZ T, 2001, 11 PROD WAT SEM HOUS.
HANSEN BR, 1994, CHEM ENG RES DES, V72, P176.
HAYES T, 2004, 11 ANN INT PETR ENV.
HILAL N, 2005, SEPAR SCI TECHNOL, V40, P1957, DOI 10.1081/SS-200068409.
HOLDICH RG, 1998, J MEMBRANE SCI, V143, P263.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HU ZH, 1994, SEPAR TECHNOL, P567.
ISHIGURO M, 1995, J MEMBRANE SCI, V107, P87.
JACKSON L, 2002, 2002 GROUND WAT PROT.
JEFFREY M, 1997, J MEMBRANE SCI, V129, P221.
KIM S, 2005, DESALINATION, V186, P111, DOI 10.1016/j.desal.2005.05.017.
KOYUNCU I, 2003, SEP PURIF TECHNOL, V33, P283, DOI 10.1016/S1383-5866(03)00088-1.
KUMAKIRI I, 2000, J CHEM ENG JPN, V33, P333.
LAHIERE RJ, 1993, ENVIRON PROG, V12, P86.
LI LX, 2003, APPL CLAY SCI, V24, P59, DOI 10.1016/S0169-1317(03)00148-0.
LI LX, 2004, J COLLOID INTERF SCI, V273, P540, DOI 10.1016/j.jcis.2003.09.008.
LI LX, 2007, IND ENG CHEM RES, V46, P1584, DOI 10.1021/ie0612818.
LIN J, 2001, MOL PHYS, V99, P1175.
LIU H, 2008, COMMUNICATION.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MCFARLANE J, 2002, 2002 GROUND WAT PROT.
MOLINARD A, 1995, ADSORPTION, V1, P49.
MOULAIMOSTEFA N, 2007, DESALINATION, V206, P494, DOI 10.1016/j.desal.2006.04.061.
NDINISA NV, 2006, SEPAR SCI TECHNOL, V41, P1383, DOI 10.1080/01496390600633873.
PAUL RH, 1985, GEOCHIM COSMOCHIM AC, V50, P115.
PORTER MC, 1972, IND ENG CHEM PROC DD, V11, P234.
RAY JP, 2002, PRODUCED WATER.
REINHOLDT M, 2001, EUR J INORG CHEM NOV, P2831.
ROWE DR, 1995, HDB WASTEWATER RECLA.
SANTOS SM, 1997, WATER ENVIRON RES, V69, P1120.
TAMURA H, 2001, J COLLOID INTERF SCI, V243, P202.
TSAI S, 1995, P INT GAS RES C DES.
TSURU T, 2001, SEPAR PURIF METHOD, V30, P191.
VALVERDE JL, 2000, CLAYS CLAY MINER, V48, P423.
VEIL JA, 2004, WHITE PAPER DESCRIBI.
VERCAUTEREN S, 1996, J MEMBRANE SCI, V119, P161.
VERCAUTEREN S, 1998, COLLOID SURFACE A, V138, P367.
VISVANATHAN C, 2000, WATER SCI TECHNOL, V41, P117.
WAKEMAN RJ, 1995, CHEM ENG RES DES, V73, P455.
WILLIAM MB, 1984, GEOCHIM COSMOCHIM AC, V48, P1769.
YANG C, 1998, J MEMBRANE SCI, V142, P235.
YOUSIF KK, 1973, GEOCHIM COSMOCHIM AC, V37, P2577.
ZAIDI A, 1992, PRODUCED WATER.
ZHONG SH, 2003, SEP PURIF TECHNOL, V32, P17, DOI 10.1016/S1383-5866(03)00034-0.
ZHU HY, 1999, J COLLOID INTERF SCI, V210, P352.

Cited Reference Count:
54

Times Cited:
0

Publisher:
TAYLOR & FRANCIS INC; 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA

Subject Category:
Chemistry, Multidisciplinary; Engineering, Chemical

ISSN:
0149-6395

DOI:
10.1080/01496390903253395

IDS Number:
553EB

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274387000007
*Order Full Text [ ]

Title:
Properties of nonpolar fluids inside a carbon nanotube

Authors:
Rekhviashvili, SS; Kishtikova, EV

Author Full Names:
Rekhviashvili, S. Sh.; Kishtikova, E. V.

