Friday, March 26, 2010

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275391100002
*Order Full Text [ ]

Title:
Synthesis of multiwall carbon nanotubes by chemical vapor deposition of ferrocene alone

Authors:
Bhatia, R; Prasad, V

Author Full Names:
Bhatia, Ravi; Prasad, V.

Source:
SOLID STATE COMMUNICATIONS 150 (7-8): 311-315 FEB 2010

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotube; Chemical vapor deposition; Electron microscopy; Magnetic property

KeyWords Plus:
NANOPARTICLES

Abstract:
Multiwall carbon nanotubes (MWNTs) filled with Fe nanoparticles (NPs) have been synthesized by thermal chemical vapor deposition of ferrocene alone as the precursor. The MWNTs were grown at different temperatures: 980 and 800 degrees C. Characterization of as-prepared MWNTs was done by scanning and transmission electron microscopy, and X-ray diffraction. The transmission electron microscopy study revealed that Fe NPs encapsulated in MWNTs grown at 980 and 800 degrees C are spherical and rod shaped, respectively. Room-temperature vibrating sample magnetometer studies were done on the two samples up to a field of 1T. The magnetization versus magnetic field loop reveals that the saturation magnetization for the two samples varies considerably, almost by a factor of 4.6. This indicates that Fe is present in different amounts in the MWNTs grown at the two different temperatures. (C) 2009 Elsevier Ltd. All rights reserved.

Reprint Address:
Bhatia, R, Indian Inst Sci, Dept Phys, Bangalore 12, Karnataka, India.

Research Institution addresses:
[Bhatia, Ravi; Prasad, V.] Indian Inst Sci, Dept Phys, Bangalore 12, Karnataka, India

E-mail Address:
bhatia.phy@gmail.com

Cited References:
BARREIRO A, 2006, J PHYS CHEM B, V110, P20973, DOI 10.1021/jp0636571.
CHE G, 1998, NATURE, V93, P346.
CHENG J, SOLID STATE IN PRESS.
CHOU CH, 1992, J MATER RES, V7, P2107.
DEHEER WA, 1997, ADV MATER, V9, P87.
ELIHN K, 2001, APPL PHYS A-MATER, V72, P29.
ELIHN K, 2004, THIN SOLID FILMS, V458, P325, DOI 10.1016/j.tsf.2003.12.058.
ELIHN K, 2007, J APPL PHYS, V101, ARTN 034311.
ENDO M, 1995, CARBON, V33, P873.
FISCHER EO, 1959, CHEM BER, V92, P2302.
GANAGOPADHYAY S, 1992, PHYS REV B, V45, P9778.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
KONG J, 1998, CHEM PHYS LETT, V292, P567.
KOTOSONOV AS, 1997, PHYS LETT A, V229, P377.
KROTO HW, 1985, NATURE, V318, P162.
LEE SM, 2000, SYNTHETIC MET, V113, P209.
LIJIMA S, 1991, NATURE, V354, P56.
MAHANANDIA P, 2008, NANOTECHNOLOGY, V19, ARTN 155602.
MAHANANDIA P, 2008, REV SCI INSTRUM, V19, UNSP 053909.
MU YH, 2001, SYNTHETIC MET, V122, P443.
OVCHINNIKOV AA, 1994, PHYS LETT A, V195, P95.
REN ZF, 1998, SCIENCE, V282, P1105.
SATISHKUMAR BC, 2002, CHEM PHYS LETT, V362, P301.
SONG HH, 2003, CHEM PHYS LETT, V374, P400, DOI 10.1016/S0009-2614(03)00773-5.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
TALIN AA, 2001, DIAM RELAT MATER, V10, P265.
THESS A, 1996, SCIENCE, V273, P483.
TREACY MMJ, 1996, NATURE, V381, P678.
WIND SJ, 2002, APPL PHYS LETT, V80, P3817.
YUAN LM, 2001, CHEM PHYS LETT, V346, P23.

Cited Reference Count:
30

Times Cited:
0

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Physics, Condensed Matter

ISSN:
0038-1098

DOI:
10.1016/j.ssc.2009.11.023

IDS Number:
566RQ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275573600004
*Order Full Text [ ]

Title:
Liquid dimethyl sulphoxide confined by carbon nanotubes

Authors:
Chaban, VV; Kalugin, ON

Author Full Names:
Chaban, V. V.; Kalugin, O. N.

Source:
JOURNAL OF MOLECULAR LIQUIDS 151 (2-3): 113-116 FEB 10 2010

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotube; Dimethyl sulphoxide; Molecular dynamics simulation; Cylindrical distribution function

KeyWords Plus:
WATER; DYNAMICS; DIMETHYLSULFOXIDE; FLOW

Abstract:
Here, we report the molecular dynamics simulation on liquid dimethyl sulphoxide (DMSO) confined by single-walled carbon nanotubes (SWCNTs) in comparison with DMSO in the bulk phase at 298 K. The local order of DMSO, analysed in terms of radial distribution functions is similar to that in the bulk except the case with the SWCNT (8, 8) where the anomalous structure pattern is realized. Meanwhile, the translational self-diffusion coefficients of DMSO in confinements are much lower then in the bulk phase (by a factor of 2-3) and correlate with a value of the SWCNT internal diameter. Using cylindrical distribution functions of DMSO atoms we elucidate that the slowdown of self-diffusion coefficient of DMSO confined in the SWCNTs is reduced by the first layer of DMSO molecules close to the SWCNT wall. (C) 2009 Elsevier B.V. All rights reserved.

Reprint Address:
Kalugin, ON, Kharkov Natl Univ, Dept Inorgan Chem, Svoboda Sq 4, UA-61077 Kharkov, Ukraine.

Research Institution addresses:
[Chaban, V. V.; Kalugin, O. N.] Kharkov Natl Univ, Dept Inorgan Chem, UA-61077 Kharkov, Ukraine

E-mail Address:
Oleg.N.Kalugin@univer.kharkov.ua

Cited References:
ADYA AK, 2001, MOL PHYS, V99, P835.
CHABAN VV, 2008, J MOL LIQ, V145, P145.
CZESLIK C, 1999, J CHEM PHYS, V111, P9739.
HANASAKI I, 2006, NANOTECHNOLOGY, V17, P2794, DOI 10.1088/0957-4484/17/11/012.
HUMMER G, 2001, NATURE, V414, P188.
JIANG JW, 2004, NANO LETT, V4, P241, DOI 10.1021/nl034961y.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KALUGIN ON, 2006, KHARKIV U B, V597, P41.
KALUGIN ON, 2008, NANO LETT, V8, P2126, DOI 10.1021/nl072976g.
LEE Y, 2004, NANO LETT, V4, P619, DOI 10.1021/nl049946n.
LEONI L, 2004, ADV DRUG DELIVER REV, V56, P211, DOI 10.1016/j.addr.2003.08.014.
LIU HY, 1995, J AM CHEM SOC, V117, P4363.
MARTIN D, 1975, DIMETHYL SULFOXIDE.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
PARIKH K, 2006, SENSOR ACTUAT B-CHEM, V113, P55, DOI 10.1016/j.snb.2005.02.021.
SERVICE RF, 2006, SCIENCE, V313, P902.
SHEN AJ, 1999, J ELECTROANAL CHEM, V479, P32.
SI SK, 2000, J PHYS CHEM B, V104, P10775.
VANGUNSTEREN WF, 1996, GROMOS 96 MANUAL USE.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XUE YQ, 2006, NANOTECHNOLOGY, V17, P5216, DOI 10.1088/0957-4484/17/20/029.

Cited Reference Count:
21

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
0167-7322

DOI:
10.1016/j.molliq.2009.11.011

IDS Number:
569CK

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275376200050
*Order Full Text [ ]

Title:
A Quasi-One-Dimensional Model for a Chain of Water Molecules on the Nanometer Scale

Authors:
Wu, KF; Wan, RZ; Wang, CL; Ren, XP; Fang, HP

Author Full Names:
Wu Ke-Fei; Wan Rong-Zheng; Wang Chun-Lei; Ren Xiu-Ping; Fang Hai-Ping

Source:
CHINESE PHYSICS LETTERS 27 (3): Art. No. 034501 MAR 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; CHANNEL; PERMEATION; CONDUCTION; DYNAMICS; AQUAPORIN-1; GRAMICIDIN; TRANSPORT; MECHANISM; WIRE

Abstract:
Water confined into the interior channels of narrow carbon nanotubes or transmembrane proteins can form collectively oriented molecular chains held together by tight hydrogen bonds. We develop a quasi-one-dimensional model for a chain of water molecules which interact with each other via the Coulomb and power-like repulsive interactions. We explore the equilibrium property of the water chain and derive an exact analytical expression for the total interaction energy of the water chain, denoted by W-int((0)). It is found that W-int((0)) is minimal when the distance between the two neighboring water molecules in a hydrogen-bonded chain is equal to 0.265 nm. The model is expected to be useful for studying analytically the properties of single-file water molecules inside water channels, such as the concerted motion of water molecules.

Reprint Address:
Wan, RZ, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204, Shanghai 201800, Peoples R China.

Research Institution addresses:
[Wu Ke-Fei; Wan Rong-Zheng; Wang Chun-Lei; Ren Xiu-Ping; Fang Hai-Ping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Wu Ke-Fei; Wang Chun-Lei; Ren Xiu-Ping] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China; [Fang Hai-Ping] Chinese Acad Sci, TPCSF, Beijing 100049, Peoples R China

E-mail Address:
wanrongzheng@sinap.ac.cn

Cited References:
AKESON M, 1991, BIOPHYS J, V60, P101.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DENISOV SI, 2003, PHYS REV B, V68, UNSP 064301.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HUMMER G, 2001, NATURE, V414, P188.
JENSEN MO, 2002, P NATL ACAD SCI USA, V99, P6731.
JIANG YX, 2002, NATURE, V417, P515.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
LI JY, 2007, CHINESE PHYS LETT, V24, P2710.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LU HJ, 2008, CHINESE PHYS LETT, V25, P1145.
POMES R, 1996, BIOPHYS J, V71, P19.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TU YS, 2009, P NATL ACAD SCI USA, V106, P18120, DOI 10.1073/pnas.0902676106.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
ZENG L, 2008, CHINESE PHYS LETT, V25, P1486.
ZHU FQ, 2002, BIOPHYS J, V83, P154.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.

Cited Reference Count:
22

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Multidisciplinary

ISSN:
0256-307X

DOI:
10.1088/0256-307X/27/3/034501

IDS Number:
566NA

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, March 19, 2010

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275242200018
*Order Full Text [ ]

Title:
Friction force on slow charges moving over supported graphene

Authors:
Allison, KF; Miskovic, ZL

Author Full Names:
Allison, K. F.; Miskovic, Z. L.

