Friday, August 27, 2010

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280854600063
*Order Full Text [ ]

Title:
Reptation of a semiflexible polymer through porous media

Authors:
Nam, G; Johner, A; Lee, NK

Author Full Names:
Nam, Gimoon; Johner, Albert; Lee, Nam-Kyung

Source:
JOURNAL OF CHEMICAL PHYSICS 133 (4): Art. No. 044908 JUL 28 2010

Language:
English

Document Type:
Article

KeyWords Plus:
STIFF POLYMERS; 2 DIMENSIONS; DYNAMICS; DNA; DIFFUSION; CHAIN; FLUCTUATIONS; SIMULATION; MOLECULES; MELTS

Abstract:
We study the motion of a single stiff semiflexible filament of length S through an array of topological obstacles. By means of scaling arguments and two-dimensional computer simulations, we show that the stiff chain kinetics follows the reptation picture, albeit with kinetic exponents (for the central monomer) different from those for flexible chain reptation. At early times when topological constraints are irrelevant, the chain kinetics is the anisotropic dynamics of a free filament. After the entanglement time tau(e) transverse modes are equilibrated under the topological constraints, but the chain is not yet correlated over its whole length. During the relaxation of longitudinal modes, both the longitudinal fluctuation of the central monomer and the longitudinal correlation length grow as similar to root t. After time tau(r) similar to S-2 chain ends are correlated, the chain then diffuses globally along the tube and tube renewal takes place. In the reptation regime, the !
longitudinal fluctuation of the central monomer grows like similar to t(1). The opening of the intermediate similar to root t regime, absent for a free filament, is a signature of the reptation process. Although the underlying physics is quite different, the intermediate regime is reminiscent of the internal Rouse mode relaxation found for reptating flexible chains. In most cases asymptotic power laws from scaling could be complemented by prefactors calculated analytically. Our results are supported by two-dimensional Langevin simulations with fixed obstacles via evaluation of the mean squared displacement of the central monomer. The scaling theory can be extended to long semiflexible polymers adopting random-walk equilibrium configurations and should also apply in three dimensions for porous media with pore diameter smaller than the persistence length of the filament. (C) 2010 American Institute of Physics. [doi:10.1063/1.3457999]

Reprint Address:
Lee, NK, Sejong Univ, Inst Fundamental Phys, Dept Phys, Seoul 143743, South Korea.

Research Institution addresses:
[Nam, Gimoon; Lee, Nam-Kyung] Sejong Univ, Inst Fundamental Phys, Dept Phys, Seoul 143743, South Korea; [Nam, Gimoon; Johner, Albert; Lee, Nam-Kyung] CNRS, Inst Charles Sadron, UP22, F-67034 Strasbourg 2, France

E-mail Address:
lee@sejong.ac.kr

Cited References:
BONTHUIS DJ, 2008, PHYS REV LETT, V101, ARTN 108303.
BRANGWYNNE CP, 2007, BIOPHYS J, V93, P346, DOI 10.1529/biophysj.106.096966.
CHEN YL, 2004, PHYS REV E 1, V70, ARTN 060901.
DEGENNES PG, 1971, J CHEM PHYS, V55, P572.
DIMITRAKOPOULOS P, 2003, J CHEM PHYS, V119, P8189, DOI 10.1063/1.1607957.
DIMITRAKOPOULOS P, 2004, PHYS REV LETT, V93, ARTN 217801.
DOHERTY EAS, 2003, ELECTROPHORESIS, V24, P4170, DOI 10.1002/elps.200305702.
DOI M, 1986, THEORY POLYM DYNAMIC.
DUPLANTIER B, 1989, J STAT PHYS, V54, P581.
EVERAERS R, 1999, PHYS REV LETT, V82, P3717.
FALLER R, 2001, CHEMPHYSCHEM, V2, P1439.
FARGE E, 1993, MACROMOLECULES, V26, P5041.
GRANEK R, 1997, J PHYS II, V7, P1761.
GREST GS, 1986, PHYS REV A, V33, P3628.
HARNAU L, 1999, PHYS REV E B, V60, P4671.
HISETTE ML, 2008, SOFT MATTER, V4, P828, DOI 10.1039/b715530a.
HOFLING F, 2008, PHYS REV E 1, V77, ARTN 060904.
HOFLING F, 2008, PHYS REV LETT, V101, ARTN 120605.
JANSON ME, 2004, BIOPHYS J, V87, P2723, DOI 10.1529/biophysj.103.038877.
KREER T, 2001, MACROMOLECULES, V34, P1105.
KREMER K, 1992, J CHEM SOC FARADAY T, V88, P1707.
KRISHNAN M, 2007, NANO LETT, V7, P1270, DOI 10.1021/nl0701861.
MAIER B, 1999, PHYS REV LETT, V82, P1911.
MARKO JF, 1995, MACROMOLECULES, V28, P8759.
MORSE DC, 1998, MACROMOLECULES, V31, P7044.
MUNK T, 2009, EPL-EUROPHYS LETT, V85, ARTN 30003.
NAM G, 2010, EUR PHYS J E, V32, P119, DOI 10.1140/epje/i2010-10624-1.
NAM GM, 2007, J CHEM PHYS, V126, ARTN 164902.
ODIJK T, 1983, MACROMOLECULES, V16, P1340.
PAUL W, 1991, J CHEM PHYS, V95, P7726.
RAMANATHAN S, 2007, PHYS REV E 1, V76, ARTN 010501.
RUBINSTEIN M, 2003, POLYM PHYS.
SEMENOV AN, 2003, EUR PHYS J E, V12, P469, DOI 10.1140/epje/e2004-00019-2.
TAO H, 2000, MACROMOLECULES, V33, P1747.
THOMPSON PA, 1997, NATURE, V389, P360.
YAMAKOV V, 1997, PHYS REV E, V55, P1704.

Cited Reference Count:
36

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3457999

IDS Number:
637YM

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280728900059
*Order Full Text [ ]

Title:
Piezopotential Gated Nanowire-Nanotube Hybrid Field-Effect Transistor

Authors:
Liu, WH; Lee, M; Ding, L; Liu, J; Wang, ZL

Author Full Names:
Liu, Weihua; Lee, Minbaek; Ding, Lei; Liu, Jie; Wang, Zhong Lin

Source:
NANO LETTERS 10 (8): 3084-3089 AUG 2010

Language:
English

Document Type:
Article

Author Keywords:
Piezotronic effect; piezopotential; field-effect transistor; carbon nanotube; ZnO nanowire

KeyWords Plus:
WALLED CARBON NANOTUBES; ZNO NANOWIRE; SINGLE; NANOGENERATORS; TRANSPORT; SENSORS; GROWTH; ARRAYS

Abstract:
We report the First piezoelectric potential gated hybrid held-effect transistors based on nanotubes and nanowires. The device consists of single-walled carbon nanotubes (SWNTs) on the bottom and crossed ZnO piezoelectric fine wire (PEW) on the top with an insulating layer between. Here, SWNTs serve as a carrier transport channel, and a single-crystal ZnO PFW acts as the power-free, contact-free gate or even an energy-harvesting component later on. The piezopotential created by an external force in the ZnO PFW is demonstrated to control the charge transport in the SWNT channel located underneath. The magnitude of the piezopotential in the PFW at a tensile strain of 0.05% is measured to be 0.4-0.6 V. The device is a unique coupling between the piezoelectric property of the ZnO PFW and the semiconductor performance of the SWNT with a full utilization of its mobility. The newly demonstrated device has potential applications as a strain sensor, force/pressure monitor, security tr!
igger, and analog-signal touch screen,

Reprint Address:
Wang, ZL, Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA.

Research Institution addresses:
[Liu, Weihua; Lee, Minbaek; Wang, Zhong Lin] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA; [Ding, Lei; Liu, Jie] Duke Univ, Dept Chem, Durham, NC 27708 USA; [Liu, Weihua] Xi An Jiao Tong Univ, Dept Microelect, Xian 710049, Shaanxi, Peoples R China

E-mail Address:
zhong.wang@mse.gatech.edu

Cited References:
BARONE PW, 2005, NAT MATER, V4, P86, DOI 10.1038/nmat1276.
DING L, 2009, NANO LETT, V9, P800, DOI 10.1021/nl803496s.
FALK AL, 2009, NAT PHYS, V5, P475, DOI 10.1038/NPHYS1284.
FEI P, 2009, NANO LETT, V9, P3435, DOI 10.1021/nl901606b.
GAO Y, 2007, NANO LETT, V7, P2499, DOI 10.1021/nl071310j.
GAO Y, 2009, NANO LETT, V9, P1103, DOI 10.1021/nl803547f.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GUO J, 2002, APPL PHYS LETT, V80, P3192.
JAVEY A, 2003, NATURE, V424, P654, DOI 10.1038/nature01797.
JIAO LY, 2009, NANO LETT, V9, P205, DOI 10.1021/nl802779t.
KOCABAS C, 2007, NANO LETT, V7, P1195, DOI 10.1021/nl062907m.
KWON SS, 2008, ADV MATER, V20, P4557, DOI 10.1002/adma.200800691.
LI Y, 2010, ADV MATER, V22, P1508, DOI 10.1002/adma.200904366.
MARTEL R, 1998, APPL PHYS LETT, V73, P2447.
MARTEL R, 2001, PHYS REV LETT, V87, ARTN 256805.
MARTEL R, 2003, APPL PHYS LETT, V83, P2435.
MISEWICH JA, 2003, SCIENCE, V300, P783.
ODOM TW, 2000, J PHYS CHEM B, V104, P2794.
QIN Y, 2008, NATURE, V451, P809, DOI 10.1038/nature06601.
RUECKES T, 2000, SCIENCE, V289, P94.
SAITO R, 1998, PHYS PROPERTIES CARB.
SOUTASLITTLE RW, 1999, ELASTICITY, V16, P431.
STAII C, 2005, NANO LETT, V5, P1774, DOI 10.1021/nl051261f.
TANS SJ, 1998, NATURE, V393, P49.
WANG XD, 2006, NANO LETT, V6, P2768, DOI 10.1021/nl061802g.
WANG XD, 2007, SCIENCE, V316, P102, DOI 10.1126/science.1139366.
WANG ZL, 2006, SCIENCE, V312, P242, DOI 10.1126/science.1124005.
WANG ZL, 2007, MRS BULL, V32, P109.
YANG RS, 2009, NAT NANOTECHNOL, V4, P34, DOI 10.1038/NNANO.2008.314.
ZHOU J, 2008, NANO LETT, V8, P3035, DOI 10.1021/nl802367t.

