Friday, April 30, 2010

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276737700002
*Order Full Text [ ]

Title:
Vertically Aligned Single-Walled Carbon Nanotubes by Chemical Assembly - Methodology, Properties, and Applications

Authors:
Diao, P; Liu, ZF

Author Full Names:
Diao, Peng; Liu, Zhongfan

Source:
ADVANCED MATERIALS 22 (13): 1430-1449 APR 6 2010

Language:
English

Document Type:
Review

KeyWords Plus:
ELECTRON-TRANSFER KINETICS; SCANNING PROBE MICROSCOPY; FIELD-EMISSION; ELECTROCHEMICAL CHARACTERIZATION; FORCE MICROSCOPY; ROOM-TEMPERATURE; VAPOR-DEPOSITION; GOLD; ARRAYS; MONOLAYERS

Abstract:
Single-walled carbon nanotubes (SWNTs), as one of the most promising one-dimension nanomaterials due to its unique structure, peculiar chemical, mechanical, thermal, and electronic properties, have long been considered as an important building block to construct ordered alignments. Vertically aligned SWNTs (v-SWNTs) have been successfully prepared by using direct growth and chemical assembly strategies. In this review, we focus explicitly on the v-SWNTs fabricated via chemical assembly strategy. We provide the readers with a full and systematic summary covering the advances in all aspects of this area, including various approaches for the preparation of v-SWNTs using chemical assembly techniques, characterization, assembly kinetics, and electrochemical properties of v-SWNTs. We also review the applications of v-SWNTs in electrochemical and bioelectrochemical sensors, photoelectric conversion, and scanning probe microscopy.

Reprint Address:
Liu, ZF, Peking Univ, Coll Chem & Mol Engn, State Key Lab Struct Chem Unstable & Stable Speci, Beijing Natl Lab Mol Sci,Ctr Nanochem, Beijing 100871, Peoples R China.

Research Institution addresses:
[Liu, Zhongfan] Peking Univ, Coll Chem & Mol Engn, State Key Lab Struct Chem Unstable & Stable Speci, Beijing Natl Lab Mol Sci,Ctr Nanochem, Beijing 100871, Peoples R China; [Diao, Peng] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China

E-mail Address:
zfliu@pku.edu.cn

Cited References:
AGUIRRE CM, 2006, APPL PHYS LETT, V88, ARTN 183104.
AJAYAN PM, 1999, CHEM REV, V99, P1787.
AN KH, 2001, ADV MATER, V13, P497.
BACHTOLD A, 2001, SCIENCE, V294, P1317.
BAUGHMAN RH, 1999, SCIENCE, V284, P1340.
BERBER S, 2000, PHYS REV LETT, V84, P4613.
BETHUNE DS, 1993, NATURE, V363, P605.
BHARATHI S, 2001, LANGMUIR, V17, P1.
BONARD JM, 1998, APPL PHYS LETT, V73, P918.
CAI LT, 2002, CHEM MATER, V14, P4235, DOI 10.1021/cm020273o.
CHATTOPADHYAY D, 2001, J AM CHEM SOC, V123, P9451.
CHATTOPADHYAY J, 2006, CHEM MATER, V18, P5864, DOI 10.1021/cm0611082.
CHEN J, 1998, SCIENCE, V282, P95.
CHEN RJ, 2003, P NATL ACAD SCI USA, V100, P4984, DOI 10.1073/pnas.0837064100.
CHEN Z, 2005, J PHYS CHEM B, V109, P5473, DOI 10.1021/jp045796t.
CHEN ZY, 2006, J AM CHEM SOC, V128, P10568, DOI 10.1021/ja063283p.
CHEN ZY, 2006, J PHYS CHEM B, V110, P11624, DOI 10.1021/jp057494c.
CHIDSEY CED, 1990, J AM CHEM SOC, V112, P4301.
CHOI WB, 1999, APPL PHYS LETT, V75, P3129.
CHOU A, 2005, CHEM COMMUN, P842, DOI 10.1039/b415051a.
CHOU A, 2009, J PHYS CHEM C, V113, P3203, DOI 10.1021/jp809235x.
CINKE M, 2002, CHEM PHYS LETT, V365, P69.
CUI XD, 2001, SCIENCE, V294, P571.
CUI XD, 2002, J PHYS CHEM B, V106, P8609, DOI 10.1021/jp0206065.
DAI HJ, 1996, NATURE, V384, P147.
DAI HJ, 2002, ACCOUNTS CHEM RES, V35, P1035, DOI 10.1021/ar0101640.
DAI LM, 2003, CHEMPHYSCHEM, V4, P1150, DOI 10.1002/cphc.200300770.
DEHEER WA, 1995, SCIENCE, V268, P845.
DEHEER WA, 1995, SCIENCE, V270, P1179.
DIAO P, 2002, CHEMPHYSCHEM, V3, P898.
DIAO P, 2005, J PHYS CHEM B, V109, P20906, DOI 10.1021/jp052666r.
DIAO P, 2008, J PHYS CHEM C, V112, P7036, DOI 10.1021/jp077653n.
DUESBERG GS, 2000, PHYS REV LETT, V85, P5436.
FAN SS, 1999, SCIENCE, V283, P512.
FINKLEA HO, 1992, J AM CHEM SOC, V114, P3173.
FLAVEL BS, 2008, ELECTROCHIM ACTA, V53, P5653, DOI 10.1016/j.electacta.2008.03.022.
FLAVEL BS, 2009, ELECTROCHIM ACTA, V54, P3191, DOI 10.1016/j.electacta.2008.11.055.
FREEMAN RG, 1995, SCIENCE, V267, P1629.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GOODING JJ, 2003, J AM CHEM SOC, V125, P9006, DOI 10.1021/ja035722f.
GOODING JJ, 2005, ELECTROCHIM ACTA, V50, P3049, DOI 10.1016/j.electacta.2004.08.052.
GOODING JJ, 2007, ELECTROCHEM COMMUN, V9, P1677, DOI 10.1016/j.elecom.2007.03.023.
GU Z, 2002, NANO LETT, V2, P1009, DOI 10.1021/nl025675+.
HAFNER JH, 1999, J AM CHEM SOC, V121, P9750.
HAFNER JH, 1999, NATURE, V398, P761.
HAFNER JH, 2001, J PHYS CHEM B, V105, P743.
HATA K, 2004, SCIENCE, V306, P1362.
HONE J, 1999, PHYS REV B, V59, P2514.
HUANG JY, 2006, NATURE, V439, P281, DOI 10.1038/439281a.
HUANG LM, 2007, J MATER CHEM, V17, P3863, DOI 10.1039/b702080e.
HUANG XJ, 2007, LANGMUIR, V23, P991, DOI 10.1021/la0631441.
IWASAKI T, 2005, J PHYS CHEM B, V109, P19556, DOI 10.1021/jp054465t.
JOURNET C, 1997, NATURE, V388, P756.
JUNG MS, 2005, APPL PHYS LETT, V87, ARTN 013114.
JUNG MS, 2005, J PHYS CHEM B, V109, P10584, DOI 10.1021/jp0508103.
JUNG MS, 2007, SYNTHETIC MET, V157, P997, DOI 10.1016/j.synthmet.2007.10.007.
KATZ E, 2004, CHEMPHYSCHEM, V5, P1085, DOI 10.1002/cphc.200400193.
KIM SN, 2007, ADV MATER, V19, P3214, DOI 10.1002/adma.200700665.
KOEHNE J, 2004, J MATER CHEM, V14, P676, DOI 10.1039/b311728f.
KONG J, 1998, CHEM PHYS LETT, V292, P567.
KONG J, 1998, NATURE, V395, P878.
KONG J, 2000, SCIENCE, V287, P622.
KUMAR A, 1994, LANGMUIR, V10, P1498.
LI B, 2002, SYNTHETIC MET, V132, P5.
LI CY, 2004, NANOTECHNOLOGY, V15, P1493, DOI 10.1088/0957-4484/15/11/021.
LI F, 2000, APPL PHYS LETT, V77, P3161.
LI J, 2002, J PHYS CHEM B, V106, P9299, DOI 10.1021/jp021201n.
LI J, 2003, NANO LETT, V3, P597, DOI 10.1021/nl0340677.
LI WZ, 1996, SCIENCE, V274, P1701.
LIJIMA S, 1991, NATURE, V354, P56.
LIJIMA S, 1993, NATURE, V363, P603.
LIU J, 1998, SCIENCE, V280, P1253.
LIU JQ, 2005, ELECTROANAL, V17, P38, DOI 10.1002/elan.200403116.
LIU YQ, 2007, CARBON, V45, P1972, DOI 10.1016/j.carbon.2007.06.009.
LIU ZF, 2000, LANGMUIR, V16, P3569.
LOVE JC, 2005, CHEM REV, V105, P1103, DOI 10.1021/cr0300789.
MARUYAMA S, 2005, CHEM PHYS LETT, V403, P320, DOI 10.1016/j.cplett.2005.01.031.
MCCREERY RL, 1991, ELECTROANALYTICAL CH, V17, P221.
MCEUEN PL, 1998, NATURE, V393, P15.
MERLI D, 2009, CHEMPHYSCHEM, V10, P1090, DOI 10.1002/cphc.200800684.
MONTHIOUX M, 2001, CARBON, V39, P1251.
NAN XL, 2002, J COLLOID INTERF SCI, V245, P311.
NIYOGI S, 2002, ACCOUNTS CHEM RES, V35, P1105, DOI 10.1021/ar010155r.
NKOSI D, 2008, ELECTROCHIM ACTA, V53, P2782, DOI 10.1016/j.electacta.2007.10.073.
OCONNOR M, 2004, ANALYST, V129, P1176, DOI 10.1039/b412805b.
ODOM TW, 1998, NATURE, V391, P62.
OUYANG M, 2002, ACCOUNTS CHEM RES, V35, P1018, DOI 10.1021/ar0101685.
OZOEMENA KI, 2007, ELECTROCHIM ACTA, V52, P4132, DOI 10.1016/j.electacta.2006.11.039.
PATOLSKY F, 2004, ANGEW CHEM INT EDIT, V43, P2113, DOI 10.1002/anie.200353275.
PENG HL, 2005, J PHYS CHEM B, V109, P3526.
POP E, 2006, NANO LETT, V6, P96, DOI 10.1021/nl052145f.
RAO AM, 1997, SCIENCE, V275, P187.
RAUWALD U, 2009, CARBON, V47, P178, DOI 10.1016/j.carbon.2008.09.043.
REN ZF, 1998, SCIENCE, V282, P1105.
RIVAS GA, 2007, TALANTA, V74, P291, DOI 10.1016/j.talanta.2007.10.013.
RUECKES T, 2000, SCIENCE, V289, P94.
SANCHEZPOMALES G, 2007, J ELECTROANAL CHEM, V606, P47, DOI 10.1016/j.jelechem.2007.04.010.
SHEENEYHAJKHIA L, 2005, ANGEW CHEM INT EDIT, V44, P78, DOI 10.1002/anie.200461666.
TANS SJ, 1997, NATURE, V386, P474.
TANS SJ, 1998, NATURE, V393, P49.
TERRONES M, 1997, NATURE, V388, P52.
THESS A, 1996, SCIENCE, V273, P483.
THOSTENSON ET, 2005, COMPOS SCI TECHNOL, V65, P491, DOI 10.1016/j.compscitech.2004.11.003.
ULMAN A, 1996, CHEM REV, V96, P1533.
WANG Y, 2006, CHEM PHYS LETT, V432, P205, DOI 10.1016/j.cplett.2006.10.054.
WARAKULWIT C, 2008, J MATER CHEM, V18, P4056, DOI 10.1039/b805907a.
WEI H, 2007, J MATER CHEM, V17, P4577, DOI 10.1039/b710854k.
WEI H, 2008, MAT SCI ENG C-BIO S, V28, P1366, DOI 10.1016/j.msec.2008.03.002.
WEI HY, 2006, CHEM MATER, V18, P1100, DOI 10.1021/cm051074i.
WEI Z, 2006, J AM CHEM SOC, V128, P3134, DOI 10.1021/ja053950z.
WILDOER JWG, 1998, NATURE, V391, P59.
WONG SS, 1998, APPL PHYS LETT, V73, P3465.
WONG SS, 1998, J AM CHEM SOC, V120, P603.
WONG SS, 1998, J AM CHEM SOC, V120, P8557.
WONG SS, 1998, NATURE, V394, P52.
WU B, 2001, J PHYS CHEM B, V105, P5075.
WU ZC, 2004, SCIENCE, V305, P1273.
YAN YH, 2007, SMALL, V3, P24, DOI 10.1002/smll.200600354.
YANG YL, 2002, J PHYS CHEM B, V106, P4139.
YAO Z, 2000, PHYS REV LETT, V84, P2941.
YU JX, 2006, SOFT MATTER, V2, P1081, DOI 10.1039/b611016a.
YU JX, 2007, ELECTROCHIM ACTA, V52, P6206, DOI 10.1016/j.electacta.2007.03.071.
YU JX, 2007, PHYS CHEM CHEM PHYS, V9, P510, DOI 10.1039/b615096a.
YU JX, 2008, J AM CHEM SOC, V130, P8788, DOI 10.1021/ja801142k.
YU MF, 2000, PHYS REV LETT, V84, P5552.
YU X, 2003, ELECTROCHEM COMMUN, V5, P408, DOI 10.1016/S1388-2481(03)00076-6.
YU X, 2005, MOL BIOSYST, V1, P70, DOI 10.1039/b502124c.
YU X, 2006, J AM CHEM SOC, V128, P11199, ARTN JA062117E.
YU XF, 2000, SURF SCI, V461, P199.
ZHANG GY, 2005, P NATL ACAD SCI USA, V102, P16141, DOI 10.1073/pnas.0507064102.
ZHANG J, 2003, J PHYS CHEM B, V107, P3712, DOI 10.1021/jp027500u.
ZIEGLER KJ, 2005, J AM CHEM SOC, V127, P1541, DOI 10.1021/ja044537e.
ZIEGLER KJ, 2005, NANOTECHNOLOGY, V16, S539, DOI 10.1088/0957-4484/16/7/031.