Source:
PROTECTION OF METALS AND PHYSICAL CHEMISTRY OF SURFACES 46 (1): 55-59 JAN 2010

Language:
English

Document Type:
Article

Abstract:
A simple criterion for the capillary filling of a nanotube with a nonpolar fluid is formulated; The efficient surface tension of the nanotube frame is estimated (similar to 0.05 N/m). The dynamics of the fluid inside the nanotube is studied. The potential of the atom interaction with nanotube walls is found in a continuous approximation. The conclusion on the boundary slipping of fluid near hydrophobic nanotube walls is made, which explains the experimentally observed superfast flow. Using the Gibbs equation, we derive and solve the differential equation for the dimensional dependence of the interfacial tension of a fluid inside a nanotube under equilibrium conditions. It is shown that a reduction in the nanotube radius leads to a decrease in the interfacial tension.

Reprint Address:
Rekhviashvili, SS, Kabardino Balkar State Univ, Nalchik 360004, Russia.

Research Institution addresses:
[Rekhviashvili, S. Sh.; Kishtikova, E. V.] Kabardino Balkar State Univ, Nalchik 360004, Russia

E-mail Address:
rsergo@mail.ru

Cited References:
ADAMSON AW, 1997, PHYS CHEM SURFACE.
BARASH YS, 1988, SILY VANDERVAALSA.
BARBER AH, 2004, PHYS REV LETT, V92, ARTN 186103.
BOGOMOLOV VN, 1978, USP FIZ NAUK, V124, P171.
CHEN JY, 2005, SCIENCE, V310, P1480, DOI 10.1126/science.1120385.
CHURAEV NV, 1990, FIZIKOKHIMIYA PROTSE.
EBBESEN TW, 1997, CARBON NANOTUBES PRE.
ELETSKII AV, 2004, USP FIZ NAUK, V174, P1191.
ENGLISH DS, 2006, RES SOC S P, V899, P899.
FEDOROV AS, 2006, FIZ TVERD TELA, V48, P377.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P13.
HARRIS PJF, 1999, CARBON NANOTUBES REL.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
NURIEL S, 2005, CHEM PHYS LETT, V404, P263, DOI 10.1016/j.cplett.2005.01.072.
ONO S, 1960, MOL THEORY SURFACE T.
REKHVIASHVILI SS, 2008, PISMA ESKP TEOR FIZ, V88, P805.
ROLDUGIN VI, 2008, FIZIKOKHIMIYA POVERK.
ROWLINSON JS, 1982, MOL THEORY CAPILLARI.
SNYDER SE, 2006, PISMA ESKP TEOR FIZ, V84, P411.
TOMILIN OB, 2006, FIZ TVERD TELA, V48, P563.
VAKHRUSHEV AV, 2008, MODELIROVANIE PROTSE.