Cited Reference Count:
30

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1530-6984

DOI:
10.1021/nl1017145

IDS Number:
636JO

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280667300002
*Order Full Text [ ]

Title:
Theoretic, Experimental, Clinical Bases of the Water Oscillator Hypothesis in Near-Infrared Photobiomodulation

Authors:
Santana-Blank, L; Rodriguez-Santana, E; Santana-Rodriguez, K

Author Full Names:
Santana-Blank, Luis; Rodriguez-Santana, Elizabeth; Santana-Rodriguez, Karin

Source:
PHOTOMEDICINE AND LASER SURGERY 28: S41-S52 Suppl. 1 AUG 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CYTOCHROME-C-OXIDASE; PULSED-LASER DEVICE; EMITTING DIODE IRRADIATION; NEURODEGENERATIVE DISEASES; CELL-PROLIFERATION; ELECTRIC-FIELD; LIVING CELLS; NITRIC-OXIDE; ADVANCED NEOPLASIAS; AXONAL-TRANSPORT

Abstract:
The objective of this review is to propose and document a role for the water oscillator in near-infrared (NIR) photobiomodulation. Greater understanding of the role of the water oscillator may add to a more-coherent description of central effects of NIR light on redox centers and key transmembrane enzymes such as cytochrome c oxidase (CcO). In addition, water provides a complementary pathway for absorption and transportation of NIR energy in photobiomodulation. Because of its unexpected potential, we propose terming it the "water oscillator paradox.'' Photobiologic mechanisms involved in the treatment of complex diseases are discussed in light of the present state of the art.

Reprint Address:
Santana-Blank, L, MUN 1262,Calle Las Flores CC Carabel PB,Local 2, Puerto La Cruz 6023 1, Estado Anzoateg, Venezuela.

Research Institution addresses:
[Santana-Blank, Luis; Rodriguez-Santana, Elizabeth; Santana-Rodriguez, Karin] Fdn Interdisciplinary Res & Dev, Caracas, Venezuela