Cited Reference Count:
133

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
0935-9648

DOI:
10.1002/adma.200903592

IDS Number:
584FY

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276818400025
*Order Full Text [ ]

Title:
Iron(III), nickel(II) and cadmium(II) complexes of triazamacrocyclic ligand with pendant nitrile groups 1,4,7-tris(cyanomethyl)-1,4,7-triazacyclononane: Synthesis, structural characteristics and artificial nuclease activity

Authors:
Zhang, Z; Geng, ZR; Kan, XW; Zhao, Q; Li, YZ; Wang, ZL

Author Full Names:
Zhang, Zhong; Geng, Zhi-Rong; Kan, Xian-Wen; Zhao, Qun; Li, Yi-Zhi; Wang, Zhi-Lin

Source:
INORGANICA CHIMICA ACTA 363 (8): 1805-1812 MAY 5 2010

Language:
English

Document Type:
Article

Author Keywords:
1,4,7-Triazacyclononane; Metal complexes; Nitrile; Crystal structure; Nuclease activity

KeyWords Plus:
PHOSPHATE DIESTER HYDROLYSIS; CRYSTAL-STRUCTURES; ARM DERIVATIVES; METAL-COMPLEXES; DNA-BINDING; TRIAZACYCLONONANE DERIVATIVES; TETRAAZAMACROCYCLIC LIGAND; PHOSPHODIESTER HYDROLYSIS; COBALT(III) COMPLEXES; COPPER(II) COMPLEXES

Abstract:
Three novel transition metal complexes with 1,4,7-tris(cyanomethyl)-1,4,7-triazacyclononane (L)were synthesized and structurally characterized. In complex [FeLCl3]center dot 2H(2)O (1), three N-donors from the macrocyclic backbone and three chloride anions complete the coordination polyhedron around Fe(III)and lead to a neutral [FeLCl3] unit. The neutral Fe(III)units of the same chirality are linked through weak interactions into 3D supramolecular network with hexagonal channels. Guest water molecules trapped inside the channel are associated into an unprecedented 1D linear chain. The crystal structures of complexes [NiL(CH3CN)(3)](ClO4)(2) center dot 0.5H(2)O (2)and [CdL(CH3CN)(3)](ClO4)(2)center dot 0.5H(2)O (3)reveal that the metal center lies in a distorted octahedral N6 environment with three acetonitrile occupying the remaining coordination sites opposite to the macrocyclic ring. The artificial nuclease activity of redox-active complex 1 towards pMD-AMT plasmid DNA was!
assessed by gel electrophoresis. As a result, complex 1 can effectively cleave supercoiled DNA under near physiological conditions with/without H2O2 in a time-and complex concentration-dependent manner. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Wang, ZL, Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Coordinat Chem, Nanjing 210093, Peoples R China.

Research Institution addresses:
[Zhang, Zhong; Geng, Zhi-Rong; Kan, Xian-Wen; Zhao, Qun; Li, Yi-Zhi; Wang, Zhi-Lin] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Coordinat Chem, Nanjing 210093, Peoples R China

E-mail Address:
zzkltl@163.com

Cited References:
*BRUK AXS INC, 2000, SHELXTL V6 1.
ADAMS H, 1999, J CHEM SOC DALTON, P4131.
BAKER MV, 2002, AUST J CHEM, V55, P655, DOI 10.1071/CH02063.
BUSHNELL GW, 1988, INORG CHEM, V27, P2626.
CHERUZEL LE, 2003, ANGEW CHEM INT EDIT, V42, P5452, DOI 10.1002/anie.200352157.
DEAL KA, 1996, INORG CHEM, V35, P2792.
DEAL KA, 1996, J AM CHEM SOC, V118, P1713.
DECK KM, 2002, INORG CHEM, V41, P669.
FLACK HD, 1983, ACTA CRYSTALLOGR A, V39, P876.
FREEMAN GM, 1984, INORG CHEM, V23, P3092.
HART SM, 1983, INORG CHEM, V22, P982.
HEGG EL, 1996, INORG CHEM, V35, P7474.
HEGG EL, 1999, INORG CHEM, V38, P2961.
HIROHAMA T, 2004, J INORG BIOCHEM, V98, P1778, DOI 10.1016/j.jinorgbio.2004.07.014.
HUMMER G, 2001, NATURE, V414, P188.
JEUNG CS, 2001, BIOORG MED CHEM LETT, V11, P3061.
JIANG Q, 2007, COORDIN CHEM REV, V251, P1951, DOI 10.1016/j.ccr.2007.02.013.
KONG DY, 1999, BIOORG MED CHEM LETT, V9, P1087.
KONG DY, 2000, POLYHEDRON, V19, P217.
KOYAMA H, 1972, B CHEM SOC JPN, V45, P481.
LIU CL, 2004, COORDIN CHEM REV, V248, P147, DOI 10.1016/j.cct.2003.11.002.
LIU J, 2003, DALTON T, P114, DOI 10.1039/b206079p.
MUKHERJEE A, 2004, CHEM COMMUN 0321, P716, DOI 10.1039/b316275c.
NEOGI S, 2005, INORG CHEM, V44, P816.
PAL S, 2003, ANGEW CHEM INT EDIT, V42, P1741, DOI 10.1002/anie.200250444.
QIAN J, 2007, DALTON T, P1060, DOI 10.1039/b615148e.
SCHLAGER O, 1995, INORG CHEM, V34, P6440.
SHAO Y, 2008, BIOCONJUGATE CHEM, V19, P1840, DOI 10.1021/bc800062g.
SHENG X, 2007, J ORG CHEM, V72, P1799, DOI 10.1021/jo0624041.
SHENG X, 2008, BIOCONJUGATE CHEM, V19, P490, DOI 10.1021/bc700322w.
SIGMAN DS, 1990, BIOCHEMISTRY-US, V29, P9097.
SIGMAN DS, 1993, ACCOUNTS CHEM RES, V26, P98.
SILVER GC, 1995, J AM CHEM SOC, V117, P3983.
SUH MP, 1994, INORG CHEM, V33, P5509.
TEI L, 1998, CHEM COMMUN 1207, P2633.
TEI L, 2002, J CHEM SOC DALTON, P1662.
TEI L, 2003, DALTON T 0207, P304, DOI 10.1039/b209091k.
TSUKUBE H, 1999, INORG CHEM, V38, P3506.
WAINWRIGHT KP, 1980, J CHEM SOC DA, P2117.
WAN SH, 2006, BIOORG MED CHEM LETT, V16, P2804, DOI 10.1016/j.bmcl.2006.01.106.
WIEGHARDT K, 1983, INORG CHEM, V22, P2953.
WIEGHARDT K, 1986, INORG CHEM, V25, P4877.
XIANG QX, 2005, J INORG BIOCHEM, V99, P1661, DOI 10.1016/j.jinorgbio.2005.05.008.
YANG R, 1976, INORG CHEM, V15, P1499.
ZHANG Z, 2006, INORG CHEM COMMUN, V9, P269, DOI 10.1016/j.inoche.2005.11.021.
ZOMPA LJ, 1995, INORG CHIM ACTA, V232, P131.

Cited Reference Count:
46

Times Cited:
0

Publisher:
ELSEVIER SCIENCE SA; PO BOX 564, 1001 LAUSANNE, SWITZERLAND

Subject Category:
Chemistry, Inorganic & Nuclear

ISSN:
0020-1693

DOI:
10.1016/j.ica.2010.02.024

IDS Number:
585IK

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, April 23, 2010

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276474300007
*Order Full Text [ ]

Title:
Integrated SWCNT sensors in micro-wind tunnel for air-flow shear-stress measurement

Authors:
Chow, WWY; Qu, YL; Li, WJ; Tung, SCH

Author Full Names:
Chow, Winnie W. Y.; Qu, Yanli; Li, Wen J.; Tung, Steve C. H.

Source:
MICROFLUIDICS AND NANOFLUIDICS 8 (5): 631-640 MAY 2010

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotubes; CNT sensors; Micro-flow sensor; Micro shear-stress sensor

Abstract:
We have developed SWCNT sensors for air-flow shear-stress measurement inside a polymethylmethacrylate (PMMA) "micro-wind tunnel" chip. An array of sensors is fabricated by using dielectrophoretic (DEP) technique to manipulate bundled single-walled carbon nanotubes (SWCNTs) across the gold microelectrodes on a PMMA substrate. The sensors are then integrated in a PMMA micro-wind tunnel, which is fabricated by SU-8 molding/hot-embossing technique. Since the sensors detect air flow by thermal transfer principle, we have first examined the I-V characteristics of the sensors and confirmed that self-heating effect occurs when the input voltage is above similar to 1 V. We then performed the flow sensing experiment on the sensors using constant temperature (CT) configuration with input power of similar to 230 mu W. The voltage output of the sensors increases with the increasing flow rate in the micro-wind tunnel and the detectable volumetric flow is in the order of 1 x 10(-5)m(3)/s. !
We also found that the activation power of the sensors has a linear relation with 1/3 exponential power of the shear stress which is similar to conventional hot-wire and polysilicon types of convection-based shear-stress sensors. Moreover, measurements of sensors with different overheat ratios were compared, and results showed that sensor is more sensitive to the flow with a higher overheat ratio.

Reprint Address:
Li, WJ, Chinese Univ Hong Kong, Ctr Micro & Nano Syst, William MW Mong Engn Bldg, Shatin, Hong Kong, Peoples R China.

Research Institution addresses:
[Chow, Winnie W. Y.; Li, Wen J.] Chinese Univ Hong Kong, Ctr Micro & Nano Syst, Shatin, Hong Kong, Peoples R China; [Qu, Yanli; Li, Wen J.; Tung, Steve C. H.] Chinese Acad Sci, State Key Lab Robot, Shenyang Inst Automat, Shenyang, Peoples R China; [Tung, Steve C. H.] Univ Arkansas, Dept Mech Engn, Fayetteville, AR 72701 USA

E-mail Address:
wen@mae.cuhk.edu.hk

Cited References:
CHOW WWY, 2008, P 3 IEEE INT C NAN M, P1011.
FUNG CKM, 2005, P IEEE SENS 2005, P541.
FUNG CKM, 2005, PROC IEEE MICR ELECT, P251.
FUNG CMKM, 2004, IEEE T NANOTECHNOL, V3, P395, DOI 10.1109/TNANO.2004.834156.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GOLDBERG HD, 1994, SOL STAT SENS ACT WO, P111.
HANRATTY TJ, 1996, FLUID MECH MEASUREME.
KOCH M, 2000, MICROFLUIDIC TECHNOL.
KONG J, 2000, SCIENCE, V287, P622.
LEI KF, 2005, MICROSYST TECHNOL, V11, P353, DOI 10.1007/s00542-004-0454-8.
LIAO KJ, 2003, MICROFAB TECHNOL, V4, P57.
LIU C, 1999, J MICROELECTROMECH S, V8, P90.
NAUGHTON JW, 2002, PROG AEROSP SCI, V38, P515.
NI CN, 2007, P MAT RES SOC S, V263.
ONG KG, 2002, IEEE SENS J, V2, P82.
PADMANABHAN A, 1997, IEEE P TRANSDUCERS 9, P137.
QU YL, 2008, IEEE T NANOTECHNOL, V7, P565, DOI 10.1109/TNANO.2008.928572.
SCHMIDT MA, 1988, IEEE T ELECTRON DEV, V35, P750.
SHEPLAK M, 2004, 20042606 AIAA.
SINHA N, 2006, J NANOSCI NANOTECHNO, V6, P573, DOI 10.1166/jnn.2006.121.
WONG TS, 2003, P IEEE MEMS, P41.
XU Y, 2004, PROC IEEE MICR ELECT, P833.
XU Y, 2005, J MICROELECTROMECH S, V14, P1023, DOI 10.1109/JMEMS.2005.856644.

Cited Reference Count:
23

Times Cited:
0

Publisher:
SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY

Subject Category:
Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas

ISSN:
1613-4982

DOI:
10.1007/s10404-009-0495-5

IDS Number:
580TW

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276551500002
*Order Full Text [ ]

Title:
Towards mimicking natural protein channels with aligned carbon nanotube membranes for active drug delivery

Authors:
Majumder, M; Stinchcomb, A; Hinds, BJ

Author Full Names:
Majumder, Mainak; Stinchcomb, Audra; Hinds, Bruce J.

Source:
LIFE SCIENCES 86 (15-16): 563-568 APR 10 2010

Language:
English

Document Type:
Review

Author Keywords:
Drug delivery; Biomimetic; Nanostructure; Gatekeeper; Membrane; Transdermal; Nanoporous

KeyWords Plus:
WATER; TRANSPORT; POLYSTYRENE; GROWTH; FLOW

Abstract:
Aims: Carbon nanotube (CNT) membranes offer an exciting opportunity to mimic natural protein channels due to 1) a mechanism of dramatically enhanced fluid flow 2) ability to place 'gatekeeper' chemistry at the entrance to pores 3) the ability for biochemical reactions to occur on gatekeeper molecules and 4) an ability to chemically functionalize each side of the membrane independently.
Main methods: Aligned CNT membranes were fabricated and CNT pore entrances modified with gatekeeper chemistry. Pressure driven fluid flow and diffusion experiments were performed to study the mechanisms of transport through CNTs.
Key findings: The transport mechanism through CNT membranes is primarily 1) ionic diffusion near bulk expectation 2) gas flow enhanced 1-2 orders of magnitude primarily due to specular reflection 3) fluid flow 4-5 orders of magnitude faster than conventional materials due to a nearly ideal slip-boundary interface. The transport can be modulated by 'gatekeeper' chemistry at the pore entrance using steric hindrance, electrostatic attraction/repulsion, or biochemical state. The conformation of charged tethered molecules can be modulated by applied bias setting the stage for programmable drug release devices.
Significance: The membrane structure is mechanically far more robust than lipid bilayer films, allowing for large-scale chemical separations, delivery or sensing based on the principles of protein channels. The performance of protein channels is several orders of magnitude faster than conventional membrane materials. The fundamental requirements of mimicking protein channels are present in the CNT membrane system. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.

