Friday, July 30, 2010

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279961200015
*Order Full Text [ ]

Title:
Towards carbon-nanotube integrated devices: optically controlled parallel integration of single-walled carbon nanotubes

Authors:
Zhou, YS; Xiong, W; Gao, Y; Mahjouri-Samani, M; Mitchell, M; Jiang, L; Lu, YF

Author Full Names:
Zhou, Y. S.; Xiong, W.; Gao, Y.; Mahjouri-Samani, M.; Mitchell, M.; Jiang, L.; Lu, Y. F.

Source:
NANOTECHNOLOGY 21 (31): Art. No. 315601 AUG 6 2010

Language:
English

Document Type:
Article

KeyWords Plus:
FIELD-EFFECT TRANSISTORS; SCANNING-ELECTRON-MICROSCOPY; LOGIC-CIRCUITS; MONOLITHIC INTEGRATION; RAMAN-SPECTROSCOPY; SENSORS; MICROELECTRONICS; NANOELECTRONICS; FABRICATION; MECHANISM

Abstract:
Where it starts and where it goes? Controlled integration of single-walled carbon nanotubes (SWNTs) into pre-designed nano-architectures is one of the major challenges to be overcome for extensive scientific research and technological applications. Various serial assembly techniques have been proposed and developed. However, they are still a long way from practical applications due to the drawbacks on reliability, yield and cost. Here we demonstrate a laser-based strategy to achieve parallel integration of SWNTs into pre-designed nano-architectures through an optically controlled in situ growth process. Optical driving forces originated from tip-induced optical near-field enhancement and laser beam polarization were applied in this study to realize the controlled placement of SWNTs at designated sites following wanted orientations on the nanometer scale. Parallel integration of SWNT arrays was achieved by adjusting laser beam diameter to cover interested nano-architectures. !
The laser-based process suggests an efficient and cost-effective approach for fabricating and integrating SWNT-based devices and circuits.

Reprint Address:
Lu, YF, Univ Nebraska Lincoln, Dept Elect Engn, Lincoln, NE 68588 USA.

Research Institution addresses:
[Zhou, Y. S.; Xiong, W.; Gao, Y.; Mahjouri-Samani, M.; Mitchell, M.; Lu, Y. F.] Univ Nebraska Lincoln, Dept Elect Engn, Lincoln, NE 68588 USA; [Jiang, L.] Beijing Inst Technol, Dept Mech & Automat Engn, Beijing 100081, Peoples R China

E-mail Address:
ylu2@unl.edu

Cited References:
AKINWANDE D, 2008, IEEE T NANOTECHNOL, V7, P636, DOI 10.1109/TNANO.2008.2003438.
APPENZELLER J, 2002, MICROELECTRON ENG, V64, P391.
AVOURIS P, 2002, CHEM PHYS, V281, P429.
AVOURIS P, 2002, PHYSICA B, V323, P6.
AVOURIS P, 2006, MATER TODAY, V9, P46.
AVOURIS P, 2007, NAT NANOTECHNOL, V2, P605, DOI 10.1038/nnano.2007.300.
AVOURIS P, 2007, PHYS WORLD, V20, P40.
BACHTOLD A, 2001, SCIENCE, V294, P1317.
BACHTOLD A, 2003, PHYSICA E, V16, P42.
BAUERDICK S, 2006, J VAC SCI TECHNOL B, V24, P3144, DOI 10.1116/1.2388965.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BOBRINETSKII II, 2009, RUSS MICROELECTRON+, V38, P353.
BRINTLINGER T, 2002, APPL PHYS LETT, V81, P2454, DOI 10.1063/1.1509113.
BURGHARD M, 2009, ADV MATER, V21, P2586, DOI 10.1002/adma.200803582.
CHAN RHM, 2004, NANOTECHNOLOGY, V15, S672.
CHEN KH, 2001, J PHYS CHEM SOLIDS, V62, P1561.
CHOPRA S, 2002, APPL PHYS LETT, V80, P4632.
CHOPRA S, 2003, APPL PHYS LETT, V83, P2280, DOI 10.1063/1.1610251.
CHUNG JY, 2004, LANGMUIR, V20, P3011, DOI 10.1021/la035726y.
COLLINS PG, 2000, SCI AM, V283, P62.
DAI HJ, 2002, SURF SCI, V500, P218.
DRESSELHAUS MS, 2005, PHYS REP, V409, P47, DOI 10.1016/j.physrep.2004.10.006.
DUAN XJ, 2005, J AM CHEM SOC, V127, P8268, DOI 10.1021/ja051280r.
FALVO MR, 1997, NATURE, V389, P582.
FRANKLIN NR, 2002, APPL PHYS LETT, V81, P913.
FUNG CMKM, 2004, IEEE T NANOTECHNOL, V3, P395, DOI 10.1109/TNANO.2004.834156.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GRAHAM AP, 2004, DIAM RELAT MATER, V13, P1296, DOI 10.1016/j.diamond.2003.10.080.
GRAHAM AP, 2005, APPL PHYS A-MATER, V80, P1141, DOI 10.1007/s00339-004-3151-7.
HAYAZAWA N, 2003, CHEM PHYS LETT, V376, P174, DOI 10.1016/S0009-2614(03)00883-2.
HEINZE S, 2002, PHYS REV LETT, V89, ARTN 106801.
HOENLEIN W, 2004, IEEE T COMPON PACK T, V27, P629, DOI 10.1109/TCAPT.2004.838876.
HOMMA Y, 2004, APPL PHYS LETT, V84, P1750, DOI 10.1063/1.1667608.
JAVEY A, 2003, NATURE, V424, P654, DOI 10.1038/nature01797.
JENSEN K, 2008, NAT NANOTECHNOL, V3, P533, DOI 10.1038/nnano.2008.200.
JORIO A, 2001, PHYS REV LETT, V86, P1118.
KAUSHIK BK, 2007, MICROELECTRON INT, V24, P53, DOI 10.1108/13565360710745601.
KEREN K, 2003, SCIENCE, V302, P1380.
KONG J, 2000, SCIENCE, V287, P622.
KREUPL F, 2002, MICROELECTRON ENG, V64, P399.
LEFEBVRE J, 1999, APPL PHYS LETT, V75, P3014.
LI JQ, 2005, APPL PHYS LETT, V86, ARTN 153116.
MARTEL R, 2001, ABSTR PAP AM CHEM 2, V222, U184.
NAGAHARA LA, 2002, APPL PHYS LETT, V80, P3826.
NAKAYAMA Y, 2006, JPN J APPL PHYS 1, V45, P369, DOI 10.1143/JJAP.45.369.
NOVOTNY L, 1997, PHYS REV LETT, V79, P645.
RUECKES T, 2000, SCIENCE, V289, P94.
SOUZA AG, 2004, PHYS REV B, V69, ARTN 115428.
TANS SJ, 1998, NATURE, V393, P49.
TSENG YC, 2004, NANO LETT, V4, P123, DOI 10.1021/nl0349707.
VANDORP WF, 2008, J APPL PHYS, V104, ARTN 081301.
WEI YY, 2000, APPL PHYS LETT, V76, P3759.
WEI YY, 2000, NANOTECHNOLOGY, V11, P61.
XIN HJ, 2003, J AM CHEM SOC, V125, P8710, DOI 10.1021/ja035902p.
YOUSIF MYA, 2008, NANOTECHNOLOGY, V19, ARTN 285204.
ZHANG RY, 2006, NANOTECHNOLOGY, V17, P272, DOI 10.1088/0957-4484/17/1/046.
ZHOU YS, 2009, APPL SURF SCI, V255, P4341, DOI 10.1016/j.apsusc.2008.11.035.

Cited Reference Count:
57

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Engineering, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied

ISSN:
0957-4484

DOI:
10.1088/0957-4484/21/31/315601

IDS Number:
626JC

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279996400002
*Order Full Text [ ]

Title:
Electrolyte solution transport in electropolar nanotubes

Authors:
Zhao, JB; Culligan, PJ; Qiao, Y; Zhou, QL; Li, YB; Tak, M; Park, T; Chen, X

Author Full Names:
Zhao, Jianbing; Culligan, Patricia J.; Qiao, Yu; Zhou, Qulan; Li, Yibing; Tak, Moonho; Park, Taehyo; Chen, Xi

Source:
JOURNAL OF PHYSICS-CONDENSED MATTER 22 (31): Art. No. 315301 AUG 11 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MONTE-CARLO SIMULATIONS; NANOPOROUS SILICA-GEL; MOLECULAR-DYNAMICS; CARBON NANOTUBES; INFILTRATION PRESSURE; POTENTIAL FUNCTIONS; SURFACE-TREATMENT; WATER; NANOFLUIDICS; CHANNELS

Abstract:
Electrolyte transport in nanochannels plays an important role in a number of emerging areas. Using non-equilibrium molecular dynamics (NEMD) simulations, the fundamental transport behavior of an electrolyte/water solution in a confined model nanoenvironment is systematically investigated by varying the nanochannel dimension, solid phase, electrolyte phase, ion concentration and transport rate. It is found that the shear resistance encountered by the nanofluid strongly depends on these material/system parameters; furthermore, several effects are coupled. The mechanisms of the nanofluidic transport characteristics are explained by considering the unique molecular/ion structure formed inside the nanochannel. The lower shear resistance observed in some of the systems studies could be beneficial for nanoconductors, while the higher shear resistance (or higher effective viscosity) observed in other systems might enhance the performance of energy dissipation devices.

Reprint Address:
Culligan, PJ, Columbia Univ, Sch Engn & Appl Sci, Dept Earth & Environm Engn, New York, NY 10027 USA.