E-mail Address:
luissantanablank@msn.com

Cited References:
ADAIR RK, 1996, BIOELECTROMAGNETICS, V17, P242.
AMAT A, 2006, J PHOTOCH PHOTOBIO B, V82, P152, DOI 10.1016/j.jphotobiol.2005.10.001.
ASTUMIAN RD, 1997, SCIENCE, V276, P917.
ASTUMIAN RD, 1998, EUR BIOPHYS J BIOPHY, V27, P474.
ASTUMIAN RD, 2001, PHYS REV LETT, V86, P3859.
ASTUMIAN RD, 2001, SCI AM, V285, P56.
ASTUMIAN RD, 2002, BROWNIAN MOTORS NOV, P33.
BAGATELL R, 2004, MOL CANCER THER, V3, P1021.
BASSETT CAL, 1993, J CELL BIOCHEM, V51, P387.
BEAUVOIT B, 1994, BIOPHYS J, V67, P2501.
BELEVICH I, 2007, P NATL ACAD SCI USA, V104, P2685, DOI 10.1073/pnas.0608794104.
BELKIN M, 1989, HEALTH PHYS, V56, P687.
BELKIN M, 1994, SURV OPHTHALMOL, V39, P113.
BERG H, 1999, BIOELECTROCH BIOENER, V48, P355.
BOSTIC SM, 1989, IR UV PRIMER COMBUST.
BRAGG AE, 2004, SCIENCE, V306, P669, DOI 10.1126/science.1103527.
BRANDEN G, 2006, P NATL ACAD SCI USA, V103, P317, DOI 10.1073/pnas.0507734103.
BREM RB, 1994, INVEST OPHTH VIS SCI, V35, P3466.
BRESSLER NM, 1995, ARCH OPHTHALMOL-CHIC, V113, P301.
BROWN GC, 2001, BBA-BIOENERGETICS, V1504, P46.
BROWN GC, 2007, FRONT BIOSCI, V12, P1024.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHULSO M, 2003, ONCOGENE, V22, P6699.
COLLMAN JP, 2007, SCIENCE, V315, P1565, DOI 10.1126/science.1135844.
COOPER CE, 2008, J BIOENERG BIOMEMBR, V40, P533, DOI 10.1007/s10863-008-9166-6.
COWAN ML, 2005, NATURE, V434, P199, DOI 10.1038/nature03383.
CURRIE M, 2008, PIERS ONLINE, V4, P815.
DEGRAAF RA, 2007, IN VIVO NMR SPECTROS, P1.
DELLAGO C, 2005, COMPUT PHYS COMMUN, V169, P36, DOI 10.1016/j.cpc.2005.03.010.
DESMET K, 2009, MECH LOW LIGHT THERA, V4.
DESMETTRE T, 2003, LASER SURG MED, V33, P102, DOI 10.1002/lsm.10193.
DEVOS KJ, 2008, ANNU REV NEUROSCI, V31, P151, DOI 10.1146/annurev.neuro.31.061307.090711.
DHAR SS, 2008, J BIOL CHEM, V283, P3120, DOI 10.1074/jbc.M707587200.
DHAR SS, 2008, J NEUROCHEM, V108, P1595.
DIAN BC, 2002, SCIENCE, V296, P2369.
DUAN R, 2003, LASER SURG MED, V33, P199, DOI 10.1002/lsm.10216.
DYSON M, 2009, P SPIE, V7165.
ECKMILLER MS, 2003, ADV EXP MED BIOL, V533, P277.
ECKMILLER MS, 2004, PROG RETIN EYE RES, V23, P495, DOI 10.1016/j.preteyeres.2004.04.005.
FOX AE, 2006, OPT EXPRESS, V14, P3688.
FRAUENFELDER H, 2009, P NATL ACAD SCI USA, V106, P5129, DOI 10.1073/pnas.0900336106.
GAO XJ, 2009, J BIOMED SCI, V16, ARTN 4.
GEISSLER PL, 2001, SCIENCE, V291, P2121.
GILIJAMSE JJ, 2005, P NATL ACAD SCI USA, V102, P3202, DOI 10.1073/pnas.0404916102.
GONZALEZMIRANDA JM, 2004, SYNCHRONIZATION CONT.
GRANT DM, 2002, ADV NMR, P23.
GREGORY JK, 1997, SCIENCE, V275, P814.
HAGEMAN GS, 1999, MOL VIS, V5, P28.
HAMBLIN MR, 2006, P SPIE, V6140.
HANCOCK HA, 2008, DOC OPHTHALMOL, V11, P215.
HART FX, 2006, BIOELECTROMAGNETICS, V27, P505, DOI 10.1002/bem.20236.
HARTL FU, 2002, SCIENCE, V295, P852.
HEIDEN MGV, 2009, SCIENCE, V324, P1029, DOI 10.1126/science.1160809.
HENG TCS, 2009, SCI SIGNAL, V2, P39.
HUBER R, 1989, BIOSCIENCE REP, V9, P635.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784.
IRVINE RF, 2001, NAT REV MOL CELL BIO, V2, P327.
JINKINS JR, 1987, AM J ROENTGENOL, V149, P793.
KARU T, 1999, J PHOTOCH PHOTOBIO B, V49, P1.
KARU TI, 2003, BIOMEDICAL PHOTONICS, P1.
KARU TI, 2004, PHOTOCH PHOTOBIO SCI, V3, P211, DOI 10.1039/b306126d.
KASHINTSEVA LT, 1989, OFTAL ZH, V44, P66.
KJELSTRUP S, 2005, J THEOR BIOL, V234, P7, DOI 10.1016/j.jtbi.2004.11.001.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOLOMIETS AI, 1983, OPHTH ZH, V38, P408.
KOWLURU RA, 2009, FREE RADICAL BIO MED, V46, P1677, DOI 10.1016/j.freeradbiomed.2009.03.024.
KUJAWA J, 2003, J CLIN LASER MED SUR, V21, P351.
KUJAWA J, 2004, PHOTOMED LASER SURG, V22, P504.
KWONG JQ, 2007, J CELL BIOL, V179, P1163, DOI 10.1083/jcb.200704059.
LAMB TD, 2006, INVEST OPHTH VIS SCI, V47, P5138, DOI 10.1167/iovs.06-0849.
LANE N, 2006, NATURE, V443, P901, DOI 10.1038/443901a.
LIANG HL, 2008, NEUROSCIENCE, V153, P963, DOI 10.1016/j.neuroscience.2008.03.042.
LIU B, 2002, MOL CANCER THER, V1, P1147.
LIU DS, 1990, J BIOL CHEM, V265, P7260.
LOPEZRIOS F, 2007, CANCER RES, V67, P9013, DOI 10.1158/0008-5472.CAN-07-1678.
LUBART R, 2006, PHOTOMED LASER SURG, V24, P179.
MARTIN R, 1998, SPATIALLY RESOLVED M, P133.
MCLEOD KJ, 1987, SCIENCE, V236, P1465.
MEISS JD, 1999, NATURE, V398, P303.
MERKEL R, 1999, NATURE, V397, P50.
MIYAZAKI M, 2004, SCIENCE, V304, P1134, DOI 10.1126/science.1096037.
MIZUTANI K, 2004, PHOTOMED LASER SURG, V22, P537.
MULHOLLAND B, 2005, EYE, V19, P584, DOI 10.1038/sj.eye.6701557.
NAMSLAUER A, 2007, J BIOL CHEM, V282, P15148, DOI 10.1074/jbc.M700348200.
NAVEH N, 1999, J NEUROSCI RES, V26, P386.
NIBBERING ETJ, 2004, CHEM REV, V104, P1887.
NITZAN A, 1999, NATURE, V402, P472.
NORDGAARD CL, 2008, INVEST OPHTH VIS SCI, V49, P2848, DOI 10.1167/iovs.07-1352.
ORON U, 2001, CIRCULATION, V103, P296.
PAIK DH, 2004, SCIENCE, V306, P672, DOI 10.1126/science.1102827.
PIKOVSKY A, 2001, SYNCHRONIZATION UNIV.
QVIST J, 2008, P NATL ACAD SCI USA, V105, P6296, DOI 10.1073/pnas.0709844105.
RAO PV, 1994, J BIOL CHEM, V269, P13266.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
REGUERA D, 2005, J PHYS CHEM B, V109, P21502, DOI 10.1021/jp052904i.
RHEE DJ, 2009, EXP EYE RES, V88, P694, DOI 10.1016/j.exer.2008.11.032.
ROCHKIND S, 1992, NEUROL RES, V14, P2.
ROCHKIND S, 2009, NEUROSURG FOCUS, V26, ARTN E8.
RODRIGUEZSANTAN.E, 2008, J CHINESE CLIN MED, V3, P470.
RODRIGUEZSANTANA E, 2003, LASER SURG MED, V33, P190, DOI 10.1002/lsm.10209.
ROSENBERG GA, 2009, LANCET NEUROL, V8, P205.
SACHS C, 2001, SCIENCE, V293, P1635.
SAFFARIAN S, 2004, SCIENCE, V306, P108.
SANTANABLANK L, 2003, LASER SURG MED, V32, P1, DOI 10.1002/lsm.10143.
SANTANABLANK L, 2004, PHOTOMED LASER SURG, V22, P442.
SANTANABLANK L, 2005, BIOELECTROMAGNETICS, V26, P523, DOI 10.1002/bem.20130.
SANTANABLANK LA, 1992, CLIN EXP IMMUNOL, V90, P43.
SANTANABLANK LA, 2000, LASER SURG MED, V27, P411.
SANTANABLANK LA, 2002, CLIN CANCER RES, V8, P3082.
SANTANABLANK LA, 2002, LASER SURG MED, V30, P18.
SANTANABLANK LA, 2004, LASER SURG MED, V34, P398, DOI 10.1002/lsm.20068.
SANTANABLANK LA, 2005, PHOTOMED LASER SURG, V23, P416.
SANTANABLANK LA, 2008, PHOTOMED LASER SURG, V26, P405, DOI 10.1089/pho.2008.2276.
SAWADA T, 2007, BRAIN TUMOR PATHOL, V24, P81, DOI 10.1007/s10014-007-0216-2.
SCHMIDT KG, 2008, CURR NEUROPHARMACOL, V6, P164.
SHIN JW, 2004, SCIENCE, V304, P1137, DOI 10.1126/science.1096466.
TATA DB, 2007, P SPIE, V6428.
TATA DB, 2009, MECH LOWLIGHT THERAP, V4.
TRIMMER PA, 2009, MOL NEURODEGENER, V4, ARTN 26.
VANSTAVERN GP, 2007, SEMIN NEUROL, V27, P233, DOI 10.1055/s-2007-979684.
VERKMAN AS, 2008, J MOL MED-JMM, V86, P523, DOI 10.1007/s00109-008-0303-9.
VERLET JRR, 2005, SCIENCE, V307, P93, DOI 10.1126/science.1106719.
VONBALLMOOS C, 2009, ANNU REV BIOCHEM, V78, P649, DOI 10.1146/annurev.biochem.78.081307.104803.
WAALKENS H, 2004, J CHEM PHYS, V121, P6207, DOI 10.1063/1.1789891.
WALCZAK A, 2008, POSTEP HIG MED DOSW, V31, P582.
WANG F, 2005, LASER SURG MED, V36, P2, DOI 10.1002/lsm.20130.
WANG ZH, 2007, J PHYS CHEM A, V111, P3196, DOI 10.1021/jp069027g.
WEAVER JC, 1990, SCIENCE, V247, P459.
WEINREB RN, 2009, INVEST OPHTH VIS SCI, V50, P1497, DOI 10.1167/iovs.08-2843.
WEISS RA, 2005, LASER SURG MED, V36, P85, DOI 10.1002/lsm.20107.
WHELAN HT, 2003, J CLIN LASER MED SUR, V21, P67.
WIGGINS S, 1991, CHAOTIC TRANSPORT DY, P209.
WONGRILEY MTT, 2001, NEUROREPORT, V12, P3033.
WOUTERSEN S, 1999, NATURE, V402, P507.
XIE TD, 1994, BIOPHYS J, V67, P1247.
ZASLAVSKY GM, 1998, PHYS CHAOS HAMILTONI, P194.
ZEWAIL A, 2003, CURR SCI INDIA, V84, P29.
ZHANG L, 2008, CELL PHYSIOL BIOCHEM, V22, P215, DOI 10.1159/000149799.
ZHANG LL, 2009, J CELL PHYSIOL, V219, P553, DOI 10.1002/jcp.21697.
ZHANG XY, 2002, SCIENCE, V295, P663.
ZHOU RH, 2004, SCIENCE, V305, P1605.

Cited Reference Count:
142

Times Cited:
0

Publisher:
MARY ANN LIEBERT INC; 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA

Subject Category:
Surgery

ISSN:
1549-5418

DOI:
10.1089/pho.2009.2647

IDS Number:
635PE

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280742100017
*Order Full Text [ ]

Title:
Global Phase Diagram of Water Confined on the Nanometer Scale

Authors:
Kyakuno, H; Matsuda, K; Yahiro, H; Fukuoka, T; Miyata, Y; Yanagi, K; Maniwa, Y; Kataura, H; Saito, T; Yumura, M; Iijima, S

Author Full Names:
Kyakuno, Haruka; Matsuda, Kazuyuki; Yahiro, Hitomi; Fukuoka, Tomoko; Miyata, Yasumitsu; Yanagi, Kazuhiro; Maniwa, Yutaka; Kataura, Hiromichi; Saito, Takeshi; Yumura, Motoo; Iijima, Sumio

Source:
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 79 (8): Art. No. 083802 AUG 2010

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; water; ice nanotubes; phase diagram; wet-dry transition

KeyWords Plus:
WALLED CARBON NANOTUBES; ICE-NANOTUBES

Abstract:
Water confined on the nanometer scale exhibits unusual behavior that cannot be observed in the bulk. The freezing/melting temperature T-m of liquids is one of the most prominent phenomena that strongly depend on geometrical confinement. In this work, we report the phase behaviors of water in a cylindrical pore of single-walled carbon nanotubes (SWCNTs). Previous studies [Maniwa et al.: Chem. Phys. Lett. 401 ( 2005) 534] of SWCNTs with diameters D from 1.17 to 1.45 nm clarified that water shows a liquid-to-solid like transition with decreasing temperature. In the present work, we increased the diameter to D 2: 4 nm to establish the global phase diagram of water. Employing a combination of X-ray diffraction and NMR experiments, we found that water within an SWCNT undergoes a wet dry transition instead of ice formation once D exceeds about 1.6 nm.

Reprint Address:
Kyakuno, H, Tokyo Metropolitan Univ, Dept Phys, Fac Sci, 1-1 Minami Osawa, Tokyo 1920397, Japan.