Source:
NANOTECHNOLOGY 21 (13): Art. No. 134017 APR 2 2010

Language:
English

Document Type:
Article

KeyWords Plus:
IMPURITY SCATTERING; EPITAXIAL GRAPHENE; SOLID-SURFACE; PARTICLES; IONS; BEHAVIOR; PHONONS; BANDGAP

Abstract:
We provide a theoretical model that describes the dielectric coupling of a two-dimensional (2D) layer of graphene, represented by a polarization function in the random phase approximation, and a semi-infinite three-dimensional (3D) substrate, represented by a surface response function in a non-local formulation. We concentrate on the role of the dynamic response of the substrate for low-frequency excitations of the combined graphene-substrate system, which give rise to the stopping force on slowly moving charges above doped graphene. A comparison of the dielectric loss function with experimental high-resolution electron energy loss spectroscopy (HREELS) data for graphene on a SiC substrate is used to estimate the effects of damping rate and the local field correction in graphene, as well as to reveal the importance of phonon excitations in an insulating substrate. While the local field correction and linearly dispersing damping rate did not yield any important effects compar!
ed to the constant damping rate in graphene, a strong signature of the hybridization between graphene's p plasmon and the substrate's phonon is found in both the HREELS spectra and the stopping force. A friction coefficient that is calculated for slow charges moving above graphene on a metallic substrate shows an interplay between the low-energy single-particle excitations in both systems.

Reprint Address:
Allison, KF, Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada.

Research Institution addresses:
[Allison, K. F.; Miskovic, Z. L.] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada

Cited References:
ADAM S, 2009, SOLID STATE COMMUN, V149, P1072, DOI 10.1016/j.ssc.2009.02.041.
ALLISON KF, 2009, PHYS REV B, V80, ARTN 195405.
BORISOV AG, 1999, PHYS REV LETT, V83, P5378.
CASTRONETO AH, 2009, REV MOD PHYS, V81, P109, DOI 10.1103/RevModPhys.81.109.
CHEN F, 2009, NANO LETT, V9, P1621, DOI 10.1021/nl803922m.
CHEN F, 2009, NANO LETT, V9, P2571, DOI 10.1021/nl900725u.
DEDKOV GV, 2002, PHYS SOLID STATE+, V44, P1809.
DENTON C, 1998, PHYS REV A, V57, P4498.
EBERLEIN T, 2008, PHYS REV B, V77, ARTN 233406.
ECHENIQUE PM, 2001, PROG SURF SCI, V67, P271.
FISCHETTI MV, 2001, J APPL PHYS, V90, P4587.
FRATINI S, 2008, PHYS REV B, V77, ARTN 195415.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
HWANG EH, 2007, PHYS REV B, V75, ARTN 205418.
HWANG EH, 2009, PHYS REV B, V79, ARTN 165404.
IBACH H, 1982, ELECT ENERGY LOSS SP.
JANG C, 2008, PHYS REV LETT, V101, ARTN 146805.
KHANTHA M, 2004, PHYS REV B, V70, ARTN 125422.
KHOMYAKOV PA, 2009, PHYS REV B, V79, ARTN 195425.
KONAR A, 2009, ARXIV09020819V1CONDM.
KRAMBERGER C, 2008, PHYS REV LETT, V100, ARTN 196803.
KWEI CM, 2003, J APPL PHYS, V93, P9130, DOI 10.1063/1.1569974.
LIU Y, 2008, PHYS REV B, V78, ARTN 201403.
LIU Y, 2009, ARXIV09102735V1CONDM.
MERMIN ND, 1970, PHYS REV B-SOLID ST, V1, P2362.
MOWBRAY DJ, 2006, PHYS REV B, V74, ARTN 195435.
NIENHAUS H, 1995, SURF SCI, V324, L328.
NUNEZ R, 1980, J PHYS C SOLID STATE, V13, P4229.
PONOMARENKO LA, 2009, PHYS REV LETT, V102, ARTN 206603.
QAIUMZADEH A, 2008, SOLID STATE COMMUN, V147, P172, DOI 10.1016/j.ssc.2008.05.036.
RADOVIC I, 2008, PHYS REV B, V77, ARTN 075428.
RITCHIE RH, 1966, SURF SCI, V4, P234.
ROMERO HE, 2008, ACS NANO, V2, P2037, DOI 10.1021/nn800354m.
ROTENBERG E, 2008, NAT MATER, V7, P258, DOI 10.1038/nmat2154a.
SONDE S, 2009, J VAC SCI TECHNOL B, V27, P868, DOI 10.1116/1.3081890.
TAN YW, 2007, PHYS REV LETT, V99, ARTN 246803.
TOMASSONE S, 1997, PHYS REV B, V56, P4938.
WINTER H, 2002, PHYS REP, V367, P387.
WINTTERLIN J, 2009, SURF SCI, V603, P1841, DOI 10.1016/j.susc.2008.08.037.
WUNSCH B, 2006, NEW J PHYS, V8, ARTN 318.
ZHOU SY, 2007, NAT MATER, V6, P770, DOI 10.1038/nmat2003.

Cited Reference Count:
41

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Engineering, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied

ISSN:
0957-4484

DOI:
10.1088/0957-4484/21/13/134017

IDS Number:
564UD

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275085000049
*Order Full Text [ ]

Title:
A Controllable Molecular Sieve for Na+ and K+ Ions

Authors:
Gong, XJ; Li, JC; Xu, K; Wang, JF; Yang, H

Author Full Names:
Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (6): 1873-1877 FEB 17 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; POTASSIUM CHANNELS; MASS-TRANSPORT; WATER CHANNEL; SELECTIVITY; CONDUCTION; FLOW; NANOPORES

Abstract:
The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems Molecular sieves for ions can be achieved by steric and electrical effects However, the radii of Na+ and K+ are quite similar, they both carry a positive charge, making them difficult to separate Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K+ or Na+ across the cell membrane However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e g, KcsA) Our molecular dynamics simulations show that the remarkable selectivity!
is attributed to the hydration structure of Na+ or K+ confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water

Reprint Address:
Gong, XJ, Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Peoples R China.

Research Institution addresses:
[Gong, Xiaojing; Xu, Ke; Wang, Jianfeng; Yang, Hui] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Peoples R China; [Yang, Hui] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China; [Li, Jichen] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England

Cited References:
BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e.
BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u.
BOSTICK DL, 2007, P NATL ACAD SCI USA, V104, P9260, DOI 10.1073/pnas.0700554104.
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211.
COLE D, 2006, NAT MATER, V5, P305, DOI 10.1038/nmat1608.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
HARDING MM, 2002, ACTA CRYSTALLOGR D 5, V58, P872.
HILLE B, 1999, NAT MED, V5, P1105.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JIANG YX, 2002, NATURE, V417, P523.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KYOTANI T, 2001, CARBON, V39, P782.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
MACKINNON R, 2004, ANGEW CHEM INT EDIT, V43, P4265, DOI 10.1002/anie.200400662.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
NOSKOV SY, 2004, NATURE, V431, P830, DOI 10.1038/nature02943.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHAO Q, 2009, NANO LETT, V9, P989, DOI 10.1021/nl803044k.
SHI N, 2006, NATURE, V440, P570, DOI 10.1038/nature04508.
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f.
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 198103.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
THOMAS M, 2007, BIOPHYS J, V93, P2635, DOI 10.1529/biophysj.107.108167.
VARMA S, 2007, BIOPHYS J, V93, P1093, DOI 10.1529/biophysj.107.107482.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w.
YANG L, 2007, J CHEM PHYS, V126, ARTN 084706.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
38

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja905753p

IDS Number:
562WC

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275233900006
*Order Full Text [ ]

Title:
Growth process and mechanism of a multi-walled carbon nanotube nest deposited on a silicon nanoporous pillar array

Authors:
Jiang, WF; Jian, L; Yang, XH; Li, XJ

Author Full Names:
Jiang, Wei Fen; Jian, Lv; Yang, Xiao Hui; Li, Xin Jian

Source:
APPLIED SURFACE SCIENCE 256 (10): 3035-3039 MAR 1 2010

Language:
English

Document Type:
Article

Author Keywords:
Nest array of multi-walled carbon nanotubes; Silicon nanoporous pillar array; Growth mechanism

KeyWords Plus:
FIELD-EMISSION; TEMPERATURE; DECOMPOSITION; CATALYST

Abstract:
A large scale nest array of multi-walled carbon nanotubes (NACNTs) was grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition. Through observing its macro/micromorphology and structure, ascertaining the catalyst component and its locations at different growth time by hiring field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction, the growth process was deduced. Its thermal properties were also investigated by using a thermogravimetric analyzer. Our experiments demonstrated that the CNTs growth by means of root-growth mechanism at the initial growth stage, then a continuous growth process with its tip open is suggested, finally, a schematic growth model of NACNT/Si-NPA was presented. (C) 2009 Elsevier B.V. All rights reserved.

Reprint Address:
Jiang, WF, N China Inst Water Conservancy & Hydroelect Power, Dept Math & Informat Sci, 36 Beihuan Rd, Zhengzhou 450011, Peoples R China.

Research Institution addresses:
[Jiang, Wei Fen; Jian, Lv; Yang, Xiao Hui] N China Inst Water Conservancy & Hydroelect Power, Dept Math & Informat Sci, Zhengzhou 450011, Peoples R China; [Li, Xin Jian] Zhengzhou Univ, Dept Phys, Zhengzhou 450052, Peoples R China; [Li, Xin Jian] Zhengzhou Univ, Phys Mat Lab, Zhengzhou 450052, Peoples R China

E-mail Address:
gingerwfj@yahoo.com.cn

Cited References:
BAKER RTK, 1983, CARBON, V21, P463.
BAKER RTK, 1989, CARBON, V27, P315.
CHEN CM, 2004, DIAM RELAT MATER, V13, P1182, DOI 10.1016/j.diamond.2003.11.016.
CHEN P, 1999, SCIENCE, V285, P91.
DEHEER WA, 1995, SCIENCE, V270, P1179.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GROBUNOV A, 2002, CARBON, V40, P113.
HUANG W, 2003, CARBON, V41, P2585, DOI 10.1016/S0008-6223(03)00330-0.
JAVEY A, 2003, NATURE, V424, P654, DOI 10.1038/nature01797.
JIANG WF, 2007, SENSOR ACTUAT B-CHEM, V125, P651, DOI 10.1016/j.snb.2007.03.015.
JIANG WF, 2008, THIN SOLID FILMS, V517, P769, DOI 10.1016/j.tsf.2008.09.030.
JUNG MS, 2005, APPL PHYS LETT, V87, ARTN 013114.
KUKOVITSKY EF, 2000, CHEM PHYS LETT, V317, P65.
LI XJ, 1999, APPL PHYS LETT, V75, P2906.
LI XJ, 2007, NANOTECHNOLOGY, V18, ARTN 065203.
LI XJ, 2007, SENSOR ACTUAT B-CHEM, V123, P461, DOI 10.1016/j.snb.2006.09.021.
LIU BY, 2005, J CRYST GROWTH, V277, P293, DOI 10.1016/j.jcrysgro.2004.12.175.
LIU L, 2001, J AM CHEM SOC, V123, P11502.
RINZLER AG, 1995, SCIENCE, V269, P1550.
SHI YS, 2009, APPL SURF SCI, V255, P7713, DOI 10.1016/j.apsusc.2009.04.146.
XIANG R, 2007, ADV MATER, V19, P2360, DOI 10.1002/adma.200602468.
XU HJ, 2005, ACTA PHYS SIN-CH ED, V54, P2352.
ZHANG XF, 2002, CHEM PHYS LETT, V362, P285.
ZHANG ZJ, 2009, APPL SURF SCI, V255, P6404, DOI 10.1016/j.apsusc.2009.02.025.