Reprint Address:
Hinds, BJ, Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40502 USA.

Research Institution addresses:
[Majumder, Mainak; Hinds, Bruce J.] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40502 USA; [Stinchcomb, Audra] Univ Kentucky, Coll Pharm, Lexington, KY 40502 USA

E-mail Address:
bjhinds@engr.uky.edu

Cited References:
ANDREWS R, 1999, CHEM PHYS LETT, V303, P467.
BAHR JL, 2001, CHEM MATER, V13, P3823.
CHOPRA N, 2005, ADV FUNCT MATER, V15, P858, DOI 10.1002/adfm.200400399.
HILLE B, 1984, IONIC CHANNELS EXCIT.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG SM, 2002, J PHYS CHEM B, V106, P3543.
HUMMER G, 2001, NATURE, V414, P188.
JIRAGE KB, 1997, SCIENCE, V278, P655.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
LAUGA E, 2005, HDB EXPT FLUID DYNAM.
LEE SB, 2002, SCIENCE, V296, P2198.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k.
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI 10.1016/j.memsci.2007.09.068.
MAO ZG, 2001, J PHYS CHEM B, V105, P6916, DOI 10.1021/jp0103272.
MERKULOV VI, 2002, APPL PHYS LETT, V80, P4816.
MITCHELL CA, 2002, MACROMOLECULES, V35, P8825, DOI 10.1021/ma020890y.
MULDER M, 1994, BASIC PRINCIPLES MEM.
MURATA K, 2000, NATURE, V407, P599.
NEDNOOR P, 2005, CHEM MATER, V17, P3595, DOI 10.1021/cm047844s.
NEDNOOR P, 2007, J MATER CHEM, V17, P1755, DOI 10.1039/b703365f.
OHBA T, 2005, NANO LETT, V5, P227, DOI 10.1021/nl048327b.
QIAN D, 2000, APPL PHYS LETT, V76, P2868.
REN ZF, 1998, SCIENCE, V282, P1105.
SINNOTT SB, 1999, CHEM PHYS LETT, V315, P25.
SKOULIDAS AL, 2002, PHYS REV LETT, V89.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
STEINLE ED, 2002, ANAL CHEM, V74, P2416.
WONG SS, 1998, J AM CHEM SOC, V120, P8557.
ZHANG ZJ, 2000, APPL PHYS LETT, V77, P3764.

Cited Reference Count:
33

Times Cited:
1

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Medicine, Research & Experimental; Pharmacology & Pharmacy

ISSN:
0024-3205

DOI:
10.1016/j.lfs.2009.04.006

IDS Number:
581UY

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276428800009
*Order Full Text [ ]

Title:
A numerical simulation for mass transfer through the porous membrane of parallel straight channels

Authors:
Lu, JF; Lu, WQ

Author Full Names:
Lu, Junfeng; Lu, Wen-Qiang

Source:
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 53 (11-12): 2404-2413 MAY 2010

Language:
English

Document Type:
Article

Author Keywords:
Porous plate channel; Porous membrane; Ultra-filtration; Hemodialysis; Reverse osmosis

KeyWords Plus:
FLOW; PERMEABILITY; COEFFICIENT; LIQUID; WALLS; PORES; MODEL

Abstract:
In this paper, by adopting a "half-channel" model, a mass exchange process (presented in the therapy of hemodialysis) between two opposite running flows is numerically simulated. The flows are confined inside channels and separated by intercalary porous membranes. In the simulation, two types of flows, channel flow and ultra-filtration flow, are physically described, respectively, by Navier-Stokes equations and Kedem-Katchalsky (K-K) equations. By further adopting "SimpleR" algorithm, the velocity fields inside the channels are determined, meanwhile, solute mass distributions are predicted by concentration equation. The solid computation in this paper perfectly explored the process of hemodialysis, its results: (1) displayed the flow and solute distribution patterns inside channels; (2) described the ultra-filtration profiles along the surface of the porous membrane; and (3) disclosed an existent nano-scale reverse osmosis problem. (C) 2010 Elsevier Ltd. All rights reserved.

Reprint Address:
Lu, WQ, Chinese Acad Sci, Grad Univ, 19A Yuquanlu, Beijing 100049, Peoples R China.

Research Institution addresses:
[Lu, Wen-Qiang] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China; [Lu, Junfeng] Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100190, Peoples R China

E-mail Address:
junfenglu@mail.ipc.ac.cn; luwq@gucas.ac.cn

Cited References:
ANDERSON JL, 1974, BIOPHYS J, V14, P957.
ANDERSON JL, 1981, J THEOR BIOL, V90, P405.
BAURMEISTER U, 1989, ASAIO T, V35, P519.
BRADY JP, 1996, BIOPHYS J, V71, P3430.
CHU Y, 2009, ASME 2009 SUMM HEAT.
CHU Y, 2009, P 6 INT S MULT FLOW.
CRANK J, 1975, MATH DIFFUSION.
DAMAK K, 2004, DESALINATION, V161, P67.
DING WP, 2003, CHIN SCI B CHINESE V, V48, P1642.
GEE ML, 1990, J CHEM PHYS, V93, P1895.
GHOSAL S, 2002, TECHN P 2002 INT C M, V1, P68.
HUANG ZP, 2003, THESIS U KENTUCKY LE.
KEDEM O, 1958, BIOCHIM BIOPHYS ACTA, V27, P229.
KEDEM O, 1961, J GEN PHYSIOL, V45, P143.
LIAO ZJ, 2002, THESIS U KENTUCKY.
LU JF, 2009, ASME 2009 2 MICR NAN.
MARUCCI M, 2007, J PHYS D APPL PHYS, V40, P2870, DOI 10.1088/0022-3727/40/9/031.
MINESHIMA M, 2005, HEMODIAL INT, V9, P75.
PANICHI V, 1998, NEPHROL DIAL TRANSPL, V13, P1737.
PATANKAR SV, 1981, NUMER HEAT TRANSFER, V4, P409.
POH C, 2006, ENCY BIOMATERIALS BI, DOI 10.1081/E-EBBE-120007344.
QIAO R, 2002, TECHN P 2002 INT C M, V1, P28.
QIU YR, 2005, T NONFERR METAL SOC, V15, P686.
TEHVER R, 1998, PHYS REV E, V57, R17.
THOMPSON PA, 1997, NATURE, V389, P360.
TRAVIS KP, 2000, J CHEM PHYS, V112, P1984.
VERMA PD, 1973, INDIAN J PHYS, V47, P718.
ZIARANI AS, 2005, MICROFLUID NANOFLUID, V2, P12, DOI 10.1007/S10404-005-0036-9.

Cited Reference Count:
28

Times Cited:
0

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Thermodynamics; Engineering, Mechanical; Mechanics

ISSN:
0017-9310

DOI:
10.1016/j.ijheatmasstransfer.2010.01.043

IDS Number:
580EA

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276551500002
*Order Full Text [ ]

Title:
Towards mimicking natural protein channels with aligned carbon nanotube membranes for active drug delivery

Authors:
Majumder, M; Stinchcomb, A; Hinds, BJ

Author Full Names:
Majumder, Mainak; Stinchcomb, Audra; Hinds, Bruce J.

Source:
LIFE SCIENCES 86 (15-16): 563-568 APR 10 2010

Language:
English

Document Type:
Review

Author Keywords:
Drug delivery; Biomimetic; Nanostructure; Gatekeeper; Membrane; Transdermal; Nanoporous

KeyWords Plus:
WATER; TRANSPORT; POLYSTYRENE; GROWTH; FLOW

Abstract:
Aims: Carbon nanotube (CNT) membranes offer an exciting opportunity to mimic natural protein channels due to 1) a mechanism of dramatically enhanced fluid flow 2) ability to place 'gatekeeper' chemistry at the entrance to pores 3) the ability for biochemical reactions to occur on gatekeeper molecules and 4) an ability to chemically functionalize each side of the membrane independently.
Main methods: Aligned CNT membranes were fabricated and CNT pore entrances modified with gatekeeper chemistry. Pressure driven fluid flow and diffusion experiments were performed to study the mechanisms of transport through CNTs.
Key findings: The transport mechanism through CNT membranes is primarily 1) ionic diffusion near bulk expectation 2) gas flow enhanced 1-2 orders of magnitude primarily due to specular reflection 3) fluid flow 4-5 orders of magnitude faster than conventional materials due to a nearly ideal slip-boundary interface. The transport can be modulated by 'gatekeeper' chemistry at the pore entrance using steric hindrance, electrostatic attraction/repulsion, or biochemical state. The conformation of charged tethered molecules can be modulated by applied bias setting the stage for programmable drug release devices.
Significance: The membrane structure is mechanically far more robust than lipid bilayer films, allowing for large-scale chemical separations, delivery or sensing based on the principles of protein channels. The performance of protein channels is several orders of magnitude faster than conventional membrane materials. The fundamental requirements of mimicking protein channels are present in the CNT membrane system. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.

Reprint Address:
Hinds, BJ, Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40502 USA.

Research Institution addresses:
[Majumder, Mainak; Hinds, Bruce J.] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40502 USA; [Stinchcomb, Audra] Univ Kentucky, Coll Pharm, Lexington, KY 40502 USA

E-mail Address:
bjhinds@engr.uky.edu

Cited References:
ANDREWS R, 1999, CHEM PHYS LETT, V303, P467.
BAHR JL, 2001, CHEM MATER, V13, P3823.
CHOPRA N, 2005, ADV FUNCT MATER, V15, P858, DOI 10.1002/adfm.200400399.
HILLE B, 1984, IONIC CHANNELS EXCIT.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG SM, 2002, J PHYS CHEM B, V106, P3543.
HUMMER G, 2001, NATURE, V414, P188.
JIRAGE KB, 1997, SCIENCE, V278, P655.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
LAUGA E, 2005, HDB EXPT FLUID DYNAM.
LEE SB, 2002, SCIENCE, V296, P2198.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k.
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI 10.1016/j.memsci.2007.09.068.
MAO ZG, 2001, J PHYS CHEM B, V105, P6916, DOI 10.1021/jp0103272.
MERKULOV VI, 2002, APPL PHYS LETT, V80, P4816.
MITCHELL CA, 2002, MACROMOLECULES, V35, P8825, DOI 10.1021/ma020890y.
MULDER M, 1994, BASIC PRINCIPLES MEM.
MURATA K, 2000, NATURE, V407, P599.
NEDNOOR P, 2005, CHEM MATER, V17, P3595, DOI 10.1021/cm047844s.
NEDNOOR P, 2007, J MATER CHEM, V17, P1755, DOI 10.1039/b703365f.
OHBA T, 2005, NANO LETT, V5, P227, DOI 10.1021/nl048327b.
QIAN D, 2000, APPL PHYS LETT, V76, P2868.
REN ZF, 1998, SCIENCE, V282, P1105.
SINNOTT SB, 1999, CHEM PHYS LETT, V315, P25.
SKOULIDAS AL, 2002, PHYS REV LETT, V89.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
STEINLE ED, 2002, ANAL CHEM, V74, P2416.
WONG SS, 1998, J AM CHEM SOC, V120, P8557.
ZHANG ZJ, 2000, APPL PHYS LETT, V77, P3764.

Cited Reference Count:
33

Times Cited:
1

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Medicine, Research & Experimental; Pharmacology & Pharmacy

ISSN:
0024-3205

DOI:
10.1016/j.lfs.2009.04.006

IDS Number:
581UY

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276567100033
*Order Full Text [ ]

Title:
Carbon nanotubes: Solid-phase extraction

Authors:
Ravelo-Perez, LM; Herrera-Herrera, AV; Hernandez-Borges, J; Rodriguez-Delgado, MA

Author Full Names:
Ravelo-Perez, Lidia M.; Herrera-Herrera, Antonio V.; Hernandez-Borges, Javier; Angel Rodriguez-Delgado, Miguel

Source:
JOURNAL OF CHROMATOGRAPHY A 1217 (16): 2618-2641 APR 16 2010

Language:
English

Document Type:
Review

Author Keywords:
Carbon nanotubes; Solid-phase extraction; Applications; Review

KeyWords Plus:
PERFORMANCE LIQUID-CHROMATOGRAPHY; ENVIRONMENTAL WATER SAMPLES; ATOMIC-ABSORPTION-SPECTROMETRY; DESORPTION/IONIZATION MASS-SPECTROMETRY; POLYBROMINATED DIPHENYL ETHERS; ELECTRON-CAPTURE DETECTION; RARE-EARTH-ELEMENTS; HEAVY-METAL IONS; GAS-CHROMATOGRAPHY; SENSITIVE DETERMINATION

Abstract:
Since the first report in 1991, carbon nanotubes (CNTs) have shown great possibilities for a wide variety of processes and applications, which include their use as electrodes, sensors (gas, enzymatic, etc.), nanoprobes, electronic materials, field emitters, etc. The combination of structures, dimensions and topologies has provided physical and chemical attractive properties that are unparalleled by most known materials. Their applications have also reached the Analytical Chemistry field in which CNTs are being used as matrices in matrix assisted laser desorption ionization, stationary phases in either gas chromatography, high performance liquid chromatography or capillary electrochromatography, also as pseudostationary phases in capillary electrophoresis, etc. as well as new solid-phase extraction (SPE) materials. Concerning this last application the number of works has considerably increased in the last five years. This review article pretends to focus on the most important!
features and different applications of SPE using CNTs (including matrix solid-phase dispersion and solid-phase microextraction) covering articles published since their introduction up to now (September 2009). (C) 2009 Elsevier B.V. All rights reserved.