Research Institution addresses:
[Kyakuno, Haruka; Matsuda, Kazuyuki; Yahiro, Hitomi; Fukuoka, Tomoko; Miyata, Yasumitsu; Yanagi, Kazuhiro; Maniwa, Yutaka] Tokyo Metropolitan Univ, Dept Phys, Fac Sci, Tokyo 1920397, Japan; [Maniwa, Yutaka; Kataura, Hiromichi] CREST, JST, Kawaguchi, Saitama 3320012, Japan; [Kataura, Hiromichi] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058562, Japan; [Saito, Takeshi; Yumura, Motoo; Iijima, Sumio] Natl Inst Adv Ind Sci & Technol, Nanotube Res Ctr, Tsukuba, Ibaraki 3058565, Japan; [Saito, Takeshi] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan

E-mail Address:
ymaniwa@tmu.ac.jp

Cited References:
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BELIN T, 2004, J PHYS CHEM B, V108, P5333, DOI 10.1021/jp0310899.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9.
HENSEN EJM, 2002, J PHYS CHEM B, V106, P12664, DOI 10.1021/jp0264883.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JACKSON KA, 1958, J APPL PHYS, V29, P1178.
KADOWAKI H, 2005, J PHYS SOC JPN, V74, P2990, DOI 10.1143/JPSJ.74.2990.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LIU ZH, 2003, PHYS REV E 1, V67, ARTN 061602.
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415.
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t.
MORISHIGE K, 1999, J CHEM PHYS, V110, P4867.
NGUYEN TD, 2005, P NATL ACAD SCI USA, V102, P10029, DOI 10.1073/pnas.0504109102.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
SAITO T, 2006, J PHYS CHEM B, V110, P5849, DOI 10.1021/jp057513i.
SAITO T, 2008, J NANOSCI NANOTECHNO, V8, P6153, DOI 10.1166/jnn.2008.SW23.
SHIOMI J, 2007, J PHYS CHEM C, V111, P12188, DOI 10.1021/jp071508s.
STRIOLO A, 2005, J CHEM PHYS, V122, ARTN 234712.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TANAKA H, 2005, J CHEM PHYS, V123, ARTN 094706.
YANAGI K, 2008, APPL PHYS EXPRESS, V1, ARTN 034003.

Cited Reference Count:
27

Times Cited:
0

Publisher:
PHYSICAL SOC JAPAN; EISHIN-KAIHATSU BLDG, 5TH FLR, 5-34-3 SHINBASHI, MINATO-KU, TOKYO 105-0004, JAPAN

Subject Category:
Physics, Multidisciplinary

ISSN:
0031-9015

DOI:
10.1143/JPSJ.79.083802

IDS Number:
636MZ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 1.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000280742100017>
*Order Full Text [ ]
AU Kyakuno, H
Matsuda, K
Yahiro, H
Fukuoka, T
Miyata, Y
Yanagi, K
Maniwa, Y
Kataura, H
Saito, T
Yumura, M
Iijima, S
AF Kyakuno, Haruka
Matsuda, Kazuyuki
Yahiro, Hitomi
Fukuoka, Tomoko
Miyata, Yasumitsu
Yanagi, Kazuhiro
Maniwa, Yutaka
Kataura, Hiromichi
Saito, Takeshi
Yumura, Motoo
Iijima, Sumio
TI Global Phase Diagram of Water Confined on the Nanometer Scale
SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
LA English
DT Article
DE carbon nanotubes; water; ice nanotubes; phase diagram; wet-dry
transition
ID WALLED CARBON NANOTUBES; ICE-NANOTUBES
AB Water confined on the nanometer scale exhibits unusual behavior that
cannot be observed in the bulk. The freezing/melting temperature T-m of
liquids is one of the most prominent phenomena that strongly depend on
geometrical confinement. In this work, we report the phase behaviors of
water in a cylindrical pore of single-walled carbon nanotubes (SWCNTs).
Previous studies [Maniwa et al.: Chem. Phys. Lett. 401 ( 2005) 534] of
SWCNTs with diameters D from 1.17 to 1.45 nm clarified that water shows
a liquid-to-solid like transition with decreasing temperature. In the
present work, we increased the diameter to D 2: 4 nm to establish the
global phase diagram of water. Employing a combination of X-ray
diffraction and NMR experiments, we found that water within an SWCNT
undergoes a wet dry transition instead of ice formation once D exceeds
about 1.6 nm.
C1 [Kyakuno, Haruka; Matsuda, Kazuyuki; Yahiro, Hitomi; Fukuoka, Tomoko; Miyata, Yasumitsu; Yanagi, Kazuhiro; Maniwa, Yutaka] Tokyo Metropolitan Univ, Dept Phys, Fac Sci, Tokyo 1920397, Japan.
[Maniwa, Yutaka; Kataura, Hiromichi] CREST, JST, Kawaguchi, Saitama 3320012, Japan.
[Kataura, Hiromichi] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058562, Japan.
[Saito, Takeshi; Yumura, Motoo; Iijima, Sumio] Natl Inst Adv Ind Sci & Technol, Nanotube Res Ctr, Tsukuba, Ibaraki 3058565, Japan.
[Saito, Takeshi] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan.
RP Kyakuno, H, Tokyo Metropolitan Univ, Dept Phys, Fac Sci, 1-1 Minami
Osawa, Tokyo 1920397, Japan.
EM ymaniwa@tmu.ac.jp
CR BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI
10.1073/pnas.0608401104
BELIN T, 2004, J PHYS CHEM B, V108, P5333, DOI 10.1021/jp0310899
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9
HENSEN EJM, 2002, J PHYS CHEM B, V106, P12664, DOI 10.1021/jp0264883
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
JACKSON KA, 1958, J APPL PHYS, V29, P1178
KADOWAKI H, 2005, J PHYS SOC JPN, V74, P2990, DOI 10.1143/JPSJ.74.2990
KOGA K, 2001, NATURE, V412, P802
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503
LIU ZH, 2003, PHYS REV E 1, V67, ARTN 061602
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI
10.1016/j.cplett.2004.11.112
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t
MORISHIGE K, 1999, J CHEM PHYS, V110, P4867
NGUYEN TD, 2005, P NATL ACAD SCI USA, V102, P10029, DOI
10.1073/pnas.0504109102
NOON WH, 2002, CHEM PHYS LETT, V355, P445
SAITO T, 2006, J PHYS CHEM B, V110, P5849, DOI 10.1021/jp057513i
SAITO T, 2008, J NANOSCI NANOTECHNO, V8, P6153, DOI
10.1166/jnn.2008.SW23
SHIOMI J, 2007, J PHYS CHEM C, V111, P12188, DOI 10.1021/jp071508s
STRIOLO A, 2005, J CHEM PHYS, V122, ARTN 234712
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI
10.1073/pnas.0707917105
TANAKA H, 2005, J CHEM PHYS, V123, ARTN 094706
YANAGI K, 2008, APPL PHYS EXPRESS, V1, ARTN 034003
NR 27
TC 0
PU PHYSICAL SOC JAPAN; EISHIN-KAIHATSU BLDG, 5TH FLR, 5-34-3 SHINBASHI,
MINATO-KU, TOKYO
105-0004, JAPAN
SN 0031-9015
DI 10.1143/JPSJ.79.083802
PD AUG
VL 79
IS 8
AR 083802
SC Physics, Multidisciplinary
GA 636MZ
UT ISI:000280742100017
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, August 20, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280586200010
*Order Full Text [ ]

Title:
Proton transport in water confined in carbon nanotubes: a reactive molecular dynamics study

Authors:
Selvan, ME; Keffer, DJ; Cui, S; Paddison, SJ

Author Full Names:
Selvan, M. Esai; Keffer, D. J.; Cui, S.; Paddison, S. J.

Source:
MOLECULAR SIMULATION 36 (7-8): 568-578 Sp. Iss. SI 2010

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
proton transport; structural diffusion; carbon nanotubes; confinement

KeyWords Plus:
POLYMER ELECTROLYTE MEMBRANES; LIQUID WATER; HYDRATED NAFION(R); EXCESS PROTON; FUEL-CELLS; SIMULATION; SOLVATION; MODEL; INTERFACE; CONDUCTION

Abstract:
The effects on the structural and transport properties of a proton in water confined in carbon nanotubes of radii ranging from 5.42 to 10.85 angstrom were studied by employing a recently devised reactive molecular dynamics (RMD) scheme. The formation of distinct layers was observed in the computed radial density profile of water. Affinity of hydronium ions towards the tube-water interface and its preferential orientation with the oxygen atom protruding towards the wall was observed. The axial water diffusivity was observed to decrease with increasing confinement of water. Analysis of the axial charge diffusivity and its two components (structural and vehicular) was also performed. Confinement was found to have a more significant effect on structural diffusion than on vehicular diffusion. The axial vehicular component of the charge diffusivity in the nanotube of radius 10.85 angstrom was found to be equal to the value computed in bulk water while structural component was 12% !
of the value observed in bulk water, which resulted in a total charge diffusivity of 42% of the diffusion in bulk water. The confined geometry affects the system energetically and perturbs the solvation structure around the proton from that found in bulk water. The RMD algorithm, which defines the occurrence of a proton transfer reaction based on the satisfaction of a set of triggers, identified the energetic factor to be greatly responsible for the decreased structural diffusion of a proton.

Reprint Address:
Keffer, DJ, Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.