Cited Reference Count:
24

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter

ISSN:
0169-4332

DOI:
10.1016/j.apsusc.2009.11.069

IDS Number:
564RL

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 7 new records this week (7 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275275000007
*Order Full Text [ ]

Title:
The Dynamic Response Function chi(T)(Q,t) of Confined Supercooled Water and its Relation to the Dynamic Crossover Phenomenon

Authors:
Chen, SH; Zhang, Y; Lagi, M; Chu, XQ; Liu, L; Faraone, A; Fratini, E; Baglioni, P

Author Full Names:
Chen, Sow-Hsin; Zhang, Yang; Lagi, Marco; Chu, Xiangqiang; Liu, Li; Faraone, Antonio; Fratini, Emiliano; Baglioni, Piero

Source:
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS 224 (1-2): 109-131 2010

Language:
English

Document Type:
Article

Author Keywords:
Dynamic Response Function; Confined Supercooled Water; Dynamic Crossover Phenomenon

KeyWords Plus:
PROTEIN HYDRATION WATER; STRONG LIQUID TRANSITION; GLASSY WATER; DIELECTRIC-RELAXATION; CARBON NANOTUBES; POROUS GLASSES; SIMULATIONS; TEMPERATURE; MODEL; SPECTROSCOPY

Abstract:
We have made a series of Quasi-Elastic Neutron Scattering (QENS) studies of supercooled water confined in 3-D and 1-D geometries, specifically, interstitial water in aged cement paste (3-D)and water confined in MCM-41-S and Double Wall Nano Tube DWNT (1-D). In addition, we also include the cases of hydration water oil protein surface and other biopolymer surfaces (Pseudo 2-D). By analyzing the QENS spectra using Relaxing Cage Model (RCM), we are able to extract accurately the self-intermediate scattering function of hydrogen atoms F-H(Q,t), at low-Q as a function of temperature T, showing an a-relaxation process at long time. We can then construct the Dynamic Response Function chi(T)(Q,t) = -dF(H)(Q,t)/dT. chi(T)(Q,t) as a function of t at constant Q shows a single peak at the characteristic alpha-relaxation time <tau >, the amplitude of which grows as we approach the dynamic crossover temperature T-L observed before in each of these geometries. However, the peak height of c!
hi(T)(Q,t) decreases after passing the crossover temperature T-L. We make all argument to relate the occurrence of the extremum of the peak height in chi(T) to the existence of the dynamic crossover temperature in each of these cases.

Reprint Address:
Chen, SH, MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA.

Research Institution addresses:
[Chen, Sow-Hsin; Zhang, Yang; Lagi, Marco; Chu, Xiangqiang; Liu, Li; Faraone, Antonio] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA; [Lagi, Marco; Fratini, Emiliano; Baglioni, Piero] Univ Florence, Dept Chem, I-50019 Florence, Italy; [Lagi, Marco; Fratini, Emiliano; Baglioni, Piero] Univ Florence, CSGI, I-50019 Florence, Italy; [Liu, Li] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA; [Faraone, Antonio] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA

E-mail Address:
sowhsin@MIT.EDU

Cited References:
ADAM G, 1965, J CHEM PHYS, V43, P139.
ANGELL CA, 1983, ANNU REV PHYS CHEM, V34, P593.
BERGMAN R, 2000, J CHEM PHYS, V113, P357.
BERGMAN R, 2000, NATURE, V403, P283.
BERTHIER L, 2005, SCIENCE, V310, P1797, DOI 10.1126/science.1120714.
BERTHIER L, 2007, J CHEM PHYS, V126, ARTN 184503.
BOTTI A, 2002, J CHEM PHYS, V117, P6196, DOI 10.1063/1.1503337.
CHEN SH, 1991, NATO ASI SER C-MATH, V329, P289.
CHEN SH, 1999, PHYS REV E, V59, P6708.
CHEN SH, 2006, J CHEM PHYS, V125, P71103, ARTN 171103.
CHEN SH, 2006, P NATL ACAD SCI USA, V103, P9012, DOI 10.1073/pnas.0602474103.
CHEN SH, 2009, WPI AIMR 2009 UNPUB.
CHU X, 2007, PHYS REV E, V76, UNSP 021501.
CHU XQ, 2008, PHYS REV E 1, V77, ARTN 011908.
DEBENEDETTI PG, 2003, J PHYS-CONDENS MAT, V15, R1669.
DEBENEDETTI PG, 2003, PHYS TODAY, V56, P40.
DORAZIO F, 1990, PHYS REV B A, V42, P9810.
DOUBLE DD, 1976, NATURE, V237, P82.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FARAONE A, 2004, J CHEM PHYS, V121, P10843, DOI 10.1063/1.1832595.
FARAONE A, 2009, J CHEM PHYS UNPUB.
GILRA NK, 1968, PHYS LETT, V28, P51.
GUTINA A, 2003, MICROPOR MESOPOR MAT, V58, P237, DOI 10.1016/S1387-1811(02)00651-0.
HESS B, 1997, J COMPUT CHEM, V18, P1463.
HOLLY R, 1998, J CHEM PHYS, V108, P4183.
HORN HW, 2004, J CHEM PHYS, V120, P9665, DOI 10.1063/1.1683075.
HUMMER G, 2001, NATURE, V414, P188.
ITO K, 1999, NATURE, V398, P492.
JENNINGS HM, 2008, CEMENT CONCRETE RES, V38, P275, DOI 10.1016/j.cemconres.2007.10.006.
JORGENSEN WL, 1988, J AM CHEM SOC, V110, P1657.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KORB JP, 1996, PHYS REV LETT, V77, P2312.
KUMAR P, 2006, PHYS REV LETT, V97, ARTN 177802.
KUMAR P, 2008, PHYS REV LETT, V100, ARTN 105701.
LAGI M, 2008, J PHYS CHEM B, V112, P1571, DOI 10.1021/jp710714j.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU D, 2008, PHYS REV LETT, V101, ARTN 135501.
LIU DZ, 2007, P NATL ACAD SCI USA, V104, P9570, DOI 10.1073/pnas.0701352104.
LIU L, 2005, PHYS REV LETT, V95, ARTN 117802.
LIU L, 2006, J PHYS-CONDENS MAT, V18, S2261, DOI 10.1088/0953-8984/18/36/S03.
MALLAMACE F, 2007, J CHEM PHYS, V127, ARTN 045104.
MALLAMACE F, 2007, P NATL ACAD SCI USA, V104, P18387, DOI 10.1073/pnas.0706504104.
MAMONTOV E, 2006, J CHEM PHYS, V124, ARTN 194703.
MISHIMA O, 1998, NATURE, V396, P329.
NOMURA S, 1977, BIOPOLYMERS, V16, P231.
OGUNI M, 2007, CHEM-ASIAN J, V2, P514, DOI 10.1002/asia.200600362.
PAWLUS S, 2008, PHYS REV LETT, V100, ARTN 108103.
PONYATOVSKY EG, 1998, J CHEM PHYS, V109, P2413.
POOLE PH, 1992, NATURE, V360, P324.
RONNE C, 1999, PHYS REV LETT, V82, P2888.
RONNE C, 2002, J MOL LIQ, V101, P199.
RYABOV Y, 2001, J PHYS CHEM B, V105, P1845.
SAMOUILLAN V, 2004, BIOMACROMOLECULES, V5, P958, DOI 10.1021/bm034436t.
SCIORTINO F, 1996, PHYS REV E, V54, P6331.
SEYEDYAZDI J, 2008, J PHYS-CONDENS MAT, V20, ARTN 205107.
SEYEDYAZDI J, 2008, J PHYS-CONDENS MAT, V20, ARTN 205108.
STAPF S, 1995, PHYS REV LETT, V75, P2855.
SWENSON J, 2007, J PHYS-CONDENS MAT, V19, ARTN 205109.
TANAKA H, 2000, EUROPHYS LETT, V50, P340.
TAREK M, 2000, BIOPHYS J, V79, P3244.
TAREK M, 2002, PHYS REV LETT, V88, UNSP 138101.
TAREK M, 2002, PHYS REV LETT, V89, ARTN 275501.
TONINELLI C, 2005, PHYS REV E 1, V71, ARTN 041505.
VOGEL M, 2008, PHYS REV LETT, V101, ARTN 225701.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
XU LM, 2005, P NATL ACAD SCI USA, V102, P16558, DOI 10.1073/pnas.0507870102.
ZHANG Y, 2008, J PHYS-CONDENS MAT, V20, ARTN 502101.
ZHANG Y, 2009, PHYS REV E UNPUB.

Cited Reference Count:
69

Times Cited:
0

Publisher:
OLDENBOURG VERLAG; LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY

Subject Category:
Chemistry, Physical

ISSN:
0942-9352

DOI:
10.1524/zpch.2010.6095

IDS Number:
565FP

========================================================================

*Record 2 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275084600065
*Order Full Text [ ]

Title:
Effects of Cosolvents on the Hydration of Carbon Nanotubes

Authors:
Yang, LJ; Gao, YQ

Author Full Names:
Yang, Lijiang; Gao, Yi Qin

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (2): 842-848 JAN 20 2010

Language:
English

Document Type:
Article

KeyWords Plus:
AQUEOUS UREA SOLUTIONS; MOLECULAR-DYNAMICS; HYDROPHOBIC INTERACTIONS; WATER; PROTEINS; DENATURATION; TRANSPORT; STABILITY; MECHANISM; SYSTEMS

Abstract:
Molecular dynamics simulations of a nonpolar single-walled carbon nanotube (SWNT) solvated in aqueous solutions of urea, methanol, and trimethylamine N-oxide (TMAO) show clearly the effects of cosolvents on the hydration of the interior of the SWNT. The size of the SWNT was chosen to be small enough that water but not the cosolvent molecules can penetrate into its interior. Urea as a protein denaturant improves hydration of the interior of the SWNT, while the protein protectant TMAO dehydrates the SWNT. The interior of the SWNT is also dehydrated when methanol is added to the solution. The analysis of interaction energies of the water confined inside the SWNT pore shows that the stability of the confined water in the methanol and TMAO solutions mainly depends on electrostatic interactions. In contrast, both van der Waals and electrostatic interactions were shown to be important in stabilizing the confined water when the SWNT is immersed in the urea solution.