Research Institution addresses:
[Zhao, Jianbing; Culligan, Patricia J.; Chen, Xi] Columbia Univ, Sch Engn & Appl Sci, Dept Earth & Environm Engn, New York, NY 10027 USA; [Qiao, Yu] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA; [Zhou, Qulan] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China; [Li, Yibing] Tsinghua Univ, Dept Automot Engn, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China; [Tak, Moonho; Park, Taehyo; Chen, Xi] Hanyang Univ, Dept Civil & Environm Engn, Seoul 133791, South Korea; [Chen, Xi] Xi An Jiao Tong Univ, Sch Aerosp, Xian 710049, Peoples R China

E-mail Address:
pjc2104@columbia.edu; xichen@columbia.edu

Cited References:
BARTOLOTTI LJ, 1991, J COMPUT CHEM, V12, P1125.
BELLAT JP, 2009, J PHYS CHEM C, V113, P8287, DOI 10.1021/jp810209t.
BOUZIGUES CI, 2008, PHYS REV LETT, V101, ARTN 114503.
CAILLIEZ F, 2008, PHYS CHEM CHEM PHYS, V10, P4817, DOI 10.1039/b807471b.
CAILLIEZ F, 2009, MOL SIMULAT, V35, P24, DOI 10.1080/08927020802398900.
CAO GX, 2008, MOL SIMULAT, V34, P1267, DOI 10.1080/08927020802175225.
CHEN NY, 1994, MOL TRANSPORT REACTI.
CHEN X, 2005, J AM CERAM SOC, V88, P1233.
CHEN X, 2006, APPL PHYS LETT, V89, ARTN 241918.
CHEN X, 2008, BIOPHYS J, V95, P563, DOI 10.1529/biophysj.107.128488.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
COUDERT FX, 2008, PHYS CHEM CHEM PHYS, V141, P377.
FORMASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
GUENES S, 2008, INORG CHIM ACTA, V361, P581, DOI 10.1016/j.ica.2007.06.042.
GURIYANOVA S, 2008, PHYS CHEM CHEM PHYS, V10, P4871, DOI 10.1039/b806236f.
GYURCSANYI RE, 2008, TRAC-TREND ANAL CHEM, V27, P627, DOI 10.1016/j.trac.2008.06.002.
HALICIOGLU T, 1975, PHYS STATUS SOLIDI A, V30, P619.
HAN A, 2007, J MATER RES, V22, P644, DOI 10.1557/JMR.2007.0088.
HAN A, 2007, J PHYS D APPL PHYS, V40, P5743, DOI 10.1088/0022-3727/40/18/035.
HAN A, 2008, J APPL PHYS, V104, UNSP 124906.
HAN A, 2008, LANGMUIR, V24, P7044, DOI 10.1021/la800446z.
HAN AJ, 2007, CHEM LETT, V36, P882.
HAN AJ, 2009, SMART MATER STRUCT, V18, ARTN 024005.
HEALY K, 2007, NANOMEDICINE-UK, V2, P875, DOI 10.2217/17435889.2.6.875.
HOCKNEY R, 1981, COMPUTER SIMULATION.
HOLTZEL A, 2007, J SEP SCI, V30, P1398, DOI 10.1002/jssc.200600427.
HUANG DM, 2008, LANGMUIR, V24, P1442, DOI 10.1021/la7021787.
HUMMER G, 2001, NATURE, V414, P188.
JEFFREY GA, 1997, INTRO HYDROGEN BONDI.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JORGENSEN WL, 1985, MOL PHYS, V56, P1381.
KENIS PJA, 2006, MRS BULL, V31, P87.
KORNHERR A, 2004, CHEM PHYS LETT, V393, P107, DOI 10.1016/j.cplett.2004.06.019.
LEARY SP, 2006, NEUROSURGERY, V58, P805, DOI 10.1227/01.NEU.0000216793.45952.ED.
LIM TC, 2003, Z NATURFORSCH A, V58, P615.
LIU L, 2008, APPL PHYS LETT, V92, ARTN 101927.
LIU L, 2009, PHYS REV LETT, V102, ARTN 184501.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MARRY V, 2008, PHYS CHEM CHEM PHYS, V10, P4802, DOI 10.1039/b807288d.
MARTINAC B, 2004, J CELL SCI, V117, P2449, DOI 10.1242/jcs.01232.
PETTITT BM, 1986, J CHEM PHYS, V84, P5836.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
QIAO R, 2005, COLLOID SURFACE A, V267, P103, DOI 10.1016/j.colsurfa.2005.06.067.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
RAUSCHER M, 2008, ANNU REV MATER RES, V38, P143, DOI 10.1146/annurev.matsci.38.060407.132451.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SONG CM, 2002, ACTA PHYS-CHIM SIN, V18, P279.
STEIN D, 2004, PHYS REV LETT, V93, ARTN 035901.
STEIN D, 2006, P NATL ACAD SCI USA, V103, P15853, DOI 10.1073/pnas.0605900103.
TOMBOLA F, 2006, ANNU REV CELL DEV BI, V22, P23, DOI 10.1146/annurev.cellbio.21.020404.145837.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VAITHEESWARAN S, 2008, P NATL ACAD SCI USA, V105, P17636, DOI 10.1073/pnas.0803990105.
WHITE JA, 2000, J CHEM PHYS, V113, P4668.
XU J, 2008, NAT NANOTECHNOL, V3, P666, DOI 10.1038/nnano.2008.274.
YERNOOL D, 2004, NATURE, V431, P723.
ZHAO JB, 2010, J COMPUT THEOR NANOS, V7, P379, DOI 10.1166/jctn.2010.1369.
ZWOLAK M, 2009, PHYS REV LETT, V103, ARTN 128102.

Cited Reference Count:
59

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Condensed Matter

ISSN:
0953-8984

DOI:
10.1088/0953-8984/22/31/315301

IDS Number:
626VV

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279787600025
*Order Full Text [ ]

Title:
Molecular Simulation of Ion-Specific Effects in Confined Electrolyte Solutions Using Polarizable Forcefields

Authors:
Cazade, PA; Dweik, J; Coasne, B; Henn, F; Palmeri, J

Author Full Names:
Cazade, P. -A.; Dweik, J.; Coasne, B.; Henn, F.; Palmeri, J.

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 114 (28): 12245-12257 JUL 22 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; DYNAMICS SIMULATIONS; NEUTRON-DIFFRACTION; AQUEOUS-SOLUTIONS; HYDROPHOBIC SURFACES; COMPUTER-SIMULATION; AIR/WATER INTERFACE; HYDRATION STRUCTURE; LIQUID INTERFACE; SODIUM-CHLORIDE

Abstract:
This paper reports on a molecular dynamics study of aqueous electrolyte solutions confined in hydrophobic nanopores. We examined for the first time the effect of the size and polarizability of the ions on the structure and dynamics of the confined electrolyte solution by considering the series of sodium halides (NaX with X = F, Cl, Br, and I). We also address the effect of pore size by varying the diameter of the nanochannel. As far as structural properties are concerned, the behavior of the NaF electrolyte solution significantly differs from that of the other sodium halide solutions. Because of their small size, Na and F in NaF are found to be significantly solvated by water. In addition, due to steric and hydrophobic effects [Chandler, D. Nature 2005, 437, 640], Cl, Br, and I tend to be repelled from the regions where the density of water is larger. Ion-specific effects on the dynamics of water and ions are found to be minimized when the electrolyte solution is confined at!
the nanoscale in comparison to bulk water and the water-air interface. For instance, both the data for water and the ionic species indicate that the ratio of the self-diffusivity for the confined solution to that for the bulk is independent of the nature of the anion F, Cl, Br, and I. Moreover, while the average solvation times for Na in NaF and Na in NaX (X = Cl, Br, I) significantly differ for bulk electrolyte solutions, they turn out to be very similar for the confined solutions. Such a leveling of the dynamical properties of the electrolyte solutions due to confinement is also observed on the pairing of the anions and cations.

Reprint Address:
Coasne, B, Univ Montpellier, ENSCM, CNRS, Inst Charles Gerhardt Montpellier,UMR 5253, 8 Rue Ecole Normale, F-34296 Montpellier 05, France.

Research Institution addresses:
[Cazade, P. -A.; Coasne, B.; Henn, F.] Univ Montpellier, ENSCM, CNRS, Inst Charles Gerhardt Montpellier,UMR 5253, F-34296 Montpellier 05, France; [Dweik, J.] Univ Montpellier, CNRS, UMR 5635, Inst Europeen Membranes, F-34095 Montpellier, France; [Palmeri, J.] Univ Toulouse 3, CNRS, IRSAMC, Phys Theor Lab,UMR 5152, F-31062 Toulouse 4, France