Reprint Address:
Hernandez-Borges, J, Univ La Laguna, Dept Quim Analit Nutr & Bromatol, Fac Quim, Ave Astrofis Francisco Sanchez S-N, E-38206 Tenerife, Spain.

Research Institution addresses:
[Ravelo-Perez, Lidia M.; Herrera-Herrera, Antonio V.; Hernandez-Borges, Javier; Angel Rodriguez-Delgado, Miguel] Univ La Laguna, Dept Quim Analit Nutr & Bromatol, Fac Quim, E-38206 Tenerife, Spain

E-mail Address:
jhborges@ull.es; mrguez@ull.es

Cited References:
AFZALI D, 2008, ANAL SCI, V24, P1135.
ALDEGS YS, 2008, INT J ENVIRON AN CH, V88, P487, DOI 10.1080/03067310701837772.
ASENSIORAMOS M, 2008, ELECTROPHORESIS, V29, P4412, DOI 10.1002/elps.200800254.
ASENSIORAMOS M, 2009, ANAL CHIM ACTA, V647, P167, DOI 10.1016/j.aca.2009.06.014.
AUSMAN KD, 2000, J PHYS CHEM B, V104, P8911.
BANDOW S, 1997, J PHYS CHEM B, V101, P8839.
BANDOW S, 1998, APPL PHYS A-MATER, V67, P23.
BARBOSA AF, 2007, TALANTA, V71, P1512, DOI 10.1016/j.talanta.2006.07.026.
BASHEER C, 2006, ANAL CHEM, V78, P2853, DOI 10.1021/ac060240i.
BETHUNE DS, 1993, NATURE, V363, P605.
BIESAGA M, 2006, J SEP SCI, V29, P2241, DOI 10.1002/jssc.200600109.
BOEHM HP, 2002, CARBON, V40, P145.
CAI YQ, 2003, ANAL CHEM, V75, P2517, DOI 10.1021/ac0263566.
CAI YQ, 2003, ANAL CHIM ACTA, V494, P149, DOI 10.1016/j.aca.2003.08.006.
CAI YQ, 2005, J CHROMATOGR A, V1081, P245, DOI 10.1016/j.chroma.2005.05.080.
CAO AY, 2001, CARBON, V39, P152.
CAO XN, 2004, CHROMATOGRAPHIA, V59, P167, DOI 10.1365/s10337-003-0164-x.
CHEN RJ, 2001, J AM CHEM SOC, V123, P3838, DOI 10.1021/ja010172b.
CHEN SZ, 2009, ATOM SPECTROSC, V30, P20.
CHEN SZ, 2009, J HAZARD MATER, V170, P247, DOI 10.1016/j.jhazmat.2009.04.104.
CHEN WF, 2009, J CHROMATOGR A, V1216, P9143, DOI 10.1016/j.chroma.2009.07.025.
CRUZVERA M, 2008, ANAL BIOANAL CHEM, V391, P1139, DOI 10.1007/s00216-008-1871-9.
DAI HJ, 1996, SCIENCE, V272, P523.
DELGADO JL, 2007, AN QUIM, V103, P5.
DOKOUTCHAEV A, 1999, CHEM MATER, V11, P2389.
DONG MF, 2009, CHROMATOGRAPHIA, V69, P73, DOI 10.1365/s10337-008-0863-4.
DONG MF, 2009, MICROCHIM ACTA, V165, P123, DOI 10.1007/s00604-008-0109-z.
DOORN SK, 2002, J AM CHEM SOC, V124, P3169.
DU D, 2008, ELECTROCHEM COMMUN, V10, P85, DOI 10.1016/j.elecom.2007.11.005.
DU W, 2009, J CHROMATOGR A, V1216, P3751, DOI 10.1016/j.chroma.2009.03.013.
DU Z, 2007, CHEM-EUR J, V13, P9679.
DU Z, 2009, MACROMOL BIOSCI, V9, P55, DOI 10.1002/mabi.200800200.
DURAN A, 2009, J HAZARD MATER, V169, P466, DOI 10.1016/j.jhazmat.2009.03.119.
ELSHEIKH AH, 2007, ANAL CHIM ACTA, V604, P119, DOI 10.1016/j.aca.2007.10.009.
ELSHEIKH AH, 2007, J CHROMATOGR A, V1164, P25, DOI 10.1016/j.chroma.2007.07.009.
ELSHEIKH AH, 2008, TALANTA, V74, P1675, DOI 10.1016/j.talanta.2007.09.005.
ELSHEIKH AH, 2008, TALANTA, V75, P127, DOI 10.1016/j.talanta.2007.10.039.
ENDO M, 2008, TOP APPL PHYS, V111, P13.
FANG GZ, 2006, J CHROMATOGR A, V1127, P12, DOI 10.1016/j.chroma.2006.06.024.
FANG HT, 2004, CHEM MATER, V16, P5744, DOI 10.1021/cm035263h.
FLAHAUT E, 2005, CARBON, V43, P375, DOI 10.1016/j.carbon.2004.09.021.
GEORGAKILAS V, 2002, AM CHEM SOC, V124, P760.
GHASEMINEZHAD S, 2009, TALANTA, V80, P168, DOI 10.1016/j.talanta.2009.06.049.
GHOLIPOUR Y, 2008, ANAL BIOCHEM, V383, P159, DOI 10.1016/j.ab.2008.08.034.
GIL RA, 2007, J ANAL ATOM SPECTROM, V22, P1290, DOI 10.1039/b700846e.
GUAN Z, 2008, ANAL CHIM ACTA, V627, P225, DOI 10.1016/j.aca.2008.08.035.
HEATH JR, 1987, J CHEM PHYS, V87, P4326.
HIDEFUMI H, 1995, MOL CRYST LIQ CRYS A, V276, P267.
HIRSCH A, 2005, TOP CURR CHEM, V245, P193.
HORVATH ZE, 2006, CURR APPL PHYS, V6, P135, DOI 10.1016/j.cap.2005.07.026.
HOU PX, 2008, CARBON, V46, P2003, DOI 10.1016/j.carbon.2008.09.009.
HUSSAIN CM, 2009, ANALYST, V134, P1928, DOI 10.1039/b823316k.
JI YS, 2009, CHROMATOGRAPHIA, V70, P753, DOI 10.1365/s10337-009-1227-4.
JIA WT, 2008, ACTA CHIM SINICA, V66, P1681.
JIANG RF, 2009, J CHROMATOGR A, V1216, P4641, DOI 10.1016/j.chroma.2009.03.076.
JIMENEZSOTO M, 2009, J CHROMATOGR A, V1216, P5626.
JOURNET C, 1997, NATURE, V388, P756.
JURADOSANCHEZ B, 2009, TALANTA, V79, P613, DOI 10.1016/j.talanta.2009.04.035.
KARWA M, 2006, ANAL CHEM, V78, P2064, DOI 10.1021/ac052115x.
KATSUMATA H, 2008, MICROCHEM J, V88, P82, DOI 10.1016/j.microc.2007.10.002.
KIM B, 2006, COLLOID SURFACE A, V273, P161, DOI 10.1016/j.colsurfa.2005.08.024.
KRATSCHMER W, 1990, NATURE, V347, P354, DOI 10.1038/347354A0.
KROTO HW, 1985, NATURE, V318, P162.
LI JY, 2005, PHYSICA E, V28, P309, DOI 10.1016/j.physe.2005.03.022.
LI L, 2009, ANAL CHIM ACTA, V631, P182, DOI 10.1016/j.aca.2008.10.043.
LI QL, 2003, J CHROMATOGR A, V1003, P203, DOI 10.1016/S0021-9673(03)00848-3.
LI QL, 2004, J CHROMATOGR A, V1026, P283, DOI 10.1016/j.chroma.2003.10.109.
LI QL, 2009, J CHROMATOGR A, V1216, P1305, DOI 10.1016/j.chroma.2008.12.082.
LI QL, 2009, J ENVIRON MONITOR, V11, P439, DOI 10.1039/b816271a.
LI Y, 2005, ANAL CHEM, V77, P1398, DOI 10.1021/ac048299h.
LI YH, 2002, CHEM PHYS LETT, V357, P263.
LI YH, 2003, CARBON, V41, P1057, DOI 10.1016/S0008-6223(02)00440-2.
LI YH, 2005, WATER RES, V39, P605, DOI 10.1016/j.watres.2004.11.004.
LIANG P, 2004, J ANAL ATOM SPECTROM, V19, P1489, DOI 10.1039/b409619c.
LIANG P, 2005, J SEP SCI, V28, P2339, DOI 10.1002/jssc.200500154.
LIANG P, 2005, SPECTROCHIM ACTA B, V60, P125, DOI 10.1016/j.sab.2004.11.010.
LIANG P, 2008, SPECTROCHIM ACTA B, V63, P714, DOI 10.1016/j.sab.2008.04.002.
LIJIMA S, 1991, NATURE, V354, P56.
LIJIMA S, 1993, NATURE, V363, P603.
LIU GH, 2004, ANAL LETT, V37, P3085, DOI 10.1081/AL-200035912.
LIU XT, 2009, ANAL LETT, V42, P425, DOI 10.1080/00032710802518262.
LIU XY, 2007, J CHROMATOGR A, V1165, P10, DOI 10.1016/j.chroma.2007.07.057.
LIU XY, 2008, J CHROMATOGR A, V1212, P10, DOI 10.1016/j.chroma.2008.10.034.
LIU Y, 2008, ADV FUNCT MATER, V18, P1536, DOI 10.1002/adfm.200701433.
LIU Y, 2009, TALANTA, V79, P1464, DOI 10.1016/j.talanta.2009.06.007.
LONG RQ, 2001, J AM CHEM SOC, V123, P2058.
LOPEZFERIA S, 2009, ANAL BIOANAL CHEM, V395, P737, DOI 10.1007/s00216-009-3066-4.
LOPEZFERIA S, 2009, J CHROMATOGR A, V1216, P7346, DOI 10.1016/j.chroma.2009.02.060.
LU CS, 2006, IND ENG CHEM RES, V45, P2850, DOI 10.1021/ie051206h.
LU CY, 2006, CHEM ENG SCI, V61, P1138, DOI 10.1016/j.ces.2005.08.007.
LU JX, 2007, J SEP SCI, V30, P2138, DOI 10.1002/jssc.200700083.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MERKOCI A, 2006, MICROCHIM ACTA, V152, P157, DOI 10.1007/s00604-005-0439-z.
MIN G, 2008, SCI TOTAL ENVIRON, V396, P79, DOI 10.1016/j.scitotenv.2008.02.016.
MOLINERMARTINEZ Y, 2007, ELECTROPHORESIS, V28, P2573, DOI 10.1002/elps.200600773.
MOLINERMARTINEZ Y, 2008, J CHROMATOGR A, V1194, P128, DOI 10.1016/j.chroma.2008.04.034.
MOLINERMARTINEZ Y, 2009, ELECTROPHORESIS, V30, P169, DOI 10.1002/elps.200800314.
MUNOZ J, 2005, ANAL CHEM, V77, P5389, DOI 10.1021/ac050600m.
NEDNOOR P, 2005, CHEM MATER, V17, P3595, DOI 10.1021/cm047844s.
NIU HY, 2007, ANAL CHIM ACTA, V594, P81, DOI 10.1016/j.aca.2007.05.017.
NIU HY, 2008, ANAL BIOANAL CHEM, V392, P927, DOI 10.1007/s00216-008-2332-1.
NIU HY, 2009, MICROCHIM ACTA, V164, P431, DOI 10.1007/s00604-008-0079-1.
OHBA T, 2005, NANO LETT, V5, P227, DOI 10.1021/nl048327b.
PACHECO PH, 2009, TALANTA, V79, P249, DOI 10.1016/j.talanta.2009.03.050.
PAN CS, 2005, J AM SOC MASS SPECTR, V16, P263, DOI 10.1016/j.jasms.2004.11.005.
PARK YS, 2001, CARBON, V39, P655.
PENG FB, 2007, J MEMBRANE SCI, V297, P236, DOI 10.1016/j.memsci.2007.03.048.
RAVELOPEREZ LM, 2008, J CHROMATOGR A, V1211, P33, DOI 10.1016/j.chroma.2008.09.084.
RAVELOPEREZ LM, 2008, J SEP SCI, V31, P3612, DOI 10.1002/jssc.200800352.
REN SF, 2005, J AM SOC MASS SPECTR, V16, P333, DOI 10.1016/j.jasms.2004.11.017.
RINZLER AG, 1998, APPL PHYS A-MATER, V67, P29.
SAEKHOW O, 2009, J CHROMATOGR A, V1216, P2270, DOI 10.1016/j.chroma.2009.01.037.
SAEKHOW O, 2009, J MATER CHEM, V19, P3713, DOI 10.1039/b822879e.
SALAM MA, 2009, J SEP SCI, V32, P1060, DOI 10.1002/jssc.200800593.
SARIDARA C, 2005, ANAL CHEM, V77, P7094, DOI 10.1021/ac050812j.
SHAMSPUR T, 2009, J HAZARD MATER, V168, P1548, DOI 10.1016/j.jhazmat.2009.03.028.
SHANG XH, 2007, ATOM SPECTROSC, V28, P35.
SHRIVAS K, 2008, ANAL CHIM ACTA, V628, P198, DOI 10.1016/j.aca.2008.09.011.
SKOLIDAS AI, 2002, PHYS REV LETT, V89, UNSP 185901.
SOMBRA L, 2008, ELECTROPHORESIS, V29, P3850, DOI 10.1002/elps.200800275.
SOYLAK M, 2009, J AOAC INT, V92, P1219.
SOYLAK M, 2009, J HAZARD MATER, V168, P1527, DOI 10.1016/j.jhazmat.2009.03.032.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
STADERMANN M, 2006, ANAL CHEM, V78, P5639, DOI 10.1021/ac060266+.
STAFIEJ A, 2008, MICROCHEM J, V89, P29, DOI 10.1016/j.microc.2007.11.001.
SUAREZ B, 2007, ELECTROPHORESIS, V28, P1714, DOI 10.1002/elps.200600395.
SUAREZ B, 2007, J CHROMATOGR A, V1159, P203, DOI 10.1016/j.chroma.2007.01.092.
SUAREZ B, 2007, J CHROMATOGR A, V1175, P127.
TEIXEIRA CR, 2006, J ANAL ATOM SPECTROM, V21, P1305.
THESS A, 1996, SCIENCE, V273, P483.
TROJANOWICZ M, 2006, TRAC-TREND ANAL CHEM, V25, P480, DOI 10.1016/j.trac.2005.11.008.
TUZEN M, 2007, J HAZARD MATER, V147, P219, DOI 10.1016/j.jhazmat.2006.12.069.
TUZEN M, 2008, BIORESOURCE TECHNOL, V99, P1563, DOI 10.1016/j.biortech.2007.04.013.
TUZEN M, 2008, J HAZARD MATER, V152, P632, DOI 10.1016/j.jbazmat.2007.07.026.
UCHIYAMA H, 1989, J CHEM SOC FARAD T 1, V85, P3833.
UGAROV MV, 2004, ANAL CHEM, V76, P6734, DOI 10.1021/ac049192x.
VAISMAN L, 2006, ADV COLLOID INTERFAC, V37, P128.
VALCARCEL M, 2005, ANAL BIOANAL CHEM, V382, P1783, DOI 10.1007/s00216-005-3373-3.
VALCARCEL M, 2007, ANAL CHEM, V79, P4788, DOI 10.1021/ac070196m.
VALCARCEL M, 2008, TRAC-TREND ANAL CHEM, V27, P34, DOI 10.1016/j.trac.2007.10.012.
WANG CH, 2007, ANAL CHIM ACTA, V604, P158, DOI 10.1016/j.aca.2007.10.001.
WANG JX, 2006, J CHROMATOGR A, V1137, P8, DOI 10.1016/j.chroma.2006.10.003.
WANG LP, 2006, J CHROMATOGR A, V1136, P99, DOI 10.1016/j.chroma.2006.09.088.
WANG S, 2007, J CHROMATOGR A, V1165, P166, DOI 10.1016/j.chroma.2007.07.061.
WANG WD, 2007, J CHROMATOGR A, V1173, P27, DOI 10.1016/j.chroma.2007.10.027.
WANG XK, 2005, ENVIRON SCI TECHNOL, V39, P2856, DOI 10.1021/es048287d.
WANG Y, 2005, CHEM PHYS LETT, V402, P91.
WANG ZH, 2003, ELECTROPHORESIS, V24, P4181, DOI 10.1002/elps.200305575.
WU QH, 2009, J CHROMATOGR A, V1216, P5504, DOI 10.1016/j.chroma.2009.05.062.
XIAO JP, 2007, CHINESE CHEM LETT, V18, P714, DOI 10.1016/j.cclet.2007.04.024.
XIAO JP, 2007, J ENVIRON SCI-CHINA, V19, P1266.
XIONG X, 2006, ELECTROPHORESIS, V27, P3243, DOI 10.1002/elps.200500870.
XU JM, 2003, TALANTA, V60, P1123, DOI 10.1016/S0039-9140(03)00214-5.
XU JM, 2004, CHEM RES CHINESE U, V20, P529.
XU SY, 2003, ANAL CHEM, V75, P6191, DOI 10.1021/ac0345695.
YANG YL, 2005, SYNTHETIC MET, V155, P455, DOI 10.1016/j.synthmet.2005.05.012.
YU JCC, 2007, J NANOSCI NANOTECHNO, V7, P3095, DOI 10.1166/jnn.2007.666.
YUAN LM, 2006, ANAL CHEM, V78, P6384, DOI 10.1021/ac060663k.
YUDASAKA M, 2000, APPL PHYS A-MATER, V71, P449.
ZANG Z, 2009, J HAZARD MATER, DOI 10.1016/JJHAZMAT.2009.07.078.
ZHANG J, 2003, J PHYS CHEM B, V107, P3712, DOI 10.1021/jp027500u.
ZHANG MF, 2001, CHEM PHYS LETT, V336, P196.
ZHANG W, 2003, J CHROMATOGR B, V791, P217, DOI 10.1016/S1570-0232(03)00227-7.
ZHANG W, 2004, ANAL CHIM ACTA, V512, P207, DOI 10.1016/j.aca.2004.02.055.
ZHANG WY, 2009, ANAL CHEM, V81, P2912, DOI 10.1021/ac802123s.
ZHAO HX, 2007, ANAL CHIM ACTA, V586, P399, DOI 10.1016/j.aca.2006.12.003.
ZHAO RS, 2009, J SEP SCI, V32, P1069, DOI 10.1002/jssc.200800677.
ZHOU QX, 2006, ANAL BIOANAL CHEM, V385, P1520, DOI 10.1007/s00216-006-0554-7.
ZHOU QX, 2006, ANAL CHIM ACTA, V559, P200, DOI 10.1016/j.aca.2005.11.079.
ZHOU QX, 2006, J CHROMATOGR A, V1125, P152, DOI 10.1016/j.chroma.2006.05.047.
ZHOU QX, 2006, MICROCHIM ACTA, V152, P215, DOI 10.1007/s00604-005-0448-y.
ZHOU QX, 2006, TALANTA, V68, P1309, DOI 10.1016/j.talanta.2005.07.050.
ZHOU QX, 2007, ANAL CHIM ACTA, V602, P223, DOI 10.1016/j.aca.2007.09.038.
ZHOU QX, 2007, ANAL SCI, V23, P189.
ZHOU QX, 2007, ATOM SPECTROSC, V28, P150.
ZHOU QX, 2007, CHROMATOGRAPHIA, V65, P25, DOI 10.1365/s10337-006-0111-8.
ZHOU QX, 2007, MICROCHIM ACTA, V157, P93, DOI 10.1007/s00604-006-0674-y.
ZHOU QX, 2008, CHINESE CHEM LETT, V19, P95, DOI 10.1016/j.cclet.2007.10.044.
ZHOU QX, 2009, MICROCHIM ACTA, V164, P419, DOI 10.1007/s00604-008-0077-3.
ZHU SY, 2009, TALANTA, V79, P1441, DOI 10.1016/j.talanta.2009.06.011.