Reprint Address:
Gao, YQ, Texas A&M Univ, Dept Chem, POB 30012, College Stn, TX 77842 USA.

Research Institution addresses:
[Yang, Lijiang; Gao, Yi Qin] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA

E-mail Address:
yiqin@mail.chem.tamu.edu

Cited References:
BENNION BJ, 2003, P NATL ACAD SCI USA, V100, P5142, DOI 10.1073/pnas.0930122100.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
BIANCHI E, 1970, J BIOL CHEM, V245, P3341.
BOLEN DW, 2008, ANNU REV BIOCHEM, V77, P339, DOI 10.1146/annurev.biochem.77.061306.131357.
BUCK M, 1993, BIOCHEMISTRY-US, V32, P669.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DUFFY EM, 1993, J AM CHEM SOC, V115, P9271.
FINER EG, 1972, J AM CHEM SOC, V94, P4424.
HAYASHI Y, 2007, J NON-CRYST SOLIDS, V353, P4492, DOI 10.1016/j.jnoncrysol.2007.02.079.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUA L, 2008, P NATL ACAD SCI USA, V105, P16928, DOI 10.1073/pnas.0808427105.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KAST KM, 2003, J PHYS CHEM A, V107, P5342, DOI 10.1021/jp027336a.
KOKUBO H, 2007, BIOPHYS J, V93, P3392, DOI 10.1529/biophysj.107.114181.
KUHARSKI RA, 1984, J AM CHEM SOC, V106, P5786.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
ROBINSON DR, 1965, J AM CHEM SOC, V87, P2462.
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327.
SOPER AK, 2003, BIOPHYS CHEM, V105, P649, DOI 10.1016/S0301-4622(03)00095-4.
TANFORD C, 1964, J AM CHEM SOC, V86, P2050.
TIMASHEFF SN, 1993, ANNU REV BIOPH BIOM, V22, P67.
WALLQVIST A, 1998, J AM CHEM SOC, V120, P427.
WEI HY, 2009, J PHYS CHEM B 1123.
ZANGI R, 2009, J AM CHEM SOC, V131, P1535, DOI 10.1021/ja807887g.
ZOU Q, 2002, J AM CHEM SOC, V124, P1192.

Cited Reference Count:
30

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja9091825

IDS Number:
562VY

========================================================================

*Record 3 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275084700037
*Order Full Text [ ]

Title:
Hydrophobic Peptide Channels and Encapsulated Water Wires

Authors:
Raghavender, US; Kantharaju; Aravinda, S; Shamala, N; Balaram, P

Author Full Names:
Raghavender, Upadhyayula S.; Kantharaju; Aravinda, Subrayashastry; Shamala, Narayanaswamy; Balaram, Padmanabhan

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (3): 1075-1086 JAN 27 2010

Language:
English

Document Type:
Article

KeyWords Plus:
ASSEMBLING ORGANIC NANOTUBES; TRANSMEMBRANE ION CHANNELS; M2 PROTON CHANNEL; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURES; RHODOBACTER-SPHAEROIDES; BIOMOLECULAR SYSTEMS; CARBONIC-ANHYDRASE; NAK CHANNEL; CHAIN

Abstract:
Peptide nanotubes with filled and empty pores and close-packed structures are formed in closely related pentapeptides. Enantiomorphic sequences, Boc-(D)Pro-Aib-Xxx-Aib-Val-OMe (Xxx = Leu, 1; Val, 2; Ala, 3; Phe, 4) and Boc-Pro-Aib-(D)Xxx-Aib-(D)Val-OMe ((XXX)-X-D = (D)Leu, 5; (D)Val, 6; (D)Ala, 7; (D)Phe, 8), yield molecular structures with a very similar backbone conformation but varied packing patterns in crystals. Peptides 1, 2, 5, and 6 show tubular structures with the molecules self-assembling along the crystallographic six-fold axis (c-axis) and revealing a honeycomb arrangement laterally (ab plane). Two forms of entrapped water wires have been characterized in 2: 2a with d(O center dot center dot center dot O) = 2.6 angstrom and 2b with d(O center dot center dot center dot O) = 3.5 angstrom. The latter is observed in 6 (6a) also. A polymorphic form of 6 (6b), grown from a solution of methanol-water, was observed to crystallize in a monoclinic system as a close-packed !
structure. Single-file water wire arrangements encapsulated inside hydrophobic channels formed by peptide nanotubes could be established by modeling the published structures in the cases of a cyclic peptide and a dipeptide. In all the entrapped water wires, each water molecule is involved in a hydrogen bond with a previous and succeeding water molecule. The O-H group of the water not involved in any hydrogen bond does not seem to be involved in an energetically significant interaction with the nanotube interior, a general feature of the one-dimensional water wires encapsulated in hydrophobic environements. Water wires in hydrophobic channels are contrasted with the single-file arrangements in amphipathic channels formed by aquaporins.

Reprint Address:
Shamala, N, Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India.

Research Institution addresses:
[Raghavender, Upadhyayula S.; Aravinda, Subrayashastry; Shamala, Narayanaswamy] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India; [Kantharaju; Balaram, Padmanabhan] Indian Inst Sci, Mol Biophys Unit, Bangalore 560012, Karnataka, India

E-mail Address:
shamala@physics.iisc.ernet.in; pb@mbu.iisc.ernet.in

Cited References:
AGMON N, 1995, CHEM PHYS LETT, V244, P456.
ALAM A, 2009, NAT STRUCT MOL BIOL, V16, P30, DOI 10.1038/nsmb.1531.
ALAM A, 2009, NAT STRUCT MOL BIOL, V16, P35, DOI 10.1038/nsmb.1537.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P380.
ARAVINDA S, 2003, J AM CHEM SOC, V125, P5308, DOI 10.1021/ja0341283.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BARBOUR LJ, 2000, CHEM COMMUN, P859.
BEREZHKOVSKII A, 2002, PHYS REV LETT, UNSP 89064503.
BERNSTEIN FC, 1977, J MOL BIOL, V112, P535.
BLANTON WB, 1999, J AM CHEM SOC, V121, P3551.
BONG DT, 2001, ANGEW CHEM INT EDIT, V40, P2163.
BONG DT, 2001, ANGEW CHEM INT EDIT, V40, P988.
BONIFAZI D, 2009, CHEM-EUR J, V15, P7004, DOI 10.1002/chem.200900900.
BREWER ML, 2001, BIOPHYS J, V80, P1691.
BURYKIN A, 2003, BIOPHYS J, V85, P3696.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CHAKRABARTI N, 2004, STRUCTURE, V12, P65, DOI 10.1016/j.str.2003.11.017.
CHATTERJEE B, 2008, CHEM-EUR J, V14, P6192, DOI 10.1002/chem.200702029.
CLARK TD, 1998, J AM CHEM SOC, V120, P651.
CUI Q, 2003, J PHYS CHEM B, V107, P1071, DOI 10.1021/jp021931v.
CUSTELCEAN R, 2000, ANGEW CHEM INT EDIT, V39, P3094.
DAY TJF, 2000, J AM CHEM SOC, V122, P12027.
DELANO WL, 2002, PYMOL MOL GRAPHICS S.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
DOEDENS RJ, 2002, CHEM COMMUN, P62.
ENGEL A, 2002, J PHYSL, V542, P3.
ENGELS M, 1995, J AM CHEM SOC, V117, P9151.
ERMLER U, 1994, STRUCTURE, V2, P925.
FERNANDEZLOPEZ S, 2001, NATURE, V412, P452.
FUJIYOSHI Y, 2002, CURR OPIN STRUC BIOL, V12, P509.
GHADIRI MR, 1993, NATURE, V366, P324.
GHADIRI MR, 1994, NATURE, V369, P301.
GHADIRI MR, 1995, ANGEW CHEM INT EDIT, V34, P93.
GHOSH SK, 2003, INORG CHEM, V42, P8250, DOI 10.1021/ic034976z.
GORBITZ CH, 1996, ACTA CRYSTALLOGR C 7, V52, P1764.
GORBITZ CH, 2001, CHEM-EUR J, V7, P5153.
GORBITZ CH, 2003, NEW J CHEM, V27, P1789, DOI 10.1039/b305984g.
GORBITZ CH, 2007, CHEM-EUR J, V13, P1022, DOI 10.1002/chem.200601427.
GORBITZ CH, 2008, J PEPT SCI, V14, P210, DOI 10.1002/psc.985.
HO JD, 2009, P NATL ACAD SCI USA, V106, P7437, DOI 10.1073/pnas.0902725106.
HORNE WS, 2003, J AM CHEM SOC, V125, P9372, DOI 10.1021/ja034358h.
HUMMER G, 2001, NATURE, V414, P188.
KARLE IL, 1975, ACTA CRYSTALLOGR B B, V31, P555.
KHALILIARAGHI F, 2009, CURR OPIN STRUC BIOL, V19, P128, DOI 10.1016/j.sbi.2009.02.011.
KHAZANOVICH N, 1994, J AM CHEM SOC, V116, P6011.
KHURANA E, 2009, P NATL ACAD SCI USA, V106, P1069, DOI 10.1073/pnas.0811720106.
KITAGAWA S, 2004, ANGEW CHEM INT EDIT, V43, P2334, DOI 10.1002/anie.200300610.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
LAMOUREUX G, 2007, BIOPHYS J, V92, L82, DOI 10.1529/biophysj.106.102756.
LU DS, 1998, J AM CHEM SOC, V120, P4006.
LUECKE H, 1999, J MOL BIOL, V291, P899.
MA BQ, 2004, ANGEW CHEM INT EDIT, V43, P1374.
MASCAL M, 2006, ANGEW CHEM INT EDIT, V45, P32, DOI 10.1002/anie.200501839.
MIYAZAWA T, 1961, J POLYM SCI, V55, P215.
MOORTHY JN, 2002, ANGEW CHEM INT EDIT, V41, P3417.
NIELSEN S, 2002, PHYSIOL REV, V82, P205.
PAL S, 2003, ANGEW CHEM INT EDIT, V42, P1741, DOI 10.1002/anie.200250444.
PARTHASARATHI R, 2009, J PHYS CHEM A, V113, P3744, DOI 10.1021/jp806793e.
POMES R, 1996, BIOPHYS J, V71, P19.
POMES R, 2002, BIOPHYS J, V82, P2304.
RAGHAVENDER US, 2009, J AM CHEM SOC, V131, P15130, DOI 10.1021/ja9038906.
SAHA I, 2008, BIOPOLYMERS, V90, P537, DOI 10.1002/bip.20982.
SANCHEZOUESADA J, 2002, J AM CHEM SOC, V124, P10004, DOI 10.1021/ja025983+.
SCANLON S, 2008, NANO TODAY, V3, P22.
SEIBOLD SA, 2005, BIOCHEMISTRY-US, V44, P10475, DOI 10.1021/bi0502902.
STOUFFER AL, 2008, NATURE, V451, P596, DOI 10.1038/nature06528.
STOYANOV ES, 2004, J AM CHEM SOC, V131, P17540.
SWANSON JMJ, 2007, J PHYS CHEM B, V111, P4300, DOI 10.1021/jp070104x.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TAKHASHI R, 2007, J PHYS CHEM B, V111, P9093.
VOTH GA, 2006, ACCOUNTS CHEM RES, V39, P143, DOI 10.1021/ar0402098.
YANG ZL, 2009, CHEM COMMUN, P2270, DOI 10.1039/b820539f.
YI MG, 2009, P NATL ACAD SCI USA, V106, P13311, DOI 10.1073/pnas.0906553106.