E-mail Address:
benoit.coasne@enscm.fr

Cited References:
ALANISSILA T, 2002, ADV PHYS, V51, P949.
ALBASIMIONESCO C, 2003, EUR PHYS J E, V19, P28.
ALBASIMIONESCO C, 2006, J PHYS-CONDENS MAT, V18, P15.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALLEN MP, 1987, COMPUTER SIMULATION.
ALLEN TW, 1999, J CHEM PHYS, V111, P7985.
ARGYRIS D, 2008, J PHYS CHEM C, V112, P13587, DOI 10.1021/jp803234a.
ARGYRIS D, 2009, J PHYS CHEM C, V113, P19591, DOI 10.1021/jp906150n.
ARGYRIS D, 2009, LANGMUIR, V25, P8025, DOI 10.1021/la9005136.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, P64503, UNSP 064503-064506.
BONNAUD PA, 2010, J PHYS-CONDENS MAT, V22, ARTN 284110.
BOUAZIZI S, 2008, J MOL STRUCT, V892, P47, DOI 10.1016/j.molstruc.2008.04.062.
CALDWELL J, 1990, J AM CHEM SOC, V112, P9145.
CALDWELL JW, 1995, J AM CHEM SOC, V117, P4177.
CALDWELL JW, 1995, J PHYS CHEM-US, V99, P6208.
CASE DA, 2006, AMBER 9.
CASTRILLON SRV, 2009, J PHYS CHEM B, V113, P7973, DOI 10.1021/jp9025392.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHANG TM, 1996, J CHEM PHYS, V104, P6772.
CHANG TM, 2006, CHEM REV, V106, P1305, DOI 10.1021/cr0403640.
CHMIEL H, 2006, HDB THEORETICAL COMP, V5, P93.
CHRISTENSON HK, 2001, ADV COLLOID INTERFAC, V91, P391.
COASNE B, 2006, MOL PHYS, V104, P3491, DOI 10.1080/00268970601012736.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DANG LX, 1991, J AM CHEM SOC, V113, P2481.
DANG LX, 1997, J CHEM PHYS, V106, P8149.
DANG LX, 1998, J PHYS CHEM B, V102, P620.
DANG LX, 1999, J PHYS CHEM B, V103, P8195.
DANG LX, 2002, J PHYS CHEM B, V106, P10388, DOI 10.1021/jp021871t.
DIESTLER DJ, 1991, J CHEM PHYS, V95, P5432.
DONG HT, 2008, J PHYS CHEM B, V112, P13552, DOI 10.1021/jp8057405.
DUBBELDAM D, 2007, MOL SIMULAT, V33, P305, DOI 10.1080/08927020601156418.
DUNG LX, 1992, J CHEM PHYS, V96, P6970.
FENN EE, 2009, P NATL ACAD SCI USA, V106, P15243, DOI 10.1073/pnas.0907875106.
FENNELL CJ, 2009, J PHYS CHEM B, V113, P6782, DOI 10.1021/jp809782z.
FLEURY P, 2007, J HYDROL, V339, P79, DOI 10.1016/j.jhydrol.2007.03.009.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
GALLO P, 2002, J CHEM PHYS, V116, P342.
GALLO P, 2002, J CHEM PHYS, V117, P369.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
GREGORY JK, 1997, SCIENCE, V275, P814.
HAAN M, 2009, MOL SIMULAT, V35, P13, DOI 10.1080/08927020802433160.
HAHN K, 1998, J PHYS CHEM B, V102, P5766.
HAWLICKA E, 2000, PHYS CHEM CHEM PHYS, V2, P3175.
HERCE DH, 2005, J CHEM PHYS, V122, ARTN 024513.
HORINEK D, 2007, PHYS REV LETT, V99, ARTN 226104.
HU ZQ, 2008, J MEMBRANE SCI, V324, P192, DOI 10.1016/j.memsci.2008.07.013.
HUANG DM, 2007, PHYS REV LETT, V100, UNSP 177801-177804.
HUANG DM, 2008, LANGMUIR, V24, P1442, DOI 10.1021/la7021787.
HUANG DM, 2008, PHYS REV LETT, V101, P64503.
HUMMER G, 2001, NATURE, V414, P188.
JUNGWIRTH P, 2006, CHEM REV, V106, P1259, DOI 10.1021/cr0403741.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV A, 2004, PHYS REV LETT, V93.
KRISHNAN SH, 2003, J CHEM PHYS, V118, P690, DOI 10.1063/1.1524191.
LEE SH, 1996, J PHYS CHEM-US, V100, P1420.
LEFEBVRE X, 2004, J PHYS CHEM B, V108, P16811, DOI 10.1021/jp048631t.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU YC, 2005, PHYS REV B, V72, ARTN 085420.
LIU YC, 2008, PHYS REV B, V77, ARTN 125438.
LIU YC, 2009, DIFFUSION FUNDAMENTA, V11, P1.
LOEFFLER HH, 2002, J CHEM PHYS, V117, P110.
MANCINELLI R, 2007, PHYS CHEM CHEM PHYS, V9, P2959, DOI 10.1039/b701855j.
MARRONE TJ, 1994, J PHYS CHEM-US, V98, P1341.
MASON PE, 2006, J PHYS-CONDENS MAT, V18, P8437, DOI 10.1088/0953-8984/18/37/004.
MEYER EE, 2006, P NATL ACAD SCI USA, V103, P15739, DOI 10.1073/pnas.0606422103.
MOORE JD, 2010, APPL SURF SCI, V256, P5131, DOI 10.1016/j.apsusc.2009.12.071.
MORINEAU D, 2003, J CHEM PHYS, V118, P9389, DOI 10.1063/1.1568932.
MUKHERJEE B, 2007, J CHEM PHYS, V126, UNSP 124704-124711.
MUKHERJEE B, 2008, ACS NANO, V2, P1189, DOI 10.1021/nn800182v.
NICHOLSON D, 2003, MOL SIMULAT, V29, P287, DOI 10.1080/0892702031000078427.
NICOTERA I, 2009, J PHYS CHEM B, V113, P13935, DOI 10.1021/jp904691g.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
OHBA T, 2009, J PHYS CHEM C, V113, P12622, DOI 10.1021/jp9030688.
OHRN A, 2004, J PHYS CHEM B, V108, P8452, DOI 10.1021/jp049303w.
OHTAKI H, 1993, CHEM REV, V93, P1157.
OHTOMO N, 1980, B CHEM SOC JPN, V53, P1789.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
PERERA L, 1991, J CHEM PHYS, V95, P7556.
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946.
POWELL MR, 2008, NAT NANOTECHNOL, V3, P51, DOI 10.1038/nnano.2007.420.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
RAMOS S, 2005, J CHEM PHYS, V123, ARTN 214501.
REN PY, 2002, J COMPUT CHEM, V23, P1497, DOI 10.1002/jcc.10127.
REN Y, 2008, NANOTECHNOLOGY, V19, UNSP 195707-195712.
ROWLINSON JS, 1982, LIQUIDS LIQUID MIXTU.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SCHOEN M, 1988, J CHEM PHYS, V88, P1394.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHAO Q, 2008, PHYS CHEM CHEM PHYS, V10, P1896, DOI 10.1039/b719033f.
SHELLEY JC, 1993, LANGMUIR, V9, P916.
SOPER AK, 1977, J PHYS C SOLID STATE, V10, P1793.
SPARREBOOM W, 2009, NAT NANOTECHNOL, V4, P713, DOI 10.1038/NNANO.2009.332.
STANLEY HE, 2009, Z PHYS CHEM, V223, P939, DOI 10.1524/zpch.2009.6064.
SUK ME, 2009, PHYS CHEM CHEM PHYS, V11, P8614, DOI 10.1039/b903541a.
TRUDEAU TG, 2009, J PHYS CHEM C, V113, P20002, DOI 10.1021/jp907405h.
VACHA R, 2009, J PHYS CHEM A, V113, P7235, DOI 10.1021/jp809974e.
VARMA S, 2006, BIOPHYS CHEM, V124, P192, DOI 10.1016/j.bpc.2006.07.002.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
WANG XW, 2008, CHEM PHYS LETT, V458, P235, DOI 10.1016/j.cplett.2008.04.092.
WEBB MB, 2009, J PHYS CHEM B, V113, P9886, DOI 10.1021/jp901667c.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XANTHEAS SS, 1996, J PHYS CHEM-US, V100, P3989.
XU Y, 2008, APPL PHYS LETT, V93, P43122.
XUE JM, 2009, J PHYS D, V42, UNSP 105308-105314.
YANG L, 2007, J CHEM PHYS, V126, P84706.
ZHU SB, 1992, J CHEM PHYS, V97, P4336.

Cited Reference Count:
109

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp103880s

IDS Number:
624AD

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279759300018
*Order Full Text [ ]

Title:
Synthesis and Applications of Water Nanotubes

Authors:
Maniwa, Y; Kataura, H

Author Full Names:
Maniwa, Yutaka; Kataura, Hiromichi

Source:
INORGANIC AND METALLIC NANOTUBULAR MATERIALS: RECENT TECHNOLOGIES AND APPLICATIONS 117: 247-259 2010

Language:
English

Document Type:
Review

KeyWords Plus:
WALLED CARBON NANOTUBES; X-RAY-DIFFRACTION; ICE-NANOTUBES; TRANSITION; ADSORPTION

Abstract:
Characteristics of a material system strongly confined in a certain spatial region with nanometer dimension are not only dependent, on the number of atoms (molecules) but rather extremely dependent on the shape and dimensionality of the limited space. This chapter reports that a new tubularshaped ice, referred to as an ice nanotube (ice NT) is formed in the cylindrical cavity of a single-walled carbon nanotube (SWCNT) and that the ice NT exhibits an abnormal inching point dependency on the cavity diameter. Possible applications and "exchange transition" found in gas atmosphere are also briefly discussed.

Reprint Address:
Maniwa, Y, Tokyo Metropolitan Univ, Fac Sci, Dept Phys, Tokyo 1920397, Japan.

Research Institution addresses:
[Maniwa, Yutaka] Tokyo Metropolitan Univ, Fac Sci, Dept Phys, Tokyo 1920397, Japan; [Maniwa, Yutaka; Kataura, Hiromichi] CREST, JST, Kawaguchi, Saitama 3320012, Japan; [Kataura, Hiromichi] Natl Inst Adv Ind Sci & Technol, Nanotechnol Res Inst, Tsukuba, Ibaraki 3058562, Japan

E-mail Address:
maniwa@phys.metro-u.ac.jp; h-kataura@aist.go.jp

Cited References:
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
DRESSELHAUS MS, 1995, SCI FULLERENCES CARB.
HUMMER G, 2001, NATURE, V414, P188.
JACKSON KA, 1958, J APPL PHYS, V29, P1178.
KOGA K, 2000, J CHEM PHYS, V113, P5037.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KUBO R, 1984, ANNU REV MATER SCI, V14, P49.
LIU ZH, 2003, PHYS REV E 1, V67, ARTN 061602.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
MANIWA Y, 1999, JPN J APPL PHYS 2, V38, L668.
MANIWA Y, 2000, MOL CRYST LIQ CRYST, V340, P671.
MANIWA Y, 2001, PHYS REV B, V64, ARTN 241402.
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MANIWA Y, 2006, CHEM PHYS LETT, V424, P97, DOI 10.1016/j.cplett.2006.04.042.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415.
MORISHIGE K, 1999, J CHEM PHYS, V110, P4867.
NOZUE Y, 1992, PHYS REV LETT, V68, P3789.
PATI R, 2002, APPL PHYS LETT, V81, P2638, DOI 10.1063/1.1510969.
SANSOM MSP, 2001, NATURE, V414, P156.
SHIOMI J, 2007, J PHYS CHEM C, V111, P12188, DOI 10.1021/jp071508s.
STRIOLO A, 2005, J CHEM PHYS, V122, ARTN 234712.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TANAKA H, 2005, J CHEM PHYS, V123, ARTN 094706.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
ZAHAB A, 2000, PHYS REV B, V62, P10000.

Cited Reference Count:
29

Times Cited:
0

Publisher:
SPRINGER-VERLAG BERLIN; HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY

ISSN:
0303-4216

DOI:
10.1007/978-3-642-03622-4_18

IDS Number:
BPS06

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Sokhan VP

ISI Web of Knowledge Citation Alert

Cited Article: Sokhan VP. Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279740200044
*Order Full Text [ ]

Title:
Thermostating highly confined fluids

Authors:
Bernardi, S; Todd, BD; Searles, DJ

Author Full Names:
Bernardi, Stefano; Todd, B. D.; Searles, Debra J.

Source:
JOURNAL OF CHEMICAL PHYSICS 132 (24): Art. No. 244706 JUN 28 2010

Language:
English

Document Type:
Article

KeyWords Plus:
NONEQUILIBRIUM-MOLECULAR-DYNAMICS; CONJUGATE-PAIRING RULE; TRANSPORT-COEFFICIENTS; LYAPUNOV INSTABILITY; BOUNDARY-CONDITIONS; CARBON NANOTUBES; FLOW; SYSTEMS; STATES; EQUILIBRIUM

Abstract:
In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the p!
ore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes. (C) 2010 American Institute of Physics. [doi:10.1063/1.3450302]

Reprint Address:
Bernardi, S, Swinburne Univ Technol, Ctr Mol Simulat, Hawthorn, Vic 3122, Australia.