Cited Reference Count:
22

Times Cited:
0

Publisher:
MAIK NAUKA/INTERPERIODICA/SPRINGER; 233 SPRING ST, NEW YORK, NY 10013-1578 USA

Subject Category:
Metallurgy & Metallurgical Engineering

ISSN:
2070-2051

DOI:
10.1134/S2070205110010077

IDS Number:
553SL

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 1.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000274347700001>
*Order Full Text [ ]
AU Li, LX
Lee, R
AF Li, Liangxiong
Lee, Robert
TI Purification of Produced Water by Ceramic Membranes: Material
Screening, Process Design and Economics
SO SEPARATION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Beneficial use; inorganic membranes; produced water; purification;
reverse osmosis
ID CROSS-FLOW MICROFILTRATION; REVERSE-OSMOSIS; ZEOLITE MEMBRANES;
CONCENTRATION POLARIZATION; AQUEOUS-SOLUTIONS; CARBON NANOTUBES;
GAS-PRODUCTION; CLAY MEMBRANE; SEPARATION; OIL
AB Produced water, generated from underlying formations during the
recovery of hydrocarbons, constitutes the largest waste stream
associated with oil and gas production. Currently, over 90% of produced
water is reinjected into the formation, either in support of enhanced
oil recovery or for disposal. In arid areas, reclamation of produced
water for beneficial uses such as irrigation or tower cooling may be an
attractive alternative if the produced water can be purified to an
adequate quality, specifically through the removal of dissolved
components including inorganic compounds (salts, heavy metals, and
radiochemicals) and organic compounds (fatty acid, aliphatic, and
aromatics). Membranes technologies show advantages in both energy
efficiency and high water quality. Due to the presence of dissolved
organics, reverse osmosis with organic membranes is highly limited.
Research efforts focus on developing new materials that are less prone
to fouling and are easy to regenerate. Novel ceramic membranes are
relatively new classes of material that show promising application in
produced water purification due to their extreme stability in harsh
environments and optional choices for regeneration. This paper details
the results of investigations of produced water purification by
microporous ceramic membranes, including metal oxide membranes, clay
membranes, and zeolite membranes. Techniques for membrane fabrication,
process design, and economic aspects are also discussed.
C1 [Li, Liangxiong; Lee, Robert] New Mexico Inst Min & Technol, Petr Recovery Res Ctr, Socorro, NM 87801 USA.
RP Li, LX, New Mexico Inst Min & Technol, Petr Recovery Res Ctr, Socorro,
NM 87801 USA.
EM Li@prrc.nmt.edu
CR *US EPA, 2004, EPA625R04108
ABOUSAYED AS, 2007, SPE PROD OPER, V22, P59
ALANEZI K, 2007, DESALINATION, V204, P385, DOI
10.1016/j.desal.2006.04.036
ASHAGHI KS, 2007, OPEN ENV J, V1, P1
BHAVE RR, 1991, INORGANIC MEMBRANES
CARO J, 2005, ADSORPTION, V11, P215, DOI 10.1007/s10450-005-5394-9
CIARAPICA FE, 2003, 5 INT MEMBR SCI TECH
DEKANY I, 2000, CLAY MINER, V35, P763
DELGADO JD, 2008, DESALINATION RES PRO
FRANKIEWICZ T, 2001, 11 PROD WAT SEM HOUS
HANSEN BR, 1994, CHEM ENG RES DES, V72, P176
HAYES T, 2004, 11 ANN INT PETR ENV
HILAL N, 2005, SEPAR SCI TECHNOL, V40, P1957, DOI 10.1081/SS-200068409
HOLDICH RG, 1998, J MEMBRANE SCI, V143, P263
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HU ZH, 1994, SEPAR TECHNOL, P567
ISHIGURO M, 1995, J MEMBRANE SCI, V107, P87
JACKSON L, 2002, 2002 GROUND WAT PROT
JEFFREY M, 1997, J MEMBRANE SCI, V129, P221
KIM S, 2005, DESALINATION, V186, P111, DOI 10.1016/j.desal.2005.05.017
KOYUNCU I, 2003, SEP PURIF TECHNOL, V33, P283, DOI
10.1016/S1383-5866(03)00088-1
KUMAKIRI I, 2000, J CHEM ENG JPN, V33, P333
LAHIERE RJ, 1993, ENVIRON PROG, V12, P86
LI LX, 2003, APPL CLAY SCI, V24, P59, DOI 10.1016/S0169-1317(03)00148-0
LI LX, 2004, J COLLOID INTERF SCI, V273, P540, DOI
10.1016/j.jcis.2003.09.008
LI LX, 2007, IND ENG CHEM RES, V46, P1584, DOI 10.1021/ie0612818
LIN J, 2001, MOL PHYS, V99, P1175
LIU H, 2008, COMMUNICATION
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MCFARLANE J, 2002, 2002 GROUND WAT PROT
MOLINARD A, 1995, ADSORPTION, V1, P49
MOULAIMOSTEFA N, 2007, DESALINATION, V206, P494, DOI
10.1016/j.desal.2006.04.061
NDINISA NV, 2006, SEPAR SCI TECHNOL, V41, P1383, DOI
10.1080/01496390600633873
PAUL RH, 1985, GEOCHIM COSMOCHIM AC, V50, P115
PORTER MC, 1972, IND ENG CHEM PROC DD, V11, P234
RAY JP, 2002, PRODUCED WATER
REINHOLDT M, 2001, EUR J INORG CHEM NOV, P2831
ROWE DR, 1995, HDB WASTEWATER RECLA
SANTOS SM, 1997, WATER ENVIRON RES, V69, P1120
TAMURA H, 2001, J COLLOID INTERF SCI, V243, P202
TSAI S, 1995, P INT GAS RES C DES
TSURU T, 2001, SEPAR PURIF METHOD, V30, P191
VALVERDE JL, 2000, CLAYS CLAY MINER, V48, P423
VEIL JA, 2004, WHITE PAPER DESCRIBI
VERCAUTEREN S, 1996, J MEMBRANE SCI, V119, P161
VERCAUTEREN S, 1998, COLLOID SURFACE A, V138, P367
VISVANATHAN C, 2000, WATER SCI TECHNOL, V41, P117
WAKEMAN RJ, 1995, CHEM ENG RES DES, V73, P455
WILLIAM MB, 1984, GEOCHIM COSMOCHIM AC, V48, P1769
YANG C, 1998, J MEMBRANE SCI, V142, P235
YOUSIF KK, 1973, GEOCHIM COSMOCHIM AC, V37, P2577
ZAIDI A, 1992, PRODUCED WATER
ZHONG SH, 2003, SEP PURIF TECHNOL, V32, P17, DOI
10.1016/S1383-5866(03)00034-0
ZHU HY, 1999, J COLLOID INTERF SCI, V210, P352
NR 54
TC 0
PU TAYLOR & FRANCIS INC; 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA
19106 USA
SN 0149-6395
DI 10.1080/01496390903253395
VL 44
IS 15
BP 3455
EP 3484
SC Chemistry, Multidisciplinary; Engineering, Chemical
GA 553EB
UT ISI:000274347700001
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Thursday, February 11, 2010