Cited Reference Count:
74

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja9083978

IDS Number:
562VZ

========================================================================

*Record 4 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275084800017
*Order Full Text [ ]

Title:
Evidence of Water Adsorption in Hydrophobic Nanospaces of Highly Pure Double-Walled Carbon Nanotubes

Authors:
Tao, YS; Muramatsu, H; Endo, M; Kaneko, K

Author Full Names:
Tao, Yousheng; Muramatsu, Hiroyuki; Endo, Morinobu; Kaneko, Katsumi

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (4): 1214-+ FEB 3 2010

Language:
English

Document Type:
Article

KeyWords Plus:
TEMPERATURE; NANOPORES

Abstract:
Highly pure double-walled carbon nanotubes synthesized by a catalytic chemical vapor deposition method have a quasi one-dimensional nanopore system. We determined these nanotubes' nanopore structures by means of molecular probe adsorption using N-2 at 77 K, CO2 at 273 K, and water at 298, 308, and 318 K, as well as high-resolution transmission electron microscopy. The water vapor adsorption behavior of this system was quite unusual. At a lower relative pressure of P/P-0 = 0.3-0.65, water Filled the interstitial nanopores, and at relative pressures higher than this range, water also filled the interbundle nanopores. This Study is the first to our knowledge that has provided direct evidence of water adsorption in hydrophobic nanospaces of highly pure double-walled carbon nanotubes.

Reprint Address:
Tao, YS, Shinshu Univ, Inst Carbon Sci & Technol, Nagano 3808553, Japan.

Research Institution addresses:
[Tao, Yousheng; Muramatsu, Hiroyuki; Endo, Morinobu] Shinshu Univ, Inst Carbon Sci & Technol, Nagano 3808553, Japan; [Kaneko, Katsumi] Chiba Univ, Grad Sch Sci, Chiba 2638522, Japan

E-mail Address:
tao@endomoribu.shinshu-u.ac.jp

Cited References:
CI L, 2007, ADV MATER, V19, P1719, DOI 10.1002/adma.200602520.
ENDO M, 2005, NATURE, V433, P476, DOI 10.1038/433476a.
GREGG SJ, 1982, ADSORPTION SURFACE A, P25.
HOLT JK, 2009, ADV MATER, V21, P1.
HUMMER G, 2001, NATURE, V414, P188.
KOGA K, 2001, NATURE, V412, P802.
KONDRATYUK P, 2007, ACCOUNTS CHEM RES, V40, P995, DOI 10.1021/ar700013c.
MARSH H, 2006, ACTIVATED CARBON, P166.
MIYAMOTO J, 2006, J AM CHEM SOC, V128, P12636, DOI 10.1021/ja064744+.
OHBA T, 2004, J AM CHEM SOC, V126, P1560, DOI 10.1021/ja038842w.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
SAITO R, 2001, CHEM PHYS LETT, V348, P187.
SANSOM MSP, 2001, NATURE, V414, P156.
STRIOLO A, 2005, J CHEM PHYS, V122, ARTN 234712.
STRIOLO A, 2005, LANGMUIR, V21, P9457, DOI 10.1021/la051120t.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TAO Y, 2009, APPL PHYS LETT, V94, ARTN 113105.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.

Cited Reference Count:
18

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja9091215

IDS Number:
562WA

========================================================================

*Record 5 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275085000049
*Order Full Text [ ]

Title:
A Controllable Molecular Sieve for Na+ and K+ Ions

Authors:
Gong, XJ; Li, JC; Xu, K; Wang, JF; Yang, H

Author Full Names:
Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (6): 1873-1877 FEB 17 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; POTASSIUM CHANNELS; MASS-TRANSPORT; WATER CHANNEL; SELECTIVITY; CONDUCTION; FLOW; NANOPORES

Abstract:
The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems Molecular sieves for ions can be achieved by steric and electrical effects However, the radii of Na+ and K+ are quite similar, they both carry a positive charge, making them difficult to separate Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K+ or Na+ across the cell membrane However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e g, KcsA) Our molecular dynamics simulations show that the remarkable selectivity!
is attributed to the hydration structure of Na+ or K+ confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water

Reprint Address:
Gong, XJ, Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Peoples R China.

Research Institution addresses:
[Gong, Xiaojing; Xu, Ke; Wang, Jianfeng; Yang, Hui] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Peoples R China; [Yang, Hui] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China; [Li, Jichen] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England

Cited References:
BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e.
BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u.
BOSTICK DL, 2007, P NATL ACAD SCI USA, V104, P9260, DOI 10.1073/pnas.0700554104.
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211.
COLE D, 2006, NAT MATER, V5, P305, DOI 10.1038/nmat1608.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
HARDING MM, 2002, ACTA CRYSTALLOGR D 5, V58, P872.
HILLE B, 1999, NAT MED, V5, P1105.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JIANG YX, 2002, NATURE, V417, P523.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KYOTANI T, 2001, CARBON, V39, P782.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
MACKINNON R, 2004, ANGEW CHEM INT EDIT, V43, P4265, DOI 10.1002/anie.200400662.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
NOSKOV SY, 2004, NATURE, V431, P830, DOI 10.1038/nature02943.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHAO Q, 2009, NANO LETT, V9, P989, DOI 10.1021/nl803044k.
SHI N, 2006, NATURE, V440, P570, DOI 10.1038/nature04508.
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f.
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 198103.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
THOMAS M, 2007, BIOPHYS J, V93, P2635, DOI 10.1529/biophysj.107.108167.
VARMA S, 2007, BIOPHYS J, V93, P1093, DOI 10.1529/biophysj.107.107482.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w.
YANG L, 2007, J CHEM PHYS, V126, ARTN 084706.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
38

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja905753p

IDS Number:
562WC

========================================================================

*Record 6 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275045600003
*Order Full Text [ ]

Title:
Rapid Transport of Water via a Carbon Nanotube Syringe

Authors:
Rivera, JL; Starr, FW

Author Full Names:
Rivera, Jose L.; Starr, Francis W.

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 114 (9): 3737-3742 MAR 11 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; FLOW; CONDUCTION; MEMBRANES; CHANNEL; FILMS

Abstract:
The controlled flow of water molecules at the nanoscale is an initial step to many fluidic processes ill nanotechnology. Here we show how thin films of water call be drawn through a nanosyringe built from a carbon nanotube membrane and a "plunger". By increasing the speed of withdrawal of the plunger, we call obtain Molecular transport through the membrane at flux rates exceeding 1()25 molecules cm(-2) s(-1). Above I threshold speed around 0.25 nm/ns (25 cm/s), molecules cannot fill the chamber created by the plunger motion as fast as the chamber expands, and the resulting flux rate drops. By considering hydrophobic or hydrophilic Plungers, we unexpectedly find that the nature of the water-plunger interactions does not affect the flux rate or the threshold plunger speed. While the water structure near the plunger Surface differs significantly For different plunger interactions, the failure of the film away From the plunger surface is responsible for loss of transport. As I r!
esult, the surface interactions play a limited role in controlling the flux.

Reprint Address:
Starr, FW, Wesleyan Univ, Dept Phys, Middletown, CT 06457 USA.

Research Institution addresses:
[Rivera, Jose L.; Starr, Francis W.] Wesleyan Univ, Dept Phys, Middletown, CT 06457 USA; [Rivera, Jose L.] Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico

E-mail Address:
joserivera@iim.unam.mx; fstarr@wesleyan.edu

Cited References:
ARGYRIS D, 2008, J PHYS CHEM C, V112, P13587, DOI 10.1021/jp803234a.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DZUBIELLA J, 2005, J CHEM PHYS, V122, P14.
EVANS DJ, 1977, MOL PHYS, V34, P327.
EVANS DJ, 1983, PHYS LETT A, V98, P433.
FANG HP, 2008, J PHYS D, V41, P16.
FRENKEL D, 1996, UNDERSTANDING MOL SI.
GIOVAMBATTISTA N, 2006, PHYS REV E, V73, P14.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GUO YJ, 1991, NATURE, V351, P464.
HANASAKI I, 2006, NANOTECHNOLOGY, V17, P2794, DOI 10.1088/0957-4484/17/11/012.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOOVER WG, 1982, PHYS REV LETT, V48, P1818.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KUMAR P, 2005, PHYS REV E, V72, P12.
KUMAR P, 2007, PHYS REV E, V75, P8.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
RAVIV U, 2001, NATURE, V413, P51.
RIVERA JL, 2002, NANO LETT, V2, P427.
RIVERA JL, 2007, J PHYS CHEM C, V111, P18899, DOI 10.1021/jp075989r.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
STRIOLO A, 2007, NANOTECHNOLOGY, V18, P10.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
33

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp906527c

IDS Number:
562JG

========================================================================

*Record 7 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275217500017
*Order Full Text [ ]

Title:
Mass transport and membrane separations: Universal description in terms of physicochemical potential and Einstein's mobility

Authors:
Kocherginsky, N

Author Full Names:
Kocherginsky, N.