Research Institution addresses:
[Bernardi, Stefano; Todd, B. D.] Swinburne Univ Technol, Ctr Mol Simulat, Hawthorn, Vic 3122, Australia; [Searles, Debra J.] Griffith Univ, Sch Biomol & Phys Sci, Queensland Micro & Nanotechnol Ctr, Brisbane, Qld 4111, Australia

E-mail Address:
sbernardi@ict.swin.edu.au; btodd@swin.edu.au; d.bernhardt@griffith.edu.au

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
BENETTIN G, 1980, MECCANICA, V15, P21.
BENETTIN G, 1980, MECCANICA, V15, P9.
BERNARDI S, 2010, J CHEM PHYS, V132, ARTN 244508.
CASASVAZQUEZ J, 2003, REP PROG PHYS, V66, P1937.
COHEN EGD, 1995, PHYSICA A, V213, P293.
DEGROOT SR, 1984, NONEQUILIBRIUM THERM.
ECKMANN JP, 2005, J STAT PHYS, V118, P813, DOI 10.1007/s10955-004-2687-4.
ERPENBECK JJ, 1984, PHYS REV LETT, V52, P1333.
EVANS DJ, 1983, PHYS REV A, V28, P1016.
EVANS DJ, 1986, PHYS REV LETT, V56, P2172.
EVANS DJ, 1989, J STAT PHYS, V57, P745.
EVANS DJ, 1990, STAT MECH NONEQUILIB.
EVANS DJ, 2002, J STAT PHYS, V109, P895.
FORSTER C, 2005, NEW J PHYS, V7, ARTN 32.
FRASCOLI F, 2006, PHYS REV E 2, V73, ARTN 046206.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HOOVER WG, 2008, PHYS REV E 2, V78, ARTN 046701.
HOOVER WG, 2009, PHYS REV E 2, V79, ARTN 046705.
LEES AW, 1972, J PHYS C SOLID STATE, V5, P1921.
LENG YS, 2005, PHYS REV LETT, V94, ARTN 026101.
LIEM SY, 1992, PHYS REV A, V45, P3706.
MILANOVIC L, 1998, MOL PHYS, V95, P281.
MORRISS GP, 1988, PHYS REV A, V37, P2118.
MORRISS GP, 2002, PHYS REV E, V65, UNSP 017201.
POSCH HA, 1988, PHYS REV A, V38, P473.
POSCH HA, 1989, PHYS REV A, V39, P2175.
POSCH HA, 2004, PHYSICA D, V187, P281, DOI 10.1016/j.physd.2003.09.015.
POSCHL HA, 2006, J PHYS CONF SER, V31, P9, DOI 10.1088/1742-6596/31/1/002.
RYCKAERT JP, 1988, PHYS REV LETT, V60, P128.
SARMAN S, 1992, PHYS REV A, V45, P2233.
SEARLES DJ, 1998, CHAOS, V8, P337.
SHIMADA I, 1979, PROG THEOR PHYS, V61, P1605.
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
TANIGUCHI T, 2002, PHYS REV E 2, V66, ARTN 066203.
TANIGUCHI T, 2006, PHYS REV E 2, V73, ARTN 036208.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
TODD BD, 1995, PHYS REV E, V52, P1627.
TODD BD, 1997, PHYS REV E A, V55, P2800.
TODD BD, 2007, MOL SIMULAT, V33, P189, DOI 10.1080/08927020601026629.
TRAVIS KP, 1997, PHYS REV E, V55, P4288.
WEEKS JD, 1971, J CHEM PHYS, V54, P5237.

Cited Reference Count:
43

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3450302

IDS Number:
623LC

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279996400002
*Order Full Text [ ]

Title:
Electrolyte solution transport in electropolar nanotubes

Authors:
Zhao, JB; Culligan, PJ; Qiao, Y; Zhou, QL; Li, YB; Tak, M; Park, T; Chen, X

Author Full Names:
Zhao, Jianbing; Culligan, Patricia J.; Qiao, Yu; Zhou, Qulan; Li, Yibing; Tak, Moonho; Park, Taehyo; Chen, Xi

Source:
JOURNAL OF PHYSICS-CONDENSED MATTER 22 (31): Art. No. 315301 AUG 11 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MONTE-CARLO SIMULATIONS; NANOPOROUS SILICA-GEL; MOLECULAR-DYNAMICS; CARBON NANOTUBES; INFILTRATION PRESSURE; POTENTIAL FUNCTIONS; SURFACE-TREATMENT; WATER; NANOFLUIDICS; CHANNELS

Abstract:
Electrolyte transport in nanochannels plays an important role in a number of emerging areas. Using non-equilibrium molecular dynamics (NEMD) simulations, the fundamental transport behavior of an electrolyte/water solution in a confined model nanoenvironment is systematically investigated by varying the nanochannel dimension, solid phase, electrolyte phase, ion concentration and transport rate. It is found that the shear resistance encountered by the nanofluid strongly depends on these material/system parameters; furthermore, several effects are coupled. The mechanisms of the nanofluidic transport characteristics are explained by considering the unique molecular/ion structure formed inside the nanochannel. The lower shear resistance observed in some of the systems studies could be beneficial for nanoconductors, while the higher shear resistance (or higher effective viscosity) observed in other systems might enhance the performance of energy dissipation devices.

Reprint Address:
Culligan, PJ, Columbia Univ, Sch Engn & Appl Sci, Dept Earth & Environm Engn, New York, NY 10027 USA.

Research Institution addresses:
[Zhao, Jianbing; Culligan, Patricia J.; Chen, Xi] Columbia Univ, Sch Engn & Appl Sci, Dept Earth & Environm Engn, New York, NY 10027 USA; [Qiao, Yu] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA; [Zhou, Qulan] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China; [Li, Yibing] Tsinghua Univ, Dept Automot Engn, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China; [Tak, Moonho; Park, Taehyo; Chen, Xi] Hanyang Univ, Dept Civil & Environm Engn, Seoul 133791, South Korea; [Chen, Xi] Xi An Jiao Tong Univ, Sch Aerosp, Xian 710049, Peoples R China

E-mail Address:
pjc2104@columbia.edu; xichen@columbia.edu

Cited References:
BARTOLOTTI LJ, 1991, J COMPUT CHEM, V12, P1125.
BELLAT JP, 2009, J PHYS CHEM C, V113, P8287, DOI 10.1021/jp810209t.
BOUZIGUES CI, 2008, PHYS REV LETT, V101, ARTN 114503.
CAILLIEZ F, 2008, PHYS CHEM CHEM PHYS, V10, P4817, DOI 10.1039/b807471b.
CAILLIEZ F, 2009, MOL SIMULAT, V35, P24, DOI 10.1080/08927020802398900.
CAO GX, 2008, MOL SIMULAT, V34, P1267, DOI 10.1080/08927020802175225.
CHEN NY, 1994, MOL TRANSPORT REACTI.
CHEN X, 2005, J AM CERAM SOC, V88, P1233.
CHEN X, 2006, APPL PHYS LETT, V89, ARTN 241918.
CHEN X, 2008, BIOPHYS J, V95, P563, DOI 10.1529/biophysj.107.128488.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
COUDERT FX, 2008, PHYS CHEM CHEM PHYS, V141, P377.
FORMASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
GUENES S, 2008, INORG CHIM ACTA, V361, P581, DOI 10.1016/j.ica.2007.06.042.
GURIYANOVA S, 2008, PHYS CHEM CHEM PHYS, V10, P4871, DOI 10.1039/b806236f.
GYURCSANYI RE, 2008, TRAC-TREND ANAL CHEM, V27, P627, DOI 10.1016/j.trac.2008.06.002.
HALICIOGLU T, 1975, PHYS STATUS SOLIDI A, V30, P619.
HAN A, 2007, J MATER RES, V22, P644, DOI 10.1557/JMR.2007.0088.
HAN A, 2007, J PHYS D APPL PHYS, V40, P5743, DOI 10.1088/0022-3727/40/18/035.
HAN A, 2008, J APPL PHYS, V104, UNSP 124906.
HAN A, 2008, LANGMUIR, V24, P7044, DOI 10.1021/la800446z.
HAN AJ, 2007, CHEM LETT, V36, P882.
HAN AJ, 2009, SMART MATER STRUCT, V18, ARTN 024005.
HEALY K, 2007, NANOMEDICINE-UK, V2, P875, DOI 10.2217/17435889.2.6.875.
HOCKNEY R, 1981, COMPUTER SIMULATION.
HOLTZEL A, 2007, J SEP SCI, V30, P1398, DOI 10.1002/jssc.200600427.
HUANG DM, 2008, LANGMUIR, V24, P1442, DOI 10.1021/la7021787.
HUMMER G, 2001, NATURE, V414, P188.
JEFFREY GA, 1997, INTRO HYDROGEN BONDI.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JORGENSEN WL, 1985, MOL PHYS, V56, P1381.
KENIS PJA, 2006, MRS BULL, V31, P87.
KORNHERR A, 2004, CHEM PHYS LETT, V393, P107, DOI 10.1016/j.cplett.2004.06.019.
LEARY SP, 2006, NEUROSURGERY, V58, P805, DOI 10.1227/01.NEU.0000216793.45952.ED.
LIM TC, 2003, Z NATURFORSCH A, V58, P615.
LIU L, 2008, APPL PHYS LETT, V92, ARTN 101927.
LIU L, 2009, PHYS REV LETT, V102, ARTN 184501.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MARRY V, 2008, PHYS CHEM CHEM PHYS, V10, P4802, DOI 10.1039/b807288d.
MARTINAC B, 2004, J CELL SCI, V117, P2449, DOI 10.1242/jcs.01232.
PETTITT BM, 1986, J CHEM PHYS, V84, P5836.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
QIAO R, 2005, COLLOID SURFACE A, V267, P103, DOI 10.1016/j.colsurfa.2005.06.067.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
RAUSCHER M, 2008, ANNU REV MATER RES, V38, P143, DOI 10.1146/annurev.matsci.38.060407.132451.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SONG CM, 2002, ACTA PHYS-CHIM SIN, V18, P279.
STEIN D, 2004, PHYS REV LETT, V93, ARTN 035901.
STEIN D, 2006, P NATL ACAD SCI USA, V103, P15853, DOI 10.1073/pnas.0605900103.
TOMBOLA F, 2006, ANNU REV CELL DEV BI, V22, P23, DOI 10.1146/annurev.cellbio.21.020404.145837.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VAITHEESWARAN S, 2008, P NATL ACAD SCI USA, V105, P17636, DOI 10.1073/pnas.0803990105.
WHITE JA, 2000, J CHEM PHYS, V113, P4668.
XU J, 2008, NAT NANOTECHNOL, V3, P666, DOI 10.1038/nnano.2008.274.
YERNOOL D, 2004, NATURE, V431, P723.
ZHAO JB, 2010, J COMPUT THEOR NANOS, V7, P379, DOI 10.1166/jctn.2010.1369.
ZWOLAK M, 2009, PHYS REV LETT, V103, ARTN 128102.

Cited Reference Count:
59

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Condensed Matter

ISSN:
0953-8984

DOI:
10.1088/0953-8984/22/31/315301

IDS Number:
626VV

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, July 23, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279541800007
*Order Full Text [ ]

Title:
MC simulations of water meniscus in nanocontainers: explaining the collapse of viral particles due to capillary forces

Authors:
Serena, PA; Douas, M; Marques, MI; Carrasco, C; de Pablo, PJ; Miranda, R; Carrascosa, JL; Castellanos, M; Mateu, MG

Author Full Names:
Serena, P. A.; Douas, M.; Marques, M. I.; Carrasco, C.; de Pablo, P. J.; Miranda, R.; Carrascosa, J. L.; Castellanos, M.; Mateu, M. G.

Source:
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, NO 10 6 (10): 2128-2132 2009

Language:
English

Document Type:
Proceedings Paper

KeyWords Plus:
DIP-PEN NANOLITHOGRAPHY; VIRUS; MICROSCOPY; TIP

Abstract:
By using a lattice-gas model, we report numerical simulation for the action of capillary forces of water confined at the nanoscale during desiccation of viruses. Results are compared with structural effects of desiccation measured by Atomic Force Microscopy on individual viruses of the bacteriophage 29 and the minute virus of mice (MVM). Structural integrity is found for the MVM, but not for the 29. Numerical simulations show that in the desiccation process, the meniscus shape formed inside the capsids strongly depends on the virus symmetry. This suggests that capillary forces could play a key role on the explanation of the different measured collapse processes (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Reprint Address:
Marques, MI, Univ Autonoma Madrid, Dept Fis Mat, C IV, E-28049 Madrid, Spain.