ISI Web of Knowledge Alert - Zhao, Y

ISI Web of Knowledge Citation Alert

Cited Article: Zhao, Y. Individual water-filled single-walled carbon nanotubes as hydroelectric power converters
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273863400027
*Order Full Text [ ]

Title:
Transport Properties of Single-File Water Molecules inside a Carbon Nanotube Biomimicking Water Channel

Authors:
Zuo, GC; Shen, R; Ma, SJ; Guo, WL

Author Full Names:
Zuo, Guangchao; Shen, Rong; Ma, Shaojie; Guo, Wanlin

Source:
ACS NANO 4 (1): 205-210 JAN 2010

Language:
English

Document Type:
Article

Author Keywords:
transport property; carbon nanotube; water channel; free energy; molecular dynamics simulation

KeyWords Plus:
DYNAMICS; PERMEATION; CONDUCTION; SELECTIVITY; EXCLUSION; MEMBRANES; FLOW

Abstract:
The single-file water transport through a biomimic water channel consisting of a (6,6) carbon nanotube (CNT) with different types of external point charges is studied using molecular dynamics simulations. It is demonstrated that, as in the aquaporins, asymmetrically positioned charges cannot generate robust unidirectional water flow in the CNT. Thermal fluctuation in bulk water competes with charge affinity to steer the water transport, resulting in nonmonotonic flow with intermittent reversal of transport direction. The energetic analysis suggests that the water-water Interaction, determined by dipole orientation configuration, influences the transport rate significantly. These findings can provide correct biomimic understanding of water transport properties and will benefit the design of efficient functional nanofluidic devices.

Reprint Address:
Guo, WL, Nanjing Univ Aeronaut & Astronaut, Inst Nano Sci, Nanjing 210016, Peoples R China.