Source:
CHEMICAL ENGINEERING SCIENCE 65 (4): 1474-1489 FEB 15 2010

Language:
English

Document Type:
Article

Author Keywords:
Membranes; Energy; Entropy; Separations; Transport processes; Linear thermodynamics; Reverse osmosis; Barodiffusion; Solution-diffusion model

KeyWords Plus:
SOLUTION-DIFFUSION MODEL; PERMEABILITY; VOLUME; WATER

Abstract:
General yet simple description of chemical transport processes in non-isolated system is suggested. It is based on extended Teorell equation and just two fundamental parameters: physicochemical potential and Einstein's mobility. Using mobility it is possible to compare the rates of all major linear transport phenomena, including pressure-driven migration and also nonideal and multicomponent diffusion. Relationship with the Stefan-Maxwell approach and Onsager's linear thermodynamics is demonstrated and physical interpretation of both diagonal and off-diagonal phenomenological coefficients is suggested. Imposing boundary conditions for transport equations allows description of transport in homogeneous membranes caused by several concurrent driving factors, such as concentration, pressure, and voltage. Differences of barodiffusion, membrane filtration, and reverse osmosis are considered. For a porous membrane an expression for the pressure-driven volumetric flux through the por!
es as a function of mobility and pore size is derived. It is explained why hydraulic flow prevails in submicron pores and why diffusion is the dominant mechanism in reverse osmosis if the pressure difference is not too high. The theory naturally leads to the solution-diffusion model equations but does not need usual assumptions of constant pressure across the membrane and the pressure jump only at one surface. Internal pressure and mechanical stress gradients within a membrane exist and can be useful in a description of rheology of aging polymer membranes. A new equation for concurrent diffusion and hydraulic transport is derived and two possible molecular mechanisms leading to the Kedem-Katchalsky equations for reverse osmosis membranes are suggested. Finally, electrokinetic processes are described and their similarity to concentration- and pressure-driven transport is discussed. (C) 2009 Elsevier Ltd. All rights reserved.

Reprint Address:
Kocherginsky, N, Biomime, 909 E Sunnycrest Dr, Urbana, IL 61801 USA.

Research Institution addresses:
Biomime, Urbana, IL 61801 USA

E-mail Address:
biomime@gmail.com

Cited References:
AGEEV EP, 1996, BIOFIZIKA+, V41, P613.
ALBERTY RA, 1997, PHYS CHEM.
ANNUNZIATA O, 2008, J PHYS CHEM B, V112, P11968, DOI 10.1021/jp803995n.
BAKER RW, 2004, MEMBRANE TECHNOLOGY.
BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e.
BEREZINA NP, 2009, ELECTROCHIM ACTA, V54, P2342, DOI 10.1016/j.electacta.2008.10.048.
BIRD BB, 1960, TRANSPORT PHENOMENA.
BOCKRIS JOM, 1998, MODERN ELECTROCHEMIS, V1, CH4.
BURGHOFF HG, 1980, J APPL POLYM SCI, V25, P323.
CANTOR RS, 1997, J PHYS CHEM B, V101, P1723.
CUSSLER EL, 1997, DIFFUSION MASS TRANS.
DEEN WM, 1998, ANAL TRANSPORT PHENO.
DEFAY R, 1966, SURFACE TENSION ADSO.
DEGROOT SR, 1962, NONEQUILIBRIUM THERM.
DERJAGUIN BV, 1987, SURFACE FORCES.
DO DD, 1998, ADSORPTION ANAL EQUI.
DOBOS D, 1978, ELECTROCHEMICAL DATA.
EINSTEIN A, 1956, INVESTIGATIONS THEOR.
FINKELSTEIN A, 1987, WATER MOVEMENT LIPID.
GERE JM, 1990, MECH MAT.
GIBBS JW, 1948, COLLECTED WORKS.
HAASE R, 1969, THERMODYNAMICS IRREV.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
ISLAM MA, 2004, PHYS SCRIPTA, V70, P114.
JOU D, 2001, THERMODYNAMICS FLUID.
KEDEM O, 1958, BIOCHIM BIOPHYS ACTA, V27, P229.
KOCHERGINSKY N, 2003, J PHYS CHEM B, V107, P7830, DOI 10.1021/jp0275721.
KOCHERGINSKY N, 2009, J MEMBRANE SCI, V328, P58, DOI 10.1016/j.memsci.2008.10.024.
KOCHERGINSKY NM, 1985, BIOL MEMBR, V1, P1734.
KOCHERGINSKY, 2009, CHEM ENG SCI UNPUB.
KONDEPUDI D, 1998, MODERN THERMODYNAMIC.
LAKSHMINARAYANA., 1969, TRANSPORT PHENOMENA.
MASON EA, 1990, J MEMBRANE SCI, V51, P1.
MULDER M, 1996, BASIC PRINCIPLES MEM.
ONSAGER L, 1931, PHYS REV, V37, P405.
PAUL DR, 2004, J MEMBRANE SCI, V241, P371, DOI 10.1016/j.memsci.2004.05.026.
PHAROAH JG, 2000, J MEMBRANE SCI, V176, P277.
PURI P, 2008, J APPL POLYM SCI, V108, P47, DOI 10.1002/app.26829.
RARD JA, 2009, J CHEM ENG DATA, V54, P636, DOI 10.1021/je800725k.
ROSENBAUM S, 1969, J POLYM SCI, V7, P101.
ROULSTON DJ, 1990, BIPOLAR SEMICONDUCTO.
SILVA V, 2009, CHEM ENG J, V149, P78, DOI 10.1016/j.cej.2008.10.002.
SOURIRAJAN S, 1970, REVERSE OSMOSIS.
SOURIRAJAN S, 1985, REVERSE OSMOSIS ULTR.
SPIEGLER KS, 1966, DESALINATION, V1, P311.
STOKES RJ, 1997, FUNDAMENTALS INTERFA.
STRATHMANN H, 2005, ULLMANNS ENCY IND CH, DOI 10.1002/14356007.A16_187.PUB2.
TEORELL T, 1935, P NATL ACAD SCI USA, V21, P152.
THAU G, 1966, DESALINATION, V1, P129.
WESSELINGH JA, 1990, MASS TRANSFER.
WIJMANS JG, 1995, J MEMBRANE SCI, V107, P1.
WIJMANS JG, 2004, J MEMBRANE SCI, V237, P39, DOI 10.1016/j.memsei.2004.02.028.
YAMPOLSKII Y, 2006, MAT SCI MEMBRANES GA.
YAROSHCHUK AE, 1995, J MEMBRANE SCI, V101, P83.

Cited Reference Count:
55

Times Cited:
0

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Engineering, Chemical

ISSN:
0009-2509

DOI:
10.1016/j.ces.2009.10.024

IDS Number:
564MA

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275084600065
*Order Full Text [ ]

Title:
Effects of Cosolvents on the Hydration of Carbon Nanotubes

Authors:
Yang, LJ; Gao, YQ

Author Full Names:
Yang, Lijiang; Gao, Yi Qin

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (2): 842-848 JAN 20 2010

Language:
English

Document Type:
Article

KeyWords Plus:
AQUEOUS UREA SOLUTIONS; MOLECULAR-DYNAMICS; HYDROPHOBIC INTERACTIONS; WATER; PROTEINS; DENATURATION; TRANSPORT; STABILITY; MECHANISM; SYSTEMS

Abstract:
Molecular dynamics simulations of a nonpolar single-walled carbon nanotube (SWNT) solvated in aqueous solutions of urea, methanol, and trimethylamine N-oxide (TMAO) show clearly the effects of cosolvents on the hydration of the interior of the SWNT. The size of the SWNT was chosen to be small enough that water but not the cosolvent molecules can penetrate into its interior. Urea as a protein denaturant improves hydration of the interior of the SWNT, while the protein protectant TMAO dehydrates the SWNT. The interior of the SWNT is also dehydrated when methanol is added to the solution. The analysis of interaction energies of the water confined inside the SWNT pore shows that the stability of the confined water in the methanol and TMAO solutions mainly depends on electrostatic interactions. In contrast, both van der Waals and electrostatic interactions were shown to be important in stabilizing the confined water when the SWNT is immersed in the urea solution.

Reprint Address:
Gao, YQ, Texas A&M Univ, Dept Chem, POB 30012, College Stn, TX 77842 USA.

Research Institution addresses:
[Yang, Lijiang; Gao, Yi Qin] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA

E-mail Address:
yiqin@mail.chem.tamu.edu

Cited References:
BENNION BJ, 2003, P NATL ACAD SCI USA, V100, P5142, DOI 10.1073/pnas.0930122100.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
BIANCHI E, 1970, J BIOL CHEM, V245, P3341.
BOLEN DW, 2008, ANNU REV BIOCHEM, V77, P339, DOI 10.1146/annurev.biochem.77.061306.131357.
BUCK M, 1993, BIOCHEMISTRY-US, V32, P669.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DUFFY EM, 1993, J AM CHEM SOC, V115, P9271.
FINER EG, 1972, J AM CHEM SOC, V94, P4424.
HAYASHI Y, 2007, J NON-CRYST SOLIDS, V353, P4492, DOI 10.1016/j.jnoncrysol.2007.02.079.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUA L, 2008, P NATL ACAD SCI USA, V105, P16928, DOI 10.1073/pnas.0808427105.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KAST KM, 2003, J PHYS CHEM A, V107, P5342, DOI 10.1021/jp027336a.
KOKUBO H, 2007, BIOPHYS J, V93, P3392, DOI 10.1529/biophysj.107.114181.
KUHARSKI RA, 1984, J AM CHEM SOC, V106, P5786.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
ROBINSON DR, 1965, J AM CHEM SOC, V87, P2462.
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327.
SOPER AK, 2003, BIOPHYS CHEM, V105, P649, DOI 10.1016/S0301-4622(03)00095-4.
TANFORD C, 1964, J AM CHEM SOC, V86, P2050.
TIMASHEFF SN, 1993, ANNU REV BIOPH BIOM, V22, P67.
WALLQVIST A, 1998, J AM CHEM SOC, V120, P427.
WEI HY, 2009, J PHYS CHEM B 1123.
ZANGI R, 2009, J AM CHEM SOC, V131, P1535, DOI 10.1021/ja807887g.
ZOU Q, 2002, J AM CHEM SOC, V124, P1192.

Cited Reference Count:
30

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja9091825

IDS Number:
562VY

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275085000049
*Order Full Text [ ]

Title:
A Controllable Molecular Sieve for Na+ and K+ Ions

Authors:
Gong, XJ; Li, JC; Xu, K; Wang, JF; Yang, H

Author Full Names:
Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (6): 1873-1877 FEB 17 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; POTASSIUM CHANNELS; MASS-TRANSPORT; WATER CHANNEL; SELECTIVITY; CONDUCTION; FLOW; NANOPORES

Abstract:
The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems Molecular sieves for ions can be achieved by steric and electrical effects However, the radii of Na+ and K+ are quite similar, they both carry a positive charge, making them difficult to separate Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K+ or Na+ across the cell membrane However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e g, KcsA) Our molecular dynamics simulations show that the remarkable selectivity!
is attributed to the hydration structure of Na+ or K+ confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water

Reprint Address:
Gong, XJ, Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Peoples R China.