Research Institution addresses:
[Serena, P. A.; Douas, M.; Carrasco, C.] Consejo Super Invest Cient, Inst Ciencia Mat Madrid, Madrid 28049, Spain

E-mail Address:
manuel.marques@uam.es

Cited References:
AGBANDJEMCKENNA M, 1998, STRUCTURE, V6, P1369.
BARRER RM, 1978, ZEOLITES CLAY MAT SO.
CARRASCO C, 2006, P NATL ACAD SCI USA, V103, P13706, DOI 10.1073/pnas.0601881103.
CARRASCO C, 2009, P NATL ACAD SCI USA, V106, P5475, DOI 10.1073/pnas.0810095106.
CARRASCOSA JL, 1999, RECENT RES DEV VIROL.
DEPABLO PJ, 2000, PHYS REV B, V61, P14179.
FRANKS F, 1985, BIOPHYSICS BIOCH LOW.
GAU H, 1999, SCIENCE, V283, P46.
HELMS V, 2007, CHEMPHYSCHEM, V8, P23, DOI 10.1002/cphc.200600298.
HUMMER G, 2001, NATURE, V414, P188.
IVANOVSKA IL, 2004, P NATL ACAD SCI USA, V101, P7600, DOI 10.1073/pnas.0308198101.
JANG J, 2003, PHYS REV LETT, V90, ARTN 156104.
JANG JY, 2002, J CHEM PHYS, V116, P3875.
JANG JY, 2004, PHYS REV LETT, V92, ARTN 085504.
JENNINGS TA, 1999, LYOPHILIZATION INTRO.
KLUG WS, 2006, PHYS REV LETT, V97, ARTN 228101.
MAEDA N, 2003, P NATL ACAD SCI USA, V100, P803, DOI 10.1073/pnas.0234283100.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MENTRE P, 2001, CELL MOL BIOL, V47, P709.
MORENOHERRERO F, 2002, APPL PHYS LETT, V81, P2620, DOI 10.1063/1.1509856.
ROEDDER E, 1984, REV MINERAL, V12, P1.
SAHAGUN E, 2007, PHYS REV LETT, V98, ARTN 176106.
SBRAGAGLIA M, 2006, PHYS REV LETT, V97, ARTN 204503.
TAO YZ, 1998, CELL, V95, P431.
WANG W, 2000, INT J PHARM, V203, P1.
YOSHIOKA S, 2001, PHARMACEUT RES, V18, P256.

Cited Reference Count:
26

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY

ISSN:
1610-1634

DOI:
10.1002/pssc.200881738

IDS Number:
BPO53

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Maibaum, L

ISI Web of Knowledge Citation Alert

Cited Article: Maibaum, L. A coarse-grained model of water confined in a hydrophobic tube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279541800007
*Order Full Text [ ]

Title:
MC simulations of water meniscus in nanocontainers: explaining the collapse of viral particles due to capillary forces

Authors:
Serena, PA; Douas, M; Marques, MI; Carrasco, C; de Pablo, PJ; Miranda, R; Carrascosa, JL; Castellanos, M; Mateu, MG

Author Full Names:
Serena, P. A.; Douas, M.; Marques, M. I.; Carrasco, C.; de Pablo, P. J.; Miranda, R.; Carrascosa, J. L.; Castellanos, M.; Mateu, M. G.

Source:
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, NO 10 6 (10): 2128-2132 2009

Language:
English

Document Type:
Proceedings Paper

KeyWords Plus:
DIP-PEN NANOLITHOGRAPHY; VIRUS; MICROSCOPY; TIP

Abstract:
By using a lattice-gas model, we report numerical simulation for the action of capillary forces of water confined at the nanoscale during desiccation of viruses. Results are compared with structural effects of desiccation measured by Atomic Force Microscopy on individual viruses of the bacteriophage 29 and the minute virus of mice (MVM). Structural integrity is found for the MVM, but not for the 29. Numerical simulations show that in the desiccation process, the meniscus shape formed inside the capsids strongly depends on the virus symmetry. This suggests that capillary forces could play a key role on the explanation of the different measured collapse processes (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Reprint Address:
Marques, MI, Univ Autonoma Madrid, Dept Fis Mat, C IV, E-28049 Madrid, Spain.

Research Institution addresses:
[Serena, P. A.; Douas, M.; Carrasco, C.] Consejo Super Invest Cient, Inst Ciencia Mat Madrid, Madrid 28049, Spain

E-mail Address:
manuel.marques@uam.es

Cited References:
AGBANDJEMCKENNA M, 1998, STRUCTURE, V6, P1369.
BARRER RM, 1978, ZEOLITES CLAY MAT SO.
CARRASCO C, 2006, P NATL ACAD SCI USA, V103, P13706, DOI 10.1073/pnas.0601881103.
CARRASCO C, 2009, P NATL ACAD SCI USA, V106, P5475, DOI 10.1073/pnas.0810095106.
CARRASCOSA JL, 1999, RECENT RES DEV VIROL.
DEPABLO PJ, 2000, PHYS REV B, V61, P14179.
FRANKS F, 1985, BIOPHYSICS BIOCH LOW.
GAU H, 1999, SCIENCE, V283, P46.
HELMS V, 2007, CHEMPHYSCHEM, V8, P23, DOI 10.1002/cphc.200600298.
HUMMER G, 2001, NATURE, V414, P188.
IVANOVSKA IL, 2004, P NATL ACAD SCI USA, V101, P7600, DOI 10.1073/pnas.0308198101.
JANG J, 2003, PHYS REV LETT, V90, ARTN 156104.
JANG JY, 2002, J CHEM PHYS, V116, P3875.
JANG JY, 2004, PHYS REV LETT, V92, ARTN 085504.
JENNINGS TA, 1999, LYOPHILIZATION INTRO.
KLUG WS, 2006, PHYS REV LETT, V97, ARTN 228101.
MAEDA N, 2003, P NATL ACAD SCI USA, V100, P803, DOI 10.1073/pnas.0234283100.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MENTRE P, 2001, CELL MOL BIOL, V47, P709.
MORENOHERRERO F, 2002, APPL PHYS LETT, V81, P2620, DOI 10.1063/1.1509856.
ROEDDER E, 1984, REV MINERAL, V12, P1.
SAHAGUN E, 2007, PHYS REV LETT, V98, ARTN 176106.
SBRAGAGLIA M, 2006, PHYS REV LETT, V97, ARTN 204503.
TAO YZ, 1998, CELL, V95, P431.
WANG W, 2000, INT J PHARM, V203, P1.
YOSHIOKA S, 2001, PHARMACEUT RES, V18, P256.

Cited Reference Count:
26

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY

ISSN:
1610-1634

DOI:
10.1002/pssc.200881738

IDS Number:
BPO53

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279605600012
*Order Full Text [ ]

Title:
Molecular group dynamics study on slip flow of thin fluid film based on the Hamaker hypotheses

Authors:
Zhou, JF; Shao, CL; Gu, BQ

Author Full Names:
Zhou JianFeng; Shao ChunLei; Gu BoQin

Source:
SCIENCE CHINA-TECHNOLOGICAL SCIENCES 53 (7): 1833-1838 Sp. Iss. SI JUL 2010

Language:
English

Document Type:
Article

Author Keywords:
Hamaker hypotheses; molecular group; velocity slip; Lennard-Jones potential

Abstract:
The thin fluid film was assumed to consist of a number of spherical fluid molecular groups and the attractive forces of molecular group pairs were calculated by the derived equation according to the three Hamaker homogeneous material hypotheses. Regarding each molecular group as a dynamics individual, the simulation method for the shearing motion of multilayer fluid molecular groups, which was initiated by two moving walls, was proposed based on the Verlet velocity iterative algorithm. The simulations reveal that the velocities of fluid molecular groups change about their respective mean velocities within a narrow range in steady state. It is also found that the velocity slips occur at the wall boundary and in a certain number of fluid film layers close to the wall. Because the dimension of molecular group and the number of group layers are not restricted, the hypothetical thickness of fluid film model can be enlarged from nanometer to micron by using the proposed simulation!
method.

Reprint Address:
Zhou, JF, Nanjing Univ Technol, Coll Mech & Power Engn, Nanjing 210009, Peoples R China.

Research Institution addresses:
[Zhou JianFeng; Shao ChunLei; Gu BoQin] Nanjing Univ Technol, Coll Mech & Power Engn, Nanjing 210009, Peoples R China

E-mail Address:
zhoujianfeng_ren@163.com

Cited References:
CAO BY, 2003, J ENG THERMOPHYSICS, V24, P670.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
DEDKOV GV, 2000, SURF SCI, V463, P125.
DUBOURG F, 2000, SURF SCI, V466, P137.
MARKELOV GN, 2003, AIP CONF PROC, V663, P457.
PAULO AS, 2001, SURF SCI, V471, P71.
THOMPSON PA, 1997, NATURE, V389, P360.
TIAN WC, 2003, ACTA PHYS SIN-CH ED, V52, P1061.
TIAN WC, 2005, CHIN J COMPUT MECH, V22, P189.
WANG H, 2000, J TSINGHUA U SCI TEC, V40, P107.
WANG H, 2001, SCI CHINA SER A, V44, P1049.
XIAO R, 2004, J CHONGQING U NATL S, V24, P99.
XU C, 2005, J ENG THERMOPHYSICS, V26, P912.
YUAN B, 2001, LUBR ENG, P29.
YUAN B, 2001, LUBR ENG, P42.
ZENG FL, 2006, CHIN J MECH ENG, V42, P138.
ZHU X, 2001, J ENG THERMOPHYSICS, V22, P203.

Cited Reference Count:
17

Times Cited:
0

Publisher:
SCIENCE CHINA PRESS; 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA

Subject Category:
Engineering, Multidisciplinary; Materials Science, Multidisciplinary

ISSN:
1674-7321

DOI:
10.1007/s11431-010-3105-6

IDS Number:
621SZ

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279554500001
*Order Full Text [ ]

Title:
Evaluation of a lattice Boltzmann method in a complex nanoflow

Authors:
Suga, K; Takenaka, S; Ito, T; Kaneda, M; Kinjo, T; Hyodo, S

Author Full Names:
Suga, K.; Takenaka, S.; Ito, T.; Kaneda, M.; Kinjo, T.; Hyodo, S.

Source:
PHYSICAL REVIEW E 82 (1): Art. No. 016701 Part 1 JUL 6 2010

Language:
English

Document Type:
Article

KeyWords Plus:
HARD-SPHERE MOLECULES; RAREFIED-GAS; BOUNDARY-CONDITIONS; MICROCHANNEL FLOW; SIMULATION; EQUATION; REGIME; TRANSPORT; FLUIDS; MICRO

Abstract:
In order to establish a cost-effective strategy to simulate complex flows in continuum to slip and transitional regimes, the present study assesses the performance of a lattice Boltzmann method (LBM) formerly discussed by the present authors' group [Niu et al., Phys. Rev. E 76, 036711 (2007)]. This LBM is based on a diffuse scattering wall boundary condition, a regularization procedure, and an effective relaxation time associated with the Knudsen number. The present assessment is on its regularization procedure and third-order truncated system based on the two-dimensional twenty-one discrete velocity (D2Q21) model for the Cartesian lattices. The test flow cases are force-driven Poiseuille flows, the Couette flows and a flow around a square cylinder situated in a nanochannel. For producing the reference data of the square cylinder flow, the molecular dynamics simulation using Lennard-Jones potential is also performed. Although the flow profiles and the slip velocities of the !
Poiseuille flows and the Couette flows are more accurately predicted by the third-order truncated system, the general velocity profiles around the square cylinder are also well predicted by the second-order truncated system based on the two-dimensional nine discrete velocity (D2Q9) model. It is also confirmed that without the regularization process, the entire flow field prediction suffers unphysical momentum oscillations around the square cylinder.