Cited Reference Count:
180

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Biochemical Research Methods; Chemistry, Analytical

ISSN:
0021-9673

DOI:
10.1016/j.chroma.2009.10.083

IDS Number:
582AJ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Sokhan VP

ISI Web of Knowledge Citation Alert

Cited Article: Sokhan VP. Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276551500002
*Order Full Text [ ]

Title:
Towards mimicking natural protein channels with aligned carbon nanotube membranes for active drug delivery

Authors:
Majumder, M; Stinchcomb, A; Hinds, BJ

Author Full Names:
Majumder, Mainak; Stinchcomb, Audra; Hinds, Bruce J.

Source:
LIFE SCIENCES 86 (15-16): 563-568 APR 10 2010

Language:
English

Document Type:
Review

Author Keywords:
Drug delivery; Biomimetic; Nanostructure; Gatekeeper; Membrane; Transdermal; Nanoporous

KeyWords Plus:
WATER; TRANSPORT; POLYSTYRENE; GROWTH; FLOW

Abstract:
Aims: Carbon nanotube (CNT) membranes offer an exciting opportunity to mimic natural protein channels due to 1) a mechanism of dramatically enhanced fluid flow 2) ability to place 'gatekeeper' chemistry at the entrance to pores 3) the ability for biochemical reactions to occur on gatekeeper molecules and 4) an ability to chemically functionalize each side of the membrane independently.
Main methods: Aligned CNT membranes were fabricated and CNT pore entrances modified with gatekeeper chemistry. Pressure driven fluid flow and diffusion experiments were performed to study the mechanisms of transport through CNTs.
Key findings: The transport mechanism through CNT membranes is primarily 1) ionic diffusion near bulk expectation 2) gas flow enhanced 1-2 orders of magnitude primarily due to specular reflection 3) fluid flow 4-5 orders of magnitude faster than conventional materials due to a nearly ideal slip-boundary interface. The transport can be modulated by 'gatekeeper' chemistry at the pore entrance using steric hindrance, electrostatic attraction/repulsion, or biochemical state. The conformation of charged tethered molecules can be modulated by applied bias setting the stage for programmable drug release devices.
Significance: The membrane structure is mechanically far more robust than lipid bilayer films, allowing for large-scale chemical separations, delivery or sensing based on the principles of protein channels. The performance of protein channels is several orders of magnitude faster than conventional membrane materials. The fundamental requirements of mimicking protein channels are present in the CNT membrane system. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.

Reprint Address:
Hinds, BJ, Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40502 USA.

Research Institution addresses:
[Majumder, Mainak; Hinds, Bruce J.] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40502 USA; [Stinchcomb, Audra] Univ Kentucky, Coll Pharm, Lexington, KY 40502 USA

E-mail Address:
bjhinds@engr.uky.edu

Cited References:
ANDREWS R, 1999, CHEM PHYS LETT, V303, P467.
BAHR JL, 2001, CHEM MATER, V13, P3823.
CHOPRA N, 2005, ADV FUNCT MATER, V15, P858, DOI 10.1002/adfm.200400399.
HILLE B, 1984, IONIC CHANNELS EXCIT.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG SM, 2002, J PHYS CHEM B, V106, P3543.
HUMMER G, 2001, NATURE, V414, P188.
JIRAGE KB, 1997, SCIENCE, V278, P655.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
LAUGA E, 2005, HDB EXPT FLUID DYNAM.
LEE SB, 2002, SCIENCE, V296, P2198.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k.
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI 10.1016/j.memsci.2007.09.068.
MAO ZG, 2001, J PHYS CHEM B, V105, P6916, DOI 10.1021/jp0103272.
MERKULOV VI, 2002, APPL PHYS LETT, V80, P4816.
MITCHELL CA, 2002, MACROMOLECULES, V35, P8825, DOI 10.1021/ma020890y.
MULDER M, 1994, BASIC PRINCIPLES MEM.
MURATA K, 2000, NATURE, V407, P599.
NEDNOOR P, 2005, CHEM MATER, V17, P3595, DOI 10.1021/cm047844s.
NEDNOOR P, 2007, J MATER CHEM, V17, P1755, DOI 10.1039/b703365f.
OHBA T, 2005, NANO LETT, V5, P227, DOI 10.1021/nl048327b.
QIAN D, 2000, APPL PHYS LETT, V76, P2868.
REN ZF, 1998, SCIENCE, V282, P1105.
SINNOTT SB, 1999, CHEM PHYS LETT, V315, P25.
SKOULIDAS AL, 2002, PHYS REV LETT, V89.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
STEINLE ED, 2002, ANAL CHEM, V74, P2416.
WONG SS, 1998, J AM CHEM SOC, V120, P8557.
ZHANG ZJ, 2000, APPL PHYS LETT, V77, P3764.

Cited Reference Count:
33

Times Cited:
1

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Medicine, Research & Experimental; Pharmacology & Pharmacy

ISSN:
0024-3205

DOI:
10.1016/j.lfs.2009.04.006

IDS Number:
581UY

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 2.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000276551500002>
*Order Full Text [ ]
AU Majumder, M
Stinchcomb, A
Hinds, BJ
AF Majumder, Mainak
Stinchcomb, Audra
Hinds, Bruce J.
TI Towards mimicking natural protein channels with aligned carbon nanotube
membranes for active drug delivery
SO LIFE SCIENCES
LA English
DT Review
DE Drug delivery; Biomimetic; Nanostructure; Gatekeeper; Membrane;
Transdermal; Nanoporous
ID WATER; TRANSPORT; POLYSTYRENE; GROWTH; FLOW
AB Aims: Carbon nanotube (CNT) membranes offer an exciting opportunity to
mimic natural protein channels due to 1) a mechanism of dramatically
enhanced fluid flow 2) ability to place 'gatekeeper' chemistry at the
entrance to pores 3) the ability for biochemical reactions to occur on
gatekeeper molecules and 4) an ability to chemically functionalize each
side of the membrane independently.
Main methods: Aligned CNT membranes were fabricated and CNT pore
entrances modified with gatekeeper chemistry. Pressure driven fluid
flow and diffusion experiments were performed to study the mechanisms
of transport through CNTs.
Key findings: The transport mechanism through CNT membranes is
primarily 1) ionic diffusion near bulk expectation 2) gas flow enhanced
1-2 orders of magnitude primarily due to specular reflection 3) fluid
flow 4-5 orders of magnitude faster than conventional materials due to
a nearly ideal slip-boundary interface. The transport can be modulated
by 'gatekeeper' chemistry at the pore entrance using steric hindrance,
electrostatic attraction/repulsion, or biochemical state. The
conformation of charged tethered molecules can be modulated by applied
bias setting the stage for programmable drug release devices.
Significance: The membrane structure is mechanically far more robust
than lipid bilayer films, allowing for large-scale chemical
separations, delivery or sensing based on the principles of protein
channels. The performance of protein channels is several orders of
magnitude faster than conventional membrane materials. The fundamental
requirements of mimicking protein channels are present in the CNT
membrane system. Crown Copyright (C) 2009 Published by Elsevier Inc.
All rights reserved.
C1 [Majumder, Mainak; Hinds, Bruce J.] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40502 USA.
[Stinchcomb, Audra] Univ Kentucky, Coll Pharm, Lexington, KY 40502 USA.
RP Hinds, BJ, Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40502 USA.
EM bjhinds@engr.uky.edu
CR ANDREWS R, 1999, CHEM PHYS LETT, V303, P467
BAHR JL, 2001, CHEM MATER, V13, P3823
CHOPRA N, 2005, ADV FUNCT MATER, V15, P858, DOI 10.1002/adfm.200400399
HILLE B, 1984, IONIC CHANNELS EXCIT
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUANG SM, 2002, J PHYS CHEM B, V106, P3543
HUMMER G, 2001, NATURE, V414, P188
JIRAGE KB, 1997, SCIENCE, V278, P655
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
LAUGA E, 2005, HDB EXPT FLUID DYNAM
LEE SB, 2002, SCIENCE, V296, P2198
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI
10.1016/j.memsci.2007.09.068
MAO ZG, 2001, J PHYS CHEM B, V105, P6916, DOI 10.1021/jp0103272
MERKULOV VI, 2002, APPL PHYS LETT, V80, P4816
MITCHELL CA, 2002, MACROMOLECULES, V35, P8825, DOI 10.1021/ma020890y
MULDER M, 1994, BASIC PRINCIPLES MEM
MURATA K, 2000, NATURE, V407, P599
NEDNOOR P, 2005, CHEM MATER, V17, P3595, DOI 10.1021/cm047844s
NEDNOOR P, 2007, J MATER CHEM, V17, P1755, DOI 10.1039/b703365f
OHBA T, 2005, NANO LETT, V5, P227, DOI 10.1021/nl048327b
QIAN D, 2000, APPL PHYS LETT, V76, P2868
REN ZF, 1998, SCIENCE, V282, P1105
SINNOTT SB, 1999, CHEM PHYS LETT, V315, P25
SKOULIDAS AL, 2002, PHYS REV LETT, V89
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643
STEINLE ED, 2002, ANAL CHEM, V74, P2416
WONG SS, 1998, J AM CHEM SOC, V120, P8557
ZHANG ZJ, 2000, APPL PHYS LETT, V77, P3764
NR 33
TC 1
PU PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE,
KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0024-3205
DI 10.1016/j.lfs.2009.04.006
PD APR 10
VL 86
IS 15-16
BP 563
EP 568
SC Medicine, Research & Experimental; Pharmacology & Pharmacy
GA 581UY
UT ISI:000276551500002
ER