Research Institution addresses:
[Zuo, Guangchao; Shen, Rong; Ma, Shaojie; Guo, Wanlin] Nanjing Univ Aeronaut & Astronaut, Inst Nano Sci, Nanjing 210016, Peoples R China

E-mail Address:
wlguo@nuaa.edu.cn

Cited References:
ARGE P, 2004, ANGEW CHEM INT EDIT, V43, P4278.
ASTUMIAN RD, 1997, SCIENCE, V276, P917.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DEGROOT BL, 2005, CURR OPIN STRUC BIOL, V15, P176, DOI 10.1016/j.sbi.2005.02.003.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
FELLER SE, 1995, J CHEM PHYS, V103, P4613.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HUMMER G, 2001, NATURE, V414, P188.
JENSEN MO, 2003, BIOPHYS J, V85, P2884.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
KOGA K, 2001, NATURE, V412, P802.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU L, 2008, APPL PHYS LETT, V92, ARTN 101927.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289.
POMES R, 1998, BIOPHYS J, V75, P33.
RAGHUNATHAN AV, 2006, PHYS REV LETT, V97, ARTN 024501.
STRIOLO A, 2007, NANOTECHNOLOGY, V18, ARTN 475704.
SUI HX, 2001, NATURE, V414, P872.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
YUAN QZ, 2009, BIOMICROFLUIDICS, V3, ARTN 022411.
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
35

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn901334w

IDS Number:
547CP

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000274036400004
*Order Full Text [ ]

Title:
The Nature of DNA-Base-Carbon-Nanotube Interactions

Authors:
Johnson, RR; Johnson, ATC; Klein, ML

Author Full Names:
Johnson, Robert R.; Johnson, A. T. Charlie; Klein, Michael L.

Source:
SMALL 6 (1): 31-34 JAN 4 2010

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; DNA; hybrid materials; molecular dynamics

KeyWords Plus:
MOLECULAR-DYNAMICS; ADSORPTION; SIMULATION; SEPARATION; LIQUIDS; HYBRIDS; WATER

Reprint Address:
Johnson, RR, Univ Penn, Dept Phys & Astron, 209 S 33rd St, Philadelphia, PA 19104 USA.

Research Institution addresses:
[Johnson, Robert R.; Johnson, A. T. Charlie] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA; [Klein, Michael L.] Temple Univ, Coll Sci & Technol, Philadelphia, PA 19122 USA

E-mail Address:
robertjo@physics.upenn.edu; cjohnson@physics.upenn.edu

Cited References:
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
CHIPOT C, 2007, FREE ENERGY CALCULAT.
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
GORDILLO MC, 2008, PHYS REV B, V78, ARTN 075432.
GOWTHAM S, 2007, PHYS REV B, V76, ARTN 033401.
GOWTHAM S, 2008, NANOTECHNOLOGY, V19, ARTN 125701.
HESS B, 2002, J CHEM PHYS, V116, P209.
HUGHES ME, 2007, NANO LETT, V7, P1191, DOI 10.1021/nl062906u.
HUMMER G, 2001, NATURE, V414, P188.
JENG ES, 2006, NANO LETT, V6, P371, DOI 10.1021/nl051829k.
JOHNSON RR, 2008, NANO LETT, V8, P69, DOI 10.1021/nI071909j.
JOHNSON RR, 2009, NANO LETT, V9, P537, DOI 10.1021/nl802645d.
JORGENSEN WL, 1981, J AM CHEM SOC, V103, P335.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
MANOHAR S, 2007, J PHYS CHEM C, V111, P17835, DOI 10.1021/jp071l316x.
MENG S, 2007, NANO LETT, V7, P45, DOI 10.1021/nl0619403.
MOBLEY DL, 2006, J CHEM PHYS, V125, ARTN 084902.
MOBLEY DL, 2007, J MOL BIOL, V371, P1118, DOI 10.1016/j.jmb.2007.06.002.
ORTMANN F, 2005, PHYS REV LETT, V95, ARTN 186101.
PARRINELLO M, 1981, J APPL PHYS, V52, P7182.
SHIRTS MR, 2005, J CHEM PHYS, V122, ARTN 134508.
SHTOGUN YV, 2007, J PHYS CHEM C, V111, P18174, DOI 10.1021/jp074270g.
SOWERBY SJ, 2001, P NATL ACAD SCI USA, V98, P820.
STAII C, 2005, NANO LETT, V5, P1774, DOI 10.1021/nl051261f.
TU XM, 2009, NATURE, V460, P250, DOI 10.1038/nature08116.
XU YQ, 2009, NANO LETT, V9, P1609, DOI 10.1021/nl803861c.
ZHAO X, 2007, J AM CHEM SOC, V129, P10438, DOI 10.1021/ja071844m.
ZHENG M, 2003, NAT MATER, V2, P338, DOI 10.1038/nmat877.
ZHENG M, 2003, SCIENCE, V302, P1545.