Reprint Address:
Suga, K, Osaka Prefecture Univ, Dept Mech Engn, Osaka 5998531, Japan.

Research Institution addresses:
[Suga, K.; Takenaka, S.; Ito, T.; Kaneda, M.] Osaka Prefecture Univ, Dept Mech Engn, Osaka 5998531, Japan; [Kinjo, T.; Hyodo, S.] Toyota Cent Res & Dev Labs Inc, Computat Phys Lab, Aichi 4801192, Japan

E-mail Address:
suga@me.osakafu-u.ac.jp

Cited References:
ANSUMALI S, 2002, PHYS REV E 2, V66, ARTN 026311.
BENZI R, 2006, J FLUID MECH, V548, P257, DOI 10.1017/S0022112005007512.
BESKOK A, 1999, MICROSCALE THERM ENG, V3, P43.
BHATNAGAR PL, 1954, PHYS REV, V94, P511, DOI 10.1103/PHYSREV.94.511.
BIRD GA, 1994, MOL GAS DYNAMICS DIR.
BOCQUET L, 1993, PHYS REV LETT, V70, P2726.
CERCIGNANI C, 1975, THEORY APPL BOLTZMAN.
CHAPMAN S, 1970, MATH THEORY NONUNIFO.
GUO ZL, 2006, J APPL PHYS, V99, P74903, ARTN 074903.
GUO ZL, 2008, PHYS REV E 2, V77, ARTN 036707.
GUO ZL, 2009, P 2 AS S COMP HEAT T.
HAILE J, 1997, MOL DYNAMICS SIMULAT.
HIGUERA FJ, 1989, EUROPHYS LETT, V9, P663.
KARNIADAKIS G, 2005, MICROFLOWS NANOFLOWS.
KEEHM Y, 2004, GEOPHYS RES LETT, V31, ARTN L04606.
KOPLIK J, 1995, ANNU REV FLUID MECH, V27, P257.
LATT J, 2006, MATH COMPUT SIMULAT, V72, P165, DOI 10.1016/j.matcom.2006.05.017.
LI ZG, 2009, PHYS REV E 2, V79, ARTN 026312.
LIU C, 2009, PHYS REV E 2, V80, ARTN 036302.
MARTYS NS, 1996, PHYS REV E B, V53, P743.
MCNAMARA GR, 1988, PHYS REV LETT, V61, P2332.
MCNENLY MJ, 2003, P 36 AIAA THERM C AI.
NIE XB, 2002, J STAT PHYS, V107, P279.
NIU XD, 2007, J POWER SOURCES, V172, P542, DOI 10.1016/j.jpowsour.2007.05.081.
NIU XD, 2007, PHYS REV E 2, V76, ARTN 036711.
OHWADA T, 1989, PHYS FLUIDS A-FLUID, V1, P1588.
OHWADA T, 1996, PHYS FLUIDS, V8, P2153.
PAN CX, 2006, COMPUT FLUIDS, V35, P898, DOI 10.1016/j.compfluid.2005.03.008.
PASAOGULLARI U, 2004, ELECTROCHIM ACTA, V49, P4359, DOI 10.1016/j.electacta.2004.04.027.
SBRAGAGLIA M, 2005, PHYS FLUIDS, V17, P93602, ARTN 093602.
SHEN C, 2004, MICROSCALE THERM ENG, V8, P423, DOI 10.1080/10893950490516983.
SONE Y, 2007, MOL GAS DYNAMICS THE.
STOPS DW, 1970, J PHYS D, V3, P685, DOI 10.1088/0022-3727/3/5/307.
SUCCI S, 2002, PHYS REV LETT, V89, UNSP 064502.
SUGA K, ADV APPL MA IN PRESS.
THOMPSON PA, 1997, NATURE, V389, P360.
TOSCHI F, 2005, EUROPHYS LETT, V69, P549, DOI 10.1209/epl/i2004-10393-0.
VERHAEGHE F, 2009, J COMPUT PHYS, V228, P147, DOI 10.1016/j.jcp.2008.09.004.
WATARI M, 2009, PHYS REV E 2, V79, ARTN 066706.
ZHANG RY, 2006, PHYS REV E 2, V74, ARTN 046703.
ZHANG YH, 2005, PHYS REV E 2, V71, ARTN 047702.
ZHANG YH, 2006, PHYS REV E 2, V74, ARTN 046704.

Cited Reference Count:
42

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Fluids & Plasmas; Physics, Mathematical

ISSN:
1539-3755

DOI:
10.1103/PhysRevE.82.016701

IDS Number:
621DO

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, July 16, 2010

ISI Web of Knowledge Alert - Maibaum, L

ISI Web of Knowledge Citation Alert

Cited Article: Maibaum, L. A coarse-grained model of water confined in a hydrophobic tube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279282600012
*Order Full Text [ ]

Title:
Methane Molecules Drive Water Molecules along Diameter-Gradient SWCNTs with Junctions

Authors:
Yu, HQ; Li, YF; Li, H; Zhang, K; An, CG; Liu, XF; Liew, KM

Author Full Names:
Yu, H. Q.; Li, Y. F.; Li, H.; Zhang, K.; An, C. G.; Liu, X. F.; Liew, K. M.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (26): 8676-8679 JUL 8 2010

Language:
English

Document Type:
Article

KeyWords Plus:
WALLED CARBON NANOTUBES; TRANSPORT; MODEL; FLOW

Abstract:
We report the transport behavior of water molecules along a system of coaxial single-walled carbon nanotubes (SWCNTs) of different diameters with junctions under the driving force of methane molecules. The junctions are potential barriers to the transport of water molecules through SWCNTs. However, methane molecules can overcome these potential barriers and pull the water molecules across the junction region from one compartment to the next. Although a junction is an obstacle to water transport through SWCNTs, the presence of more junctions gives methane molecules a longer lasting driving force that helps them to pull the water molecules out of the SWCNTs.

Reprint Address:
Li, H, Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China.

Research Institution addresses:
[Yu, H. Q.; Li, Y. F.; Li, H.; Zhang, K.; An, C. G.; Liu, X. F.] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China; [Liew, K. M.] City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China

E-mail Address:
lihuilmy@hotmail.com

Cited References:
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2004, J PHYS CHEM B, V108, P544, DOI 10.1021/jp035828x.
LI H, 2008, J CHEM PHYS, V128, UNSP 034707/1-5.
LIJIMA S, 1992, NATURE, V356, P776.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
POWER TD, 2002, J AM CHEM SOC, V124, P1858.
REN ZF, 1998, SCIENCE, V282, P1105.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUNAND L, 2000, J AM CHEM SOC, V122, P12340.
TELEMAN O, 1987, MOL PHYS, V60, P193.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
WANG Q, 2009, CARBON, V47, P1870, DOI 10.1016/j.carbon.2009.03.030.
WANG Q, 2009, NANO LETT, V9, P245, DOI 10.1021/nl802829z.
WANG QY, 1999, PHYS REV LETT, V82, P956.
YU HQ, 2010, CARBON, V48, P417, DOI 10.1016/j.carbon.2009.09.055.
ZAMBRANO HA, 2009, NANO LETT, V9, P66, DOI 10.1021/nl802429s.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHEN Y, 1999, NATURE, V402, P273.

Cited Reference Count:
25

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp102810j

IDS Number:
617LP

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279621400014
*Order Full Text [ ]

Title:
The Influence of the Rigidity of a Carbon Nanotube on the Structure and Dynamics of Confined Methanol

Authors:
Chaban, VV; Kalugin, ON; Habenicht, BF; Prezhdo, OV

Author Full Names:
Chaban, Vitaly V.; Kalugin, Oleg N.; Habenicht, Bradley F.; Prezhdo, Oleg V.

Source:
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 79 (6): Art. No. 064608 JUN 2010

Language:
English

Document Type:
Article

Author Keywords:
confined fluid; carbon nanotube; molecular dynamics simulation; methanol; intramolecular potentials; diffusion coefficient; hydrogen bond

KeyWords Plus:
LIQUID METHANOL; WATER; DIFFUSION; SUPERCAPACITOR; SIMULATION; TRANSPORT; MOLECULES

Abstract:
In this paper, we compare the behavior of liquid methanol confined by an open-ended single-walled nanotube (SWCNT) under four different simulation conditions by using the molecular dynamics (MD) simulations technique. The first model is a rigid and fixed SWCNT with all its carbon atoms fixed at their initial positions; the second is a flexible and fixed SWCNT with its centre-of-mass fixed at the center of the MD box and with the carbon-carbon bond potential applied; the third is a rigid and floating SWCNT, and the fourth is the most realistic flexible and floating SWCNT model-without fixed atoms and with bond potential. The microscopic structure and transport properties of bulk methanol confined by the four different SWCNTs were analyzed. No changes in the radial distribution functions of the hydrogen bond between MeOH molecules are found, and the self-diffusion constant and microscopic dipole relaxation time are essentially unaffected by the confinements. In spite of the fl!
exible/rigid or fixed/floating (15, 15) SWCNT model used, the structure and transport properties of confined MeOH are found to be very close in all the simulated cases. We conclude that using the approximation of rigid or/and fixed SWCNT does not lead to any systematic errors in properties of the confined liquid. The results show that simulations using rigid carbon nanotubes provide a reliable description of molecular diffusion and other solvent properties in a variety of applications, such electro-chemical devices, membranes and sensors that rely on these properties.

Reprint Address:
Chaban, VV, Kharkov Natl Univ, Dept Inorgan Chem, Kharkov, Ukraine.