Research Institution addresses:
[Selvan, M. Esai; Keffer, D. J.; Cui, S.; Paddison, S. J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA

E-mail Address:
dkeffer@utk.edu

Cited References:
AGMON N, 1995, CHEM PHYS LETT, V244, P456.
ALEXIADIS A, 2008, CHEM ENG SCI, V63, P2047, DOI 10.1016/j.ces.2007.12.035.
BILLETER SR, 1998, J PHYS CHEM A, V102, P4669.
BREWER ML, 2001, BIOPHYS J, V80, P1691.
CAR R, 1985, PHYS REV LETT, V55, P2471.
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
CUI ST, 2007, J PHYS CHEM B, V111, P2208, DOI 10.1021/jp066388n.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
EIKERLING M, 2003, CHEM PHYS LETT, V368, P108.
FLYVBJERG H, 1989, J CHEM PHYS, V91, P461.
GALLO P, 2002, J CHEM PHYS, V116, P342.
GOPALAKRISHNAN S, 2006, CHEM REV, V106, P1155, DOI 10.1021/cr040361n.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
HAYES RL, 2009, J PHYS CHEM B, V113, P16574, DOI 10.1021/jp907853p.
HIRUNSIT P, 2007, J PHYS CHEM C, V111, P1709, DOI 10.1021/jp063718v.
HOLT JK, 2009, ADV MATER, V21, P3542, DOI 10.1002/adma.200900867.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HUMMER G, 1992, MOL PHYS, V77, P769.
HUMMER G, 2001, NATURE, V414, P188.
INTHARATHEP P, 2006, J COMPUT CHEM, V27, P1723, DOI 10.1002/jcc.20503.
JIANG BW, 2009, J PHYS CHEM B, V113, P13670, DOI 10.1021/jp811151m.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KEFFER D, 1996, MOL PHYS, V87, P367.
KELL GS, 1975, J CHEM ENG DATA, V20, P97.
KREUER KD, 1997, SOLID STATE IONICS, V97, P1.
KREUER KD, 2000, SOLID STATE IONICS, V149, P136.
KREUER KD, 2001, J MEMBRANE SCI, V185, P29.
KREUER KD, 2004, CHEM REV, V104, P4637, DOI 10.1021/cr020715f.
KREUER KD, 2008, J POWER SOURCES, V178, P499, DOI 10.1016/j.jpowsour.2007.11.011.
LEE HS, 2009, J PHYS CHEM A, V113, P2144, DOI 10.1021/jp809236c.
LEE SH, 2009, B KOREAN CHEM SOC, V30, P700.
LILL MA, 2001, J CHEM PHYS, V115, P7993.
LIU Y, 2005, J CHEM PHYS, V123, UNSP 234701-1-7.
LU ZJ, 2009, J PHYS CHEM B, V113, P13551, DOI 10.1021/jp9057115.
LUZ Z, 1964, J AM CHEM SOC, V86, P4768.
LYNDENBELL RM, 1996, J CHEM PHYS, V105, P9266.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MARKOVITCH O, 2008, J PHYS CHEM B, V112, P9456, DOI 10.1021/jp804018y.
MARX D, 1999, NATURE, V397, P601.
MASHL RJ, 2003, BIOPHYS J S 2, V84, A488.
MCCALLUM CL, 1999, LANGMUIR, V15, P533.
MIRANDA PB, 1999, J PHYS CHEM B, V103, P3292.
NERIA E, 1996, J CHEM PHYS, V105, P1902.
NOSE S, 1984, J CHEM PHYS, V81, P511.
NOSE S, 1984, MOL PHYS, V52, P255.
PADDISON SJ, 2000, J NEW MAT ELECTR SYS, V3, P291.
PADDISON SJ, 2002, PHYS CHEM CHEM PHYS, V4, P1158, DOI 10.1039/b109792j.
PADDISON SJ, 2003, ANNU REV MATER RES, V33, P289, DOI 10.1146/annurev.matsei.33.022702.155102.
PAUL R, 2001, J CHEM PHYS, V115, P7762.
PAUL R, 2004, J PHYS CHEM B, V108, P13231, DOI 10.1021/jp048501k.
PETERSEN MK, 2004, J PHYS CHEM B, V108, P14804, DOI 10.1021/jp046716o.
PETERSEN MK, 2005, J PHYS CHEM B, V109, P3727, DOI 10.1021/jp044535g.
PETERSEN MK, 2006, J PHYS CHEM B, V110, P18594, DOI 10.1021/jp062719k.
PETERSON BK, 1986, J CHEM SOC FARAD T 2, V82, P1789.
ROBISON RA, 1959, ELECTROLYTE SOLUTION.
SCHMIDT RG, 1997, BER BUNSEN PHYS CHEM, V101, P1816.
SCHMITT UW, 1999, J CHEM PHYS, V111, P9361.
SELVAN ME, J CHEM PH C IN PRESS.
SELVAN ME, 2008, J PHYS CHEM C, V112, P1975, DOI 10.1021/jp075611t.
STEELE WA, 1974, INTERACTION GASES SO.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
TIAN CS, 2008, J AM CHEM SOC, V130, P13033, DOI 10.1021/ja8021297.
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990.
TUCKERMAN M, 1995, J CHEM PHYS, V103, P150.
URATA S, 2005, J PHYS CHEM B, V109, P4269, DOI 10.1021/jp046434o.
VACHA R, 2008, PHYS CHEM CHEM PHYS, V10, P4975, DOI 10.1039/b806432f.
WANG F, 2005, J CHEM PHYS, V122, UNSP 144105-1-9.
WARSHEL A, 1980, J AM CHEM SOC, V102, P6218.
WICKE E, 1954, Z PHYS CHEM FRANKFUR, V1, P340.
WU YJ, 2008, J PHYS CHEM B, V112, P467, DOI 10.1021/jp076658h.
ZAWODZINSKI TA, 1993, J ELECTROCHEM SOC, V140, P1981.
ZUNDEL G, 1968, Z PHYS CHEM FRANKFUR, V58, P225.

Cited Reference Count:
72

Times Cited:
0

Publisher:
TAYLOR & FRANCIS LTD; 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
0892-7022

DOI:
10.1080/08927021003752887

IDS Number:
634MN

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280523700022
*Order Full Text [ ]

Title:
Ion Rejection Properties of Nanopores with Bipolar Fixed Charge Distributions

Authors:
Szymczyk, A; Zhu, HC; Balannec, B

Author Full Names:
Szymczyk, Anthony; Zhu, Haochen; Balannec, Beatrice

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (31): 10143-10150 AUG 12 2010

Language:
English

Document Type:
Article

KeyWords Plus:
ULTRAFINE CAPILLARIES; NANOFLUIDIC CHANNELS; TRANSPORT-PROPERTIES; ELECTROOSMOTIC FLOW; CONICAL NANOPORES; ENERGY-CONVERSION; REGULATION MODEL; CARBON NANOTUBE; SALT REJECTION; WATER CHANNEL

Abstract:
Ion rejection properties of cylindrical nanopores with bipolar fixed charge distributions have been investigated theoretically by means of an approximate model based on the Poisson-Nernst-Planck (PNP) theory and accounting for the electroosmosis phenomenon The approximate model has been shown to give results that are in good agreement with the full 2D PNP approach for the narrow and weakly charged pores considered in this work Pressure-induced rectification of salt flux has been put in evidence as a result of the broken symmetry of the fixed charge distribution on the pore walls. The model also elucidates that pressure-induced transport is controlled by different pore regions depending on the magnitude of the pressure difference across the nanopore The existence of an optimal pressure difference (i.e., leading to the highest salt rejection) has been put in evidence when there is a region within the nanopore that is more repulsive than the pore entrance with respect to a give!
n electrolyte. For moderate pressure differences, our results show that nanopores with bipolar charge distributions can lead to close rejections for both 2-1 and 1-2 asymmetric electrolytes. This is a specific property of bipolar nanopores because these performances cannot be obtained with homogeneously charged nanopores, which strongly reject electrolytes with divalent co-ions but are much more permeable to electrolytes with divalent counterions. This work benefits the design of nanoporous systems with targeted distribution of ionizable surface groups for advanced membrane separations.

Reprint Address:
Szymczyk, A, Univ Europeenne Bretagne, 5 Blvd Laennec, F-35000 Rennes, France.