PT J
*Record 2 of 2.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000276341700026>
*Order Full Text [ ]
AU Zhang, YY
Gregoire, JM
van Dover, RB
Hart, AJ
AF Zhang, Yongyi
Gregoire, John M.
van Dover, R. B.
Hart, A. John
TI Ethanol-Promoted High-Yield Growth of Few-Walled Carbon Nanotubes
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID FORESTS; WATER; CATALYSTS; ARRAYS; SIZE
AB We report the use of a small concentration of ethanol in addition to
ethylene as the carbon source for growth of dense vertically aligned
"forests" of few-walled carbon nanotubes (CNTs) Through a detailed
comparison of CNTs vi own with and without ethanol added to the
C2H4/H-2 feedstock, we quantify several important effects of the
ethanol addition We show that ethanol selectively reduces the number of
CNT walls without changing the outer diameter, increases the catalyst
lifetime more than 3-fold, and increases the rate of carbon conversion
more than 5-fold Online dewpoint and mass spectrometry measurements of
the exhaust stream suggest that ethanol decomposes into active carbon
species that enhance growth, and into H2O, which counteracts the
accumulation of amorphous carbon and thus prolongs the catalyst
lifetime We performed a systematic study of the effect of the catalyst
film thickness, and identify a set of conditions that provides growth
of millimeter-tall double-walled CNT forests Importantly, our study
reveals that the chemistry or the CVD atmosphere alone. plays a
critical role in controlling the structure of CNTs, and that addition
of ethanol results in few-walled CNTs over a broad range of growth
conditions These findings ale an important step toward the ultimate
goal of control of CNT chirality during synthesis as well as toward
realization of important large-scale applications of aligned CNT films
having high monodispersity and structural quality.
C1 [Zhang, Yongyi; Hart, A. John] Univ Michigan, Dept Mech Engn, Mechanosynth Grp, Ann Arbor, MI 48109 USA.
[Gregoire, John M.; van Dover, R. B.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA.
[Gregoire, John M.; van Dover, R. B.] Cornell Univ, Cornell Fuel Cell Inst, Ithaca, NY 14853 USA.
RP Hart, AJ, Univ Michigan, Dept Mech Engn, Mechanosynth Grp, 2350 Hayward
St, Ann Arbor, MI 48109 USA.
CR AMAMA PB, 2009, NANO LETT, V9, P44, DOI 10.1021/nl801876h
BEDEWY M, 2009, J PHYS CHEM C, V113, P20576, DOI 10.1021/jp904152v
CHATTOPADHYAY D, 2001, J AM CHEM SOC, V123, P9451
CHEN GH, 2008, NANOTECHNOLOGY, V19, ARTN 415703
CHRISTEN HM, 2004, NANO LETT, V4, P1939, DOI 10.1021/nl048856f
EINARSSON E, 2008, CARBON, V46, P923, DOI 10.1016/j.carbon.2008.02.021
FAN S, 1999, SCIENCE, V283, P5401
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
10.1073/pnas.0710437105
FUTABA DN, 2005, PHYS REV LETT, V95, ARTN 056104
FUTABA DN, 2006, J PHYS CHEM B, V110, P8035, DOI 10.1021/jp060080e
FUTABA DN, 2009, ADV MATER, V21, P4811, DOI 10.1002/adma.200901257
GARCIA EJ, 2008, COMPOS PART A-APPL S, V39, P1065, DOI
10.1016/j.compositesa.2008.03.011
GREGOIRE JM, 2007, REV SCI INSTRUM, V78, ARTN 072212
HATA K, 2004, SCIENCE, V306, P1362
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
JIANG KL, 2002, NATURE, V419, P801
KUKOVITSKY EF, 2002, CHEM PHYS LETT, V355, P497
LI J, 2004, J PHYS CHEM A, V108, P7671, DOI 10.1021/jp0480302
LI XS, 2005, NANO LETT, V5, P1997, DOI 10.1021/nl051486q
LI XS, 2008, NANOTECHNOLOGY, V19, ARTN 455609
LIU K, 2005, CARBON, V43, P2850, DOI 10.1016/j.carbon.2005.06.002
MARUYAMA S, 2005, CHEM PHYS LETT, V403, P320, DOI
10.1016/j.cplett.2005.01.031
MESHOT ER, 2009, ACS NANO, V3, P2477, DOI 10.1021/nn900446a
NODA S, 2006, CARBON, V44, P1414, DOI 10.1016/j.carbon.2005.11.026
PFEIFFER R, 2008, TOP APPL PHYS, V111, P495
PINT CL, 2009, CHEM MATER, V21, P1550, DOI 10.1021/cm8031626
PINT CL, 2009, J PHYS CHEM C, V113, P4125, DOI 10.1021/jp8070585
PLATA DL, 2009, ENVIRON SCI TECHNOL, V42, P8367
POLSEN ES, 2009, INT C COMP MAT BRIT
QU LT, 2008, SCIENCE, V322, P238, DOI 10.1126/science.1159503
SON YW, 2005, NANOTECHNOLOGY, V16, P125, DOI 10.1088/0957-4484/16/1/025
SUGIME H, 2009, CARBON, V47, P234, DOI 10.1016/j.carbon.2008.10.001
WEI JQ, 2007, NANO LETT, V7, P2317, DOI 10.1021/nl070961c
XIANG R, 2009, J PHYS CHEM C, V113, P7511, DOI 10.1021/jp810454f
YAMADA T, 2006, NAT NANOTECHNOL, V1, P131, DOI 10.1038/nnano.2006.95
YANG L, 2009, J AM CHEM SOC, V131, P12373, DOI 10.1021/ja9044554
YASUDA S, 2009, NANO LETT, V9, P769, DOI 10.1021/nl803389v
YILDIRIM T, 2005, PHYS REV LETT, V94, ARTN 175501
ZHANG GY, 2005, P NATL ACAD SCI USA, V102, P16141, DOI
10.1073/pnas.0507064102
NR 40
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
DI 10.1021/jp100358j
PD APR 15
VL 114
IS 14
BP 6389
EP 6395
SC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
GA 579BP
UT ISI:000276341700026
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Thursday, April 15, 2010

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276234500057
*Order Full Text [ ]

Title:
Synthesis, Growth Mechanism, and Properties of Open-Hexagonal and Nanoporous-Wall Ceria Nanotubes Fabricated via Alkaline Hydrothermal Route

Authors:
Wu, XS; Kawi, S

Author Full Names:
Wu, Xusheng; Kawi, Sibudjing

Source:
CRYSTAL GROWTH & DESIGN 10 (4): 1833-1841 APR 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MIXED-OXIDE NANOTUBES; BORON-NITRIDE NANOTUBES; CARBON NANOTUBES; CO OXIDATION; ROOM-TEMPERATURE; TITANIA NANOTUBES; NI/Y2O3 CATALYSTS; CO3O4 NANOTUBES; SUPPORTED GOLD; WS2 NANOTUBES

Abstract:
Ce(OH)(3) open-hexagonal nanotubes [Ce(OH)(3)-OH-NT] and Ce(OH)(3) nanoporous-wall nanotubes [Ce(OH)(3)-NW-NT] have been successfully synthesized, for the first time, by a hydrothermal alkaline route and characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller method, differential thermal analysis-thermogravimetric analysis, and temperature-programmed reduction, The growth mechanism of Ce(OH)(3)-OH-NT via a hydrothermal alkaline route has been found to occur by the dissolution and recrystallization of surrounding Ce(OH)(3) compounds followed by anisotropical growth of Ce(OH)(3)-OH-NT gradually along the c-axis of nanotubes. The growth of Ce(OH)(3)-OH-NT has been observed, for the first time, to occur over two different Ce(OH)(3) compound bases: multidirectional growth of Ce(OH)(3)-OH-NT over a Ce(OH)(3) spherical core base to obtain nanotube flowers and vertical growth of Ce(OH)(3)-OH-NT over a !
Ce(OH)(3) flat base to obtain a nanotube jungle. Ce(OH)(3)-NW-NT has been successfully fabricated by further treating Ce(OH)(3)-OH-NT under static alkaline treatment at room temperature. Calcination of Ce(OH)(3)-OH-NT and Ce(OH)(3)-NW-NT leads to the formation of CeO2 open-hexagonal nanotubes (CeO2-OH-NT) and CeO2 nanoporous-wall nanotubes (CeO2-NW-NT), respectively. CeO2-OH-NT and CeO2-NW-NT are found to have higher surface area, easier reducibility, and higher mobility of surface oxygen species than CeO2 nanoparticles (CeO2-NP).

Reprint Address:
Kawi, S, Natl Univ Singapore, Dept Chem & Biomol Engn, 4 Engn Dr 4, Singapore 119260, Singapore.

Research Institution addresses:
[Wu, Xusheng; Kawi, Sibudjing] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119260, Singapore