Research Institution addresses:
[Chaban, Vitaly V.; Kalugin, Oleg N.] Kharkov Natl Univ, Dept Inorgan Chem, Kharkov, Ukraine; [Habenicht, Bradley F.; Prezhdo, Oleg V.] Univ Washington, Dept Chem, Seattle, WA 98195 USA

E-mail Address:
Oleg.N.Kalugin@univer.kharkov.ua; prezhdo@u.washington.edu

Cited References:
ALEXIADIS A, 2008, CHEM ENG SCI, V63, P2793, DOI 10.1016/j.ces.2008.03.004.
BRUNI F, 1998, J CHEM PHYS, V109, P1478.
CHABAN VV, 2009, J MOL LIQ, V145, P145, DOI 10.1016/j.molliq.2008.06.003.
CHEN HB, 2006, J PHYS CHEM B, V110, P1971, DOI 10.1021/jp056911i.
CHOUDHURY N, 2005, J PHYS CHEM B, V109, P6422, DOI 10.1021/jp045439i.
GARCIA BB, 2008, J APPL PHYS, V104, ARTN 014305.
GUO YJ, 1991, NATURE, V351, P464.
HANASAKI I, 2006, NANOTECHNOLOGY, V17, P2794, DOI 10.1088/0957-4484/17/11/012.
HAUGHNEY M, 1987, J PHYS CHEM-US, V91, P4934.
HESS B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q.
HUMMER G, 2001, NATURE, V414, P188.
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, ARTN 044501.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KALUGIN ON, 2006, KHARKIV U B, V597, P41.
KALUGIN ON, 2006, RUSS J PHYS CHEM+, V80, P1273, DOI 10.1134/S0036024406080188.
KAUFFMAN DR, 2010, NANO LETT, V10, P958, DOI 10.1021/nl903888c.
LEE Y, 2004, NANO LETT, V4, P619, DOI 10.1021/nl049946n.
LIU YC, 2005, PHYS REV B, V72, ARTN 085420.
MAMONTOV G, 1994, CHEM NONAQUEOUS ELEC, CH1.
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863.
MARMIER A, 2005, MOL SIMULAT, V31, P385, DOI 10.1080/08927020500066338.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MATSUI H, 2009, J PHYS SOC JPN, V78, ARTN 074801.
SERVICE RF, 2006, SCIENCE, V313, P902.
SHOLL DS, 2006, ACCOUNTS CHEM RES, V39, P403, DOI 10.1021/ar0402199.
TANIMURA A, 2003, CHEM PHYS LETT, V378, P638, DOI 10.1016/S0009-2614(03)01336-8.
TANIMURA A, 2007, LANGMUIR, V23, P1507.
TITOV AV, 2010, ACS NANO, V4, P229, DOI 10.1021/nn9015778.
VANGUNSTEREN WF, 1996, BIOMOLECULAR SIMULAT, P1.

Cited Reference Count:
29

Times Cited:
0

Publisher:
PHYSICAL SOC JAPAN; EISHIN-KAIHATSU BLDG, 5TH FLR, 5-34-3 SHINBASHI, MINATO-KU, TOKYO 105-0004, JAPAN

Subject Category:
Physics, Multidisciplinary

ISSN:
0031-9015

DOI:
10.1143/JPSJ.79.064608

IDS Number:
621XY

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279257300014
*Order Full Text [ ]

Title:
Water on graphene surfaces

Authors:
Gordillo, MC; Marti, J

Author Full Names:
Gordillo, M. C.; Marti, J.

Source:
JOURNAL OF PHYSICS-CONDENSED MATTER 22 (28): Art. No. 284111 JUL 21 2010

Language:
English

Document Type:
Proceedings Paper

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; LIQUID WATER; CARBON NANOTUBES; SUPERCRITICAL WATER; HYDROPHOBIC SURFACE; COMPUTER-SIMULATION; CYLINDRICAL PORES; INFRARED-SPECTRA; INTERFACE; ADSORPTION

Abstract:
In this paper, we summarize the main results obtained in our group about the behavior of water confined inside or close to different graphene surfaces by means of molecular dynamics simulations. These include the inside and outside of carbon nanotubes, and the confinement inside a slit pore or a single graphene sheet. We paid special attention to some thermodynamical (binding energies), structural (hydrogen-bond distributions) and dynamic (infrared spectra) properties, and their comparison to their bulk counterparts.

Reprint Address:
Gordillo, MC, Univ Pablo Olavide, Dept Sistemas Fis Quim & Nat, Fac Ciencias Expt, Carretera Utrera,Km 1, E-41013 Seville, Spain.

Research Institution addresses:
[Gordillo, M. C.] Univ Pablo Olavide, Dept Sistemas Fis Quim & Nat, Fac Ciencias Expt, E-41013 Seville, Spain; [Marti, J.] Univ Politecn Cataluna, Dept Fis & Engn Nucl, E-08034 Barcelona, Catalonia, Spain

E-mail Address:
cgorbar@upo.es; jordi.marti@upc.edu

Cited References:
BALL PC, 1989, LANGMUIR, V5, P714.
BALLENEGGER V, 2005, J CHEM PHYS, V122, ARTN 114711.
BARTON K, 1976, PROTECTION ATMOSPHER.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BROVCHENKO I, 2004, J CHEM PHYS, V120, P1958, DOI 10.1063/1.1631919.
BUTLER G, 1966, CORROSION ITS PREVEN.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
CHOUDHURY N, 2005, J PHYS CHEM B, V109, P6422, DOI 10.1021/jp045439i.
DON JA, 1971, FARADAY DISCUSS, V71, P145.
EVANS R, 1986, J CHEM PHYS, V84, P2376.
GELB LD, 1999, REP PROG PHYS, V62, P1573.
GILEADI E, 1975, INTERFACIAL ELECTROC.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
GORDILLO MC, 2001, CHEM PHYS LETT, V341, P250.
GORDILLO MC, 2002, J CHEM PHYS, V117, P3425.
GORDILLO MC, 2003, PHYS REV B, V67, ARTN 205425.
GORDILLO MC, 2005, J CHEM PHYS, V123, ARTN 054707.
GORDILLO MC, 2007, PHYS REV B, V75, ARTN 085406.
GORDILLO MC, 2008, PHYS REV B, V78, ARTN 075432.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 174714.
HARRIS PJF, 2004, CARBON NANOTUBES REL.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
JANIAK C, 2002, J AM CHEM SOC, V124, P14010, DOI 10.1021/ja0274608.
JEDLOVSZKY P, 2002, J CHEM PHYS, V117, P2271, DOI 10.1063/1.1488579.
KIM J, 2006, J PHYS CHEM B, V110, P21994, DOI 10.1021/jp062806c.
KOGA K, 2000, NATURE, V408, P564.
KOGA K, 2005, J CHEM PHYS, V122, ARTN 104711.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LEE CY, 1984, J CHEM PHYS, V80, P4448.
LENG Y, 1993, PHYS REV LETT, V70, P2313.
LIU P, 2004, J PHYS CHEM B, V108, P6595, DOI 10.1021/jp0375057.
MAMATKULOV SI, 2004, LANGMUIR, V20, P4756, DOI 10.1021/la036036x.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MARTI J, 1994, J CHEM PHYS, V101, P10883.
MARTI J, 1994, J MOL LIQ, V62, P17.
MARTI J, 1999, J CHEM PHYS, V110, P6876.
MARTI J, 2001, J CHEM PHYS, V114, P10492.
MARTI J, 2001, PHYS REV B, V63, ARTN 165430.
MARTI J, 2001, PHYS REV E, V64, UNSP 021504.
MARTI J, 2002, CHEM PHYS LETT, V354, P227.
MARTI J, 2002, CHEM PHYS LETT, V365, P536.
MARTI J, 2003, J CHEM PHYS, V119, P12540, DOI 10.1063/1.1625912.
MARTI J, 2006, J CHEM PHYS, V124, ARTN 094703.
MARTI J, 2006, J PHYS CHEM B, V110, P23987, DOI 10.1021/jp0647277.
MARTI J, 2009, PHYS REV E 1, V79, ARTN 031606.
MARTINS LR, 2004, J PHYS CHEM B, V108, P19687, DOI 10.1021/jp0470896.
NAGY G, 1996, J ELECTROANAL CHEM, V409, P19.
NAGY G, 2007, J PHYS CHEM B, V111, P12524, DOI 10.1021/jp073193m.
PERTSIN A, 2004, J PHYS CHEM B, V108, P1357, DOI 10.1021/jp0356968.
PRUPPACHER HR, 1978, MICROPHYSICS CLOUDS, P257.
RICCI MA, 2000, J PHYS CONDENS MATT, V12, P345.
RUSTAD JR, 2003, GEOCHIM COSMOCHIM AC, V67, P1001.
SANFELIX PC, 2003, SURF SCI, V532, P166, DOI 10.1016/S0039-6028(03)00161-4.
SCODINU A, 2002, J PHYS CHEM B, V106, P10292, DOI 10.1021/jp0263491.
SLIWINSKABARTKOWIAK M, 2008, PHYS CHEM CHEM PHYS, V10, P4909, DOI 10.1039/b808246d.
SPOHR E, 1990, CHEM PHYS, V141, P87.
STAN G, 1998, SURF SCI, V395, P280.
STRIOLO A, 2003, LANGMUIR, V19, P8583, DOI 10.1021/la0347354.
STRIOLO A, 2005, J CHEM PHYS, V122, ARTN 234712.
STRIOLO A, 2006, J CHEM PHYS, V124, ARTN 074710.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TESCHKE O, 2005, CHEM PHYS LETT, V403, P95, DOI 10.1016/j.cplett.2004.12.063.
THIEL PA, 1987, SURF SCI REP, V7, P211.
TOMBARI E, 2005, J CHEM PHYS, V122, ARTN 104712.
TOUKAN K, 1985, PHYS REV B, V31, P2643.
TURNER JE, 1984, CHEM PHYS LETT, V105, P581.
ZANGI R, 2004, J PHYS-CONDENS MAT, V16, S5371, DOI 10.1088/0953-8984/16/45/005.
ZHU SB, 1991, J CHEM PHYS, V94, P1403.

Cited Reference Count:
69

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Condensed Matter

ISSN:
0953-8984

DOI:
10.1088/0953-8984/22/28/284111

IDS Number:
617CB

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279282600012
*Order Full Text [ ]

Title:
Methane Molecules Drive Water Molecules along Diameter-Gradient SWCNTs with Junctions

Authors:
Yu, HQ; Li, YF; Li, H; Zhang, K; An, CG; Liu, XF; Liew, KM

Author Full Names:
Yu, H. Q.; Li, Y. F.; Li, H.; Zhang, K.; An, C. G.; Liu, X. F.; Liew, K. M.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (26): 8676-8679 JUL 8 2010

Language:
English

Document Type:
Article

KeyWords Plus:
WALLED CARBON NANOTUBES; TRANSPORT; MODEL; FLOW

Abstract:
We report the transport behavior of water molecules along a system of coaxial single-walled carbon nanotubes (SWCNTs) of different diameters with junctions under the driving force of methane molecules. The junctions are potential barriers to the transport of water molecules through SWCNTs. However, methane molecules can overcome these potential barriers and pull the water molecules across the junction region from one compartment to the next. Although a junction is an obstacle to water transport through SWCNTs, the presence of more junctions gives methane molecules a longer lasting driving force that helps them to pull the water molecules out of the SWCNTs.

Reprint Address:
Li, H, Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China.