Research Institution addresses:
[Szymczyk, Anthony; Zhu, Haochen] Univ Europeenne Bretagne, F-35000 Rennes, France; [Szymczyk, Anthony; Zhu, Haochen; Balannec, Beatrice] Univ Rennes 1, CNRS, UMR 6226, ENSCR, F-35042 Rennes, France

Cited References:
ALI M, 2009, LANGMUIR, V25, P11993, DOI 10.1021/la902792f.
APEL PY, 2001, NUCL INSTRUM METH B, V184, P337.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BIESHEUVEL PM, 2001, J COLLOID INTERF SCI, V241, P422.
CERVERA J, 2005, EUROPHYS LETT, V71, P35, DOI 10.1209/epl/i2005-10054-x.
CERVERA J, 2006, J CHEM PHYS, V124, ARTN 104706.
CERVERA J, 2008, SURFACE ELECT PHENOM, P173.
CHEN YF, 2008, NANO LETT, V8, P42, DOI 10.1021/nI0718566.
CHENG LJ, 2007, NANO LETT, V7, P3165, DOI 10.1021/nl071770c.
CONSTANTIN D, 2007, PHYS REV E 1, V76, ARTN 041202.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945.
DAVENPORT M, 2009, NANO LETT, V9, P2125, DOI 10.1021/nl900630z.
DEEN WM, 1987, AICHE J, V33, P1409.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DELINT WBS, 2002, J COLLOID INTERF SCI, V251, P131.
DESAI TA, 1999, BIOMED MICRODEVICES, V2, P11.
FAIR JC, 1971, J CHEM PHYS, V54, P3307.
FULINSKI A, 2004, EUROPHYS LETT, V67, P683, DOI 10.1209/epl/i2003-10304-y.
GOLDSMITH J, 2010, J PHYS CHEM LETT, V1, P528, DOI 10.1021/jz900173w.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GROSS RJ, 1968, J CHEM PHYS, V49, P228.
HAN JH, 2009, ANGEW CHEM INT EDIT, V48, P3830, DOI 10.1002/anie.200900045.
HE Y, 2009, J AM CHEM SOC, V131, P5194, DOI 10.1021/ja808717u.
HUMMER G, 2001, NATURE, V414, P188.
JIN P, 2010, J AM CHEM SOC, V132, P2118, DOI 10.1021/ja909335r.
KOVARIK ML, 2009, J PHYS CHEM B, V113, P15960, DOI 10.1021/jp9076189.
KUEHL SA, 1988, J PHYS CHEM-US, V92, P517.
LEFEBVRE X, 2004, J PHYS CHEM B, V108, P16811, DOI 10.1021/jp048631t.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
MACRAE MX, 2010, J AM CHEM SOC, V132, P1766, DOI 10.1021/ja909876h.
MORRISON FA, 1965, J CHEM PHYS, V43, P2111.
NAM SW, 2009, NANO LETT, V9, P2044, DOI 10.1021/nl900309s.
PALMERI J, 2006, HDB THEORETICAL COMP, V5, P93.
PLECIS A, 2005, NANO LETT, V5, P1147, DOI 10.1021/nl050265h.
RAMIREZ P, 2003, PHYS REV E 1, V68, ARTN 011910.
RAMIREZ P, 2007, J CHEM PHYS, V126, ARTN 194703.
SCRUGGS NR, 2009, NANO LETT, V9, P3853, DOI 10.1021/nl9020683.
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 198103.
SIWY Z, 2005, PHYS REV LETT, V94, ARTN 048102.
SIWY ZS, 2006, ADV FUNCT MATER, V16, P735, DOI 10.1002/adfm.200500471.
SONG C, 2009, J PHYS CHEM B, V113, P7642, DOI 10.1021/jp810102u.
SZYMCZYK A, 1999, J COLLOID INTERF SCI, V216, P285.
SZYMCZYK A, 1999, J MEMBRANE SCI, V161, P275.
SZYMCZYK A, 2003, ADV COLLOID INTERFAC, V103, P77.
SZYMCZYK A, 2006, LANGMUIR, V22, P3910, DOI 10.1021/la051888d.
SZYMCZYK A, 2010, LANGMUIR, V26, P1214, DOI 10.1021/la902355x.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h.
VLASSIOUK I, 2007, NANO LETT, V7, P552, DOI 10.1021/nl062924b.
VLASSIOUK I, 2008, NANO LETT, V8, P1978, DOI 10.1021/nl800949k.
VLASSIOUK I, 2009, J AM CHEM SOC, V131, P8211, DOI 10.1021/ja901120f.
XIE YB, 2009, LANGMUIR, V25, P8870, DOI 10.1021/la9017213.
YAMEEN B, 2009, J AM CHEM SOC, V131, P2070, DOI 10.1021/ja8086104.
YAROSHCHUK A, 2009, LANGMUIR, V25, P9605, DOI 10.1021/la900737q.
YAROSHCHUK AE, 2000, ADV COLLOID INTERFAC, V85, P193.

Cited Reference Count:
56

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp1025575

IDS Number:
633RX

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280596900042
*Order Full Text [ ]

Title:
Water filling of hydrophilic nanopores

Authors:
de la Llave, E; Molinero, V; Scherlis, DA

Author Full Names:
de la Llave, Ezequiel; Molinero, Valeria; Scherlis, Damian A.

Source:
JOURNAL OF CHEMICAL PHYSICS 133 (3): Art. No. 034513 JUL 21 2010

Language:
English

Document Type:
Article

KeyWords Plus:
LIQUID-VAPOR OSCILLATIONS; ADSORPTION HYSTERESIS; MOLECULAR-DYNAMICS; MESOPOROUS SILICA; NEUTRON-SCATTERING; PHASE-EQUILIBRIA; MCM-41; SIMULATION; SORPTION; CARBON

Abstract:
Molecular dynamics simulations of water in cylindrical hydrophilic pores with diameters of 1.5 and 3 nm were performed to explore the phase behavior and the nucleation dynamics of the confined fluid as a function of the percentage of volume filled f. The interactions of water with the pore wall were considered to be identical to the interactions between water molecules. At low water contents, all the water is adsorbed to the surface of the pore. A second phase consisting of a liquid plug appears at the onset filling for capillary condensation, f(onset) =27% and 34% for the narrow and wide pores, respectively. In agreement with experimental results for silica pores, the liquid phase appears close to the equilibrium filling f(eq) in the 1.5 nm pore and under conditions of strong surface supersaturations for the 3 nm pore. After condensation, two phases, a liquid plug and a surface-adsorbed phase, coexist in equilibrium. Under conditions of phase coexistence, the water surface !
density Gamma(coex) was found to be independent of the water content and the diameter of the pore. The value of Gamma(coex) found in the simulations (similar to 3 nm(-2)) is in good agreement with experimental results for silica pores, suggesting that the interactions of water with silica and with itself are comparable. The surface-adsorbed phase at coexistence is a sparse monolayer with a structure dominated by small water clusters. We characterize the density and structure of the liquid and surface phases, the nucleation mechanism of the water plug, and the effect of surface hydrophilicity on the two-phase equilibrium and hysteresis. The results are discussed in light of experiments and previous simulations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3462964]

Reprint Address:
Molinero, V, Univ Utah, Dept Chem, 315 South 1400 East, Salt Lake City, UT 84112 USA.

Research Institution addresses:
[Molinero, Valeria] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA; [de la Llave, Ezequiel; Scherlis, Damian A.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, INQUIMAE, Dept Quim Inorgan Anal & Quim Fis, Buenos Aires, DF, Argentina

E-mail Address:
valeria.molinero@utah.edu; damian@qi.fcen.uba.ar

Cited References:
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BINDER K, 2004, J PHYS-CONDENS MAT, V16, S429.
BRANTON PJ, 1995, J CHEM SOC FARADAY T, V91, P2041.
BROVCHENKO I, 2004, J CHEM PHYS, V120, P1958, DOI 10.1063/1.1631919.
DAVIS ME, 2002, NATURE, V417, P813.
DEMILLE RC, 2009, J CHEM PHYS, V131, ARTN 034107.
FEREY G, 2008, CHEM SOC REV, V37, P191, DOI 10.1039/b618320b.
GALLO P, 2010, J PHYS CHEM LETT, V1, P729, DOI 10.1021/jz9003125.
GREGG J, 1988, ADSORPTION GAS SOLID.
GRUNBERG B, 2004, CHEM-EUR J, V10, P5689, DOI 10.1002/chem.200400351.
HEFFELFINGER GS, 1988, J CHEM PHYS, V89, P5202.
HUMMER G, 2001, NATURE, V414, P188.
INAGAKI S, 1998, MICROPOR MESOPOR MAT, V21, P667.
ISHIKAWA T, 1996, J CHEM SOC FARADAY T, V92, P1985.
JACOBSON LC, 2009, J PHYS CHEM B, V113, P10298, DOI 10.1021/jp903439a.
JAHNERT S, 2008, PHYS CHEM CHEM PHYS, V10, P6039, DOI 10.1039/b809438c.
KASTELOWITZ N, 2010, J CHEM PHYS, V132, ARTN 124511.
KIERLIK E, 2009, J PHYS-CONDENS MAT, V21, ARTN 155102.
KOCHERBITOV V, 2007, J PHYS CHEM C, V111, P12906, DOI 10.1021/jp072474r.
KRESGE CT, 1992, NATURE, V359, P710.
LEE J, 2008, NAT MATER, V7, P222, DOI 10.1038/nmat2111.
LLEWELLYN PL, 1994, MICROPOROUS MATER, V3, P345.
LLEWELLYN PL, 1995, LANGMUIR, V11, P574.
MAMONTOV E, 2008, J PHYS CHEM C, V112, P12334, DOI 10.1021/jp711965x.
MANCINELLI R, 2009, J PHYS CHEM B, V113, P16169, DOI 10.1021/jp9062109.
MARCONI UMB, 1989, PHYS REV A, V39, P4109.
MOLINERO V, 2009, J PHYS CHEM B, V113, P4008, DOI 10.1021/jp805227c.
MOORE EB, 2009, J CHEM PHYS, V130, ARTN 244505.
MOORE EB, 2010, PHYS CHEM CHEM PHYS, V12, P4124, DOI 10.1039/b919724a.
MORISHIGE K, 2002, J CHEM PHYS, V117, P8036, DOI 10.1063/1.1510440.
NEIMARK AV, 2000, PHYS REV E A, V62, R1493.
NG EP, 2008, MICROPOR MESOPOR MAT, V114, P1, DOI 10.1016/j.micromeso.2007.12.022.
OH JS, 2003, J CHEM ENG DATA, V48, P1458, DOI 10.1021/je0301390.
PAPADOPOULOU A, 1992, J CHEM PHYS, V97, P6942.
PELMENSCHIKOV A, 2002, J PHYS CHEM A, V106, P1695.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
PUIBASSET J, 2009, J CHEM PHYS, V131, ARTN 124123.
SHENDEROVICH IG, 2007, J PHYS CHEM B, V111, P12088, DOI 10.1021/jp073682m.
SHIRONO K, 2007, J PHYS CHEM C, V111, P7938, DOI 10.1021/jp067380g.
SMIRNOV P, 2000, J PHYS CHEM B, V104, P5498.
SOLERILLIA GJD, 2002, CHEM REV, V102, P4093, DOI 10.1021/cr0200062.
TAKAHARA S, 1999, J PHYS CHEM B, V103, P5814.
TAKAHARA S, 2005, J PHYS CHEM B, V109, P11231, DOI 10.1021/jp046036l.
TARAZONA P, 1987, MOL PHYS, V60, P573.
VISHNYAKOV A, 2001, J PHYS CHEM B, V105, P7009, DOI 10.1021/jp003994o.
XU LM, 2010, J PHYS CHEM B, V114, P7320, DOI 10.1021/jp102443m.