E-mail Address:
chekawis@nus.edu.sg

Cited References:
ABIAAD E, 1993, CHEM MATER, V5, P793.
AGUILARGUERRERO V, 2007, CHEM COMMUN, P3210, DOI 10.1039/b705562e.
AGUILARGUERRERO V, 2008, J CATAL, V260, P351, DOI 10.1016/j.jcat.2008.09.012.
ALLAM NK, 2008, ADV MATER, V20, P3942, DOI 10.1002/adma.200800815.
AN GM, 2008, NANOTECHNOLOGY, V19, ARTN 035504.
ANDREESCU D, 2006, COLLOID SURFACE A, V291, P93, DOI 10.1016/j.colsurfa.2006.05.006.
ANGWAFOR NGN, 2008, PHYS STATUS SOLIDI, V205, P2351.
ARENAL R, 2007, J AM CHEM SOC, V129, P16183, DOI 10.1021/ja076135n.
BAE C, 2008, CHEM MATER, V20, P756, DOI 10.1021/cm702138c.
BYRNE MT, 2007, J MATER CHEM, V17, P2351, DOI 10.1039/b612886f.
CAMPBELL CT, 2005, SCIENCE, V309, P713, DOI 10.1126/science.1113955.
CAO CB, 2004, CHEM MATER, V16, P5213, DOI 10.1021/cm0493039.
CHE GL, 1998, NATURE, V393, P346.
CHEN GZ, 2008, CRYST GROWTH DES, V8, P4449, DOI 10.1021/cg800288x.
CHEN GZ, 2009, INORG CHEM, V48, P1334, DOI 10.1021/ic801714z.
CHEN H, 2007, J MATER CHEM, V17, P1593, DOI 10.1039/b611039h.
CHEN W, 2007, CHEMPHYSCHEM, V8, P1009, DOI 10.1002/cphc.200600711.
CHEN YC, 2009, J PHYS CHEM C, V113, P5031, DOI 10.1021/jp810492s.
CHENG FY, 2005, ADV MATER, V17, P2753, DOI 10.1002/adma.200500663.
CHU A, 1996, CHEM MATER, V8, P2751.
DU N, 2007, ADV MATER, V19, P4505, DOI 10.1002/adma.200602513.
ESCH F, 2005, SCIENCE, V309, P752, DOI 10.1126/science.1111568.
FAN WL, 2003, J MATER CHEM, V13, P3062, DOI 10.1039/b307619a.
FANG YP, 2003, ADV FUNCT MATER, V13, P955, DOI 10.1002/adfm.200304470.
FUENTES RO, 2008, CHEM MATER, V20, P7356, DOI 10.1021/cm801680c.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GOLDBERGER J, 2003, NATURE, V422, P599, DOI 10.1038/nature01551.
GOLDSMITH BR, 2007, SCIENCE, V315, P77, DOI 10.1126/science.1135303.
GOZALEZROVIRA L, 2009, NANO LETT, DOI 10.1021/NL803047B.
GUCZI L, 2006, J CATAL, V244, P24, DOI 10.1016/j.jcat.2006.08.012.
GUZMAN J, 2005, ANGEW CHEM INT EDIT, V44, P4778, DOI 10.1002/anie.200500659.
GUZMAN J, 2005, J AM CHEM SOC, V127, P3286, DOI 10.1021/ja043752s.
HAFNER JH, 1999, NATURE, V398, P761.
HAN WQ, 2005, J AM CHEM SOC, V127, P12814, DOI 10.1021/ja054533p.
HONG MC, 2000, ANGEW CHEM INT EDIT, V39, P2468.
HUANG JQ, 2008, CRYST GROWTH DES, V8, P2444, DOI 10.1021/ca800030y.
HUANG JQ, 2009, CRYST GROWTH DES, V9, P3632, DOI 10.1021/cg900381h.
HUANG MH, 2001, SCIENCE, V292, P1897.
IIJIMA S, 1991, NATURE, V354, P56.
INGUANTA R, 2007, NANOTECHNOLOGY, V18, ARTN 485605.
JAVEY A, 2003, NATURE, V424, P654, DOI 10.1038/nature01797.
KONDURI S, 2007, ACS NANO, V1, P393, DOI 10.1021/nn700104e.
KRUSINELBAUM L, 2004, NATURE, V431, P672, DOI 10.1038/nature02970.
KUIRY SC, 2005, J PHYS CHEM B, V109, P6936, DOI 10.1021/jp050675u.
LAI M, 2006, J MATER CHEM, V16, P2843, DOI 10.1039/b606433g.
LI L, 2006, SMALL, V2, P548, DOI 10.1002/smll.200500382.
LI YB, 2003, ADV MATER, V15, P1294, DOI 10.1002/adma.200305122.
LI YDD, 2002, J AM CHEM SOC, V124, P1411.
LIN SS, 2002, WATER RES, V36, P3009.
LIU C, 1999, SCIENCE, V286, P1127.
LIU HB, 2010, CRYST GROWTH DES, V10, P237, DOI 10.1021/cg900869f.
LIU XW, 2009, J AM CHEM SOC, V131, P3140, DOI 10.1021/ja808433d.
LOSCHEN C, 2008, PHYS CHEM CHEM PHYS, V10, P5730, DOI 10.1039/b805904g.
LOU XW, 2008, ADV MATER, V20, P258, DOI 10.1002/adma.200702412.
LU QY, 2002, NANO LETTERS, V2, P725.
MAMONTOV E, 2000, J PHYS CHEM B, V104, P11110.
MODI A, 2003, NATURE, V424, P171, DOI 10.1038/nature01777.
MUKHERJEE S, 2007, J AM CHEM SOC, V129, P6820, DOI 10.1021/ja070124c.
NAKAMURA H, 1995, J AM CHEM SOC, V117, P2651.
OGIHARA H, 2006, CHEM MATER, V18, P4981, DOI 10.1021/cm061266t.
OKAMOTO NL, 2008, J PHYS CHEM C, V112, P1759, DOI 10.1021/jp710959x.
PARK KH, 2007, CHEM MATER, V19, P3861, DOI 10.1021/cm0712772.
PASSOS FB, 2006, CATAL LETT, V110, P261, DOI 10.1007/s10562-006-0119-6.
REMSKAR M, 2001, SCIENCE, V292, P479.
ROTHSCHILD A, 2000, J AM CHEM SOC, V122, P5169.
RUPP JLM, 2007, CHEM MATER, V19, P1134, DOI 10.1021/cm061449f.
SHEN SC, 2004, ADV MATER, V16, P541, DOI 10.1002/adma.200305783.
SHERWOOD D, 2006, CRYST GROWTH DES, V6, P1415, DOI 10.1021/cg0600521.
SONG XC, 2009, CRYST GROWTH DES, V9, P344, DOI 10.1021/cg8005103.
SPAHR ME, 1998, ANGEW CHEM INT EDIT, V37, P1263.
STEVENS MG, 1998, CHEM PHYS LETT, V292, P352.
SUMANASEKERA GU, 2002, MOL CRYST LIQ CRYS A, V387, P31.
SUN G, 2006, CHEM LETT, V35, P1308, DOI 10.1246/cl.2006.1308.
SUN GB, 2008, APPL CATAL B-ENVIRON, V81, P303, DOI 10.1016/j.apcatb.2007.12.021.
TAGUCHI M, 2009, CRYST GROWTH DES, V9, P5297, DOI 10.1021/cg900809b.
TANG CC, 2005, ADV MATER, V17, P3005, DOI 10.1002/adma.200501557.
TANG Q, 2003, J MATER CHEM, V13, P3103, DOI 10.1039/b308713a.
TANIGUCHI T, 2008, CRYST GROWTH DES, V8, P3725, DOI 10.1021/cg800363w.
TOK AIY, 2007, J MATER PROCESS TECH, V190, P217, DOI 10.1016/j.jmatprotec.2007.02.042.
TSANG SC, 1993, NATURE, V362, P520.
TSANG SC, 1994, NATURE, V372, P159.
WANG JN, 2008, CRYST GROWTH DES, V8, P1741, DOI 10.1021/cg700671p.
WANG Y, 2005, CHEM MATER, V17, P3899, DOI 10.1021/cm050724f.
WANG ZX, 2007, ADV FUNCT MATER, V17, P1790, DOI 10.1002/adfm.200601195.
WE XS, 2010, ENERG ENVIRON SCI, V3, P334.
WU GS, 2004, MATER RES BULL, V39, P1023, DOI 10.1016/j.materresbull.2004.03.006.
WU XS, 2009, CATAL TODAY, V148, P251, DOI 10.1016/j.cattod.2009.08.006.
YADA M, 2002, ADV MATER, V14, P309.
YAN L, 2007, PHYSICA B, V390, P59, DOI 10.1016/j.physb.2006.07.062.
YAN L, 2008, CRYST GROWTH DES, V8, P1474, DOI 10.1021/cg800117v.
YANG Z, CRYST GROWTH DES, DOI 10.1021/EG900898R.
YI B, 2006, J AM CHEM SOC, V128, P11307, ARTN JA063518X.
YU KL, 2007, MAT SCI ENG B-SOLID, V139, P197, DOI 10.1016/j.mseb.2007.02.011.
YUDANOV NF, 2002, CHEM MATER, V14, P1472.
YUE L, 2006, J AM CHEM SOC, V128, P11042, DOI 10.1021/ja064198k.
ZHANG F, 2009, ACS NANO, V3, P159, DOI 10.1021/nn800533v.
ZHI C, 2005, J AM CHEM SOC, V127, P17144, DOI 10.1021/ja055989+.
ZHOU KB, 2007, CHEM MATER, V19, P1215, DOI 10.1021/cm062886x.

Cited Reference Count:
98

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary

ISSN:
1528-7483

DOI:
10.1021/cg901515r

IDS Number:
577OV

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276296800005
*Order Full Text [ ]

Title:
Tunable Water Channels with Carbon Nanoscrolls

Authors:
Shi, XH; Cheng, Y; Pugno, NM; Gao, HJ

Author Full Names:
Shi, Xinghua; Cheng, Yuan; Pugno, Nicola M.; Gao, Huajian

Source:
SMALL 6 (6): 739-744 MAR 22 2010

Language:
English

Document Type:
Article

Author Keywords:
graphene; ion channels; molecular dynamics; nanostructures; water channels

KeyWords Plus:
PARTICLE MESH EWALD; MOLECULAR-DYNAMICS; HYDROGEN STORAGE; ELECTRIC-FIELDS; NANOTUBES; TRANSPORT; CONDUCTION; MEMBRANES; ROUTE

Abstract:
Molecular dynamics simulations and theoretical analyses are performed to show that the flow rate of water through the core of carbon nanoscrolls (CNSs) can be adjusted over a broad range through the effective surface energy, which in turn can be tuned by an applied DC or AC electric field. The results suggest that the CNSs hold great promise for applications such as tunable water and ion channels, nanofluidic devices, and nanofilters, as well as tunable gene- and drug-delivery systems.

Reprint Address:
Gao, HJ, Brown Univ, Div Engn, 610 Barus & Holley,182 Hope St, Providence, RI 02912 USA.

Research Institution addresses:
[Shi, Xinghua; Gao, Huajian] Brown Univ, Div Engn, Providence, RI 02912 USA; [Cheng, Yuan] Inst High Performance Comp, Singapore 138632, Singapore; [Pugno, Nicola M.] Politecn Torino, Dept Struct Engn, I-10129 Turin, Italy

E-mail Address:
Huajian_Gao@brown.edu

Cited References:
BRAGA SF, 2004, NANO LETT, V4, P881, DOI 10.1021/nl0497272.
BRAGA SF, 2007, CHEM PHYS LETT, V441, P78, DOI 10.1016/j.cplett.2007.04.060.
BUSSI G, 2007, J CHEM PHYS, V126, ARTN 014101.
CHEN Y, 2007, J PHYS CHEM C, V111, P1625, DOI 10.1021/jp066030r.
COLUCI VR, 2007, PHYS REV B, V75, ARTN 125404.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
GARATE JA, 2009, MOL SIMULAT, V35, P3, DOI 10.1080/08927020802353491.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HESS B, 2008, J CHEM THEORY COMPUT, V4, UNSP 435447.
HUMMER G, 2001, NATURE, V414, P188.
ISRAELACHVILI J, 1991, INTERMOLECULAR SURFA.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
KNEPPER MA, 1997, AM J PHYSIOL-RENAL, V272, F3.
LANGLET R, 2006, CARBON, V44, P2883, DOI 10.1016/j.carbon.2006.05.050.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU B, 2009, NANO LETT, V9, P1386, DOI 10.1021/nl8030339.
LIU YC, 2008, PHYS REV B, V77, ARTN 125438.
MAHESHWARI R, 2004, J COLLOID INTERF SCI, V271, P419, DOI 10.1016/j.jcis.2003.11.060.
MPOURMPAKIS G, 2007, NANO LETT, V7, P1893, DOI 10.1021/nl070530u.
PAN H, 2005, PHYS REV B, V72, ARTN 085415.
PARRINELLO M, 1981, J APPL PHYS, V52, P7182.
RURALI R, 2006, PHYS REV B, V74, ARTN 085414.
SAVOSKIN MV, 2007, CARBON, V45, P2797, DOI 10.1016/j.carbon.2007.09.031.
SHI XH, 2010, J COMPUT THEOR NANOS, V7, P517, DOI 10.1166/jctn.2010.1387.
SHIOYAMA H, 2003, CARBON, V41, P179.
STEUDLE E, 1995, J EXP BOT, V46, P1067.
TIELEMAN DP, 1996, J CHEM PHYS, V105, P4871.
TIELEMAN DP, 2003, J AM CHEM SOC, V125, P6382, DOI 10.1021/ja029504i.
VERKMAN AS, 1996, AM J PHYSIOL-CELL PH, V270, C12.
VICULIS LM, 2003, SCIENCE, V299, P1361.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZOU J, 2006, SMALL, V2, P1348, DOI 10.1002/smll.200600055.

Cited Reference Count:
37

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1613-6810

DOI:
10.1002/smll.200902286

IDS Number:
578MD

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276159500007
*Order Full Text [ ]

Title:
Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice

Authors:
Bai, J; Angell, CA; Zeng, XC

Author Full Names:
Bai, Jaeil; Angell, C. Austen; Zeng, Xiao Cheng

Source:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 107 (13): 5718-5722 MAR 30 2010

Language:
English

Document Type:
Article

Author Keywords:
2D high-density ice; 2D low-density ice; 2D monolayer ice clathrate; Ostwald rule of stages; tensile limit of 2D liquid

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATION; LIQUID WATER; GLASSY WATER; THERMODYNAMIC STABILITY; NEGATIVE PRESSURES; HYDRATE; TRANSITION; NUCLEATION; PHASE; GROWTH

Abstract:
Three-dimensional (3D) gas clathrates are ice-like but distinguished from bulk ices by containing polyhedral nano-cages to accommodate small gas molecules. Without space filling by gas molecules, standalone 3D clathrates have not been observed to form in the laboratory, and they appear to be unstable except at negative pressure. Thus far, experimental evidence for guest-free clathrates has only been found in germanium and silicon, although guest-free hydrate clathrates have been found, in recent simulations, able to grow from cold stretched water, if first nucleated. Herein, we report simulation evidence of spontaneous formation of monolayer clathrate ice, with or without gas molecules, within hydrophobic nano-slit at low temperatures. The guest-free monolayer clathrate ice is a low-density ice (LDI) whose geometric pattern is identical to Archimedean 4 . 8(2)-truncated square tiling, i.e. a mosaic of tetragons and octagons. At large positive pressure, a second phase of 2D m!
onolayer ice, i.e. the puckered square high-density ice (HDI) can form. The triple point of the LDI/liquid/HDI three-phase coexistence resembles that of the ice-I-h/water/ice-III three-phase coexistence. More interestingly, when the LDI is under a strong compression at 200 K, it transforms into the HDI via a liquid intermediate state, the first direct evidence of Ostwald's rule of stages at 2D. The tensile limit of the 2D LDI and water are close to that of bulk ice-I-h and laboratory water.

Reprint Address:
Zeng, XC, Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA.