Cited Reference Count:
30

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1613-6810

DOI:
10.1002/smll.200901481

IDS Number:
549GV

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273863400027
*Order Full Text [ ]

Title:
Transport Properties of Single-File Water Molecules inside a Carbon Nanotube Biomimicking Water Channel

Authors:
Zuo, GC; Shen, R; Ma, SJ; Guo, WL

Author Full Names:
Zuo, Guangchao; Shen, Rong; Ma, Shaojie; Guo, Wanlin

Source:
ACS NANO 4 (1): 205-210 JAN 2010

Language:
English

Document Type:
Article

Author Keywords:
transport property; carbon nanotube; water channel; free energy; molecular dynamics simulation

KeyWords Plus:
DYNAMICS; PERMEATION; CONDUCTION; SELECTIVITY; EXCLUSION; MEMBRANES; FLOW

Abstract:
The single-file water transport through a biomimic water channel consisting of a (6,6) carbon nanotube (CNT) with different types of external point charges is studied using molecular dynamics simulations. It is demonstrated that, as in the aquaporins, asymmetrically positioned charges cannot generate robust unidirectional water flow in the CNT. Thermal fluctuation in bulk water competes with charge affinity to steer the water transport, resulting in nonmonotonic flow with intermittent reversal of transport direction. The energetic analysis suggests that the water-water Interaction, determined by dipole orientation configuration, influences the transport rate significantly. These findings can provide correct biomimic understanding of water transport properties and will benefit the design of efficient functional nanofluidic devices.

Reprint Address:
Guo, WL, Nanjing Univ Aeronaut & Astronaut, Inst Nano Sci, Nanjing 210016, Peoples R China.

Research Institution addresses:
[Zuo, Guangchao; Shen, Rong; Ma, Shaojie; Guo, Wanlin] Nanjing Univ Aeronaut & Astronaut, Inst Nano Sci, Nanjing 210016, Peoples R China

E-mail Address:
wlguo@nuaa.edu.cn

Cited References:
ARGE P, 2004, ANGEW CHEM INT EDIT, V43, P4278.
ASTUMIAN RD, 1997, SCIENCE, V276, P917.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DEGROOT BL, 2005, CURR OPIN STRUC BIOL, V15, P176, DOI 10.1016/j.sbi.2005.02.003.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
FELLER SE, 1995, J CHEM PHYS, V103, P4613.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HUMMER G, 2001, NATURE, V414, P188.
JENSEN MO, 2003, BIOPHYS J, V85, P2884.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
KOGA K, 2001, NATURE, V412, P802.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU L, 2008, APPL PHYS LETT, V92, ARTN 101927.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289.
POMES R, 1998, BIOPHYS J, V75, P33.
RAGHUNATHAN AV, 2006, PHYS REV LETT, V97, ARTN 024501.
STRIOLO A, 2007, NANOTECHNOLOGY, V18, ARTN 475704.
SUI HX, 2001, NATURE, V414, P872.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
YUAN QZ, 2009, BIOMICROFLUIDICS, V3, ARTN 022411.
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
35

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn901334w

IDS Number:
547CP

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================