Cited Reference Count:
46

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3462964

IDS Number:
634QB

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280577200031
*Order Full Text [ ]

Title:
Effect of Center-of-Mass Motion Removal in the Molecular Dynamics Simulations

Authors:
Wan, RZ; Li, SY; Fang, HP

Author Full Names:
Wan Rong-Zheng; Li Song-Yan; Fang Hai-Ping

Source:
CHINESE PHYSICS LETTERS 27 (8): Art. No. 084702 AUG 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; WATER TRANSPORT; CHANNEL; CONDUCTION; SYSTEMS

Abstract:
Molecule dynamics simulation is now widely used in the study of nano pores, proteins and nano-scale devices. The limited friction in such a system requires the method of center-of-mass motion removal to be applied. We test the effect of different time period.. of this method under osmotic pressure difference, and find that the impact on the net flux is very small together with the effective reduction of the accumulated numerical error when the period.. is above 0.1 ps. The simulation results also show that the change of this time period of method has very little effect on the potential of mean force of the water inside the carbon nanotubes.

Reprint Address:
Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204, Shanghai 201800, Peoples R China.

Research Institution addresses:
[Wan Rong-Zheng; Li Song-Yan; Fang Hai-Ping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Fang Hai-Ping] Chinese Acad Sci, TPCSF, Beijing 100049, Peoples R China

E-mail Address:
fanghaiping@sinap.ac.cn

Cited References:
AJAYAN PM, 1995, NATURE, V375, P564.
ANISHKIN A, 2004, BIOPHYS J, V86, P2883.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
BERNE BJ, 2009, ANNU REV PHYS CHEM, V60, P85, DOI 10.1146/annurev.physchem.58.032806.104445.
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211.
BRENNER DW, 1990, PHYS REV B, V42, P9458.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HUMMER G, 2001, NATURE, V414, P188.
JENSEN MO, 2002, P NATL ACAD SCI USA, V99, P6731.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU J, 1998, SCIENCE, V280, P1253.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
POMES R, 1998, BIOPHYS J, V75, P33.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
TERSOFF J, 1988, PHYS REV LETT, V61, P2879.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WAN RZ, 2009, PHYS CHEM CHEM PHYS, V11, P9898, DOI 10.1039/b907926m.
WANG CL, 2009, PHYS REV LETT, V103, ARTN 137801.
WANG Y, 2007, CHINESE PHYS LETT, V24, P3276.
XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w.
ZHENG M, 2003, NAT MATER, V2, P338, DOI 10.1038/nmat877.
ZHU FQ, 2002, BIOPHYS J, V83, P154.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.

Cited Reference Count:
29

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Multidisciplinary

ISSN:
0256-307X

DOI:
10.1088/0256-307X/27/8/084702

IDS Number:
634JN

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Song, X

ISI Web of Knowledge Citation Alert

Cited Article: Song, X. A comparative study on poiseuille flow of simple fluids through cylindrical and slit-like nanochannels
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280504500135
*Order Full Text [ ]

Title:
Molecular Dynamics Simulation of Fluid Transport in Nanoscale Pore of Porous Medium

Authors:
Chu, Y; Lu, JF; Lu, WQ

Author Full Names:
Chu, Y.; Lu, J. F.; Lu, W. Q.

Source:
6TH INTERNATIONAL SYMPOSIUM ON MULTIPHASE FLOW, HEAT MASS TRANSFER AND ENERGY CONVERSION 1207: 895-900 2010

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Molecular Dynamics Simulation; Poiseuille Flow; filtration velocity; K-K equations

KeyWords Plus:
POISEUILLE FLOW; MEMBRANES

Abstract:
In this paper, the Poiseuille water flow inside a nanosized channel style pore formed by two solid parallel walls is studied using molecular dynamics (MD) simulation. Alumina has been chosen as the material of the wall. The flow is initiated by applying a uniform external force on each water molecule inside the channel. Periodic boundary conditions are imposed for the simulation. 12-6 L-J potentials are chosen in the simulation to describe H2O-H2O molecule interactions as well as H2O-Al2O3 molecule interactions. The present work aims at finding that, in the process of hemodialysis, how the filtration velocity and slip boundaries inside the pore of a filtration membrane are affected by the magnitude of the applied external force and how the results are different from that of the simplified Kedem-Ketchalsky (1958) equations employing the present physical parameters.

Reprint Address:
Chu, Y, Chinese Acad Sci, Grad Univ, Coll Phys Sci, Beijing 100864, Peoples R China.

Research Institution addresses:
[Chu, Y.; Lu, W. Q.] Chinese Acad Sci, Grad Univ, Coll Phys Sci, Beijing 100864, Peoples R China

E-mail Address:
junfenglu@mail.ipc.ac.cn; luwq@gucas.ac.cn

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
ANDERSON JL, 1974, BIOPHYS J, V14, P957.
JIANG FM, 2007, COMPUT PHYS COMMUN, V176, P471, DOI 10.1016/j.cpc.2006.12.003.
KEDEM O, 1958, BIOCHIM BIOPHYS ACTA, V27, P229.
LU WQ, 2008, ENG ANAL BOUND ELEM, V32, P282, DOI 10.1016/j.enganabound.2007.10.006.
SONG X, 2008, INT J HEAT MASS TRAN, V51, P1770, DOI 10.1016/j.ijheatmasstransfer.2007.07.019.
TENENBAUM A, 1982, PHYS REV A, V25, P2778.
TRAVIS KP, 2000, J CHEM PHYS, V112, P1984.
XU JL, 2004, HEAT MASS TRANSFER, V40, P859, DOI 10.1007/s00231-003-0483-3.
ZIARANI AS, 2005, MICROFLUID NANOFLUID, V2, P12, DOI 10.1007/S10404-005-0036-9.

Cited Reference Count:
10

Times Cited:
0

Publisher:
AMER INST PHYSICS; 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA

ISSN:
0094-243X

IDS Number:
BQA50

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, August 13, 2010

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280506800002
*Order Full Text [ ]

Title:
Sensors Based On Carbon Nanotubes and Their Applications: A Review

Authors:
Varghese, SH; Nair, R; Nair, BG; Hanajiri, T; Maekawa, T; Yoshida, Y; Kumar, DS

Author Full Names:
Varghese, Saino Hanna; Nair, Remya; Nair, Baiju G.; Hanajiri, T.; Maekawa, T.; Yoshida, Y.; Kumar, D. Sakthi

Source:
CURRENT NANOSCIENCE 6 (4): 331-346 AUG 2010

Language:
English

Document Type:
Article

Author Keywords:
Sensors; single wall carbon nanotubes; multi wall carbon nanotubes; biosensors; chemical sensors; nanomechanical resonators

KeyWords Plus:
FIELD-EFFECT TRANSISTORS; NONENZYMATIC GLUCOSE SENSOR; LOW-POTENTIAL DETECTION; MODIFIED ELECTRODE; ELECTROCHEMICAL DETECTION; NITRIC-OXIDE; DNA HYBRIDIZATION; CHEMICAL SENSORS; ROOM-TEMPERATURE; GAS-DETECTION

Abstract:
Sensors play a significant role in everyday life. Nowadays, there has been a strong demand for highly selective, sensitive, responsive, stable and cost effective sensors. As a result, research emphasis is on developing new sensing materials and technologies. Carbon nanotubes (CNTs) have many distinct properties that may be exploited to develop next generation of sensors. They exhibit extraordinary strength and unique combination of excellent mechanical, electrical, thermal, optical and electrochemical properties even in its small dimension nature, which has generated increasing interest in the application of CNTs as sensors. The main thrust of this review is to highlight the present and future research and development work in the area of CNT based sensors. Different types of sensors such as biosensors, chemical sensors, mass sensors, temperature sensors, strain sensors and pressure sensors based on CNTs are also discussed in detail. This manuscript concludes with an outline !
of the advantages of these CNT based sensors for real-world applications. This review aims to act as a reference source for researchers to help them in developing new applications of sensors based on CNTs.

Reprint Address:
Kumar, DS, Toyo Univ, Grad Sch Interdisciplinary New Sci, Bio Nano Elect Res Ctr, Kawagoe, Saitama 3508585, Japan.