Research Institution addresses:
[Bai, Jaeil; Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA; [Bai, Jaeil; Zeng, Xiao Cheng] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA; [Angell, C. Austen] Arizona State Univ, Dept Chem, Tempe, AZ 85287 USA

E-mail Address:
xczeng@phase2.unl.edu

Cited References:
AMMAR A, 2004, SOLID STATE SCI, V6, P393, DOI 10.1016/j.solidstatesciences.2004.02.006.
BALL P, 2008, NAT MATER, V7, P928.
BARRER RM, 1967, P ROY SOC LOND A MAT, V300, P1.
CUNG SY, 2009, NAT PHYS, V5, P68.
DAVIDSON DW, 1973, WATER COMPREHENSIVE, V2, P115.
DAVIDSON DW, 1984, NATURE, V311, P142.
DEBENEDETTI PG, 2003, PHYS TODAY, V56, P40.
FEHN U, 2000, SCIENCE, V289, P2332.
FENNELL CJ, 2004, J CHEM PHYS, V120, P9175, DOI 10.1063/1.1697381.
FENNELL CJ, 2005, J CHEM THEORY COMPUT, V1, P662, DOI 10.1021/ct050005s.
GIOVAMBATTISTA N, 2009, PHYS REV LETT, V102, ARTN 050603.
GRYKO J, 2000, PHYS REV B, V62, P7707.
GULOY AM, 2006, NATURE, V443, P320, DOI 10.1038/nature05145.
HALPERIN BI, 1978, PHYS REV LETT, V41, P121.
HESSELBO SP, 2000, NATURE, V406, P392.
HUMMER G, 2001, NATURE, V414, P188.
ITO K, 1999, NATURE, V398, P492.
JACOBSON LC, 2009, J PHYS CHEM B, V113, P10298, DOI 10.1021/jp903439a.
KOGA K, 2000, NATURE, V408, P564.
KOGA K, 2005, J CHEM PHYS, V122, ARTN 104711.
KUMAR P, 2005, PHYS REV E 1, V72, ARTN 051503.
KVENVOLDEN KA, 1998, METHANE HYDRATE RESO.
LEE SH, 1994, J CHEM PHYS, V100, P3334.
LUDWIG R, 2006, ANGEW CHEM INT EDIT, V45, P3402, DOI 10.1002/anie.200601053.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MAKOGON YF, 1997, HYDRATES HYDROCARBON.
MISHIMA O, 1998, NATURE, V396, P329.
MISHIMA O, 2002, NATURE, V419, P599, DOI 10.1038/nature01106.
OSTWALD W, 1897, Z PHYS CHEM, V22, P289.
PETRENKO VF, 1999, PHYS ICE.
POOLE PH, 1992, NATURE, V360, P324.
RIPMEESTER JA, 1987, NATURE, V325, P135.
SCIORTINO F, 1995, PHYS REV E B, V52, P6484.
SLOAN ED, 2003, NATURE, V426, P353, DOI 10.1038/nature02135.
SMITH RS, 1999, NATURE, V398, P788.
STEELE WA, 1974, INTERACTION GASES SO.
TANAKA H, 1993, J CHEM PHYS, V98, P4098.
TANAKA H, 1996, NATURE, V380, P328.
VANDERWAALS JH, 1959, ADV CHEM PHYS, V2, P1.
WALSH MR, 2009, SCIENCE, V326, P1095, DOI 10.1126/science.1174010.
WANG J, 2005, J CHEM PHYS, V123, UNSP 036101-1-2.
WILSON M, 2003, PHYS REV LETT, V90, ARTN 135703.
YANG JJ, 2004, PHYS REV LETT, V92, ARTN 146102.
YASUOKA K, 2000, J CHEM PHYS, V112, P4279.
ZANGI R, 2003, PHYS REV LETT, V91, ARTN 025502.
ZHENG Q, 1991, SCIENCE, V254, P829.

Cited Reference Count:
46

Times Cited:
0

Publisher:
NATL ACAD SCIENCES; 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA

Subject Category:
Multidisciplinary Sciences

ISSN:
0027-8424

DOI:
10.1073/pnas.0906437107

IDS Number:
576QA

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276159500027
*Order Full Text [ ]

Title:
Principles of conduction and hydrophobic gating in K+ channels

Authors:
Jensen, MO; Borhani, DW; Lindorff-Larsen, K; Maragakis, P; Jogini, V; Eastwood, MP; Dror, RO; Shaw, DE

Author Full Names:
Jensen, Morten O.; Borhani, David W.; Lindorff-Larsen, Kresten; Maragakis, Paul; Jogini, Vishwanath; Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.

Source:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 107 (13): 5833-5838 MAR 30 2010

Language:
English

Document Type:
Article

Author Keywords:
ion channel; ion permeation; membrane; electrophysiology; dewetting

KeyWords Plus:
POTASSIUM CHANNEL; ION CONDUCTION; SELECTIVITY FILTER; CRYSTAL-STRUCTURE; ACTIVATION GATE; VOLUME CHANGES; VOLTAGE; WATER; ENERGETICS; DYNAMICS

Abstract:
We present the first atomic-resolution observations of permeation and gating in a K+ channel, based on molecular dynamics simulations of the Kv1.2 pore domain. Analysis of hundreds of simulated permeation events revealed a detailed conduction mechanism, resembling the Hodgkin-Keynes "knock-on" model, in which translocation of two selectivity filter-bound ions is driven by a third ion; formation of this knock-on intermediate is rate determining. In addition, at reverse or zero voltages, we observed pore closure by a novel "hydrophobic gating" mechanism: A dewetting transition of the hydrophobic pore cavity-fastest when K+ was not bound in selectivity filter sites nearest the cavity-caused the open, conducting pore to collapse into a closed, nonconducting conformation. Such pore closure corroborates the idea that voltage sensors can act to prevent pore collapse into the intrinsically more stable, closed conformation, and it further suggests that molecular-scale dewetting facil!
itates a specific biological function: K+ channel gating. Existing experimental data support our hypothesis that hydrophobic gating may be a fundamental principle underlying the gating of voltage-sensitive K+ channels. We suggest that hydrophobic gating explains, in part, why diverse ion channels conserve hydrophobic pore cavities, and we speculate that modulation of cavity hydration could enable structural determination of both open and closed channels.

Reprint Address:
Shaw, DE, DE Shaw Res, New York, NY 10036 USA.

Research Institution addresses:
[Jensen, Morten O.; Borhani, David W.; Lindorff-Larsen, Kresten; Maragakis, Paul; Jogini, Vishwanath; Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.] DE Shaw Res, New York, NY 10036 USA; [Shaw, David E.] Columbia Univ, Ctr Computat Biol & Bioinformat, New York, NY 10032 USA

E-mail Address:
David.Shaw@DEShawResearch.com

Cited References:
ALCAYAGA C, 1989, BIOPHYS J, V55, P367.
ANDO H, 2005, J GEN PHYSIOL, V126, P529.
ANISHKIN A, 2004, BIOPHYS J, V86, P2883.
ARMSTRONG CM, 1971, J GEN PHYSIOL, V58, P413.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BECKSTEIN O, 2006, PHYS BIOL, V3, P147, DOI 10.1088/1478-3975/3/2/007.
BENABU Y, 2008, NAT STRUCT MOL BIOL, V16, P71.
BERNECHE S, 2001, NATURE, V414, P73.
BERNECHE S, 2003, P NATL ACAD SCI USA, V100, P8644, DOI 10.1073/pnas.1431750100.
BOWERS KJ, 2006, P ACM IEEE C SUP SC0.
CARVACHO I, 2008, J GEN PHYSIOL, V131, P147, DOI 10.1085/jgp.200709862.
CHEN GQ, 1999, NATURE, V402, P817.
CLAYTON GM, 2008, P NATL ACAD SCI USA, V105, P1511, DOI 10.1073/pnas.0711533105.
DELCAMINO D, 2001, NEURON, V32, P649.
DEMO SD, 1992, BIOPHYS J, V61, P639.
DOYLE DA, 1998, SCIENCE, V280, P69.
FURINI S, 2009, P NATL ACAD SCI USA, V106, P16074, DOI 10.1073/pnas.0903226106.
GOYCHUK I, 2002, P NATL ACAD SCI USA, V99, P3552.
HACKOS DH, 2002, J GEN PHYSIOL, V119, P521.
HEGINBOTHAM L, 1993, BIOPHYS J, V65, P2089.
HILLE B, 2001, ION CHANNELS EXCITAB.
HODGKIN AL, 1952, J PHYSIOL, V117, P500.
HODGKIN AL, 1955, J PHYSIOL-LONDON, V128, P61.
HUMMER G, 2001, NATURE, V414, P188.
IMBRICI P, 2009, CHANNELS, V3, P39.
KHALILIARAGHI F, 2006, BIOPHYS J, V91, L72.
KITAGUCHI T, 2004, J GEN PHYSIOL, V124, P319, DOI 10.1085/jgp.200409098.
LABRO AJ, 2003, J BIOL CHEM, V278, P50724, DOI 10.1074/jbc.M306097200.
LEMASURIER M, 2001, J GEN PHYSIOL, V118, P303.
LI Y, 2007, J GEN PHYSIOL, V129, P109, DOI 10.1085/jgp.200609655.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
LOCKLESS SW, 2007, PLOS BIOL, V5, P1079, ARTN e121.
LONG SB, 2005, SCIENCE, V309, P897, DOI 10.1126/science.1116269.
LONG SB, 2007, NATURE, V450, P376, DOI 10.1038/nature06265.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MACKERELL AD, 2004, J COMPUT CHEM, V25, P1400, DOI 10.1002/jcc.20065.
MELISHCHUK A, 2001, BIOPHYS J, V80, P2167.
MONTELL C, 2005, SCI STKE, V272, RE3.
MORAISCABRAL JH, 2001, NATURE, V414, P37.
NEYTON J, 1988, J GEN PHYSIOL, V92, P549.
OLCESE R, 2001, J GEN PHYSIOL, V117, P149.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
RAYNER MD, 1992, BIOPHYS J, V61, P96.
RODRIGUEZ BM, 1998, J GEN PHYSIOL, V112, P223.
ROTH R, 2008, BIOPHYS J, V94, P4282, DOI 10.1529/biophysj.107.120493.
ROUX B, 2008, BIOPHYS J, V95, P4205, DOI 10.1529/biophysj.108.136499.
SUKHAREVA M, 2003, J GEN PHYSIOL, V122, P541.
SWARTZ KJ, 2008, NATURE, V456, P891, DOI 10.1038/nature07620.
TAO X, 2009, SCIENCE, V326, P1668, DOI 10.1126/science.1180310.
TU T, 2008, P ACM IEEE C SUP SC0.
VALIYAVEETIL FI, 2006, SCIENCE, V314, P1004, DOI 10.1126/science.1133415.
YELLEN G, 1998, Q REV BIOPHYS, V31, P239.
YIFRACH O, 2002, CELL, V111, P231.
YU FH, 2004, SCI STKE, V253, RE15.
ZHOU YF, 2001, NATURE, V414, P43.
ZHOU YF, 2003, J MOL BIOL, V333, P965, DOI 10.1016/j.jmb.2003.09.022.
ZIMMERBERG J, 1986, NATURE, V323, P36.
ZIMMERBERG J, 1987, J BIOENERG BIOMEMBR, V19, P351.
ZIMMERBERG J, 1990, BIOPHYS J, V57, P1049.

Cited Reference Count:
59

Times Cited:
0

Publisher:
NATL ACAD SCIENCES; 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA

Subject Category:
Multidisciplinary Sciences

ISSN:
0027-8424

DOI:
10.1073/pnas.0911691107

IDS Number:
576QA

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276275300054
*Order Full Text [ ]

Title:
Separation of gases from gas-water mixtures using carbon nanotubes

Authors:
Lee, J; Aluru, NR

Author Full Names:
Lee, Joonho; Aluru, N. R.

Source:
APPLIED PHYSICS LETTERS 96 (13): Art. No. 133108 MAR 29 2010

Language:
English

Document Type:
Article

Author Keywords:
adsorption; carbon nanotubes; diffusion; mixtures; molecular dynamics method

KeyWords Plus:
MOLECULAR-DYNAMICS METHOD; HYDROGEN; SIMULATIONS; SOLUBILITY; ADSORPTION; DIFFUSION; TRANSPORT; STORAGE; FLOW

Abstract:
We investigate equilibrium transport of gas-water mixtures, such as CO2-water, O-2-water and H-2-water mixtures, in carbon nanotubes using molecular dynamics simulations. Our results indicate that gases are selectively physisorbed in carbon nanotubes forming single-file gas chains. Once the single-file gas chains are formed, they prevent entry of water into the nanotube, suggesting that the presence of gas molecules can significantly affect the equilibrium transport of water in carbon nanotubes. The diffusion of single-file gas chains in nanotubes for gas-water mixtures is found to be lower compared to the single-file diffusion of gases in gas-only cases.

Reprint Address:
Aluru, NR, Univ Illinois Urbana Champaign, Dept Mech Sci & Engn, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA.

Research Institution addresses:
[Lee, Joonho; Aluru, N. R.] Univ Illinois Urbana Champaign, Dept Mech Sci & Engn, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA

E-mail Address:
aluru@illinois.edu

Cited References:
ALAVI JS, 2005, J CHEM PHYS, V123, UNSP 024507.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
CHEN GH, 1993, PHYS REV B, V48, P13959.
DILLON AC, 1997, NATURE, V386, P377.
HAHN K, 1998, J PHYS CHEM B, V102, P5766.
HAN SS, 2005, APPL PHYS LETT, V86, ARTN 203108.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2004, J PHYS CHEM B, V108, P544, DOI 10.1021/jp035828x.
KJELLANDER R, 1998, J ELECTROANAL CHEM, V450, P233.
KOTSALIS EM, 2004, INT J MULTIPHAS FLOW, V30, P995, DOI 10.1016/j.imultiphaseflow.2004.03.009.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU C, 1999, SCIENCE, V286, P1127.
LUZAR A, 2005, J PHYS CHEM B, V109, P22545, DOI 10.1021/jp054545x.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MARSH H, 1982, CARBON, V20, P419.
MON KK, 2002, J CHEM PHYS, V117, P2289.
NOSE S, 1984, MOL PHYS, V52, P255.
PARRINELLO M, 1981, J APPL PHYS, V52, P7182.
PATEY GN, 1975, J CHEM PHYS, V63, P2334.
SHAH JK, 2005, J PHYS CHEM B, V109, P10395, DOI 10.1021/jp0442089.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
ZUTTEL A, 2004, APPL PHYS A-MATER, V78, P941, DOI 10.1007/s00339-003-2412-1.

Cited Reference Count:
24

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0003-6951

DOI:
10.1063/1.3374363

IDS Number:
578EC

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================