Research Institution addresses:
[Gong, Xiaojing; Xu, Ke; Wang, Jianfeng; Yang, Hui] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Peoples R China; [Yang, Hui] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China; [Li, Jichen] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England

Cited References:
BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e.
BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u.
BOSTICK DL, 2007, P NATL ACAD SCI USA, V104, P9260, DOI 10.1073/pnas.0700554104.
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211.
COLE D, 2006, NAT MATER, V5, P305, DOI 10.1038/nmat1608.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
HARDING MM, 2002, ACTA CRYSTALLOGR D 5, V58, P872.
HILLE B, 1999, NAT MED, V5, P1105.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JIANG YX, 2002, NATURE, V417, P523.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KYOTANI T, 2001, CARBON, V39, P782.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
MACKINNON R, 2004, ANGEW CHEM INT EDIT, V43, P4265, DOI 10.1002/anie.200400662.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
NOSKOV SY, 2004, NATURE, V431, P830, DOI 10.1038/nature02943.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHAO Q, 2009, NANO LETT, V9, P989, DOI 10.1021/nl803044k.
SHI N, 2006, NATURE, V440, P570, DOI 10.1038/nature04508.
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f.
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 198103.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
THOMAS M, 2007, BIOPHYS J, V93, P2635, DOI 10.1529/biophysj.107.108167.
VARMA S, 2007, BIOPHYS J, V93, P1093, DOI 10.1529/biophysj.107.107482.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w.
YANG L, 2007, J CHEM PHYS, V126, ARTN 084706.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
38

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja905753p

IDS Number:
562WC

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275045600003
*Order Full Text [ ]

Title:
Rapid Transport of Water via a Carbon Nanotube Syringe

Authors:
Rivera, JL; Starr, FW

Author Full Names:
Rivera, Jose L.; Starr, Francis W.

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 114 (9): 3737-3742 MAR 11 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; FLOW; CONDUCTION; MEMBRANES; CHANNEL; FILMS

Abstract:
The controlled flow of water molecules at the nanoscale is an initial step to many fluidic processes ill nanotechnology. Here we show how thin films of water call be drawn through a nanosyringe built from a carbon nanotube membrane and a "plunger". By increasing the speed of withdrawal of the plunger, we call obtain Molecular transport through the membrane at flux rates exceeding 1()25 molecules cm(-2) s(-1). Above I threshold speed around 0.25 nm/ns (25 cm/s), molecules cannot fill the chamber created by the plunger motion as fast as the chamber expands, and the resulting flux rate drops. By considering hydrophobic or hydrophilic Plungers, we unexpectedly find that the nature of the water-plunger interactions does not affect the flux rate or the threshold plunger speed. While the water structure near the plunger Surface differs significantly For different plunger interactions, the failure of the film away From the plunger surface is responsible for loss of transport. As I r!
esult, the surface interactions play a limited role in controlling the flux.

Reprint Address:
Starr, FW, Wesleyan Univ, Dept Phys, Middletown, CT 06457 USA.

Research Institution addresses:
[Rivera, Jose L.; Starr, Francis W.] Wesleyan Univ, Dept Phys, Middletown, CT 06457 USA; [Rivera, Jose L.] Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico

E-mail Address:
joserivera@iim.unam.mx; fstarr@wesleyan.edu

Cited References:
ARGYRIS D, 2008, J PHYS CHEM C, V112, P13587, DOI 10.1021/jp803234a.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DZUBIELLA J, 2005, J CHEM PHYS, V122, P14.
EVANS DJ, 1977, MOL PHYS, V34, P327.
EVANS DJ, 1983, PHYS LETT A, V98, P433.
FANG HP, 2008, J PHYS D, V41, P16.
FRENKEL D, 1996, UNDERSTANDING MOL SI.
GIOVAMBATTISTA N, 2006, PHYS REV E, V73, P14.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GUO YJ, 1991, NATURE, V351, P464.
HANASAKI I, 2006, NANOTECHNOLOGY, V17, P2794, DOI 10.1088/0957-4484/17/11/012.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOOVER WG, 1982, PHYS REV LETT, V48, P1818.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KUMAR P, 2005, PHYS REV E, V72, P12.
KUMAR P, 2007, PHYS REV E, V75, P8.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
RAVIV U, 2001, NATURE, V413, P51.
RIVERA JL, 2002, NANO LETT, V2, P427.
RIVERA JL, 2007, J PHYS CHEM C, V111, P18899, DOI 10.1021/jp075989r.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
STRIOLO A, 2007, NANOTECHNOLOGY, V18, P10.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
33

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp906527c

IDS Number:
562JG

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000275084600065>
*Order Full Text [ ]
AU Yang, LJ
Gao, YQ
AF Yang, Lijiang
Gao, Yi Qin
TI Effects of Cosolvents on the Hydration of Carbon Nanotubes
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID AQUEOUS UREA SOLUTIONS; MOLECULAR-DYNAMICS; HYDROPHOBIC INTERACTIONS;
WATER; PROTEINS; DENATURATION; TRANSPORT; STABILITY; MECHANISM; SYSTEMS
AB Molecular dynamics simulations of a nonpolar single-walled carbon
nanotube (SWNT) solvated in aqueous solutions of urea, methanol, and
trimethylamine N-oxide (TMAO) show clearly the effects of cosolvents on
the hydration of the interior of the SWNT. The size of the SWNT was
chosen to be small enough that water but not the cosolvent molecules
can penetrate into its interior. Urea as a protein denaturant improves
hydration of the interior of the SWNT, while the protein protectant
TMAO dehydrates the SWNT. The interior of the SWNT is also dehydrated
when methanol is added to the solution. The analysis of interaction
energies of the water confined inside the SWNT pore shows that the
stability of the confined water in the methanol and TMAO solutions
mainly depends on electrostatic interactions. In contrast, both van der
Waals and electrostatic interactions were shown to be important in
stabilizing the confined water when the SWNT is immersed in the urea
solution.
C1 [Yang, Lijiang; Gao, Yi Qin] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA.
RP Gao, YQ, Texas A&M Univ, Dept Chem, POB 30012, College Stn, TX 77842
USA.
EM yiqin@mail.chem.tamu.edu
CR BENNION BJ, 2003, P NATL ACAD SCI USA, V100, P5142, DOI
10.1073/pnas.0930122100
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503
BIANCHI E, 1970, J BIOL CHEM, V245, P3341
BOLEN DW, 2008, ANNU REV BIOCHEM, V77, P339, DOI
10.1146/annurev.biochem.77.061306.131357
BUCK M, 1993, BIOCHEMISTRY-US, V32, P669
DARDEN T, 1993, J CHEM PHYS, V98, P10089
DUFFY EM, 1993, J AM CHEM SOC, V115, P9271
FINER EG, 1972, J AM CHEM SOC, V94, P4424
HAYASHI Y, 2007, J NON-CRYST SOLIDS, V353, P4492, DOI
10.1016/j.jnoncrysol.2007.02.079
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUA L, 2008, P NATL ACAD SCI USA, V105, P16928, DOI
10.1073/pnas.0808427105
HUMMER G, 2001, NATURE, V414, P188
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KAST KM, 2003, J PHYS CHEM A, V107, P5342, DOI 10.1021/jp027336a
KOKUBO H, 2007, BIOPHYS J, V93, P3392, DOI 10.1529/biophysj.107.114181
KUHARSKI RA, 1984, J AM CHEM SOC, V106, P5786
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI
10.1146/annurev.physchem.59.032607.093815
ROBINSON DR, 1965, J AM CHEM SOC, V87, P2462
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327
SOPER AK, 2003, BIOPHYS CHEM, V105, P649, DOI
10.1016/S0301-4622(03)00095-4
TANFORD C, 1964, J AM CHEM SOC, V86, P2050
TIMASHEFF SN, 1993, ANNU REV BIOPH BIOM, V22, P67
WALLQVIST A, 1998, J AM CHEM SOC, V120, P427
WEI HY, 2009, J PHYS CHEM B 1123
ZANGI R, 2009, J AM CHEM SOC, V131, P1535, DOI 10.1021/ja807887g
ZOU Q, 2002, J AM CHEM SOC, V124, P1192
NR 30
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
DI 10.1021/ja9091825
PD JAN 20
VL 132
IS 2
BP 842
EP 848
SC Chemistry, Multidisciplinary
GA 562VY
UT ISI:000275084600065
ER

PT J
*Record 2 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000275085000049>
*Order Full Text [ ]
AU Gong, XJ
Li, JC
Xu, K
Wang, JF
Yang, H
AF Gong, Xiaojing
Li, Jichen
Xu, Ke
Wang, Jianfeng
Yang, Hui
TI A Controllable Molecular Sieve for Na+ and K+ Ions
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID CARBON NANOTUBE MEMBRANES; POTASSIUM CHANNELS; MASS-TRANSPORT; WATER
CHANNEL; SELECTIVITY; CONDUCTION; FLOW; NANOPORES
AB The selective rate of specific ion transport across nanoporous material
is critical to biological and nanofluidic systems Molecular sieves for
ions can be achieved by steric and electrical effects However, the
radii of Na+ and K+ are quite similar, they both carry a positive
charge, making them difficult to separate Biological ionic channels
contain precisely arranged arrays of amino acids that can efficiently
recognize and guide the passage of K+ or Na+ across the cell membrane
However, the design of inorganic channels with novel recognition
mechanisms that control the ionic selectivity remains a challenge. We
present here a design for a controllable ion-selective nanopore
(molecular sieve) based on a single-walled carbon nanotube with
specially arranged carbonyl oxygen atoms modified inside the nanopore,
which was inspired by the structure of potassium channels in membrane
spanning proteins (e g, KcsA) Our molecular dynamics simulations show
that the remarkable selectivity is attributed to the hydration
structure of Na+ or K+ confined in the nanochannels, which can be
precisely tuned by different patterns of the carbonyl oxygen atoms The
results also suggest that a confined environment plays a dominant role
in the selectivity process. These studies provide a better
understanding of the mechanism of ionic selectivity in the KcsA channel
and possible technical applications in nanotechnology and
biotechnology, including serving as a laboratory-in-nanotube for
special chemical interactions and as a high-efficiency nanodevice for
purification or desalination of sea and brackish water
C1 [Gong, Xiaojing; Xu, Ke; Wang, Jianfeng; Yang, Hui] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Peoples R China.
[Yang, Hui] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China.
[Li, Jichen] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England.
RP Gong, XJ, Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou
215125, Peoples R China.
CR BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e
BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u
BOSTICK DL, 2007, P NATL ACAD SCI USA, V104, P9260, DOI
10.1073/pnas.0700554104
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211
COLE D, 2006, NAT MATER, V5, P305, DOI 10.1038/nmat1608
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u
DARDEN T, 1993, J CHEM PHYS, V98, P10089
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801
HARDING MM, 2002, ACTA CRYSTALLOGR D 5, V58, P872
HILLE B, 1999, NAT MED, V5, P1105
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
JIANG YX, 2002, NATURE, V417, P523
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326
KYOTANI T, 2001, CARBON, V39, P782
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI
10.1073/pnas.0604541104
LINDAHL E, 2001, J MOL MODEL, V7, P306
MACKINNON R, 2004, ANGEW CHEM INT EDIT, V43, P4265, DOI
10.1002/anie.200400662
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
NOSKOV SY, 2004, NATURE, V431, P830, DOI 10.1038/nature02943
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
SHAO Q, 2009, NANO LETT, V9, P989, DOI 10.1021/nl803044k
SHI N, 2006, NATURE, V440, P570, DOI 10.1038/nature04508
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 198103
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w
THOMAS M, 2007, BIOPHYS J, V93, P2635, DOI 10.1529/biophysj.107.108167
VARMA S, 2007, BIOPHYS J, V93, P1093, DOI 10.1529/biophysj.107.107482
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w
YANG L, 2007, J CHEM PHYS, V126, ARTN 084706
ZHU FQ, 2003, BIOPHYS J, V85, P236
NR 38
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
DI 10.1021/ja905753p
PD FEB 17
VL 132
IS 6
BP 1873
EP 1877
SC Chemistry, Multidisciplinary
GA 562WC
UT ISI:000275085000049
ER