Research Institution addresses:
[Yu, H. Q.; Li, Y. F.; Li, H.; Zhang, K.; An, C. G.; Liu, X. F.] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China; [Liew, K. M.] City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China

E-mail Address:
lihuilmy@hotmail.com

Cited References:
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2004, J PHYS CHEM B, V108, P544, DOI 10.1021/jp035828x.
LI H, 2008, J CHEM PHYS, V128, UNSP 034707/1-5.
LIJIMA S, 1992, NATURE, V356, P776.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
POWER TD, 2002, J AM CHEM SOC, V124, P1858.
REN ZF, 1998, SCIENCE, V282, P1105.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUNAND L, 2000, J AM CHEM SOC, V122, P12340.
TELEMAN O, 1987, MOL PHYS, V60, P193.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
WANG Q, 2009, CARBON, V47, P1870, DOI 10.1016/j.carbon.2009.03.030.
WANG Q, 2009, NANO LETT, V9, P245, DOI 10.1021/nl802829z.
WANG QY, 1999, PHYS REV LETT, V82, P956.
YU HQ, 2010, CARBON, V48, P417, DOI 10.1016/j.carbon.2009.09.055.
ZAMBRANO HA, 2009, NANO LETT, V9, P66, DOI 10.1021/nl802429s.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHEN Y, 1999, NATURE, V402, P273.

Cited Reference Count:
25

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp102810j

IDS Number:
617LP

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279253300003
*Order Full Text [ ]

Title:
The Potential of Carbon Nanotube Membranes for Analytical Separations

Authors:
Lopez-Lorente, AI; Simonet, BM; Valcarcel, M

Author Full Names:
Lopez-Lorente, A. I.; Simonet, B. M.; Valcarcel, M.

Source:
ANALYTICAL CHEMISTRY 82 (13): 5399-5407 JUL 1 2010

Language:
English

Document Type:
Article

KeyWords Plus:
FAST MASS-TRANSPORT; ELECTROOSMOTIC FLOW; WATER; FABRICATION; BUCKYPAPERS; FILMS; TRANSPARENT; MODULATION; FILTERS; ARRAYS

Abstract:
Advances in nanotechnology have enabled the development of nanoporous membranes based on carbon nanotubes, which, by virtue of their exceptional properties, constitute excellent supports for analytical processes, including the selective separation of some molecules.

Reprint Address:
Valcarcel, M, Univ Cordoba, Dept Analyt Chem, E-14071 Cordoba, Spain.

Research Institution addresses:
[Valcarcel, M.] Univ Cordoba, Dept Analyt Chem, E-14071 Cordoba, Spain

E-mail Address:
qa1meobj@uco.es

Cited References:
AGO H, 2000, APPL PHYS LETT, V77, P79.
ANDREWS R, 1999, CHEM PHYS LETT, V303, P467.
ANDREWS R, 2001, NASA C PUBLICATION.
BASHEER C, 2006, ANAL CHEM, V78, P2853, DOI 10.1021/ac060240i.
BRADYESTEVEZ AS, 2008, SMALL, V4, P481, DOI 10.1002/smll.200700863.
CAO AY, 2005, SCIENCE, V310, P1307, DOI 10.1126/science.1118957.
CHE GL, 1998, NATURE, V393, P346.
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI 10.1016/j.memsci.2005.06.030.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
DU Z, 2008, ANAL BIOANAL CHEM, V392, P937, DOI 10.1007/s00216-008-2331-2.
ENDO M, 2005, NATURE, V433, P476, DOI 10.1038/433476a.
FORNASIERO F, 2008, MATER RES SOC S P, P1106.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLT JK, 2009, ADV MATER, V21, P3542, DOI 10.1002/adma.200900867.
HUMMER G, 2001, NATURE, V414, P188.
JIA Y, 2007, CHINESE SCI BULL, V52, P997, DOI 10.1007/s11434-007-2217-2.
JIRAGE KB, 1997, SCIENCE, V278, P655.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u.
KIM YA, 2006, CHEM VAPOR DEPOS, V12, P327, DOI 10.1002/cvde.200504217.
KUKOVECZ A, 2007, CARBON, V45, P1696, DOI 10.1016/j.carbon.2007.04.033.
KULESZA S, 2006, CARBON, V44, P2178, DOI 10.1016/j.carbon.2006.03.012.
LI XS, 2007, SMALL, V3, P595, DOI 10.1002/smll.200600652.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k.
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI 10.1016/j.memsci.2007.09.068.
MATRANGA C, 2006, LANGMUIR, V22, P1235, DOI 10.1021/la0516577.
MI WL, 2007, J MEMBRANE SCI, V304, P1, DOI 10.1016/j.memsci.2007.07.021.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
MILLER SA, 2002, J ELECTROANAL CHEM, V522, P66.
MILLER SA, 2004, J AM CHEM SOC, V126, P6226, DOI 10.1021/ja0496322.
MIRANDA LD, 2009, J MEMBRANE SCI, V344, P26, DOI 10.1016/j.memsci.2009.07.037.
NEDNOOR P, 2005, J CHEM MAT, V17, P3595.
NIU HY, 2008, ANAL BIOANAL CHEM, V392, P927, DOI 10.1007/s00216-008-2332-1.
PENG FB, 2007, J MEMBRANE SCI, V297, P236, DOI 10.1016/j.memsci.2007.03.048.
REN ZF, 1998, SCIENCE, V282, P1105.
SHIMODA H, 2002, PHYSICA B, V323, P135.
SMAJDA R, 2007, CARBON, V45, P1176, DOI 10.1016/j.carbon.2007.02.022.
SREEKUMAR TV, 2003, CHEM MATER, V15, P175, DOI 10.1021/cm020367y.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
STRASINGER CL, 2009, SUBST ABUSE RES TREA, V3, P31.
SUAREZ B, 2008, ENVIRON SCI TECHNOL, V42, P6100, DOI 10.1021/es800896c.
VERMISOGIOU EC, 2008, MICROPOR MESOPOR MAT, V110, P25, DOI 10.1016/j.micromeso.2007.08.001.
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368.
WANG D, 2008, NANOTECHNOLOGY, V19, UNSP 075609/1-6.
WANG Q, 2009, CARBON, V47, P2752.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.
WENG TH, 2009, INT J HYDROGEN ENERG, V34, P8707, DOI 10.1016/j.ijhydene.2009.08.027.
WHITBY RLD, 2008, CARBON, V46, P949, DOI 10.1016/j.carbon.2008.02.028.
WU ZC, 2004, SCIENCE, V305, P1273.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
YU M, 2009, NANO LETT, V9, P225, DOI 10.1021/nl802816h.
ZHANG M, 2005, SCIENCE, V309, P1215, DOI 10.1126/science.1115311.
ZHANG XW, 2008, ADV MATER, V20, P4140, DOI 10.1002/adma.200801919.

Cited Reference Count:
59

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Analytical

ISSN:
0003-2700

DOI:
10.1021/ac902629n

IDS Number:
617AO

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000279239900041
*Order Full Text [ ]

Title:
Boundary Conditions at the Liquid-Liquid Interface in the Presence of Surfactants

Authors:
Hu, YX; Zhang, XR; Wang, WC

Author Full Names:
Hu, Yangxu; Zhang, Xianren; Wang, Wenchuan

Source:
LANGMUIR 26 (13): 10693-10702 JUL 6 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; SOLID-SURFACES; RHEOLOGICAL MEASUREMENTS; MONTE-CARLO; SHEAR-FLOW; SLIP; MICROSCOPY; ADSORPTION; GRAPHITE

Abstract:
In this work, we studied the flow boundary conditions for the interface between two immiscible liquids under the condition of low shear rates in the presence or absence of surfactants. Our simulation results indicate that the boundary conditions are substantially changed by the presence of surfactants. Similar to the liquid solid boundary, several boundary conditions at immiscible liquid liquid interfaces, including slip, no-slip, and locking boundary conditions, are observed depending on the interfacial surfactant concentration. The slip boundary condition is achieved only at zero or lower surfactant concentration. The locking boundary condition is observed when the surfactant concentration is large enough to form a fully developed monolayer whereas the no-slip condition occurs for systems with in values of surfactant concentration. The slip, no-slip, and locking boundary conditions yield the positive, zero, and negative slip lengths, respectively. We also investigated the !
dependence of boundary slip on shear rate at different interfacial surfactant concentrations. Compared to the systems without surfactants, the increase in slip with shear rate slows down because of the presence of surfactants, and consequently, the linear dependence of slip length changes to a nonlinear dependence. Simulation results also indicate that the shear rate also affects the surfactant distribution. In particular, when the surfactant concentration is high enough to form a fully developed monolayer, the higher shear rate would make the monolayer rupture.

Reprint Address:
Zhang, XR, Beijing Univ Chem Technol, Minist Educ, Key Lab Nanomat, Div Mol & Mat Simulat, Beijing 100029, Peoples R China.

Research Institution addresses:
[Hu, Yangxu; Zhang, Xianren; Wang, Wenchuan] Beijing Univ Chem Technol, Minist Educ, Key Lab Nanomat, Div Mol & Mat Simulat, Beijing 100029, Peoples R China

E-mail Address:
zhangxr@mail.buct.edu.cn

Cited References:
ARYA G, 2005, PHYS REV LETT, V95, UNSP 188301.
BARRAT JL, 1999, FARADAY DISCUSS, V112, P119.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BHUSHAN B, 2009, LANGMUIR, V25, P8117, DOI 10.1021/la900612s.
BONACCURSO E, 2003, PHYS REV LETT, V90, ARTN 144501.
CHOI CH, 2006, PHYS FLUIDS, V18, ARTN 087105.
COTTINBIZONNE C, 2005, PHYS REV LETT, V94, ARTN 056102.
DEGENNES PG, 1992, PHYSICS POLYM SURFAC, P55.
GALEA TM, 2004, LANGMUIR, V20, P3477, DOI 10.1021/la035880k.
GOVEAS JL, 1998, EUR PHYS J B, V2, P79.
KOPIK J, 2006, PHYS REV LETT, V96, UNSP 044505.
LAM YC, 2003, J RHEOL, V47, P795, DOI 10.1122/1.1566035.
LARADJI M, 2000, J CHEM PHYS, V112, P8621.
LI SY, 2008, LANGMUIR, V24, P9344, DOI 10.1021/la801521b.
LI Z, 2009, LANGMUIR, V25, P1998, DOI 10.1021/la803325c.
NARAYANAN B, 2004, MACROMOLECULES, V37, P10180, DOI 10.1021/ma048986a.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
PRIEZJEV NV, 2004, PHYS REV LETT, V92, ARTN 018302.
PRIEZJEV NV, 2007, J CHEM PHYS, V127, ARTN 144708.
PRIEZJEV NV, 2007, PHYS REV E 1, V75, ARTN 051605.
SAMMALKORPI M, 2008, J PHYS CHEM B, V112, P12954, DOI 10.1021/jp8043835.
SAMMALKORPI M, 2008, J PHYS CHEM B, V112, P2915, DOI 10.1021/jp077636y.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1997, NATURE, V389, P360.
TRUESDELL R, 2006, PHYS REV LETT, V97, ARTN 044504.
ZHANG XR, 2007, J CHEM PHYS, V127, ARTN 034506.
ZHANG XR, 2007, LANGMUIR, V23, P7433, DOI 10.1021/1a700528a.
ZHAO R, 2002, J RHEOL, V46, P145.
ZHENG FX, 2006, LANGMUIR, V22, P11214, DOI 10.1021/la0622424.
ZHENG FX, 2008, LANGMUIR, V24, P4661, DOI 10.1021/la800046s.

Cited Reference Count:
30

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0743-7463

DOI:
10.1021/la101025h

IDS Number:
616VX

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================