PT J
*Record 3 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000275045600003>
*Order Full Text [ ]
AU Rivera, JL
Starr, FW
AF Rivera, Jose L.
Starr, Francis W.
TI Rapid Transport of Water via a Carbon Nanotube Syringe
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID MOLECULAR-DYNAMICS; FLOW; CONDUCTION; MEMBRANES; CHANNEL; FILMS
AB The controlled flow of water molecules at the nanoscale is an initial
step to many fluidic processes ill nanotechnology. Here we show how
thin films of water call be drawn through a nanosyringe built from a
carbon nanotube membrane and a "plunger". By increasing the speed of
withdrawal of the plunger, we call obtain Molecular transport through
the membrane at flux rates exceeding 1()25 molecules cm(-2) s(-1).
Above I threshold speed around 0.25 nm/ns (25 cm/s), molecules cannot
fill the chamber created by the plunger motion as fast as the chamber
expands, and the resulting flux rate drops. By considering hydrophobic
or hydrophilic Plungers, we unexpectedly find that the nature of the
water-plunger interactions does not affect the flux rate or the
threshold plunger speed. While the water structure near the plunger
Surface differs significantly For different plunger interactions, the
failure of the film away From the plunger surface is responsible for
loss of transport. As I result, the surface interactions play a limited
role in controlling the flux.
C1 [Rivera, Jose L.; Starr, Francis W.] Wesleyan Univ, Dept Phys, Middletown, CT 06457 USA.
[Rivera, Jose L.] Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico.
RP Starr, FW, Wesleyan Univ, Dept Phys, Middletown, CT 06457 USA.
EM joserivera@iim.unam.mx
fstarr@wesleyan.edu
CR ARGYRIS D, 2008, J PHYS CHEM C, V112, P13587, DOI 10.1021/jp803234a
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u
DZUBIELLA J, 2005, J CHEM PHYS, V122, P14
EVANS DJ, 1977, MOL PHYS, V34, P327
EVANS DJ, 1983, PHYS LETT A, V98, P433
FANG HP, 2008, J PHYS D, V41, P16
FRENKEL D, 1996, UNDERSTANDING MOL SI
GIOVAMBATTISTA N, 2006, PHYS REV E, V73, P14
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320
GUO YJ, 1991, NATURE, V351, P464
HANASAKI I, 2006, NANOTECHNOLOGY, V17, P2794, DOI
10.1088/0957-4484/17/11/012
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HOOVER WG, 1982, PHYS REV LETT, V48, P1818
HUMMER G, 2001, NATURE, V414, P188
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KUMAR P, 2005, PHYS REV E, V72, P12
KUMAR P, 2007, PHYS REV E, V75, P8
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI
10.1073/pnas.0604541104
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI
10.1146/annurev.physchem.59.032607.093815
RAVIV U, 2001, NATURE, V413, P51
RIVERA JL, 2002, NANO LETT, V2, P427
RIVERA JL, 2007, J PHYS CHEM C, V111, P18899, DOI 10.1021/jp075989r
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261
STRIOLO A, 2007, NANOTECHNOLOGY, V18, P10
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
ZHU FQ, 2003, BIOPHYS J, V85, P236
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126
NR 33
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
DI 10.1021/jp906527c
PD MAR 11
VL 114
IS 9
BP 3737
EP 3742
SC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
GA 562JG
UT ISI:000275045600003
ER

PT J
*Record 4 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000275217500017>
*Order Full Text [ ]
AU Kocherginsky, N
AF Kocherginsky, N.
TI Mass transport and membrane separations: Universal description in terms
of physicochemical potential and Einstein's mobility
SO CHEMICAL ENGINEERING SCIENCE
LA English
DT Article
DE Membranes; Energy; Entropy; Separations; Transport processes; Linear
thermodynamics; Reverse osmosis; Barodiffusion; Solution-diffusion model
ID SOLUTION-DIFFUSION MODEL; PERMEABILITY; VOLUME; WATER
AB General yet simple description of chemical transport processes in
non-isolated system is suggested. It is based on extended Teorell
equation and just two fundamental parameters: physicochemical potential
and Einstein's mobility. Using mobility it is possible to compare the
rates of all major linear transport phenomena, including
pressure-driven migration and also nonideal and multicomponent
diffusion. Relationship with the Stefan-Maxwell approach and Onsager's
linear thermodynamics is demonstrated and physical interpretation of
both diagonal and off-diagonal phenomenological coefficients is
suggested. Imposing boundary conditions for transport equations allows
description of transport in homogeneous membranes caused by several
concurrent driving factors, such as concentration, pressure, and
voltage. Differences of barodiffusion, membrane filtration, and reverse
osmosis are considered. For a porous membrane an expression for the
pressure-driven volumetric flux through the pores as a function of
mobility and pore size is derived. It is explained why hydraulic flow
prevails in submicron pores and why diffusion is the dominant mechanism
in reverse osmosis if the pressure difference is not too high. The
theory naturally leads to the solution-diffusion model equations but
does not need usual assumptions of constant pressure across the
membrane and the pressure jump only at one surface. Internal pressure
and mechanical stress gradients within a membrane exist and can be
useful in a description of rheology of aging polymer membranes. A new
equation for concurrent diffusion and hydraulic transport is derived
and two possible molecular mechanisms leading to the Kedem-Katchalsky
equations for reverse osmosis membranes are suggested. Finally,
electrokinetic processes are described and their similarity to
concentration- and pressure-driven transport is discussed. (C) 2009
Elsevier Ltd. All rights reserved.
C1 Biomime, Urbana, IL 61801 USA.
RP Kocherginsky, N, Biomime, 909 E Sunnycrest Dr, Urbana, IL 61801 USA.
EM biomime@gmail.com
CR AGEEV EP, 1996, BIOFIZIKA+, V41, P613
ALBERTY RA, 1997, PHYS CHEM
ANNUNZIATA O, 2008, J PHYS CHEM B, V112, P11968, DOI 10.1021/jp803995n
BAKER RW, 2004, MEMBRANE TECHNOLOGY
BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e
BEREZINA NP, 2009, ELECTROCHIM ACTA, V54, P2342, DOI
10.1016/j.electacta.2008.10.048
BIRD BB, 1960, TRANSPORT PHENOMENA
BOCKRIS JOM, 1998, MODERN ELECTROCHEMIS, V1, CH4
BURGHOFF HG, 1980, J APPL POLYM SCI, V25, P323
CANTOR RS, 1997, J PHYS CHEM B, V101, P1723
CUSSLER EL, 1997, DIFFUSION MASS TRANS
DEEN WM, 1998, ANAL TRANSPORT PHENO
DEFAY R, 1966, SURFACE TENSION ADSO
DEGROOT SR, 1962, NONEQUILIBRIUM THERM
DERJAGUIN BV, 1987, SURFACE FORCES
DO DD, 1998, ADSORPTION ANAL EQUI
DOBOS D, 1978, ELECTROCHEMICAL DATA
EINSTEIN A, 1956, INVESTIGATIONS THEOR
FINKELSTEIN A, 1987, WATER MOVEMENT LIPID
GERE JM, 1990, MECH MAT
GIBBS JW, 1948, COLLECTED WORKS
HAASE R, 1969, THERMODYNAMICS IRREV
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
ISLAM MA, 2004, PHYS SCRIPTA, V70, P114
JOU D, 2001, THERMODYNAMICS FLUID
KEDEM O, 1958, BIOCHIM BIOPHYS ACTA, V27, P229
KOCHERGINSKY N, 2003, J PHYS CHEM B, V107, P7830, DOI 10.1021/jp0275721
KOCHERGINSKY N, 2009, J MEMBRANE SCI, V328, P58, DOI
10.1016/j.memsci.2008.10.024
KOCHERGINSKY NM, 1985, BIOL MEMBR, V1, P1734
KOCHERGINSKY, 2009, CHEM ENG SCI UNPUB
KONDEPUDI D, 1998, MODERN THERMODYNAMIC
LAKSHMINARAYANA., 1969, TRANSPORT PHENOMENA
MASON EA, 1990, J MEMBRANE SCI, V51, P1
MULDER M, 1996, BASIC PRINCIPLES MEM
ONSAGER L, 1931, PHYS REV, V37, P405
PAUL DR, 2004, J MEMBRANE SCI, V241, P371, DOI
10.1016/j.memsci.2004.05.026
PHAROAH JG, 2000, J MEMBRANE SCI, V176, P277
PURI P, 2008, J APPL POLYM SCI, V108, P47, DOI 10.1002/app.26829
RARD JA, 2009, J CHEM ENG DATA, V54, P636, DOI 10.1021/je800725k
ROSENBAUM S, 1969, J POLYM SCI, V7, P101
ROULSTON DJ, 1990, BIPOLAR SEMICONDUCTO
SILVA V, 2009, CHEM ENG J, V149, P78, DOI 10.1016/j.cej.2008.10.002
SOURIRAJAN S, 1970, REVERSE OSMOSIS
SOURIRAJAN S, 1985, REVERSE OSMOSIS ULTR
SPIEGLER KS, 1966, DESALINATION, V1, P311
STOKES RJ, 1997, FUNDAMENTALS INTERFA
STRATHMANN H, 2005, ULLMANNS ENCY IND CH, DOI
10.1002/14356007.A16_187.PUB2
TEORELL T, 1935, P NATL ACAD SCI USA, V21, P152
THAU G, 1966, DESALINATION, V1, P129
WESSELINGH JA, 1990, MASS TRANSFER
WIJMANS JG, 1995, J MEMBRANE SCI, V107, P1
WIJMANS JG, 2004, J MEMBRANE SCI, V237, P39, DOI
10.1016/j.memsei.2004.02.028
YAMPOLSKII Y, 2006, MAT SCI MEMBRANES GA
YAROSHCHUK AE, 1995, J MEMBRANE SCI, V101, P83
NR 55
TC 0
PU PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE,
KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0009-2509
DI 10.1016/j.ces.2009.10.024
PD FEB 15
VL 65
IS 4
BP 1474
EP 1489
SC Engineering, Chemical
GA 564MA
UT ISI:000275217500017
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================