Research Institution addresses:
[Varghese, Saino Hanna; Nair, Remya; Nair, Baiju G.; Hanajiri, T.; Maekawa, T.; Yoshida, Y.; Kumar, D. Sakthi] Toyo Univ, Grad Sch Interdisciplinary New Sci, Bio Nano Elect Res Ctr, Kawagoe, Saitama 3508585, Japan

E-mail Address:
sakthi@toyonet.toyo.ac.jp

Cited References:
AGUILAR AD, 2005, APPL PHYS LETT, V87, UNSP 193108/1-193108/3.
AHAMMAD AJS, 2009, SENSORS-BASEL, V9, P2289, DOI 10.3390/s90402289.
AJAYAN PM, 2001, TOP APPL PHYS, V80, P391.
ALARCONANGELES G, 2008, CARBON, V46, P898, DOI 10.1016/j.carbon.2008.02.025.
ALLEN BL, 2007, ADV MATER, V19, P1439, DOI 10.1002/adma.200602043.
AUVRAY S, 2005, NANO LETT, V5, P451, DOI 10.1021/nl048032y.
BACHILO SM, 2002, SCIENCE, V298, P2361, DOI 10.1126/science.1078727.
BAEUMNER AJ, 2003, ANAL BIOANAL CHEM, V377, P434, DOI 10.1007/s00216-003-2158-9.
BANERJEE P, 2008, LAB INVEST, V88, P196, DOI 10.1038/labinvest.3700703.
BARONE PW, 2005, NAT MATER, V4, P86, DOI 10.1038/nmat1276.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BOGUE RW, 2004, SENSOR REV, V24, P253.
BOUSSAAD S, 2003, CHEM COMMUN, P1502, DOI 10.1039/b302681g.
BRADLEY K, 2003, APPL PHYS LETT, V83, P3821, DOI 10.1063/1.1619222.
BRADLEY K, 2003, PHYS REV LETT, V91, ARTN 218301.
BRITTO PJ, 1996, BIOELECTROCH BIOENER, V41, P121.
CAI H, 2003, ANAL BIOANAL CHEM, V375, P287, DOI 10.1007/s00216-002-1652-9.
CANTALINI C, 2003, SENSOR ACTUAT B-CHEM, V93, P333, DOI 10.1016/S0925-4005(03)00224-7.
CANTALINI C, 2004, J EUR CERAM SOC, V24, P1405, DOI 10.1016/S0955-2219(03)00441-2.
CAO CL, 2007, SOL ST PHEN 1-2, V121, P75.
CAO GX, 2005, PHYS REV B, V72, ARTN 195412.
CAO J, 2003, PHYS REV LETT, V90, ARTN 157601.
CHANG H, 2001, APPL PHYS LETT, V79, P3863.
CHEN RJ, 2001, J AM CHEM SOC, V123, P3838, DOI 10.1021/ja010172b.
CHEN RJ, 2003, P NATL ACAD SCI USA, V100, P4984, DOI 10.1073/pnas.0837064100.
CHEN X, 2006, ANAL CHIM ACTA, V557, P52, DOI 10.1016/j.aca.2005.10.016.
CHEN ZH, 2005, NANO LETT, V5, P1497.
CHENG GF, 2005, ANAL CHIM ACTA, V533, P11, DOI 10.1016/j.aca.2004.10.044.
CHOPRA S, 2002, APPL PHYS LETT, V80, P4632.
CHOPRA S, 2003, APPL PHYS LETT, V83, P2280, DOI 10.1063/1.1610251.
CID CC, 2008, ANALYST, V133, P1005, DOI 10.1039/b805301b.
CLARK LC, 1962, ANN NY ACAD SCI, V102, P29.
COLLINS PG, 2000, SCIENCE, V287, P1801.
COLUCI VR, 2006, NANOTECHNOLOGY, V17, P617, DOI 10.1088/0957-4484/17/3/001.
CONNER S, 2001, LECT NOTES COMPUTER, V2201, P49.
COSNIER S, 1999, BIOSENS BIOELECTRON, V14, P443.
COTE GL, 2003, IEEE SENS J, V3, P251, DOI 10.1109/JSEN.2003.814656.
DANIEL S, 2007, SENSOR ACTUAT B-CHEM, V122, P672, DOI 10.1016/j.snb.2006.06.014.
DAVIS JJ, 1997, J ELECTROANAL CHEM, V440, P279.
DEO RP, 2005, ANAL CHIM ACTA, V530, P185, DOI 10.1016/j.aca.2004.09.072.
DERELI G, 2003, PHYS REV B, V67, ARTN 035416.
DHARAP P, 2004, NANOTECHNOLOGY, V15, P379.
DILLON AC, 1997, NATURE, V386, P377.
DOROZHKIN PS, 2005, SMALL, V1, P1088, DOI 10.1002/smll.200500154.
DROUVALAKIS KA, 2008, BIOSENS BIOELECTRON, V23, P1413, DOI 10.1016/j.bios.2007.11.022.
EKINCI KL, 2004, APPL PHYS LETT, V84, P4469, DOI 10.1063/.1.1755417.
FEI SD, 2005, ANAL BIOCHEM, V339, P29, DOI 10.1016/j.ab.2005.01.002.
FU DL, 2007, CARBON, V45, P1911, DOI 10.1016/j.carbon.2007.05.008.
FUNG CKM, 2005, P IEEE INT C SENS IE, P541.
GAO M, 2003, ELECTROANAL, V15, P1089.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GONG JW, 2008, SENSOR ACTUAT B-CHEM, V130, P829, DOI 10.1016/j.snb.2007.10.051.
GONG KP, 2004, BIOSENS BIOELECTRON, V20, P253, DOI 10.1016/j.bios.2004.01.014.
GOODING JJ, 2003, J AM CHEM SOC, V125, P9006, DOI 10.1021/ja035722f.
GRUJICIC M, 2004, APPL SURF SCI, V229, P316, DOI 10.1016/j.apsusc.2004.02.017.
GUI EL, 2006, APPL PHYS LETT, V89, UNSP 232104(1-3).
GUO ML, 2004, ELECTROANAL, V16, P1992, DOI 10.1002/elan.200403053.
GUO ZJ, 1998, ADV MATER, V10, P701.
GYURCSANYI RE, 1999, ELECTROANAL, V11, P712.
HARSANYI G, 2001, SENSOR REV, V21, P259.
HARTSCHUH A, 2003, SCIENCE, V301, P1354.
HE JB, 2004, SENSOR ACTUAT B-CHEM, V99, P1, DOI 10.1016/j.snb.2003.12.068.
HE PG, 2004, CHEM COMMUN 0207, P348, DOI 10.1039/b313030b.
HELLER I, 2008, NANO LETT, V8, P591, DOI 10.1021/nl072996i.
HIEU NV, 2008, SENSOR ACTUAT B-CHEM, V129, P888.
HOCEVAR SB, 2005, ELECTROANAL, V17, P417.
HRAPOVIC S, 2004, ANAL CHEM, V76, P1083, DOI 10.1021/ac035143t.
HSU HL, 2008, MATER CHEM PHYS, V109, P148, DOI 10.1016/j.matchemphys.2007.11.006.
HU CG, 2005, J PHYS CHEM B, V109, P20072, DOI 10.1021/jp0550457.
HUANG CS, 2008, DIAM RELAT MATER, V17, P624, DOI 10.1016/j.diamond.2007.08.039.
HUANG HR, 2007, SENSOR ACTUAT A-PHYS, V133, P467, DOI 10.1016/j.sna.2006.04.020.
HUANG XMH, 2003, NATURE, V421, P496, DOI 10.1038/421496a.
IIJIMA S, 1991, NATURE, V354, P56.
JANG YT, 2004, SENSOR ACTUAT B-CHEM, V99, P118, DOI 10.1016/j.snb.2003.11.004.
JENISON R, 2001, CLIN CHEM, V47, P1894.
JENSEN K, 2008, NAT NANOTECHNOL, V3, P533, DOI 10.1038/nnano.2008.200.
JEYKUMARI DRS, 2008, BIOSENS BIOELECTRON, V23, P1404, DOI 10.1016/j.bios.2007.12.007.
JIA JY, 2008, SENSORS-BASEL, V8, P1712.
JIANG KY, 2004, J MATER CHEM, V14, P37, DOI 10.1039/b310359e.
JOSHI KA, 2005, ELECTROANAL, V17, P54, DOI 10.1002/elan.200403118.
KAM NWS, 2005, J AM CHEM SOC, V127, P6021, DOI 10.1021/ja050062v.
KANDIMALLA VB, 2006, CHEM-EUR J, V12, P1074, DOI 10.1002/chem.200500178.
KANG IP, 2006, SMART MATER STRUCT, V15, P737, DOI 10.1088/0964-1726/15/3/009.
KARAJANAGI SS, 2006, LANGMUIR, V22, P1392, DOI 10.1021/la0528201.
KATZ E, 2004, CHEMPHYSCHEM, V5, P1084, DOI 10.1002/CPHC.200400193.
KAUFFMAN DR, 2008, ANGEW CHEM INT EDIT, V47, P6550, DOI 10.1002/anie.200704488.
KAUFFMAN DR, 2008, CHEM SOC REV, V37, P1197, DOI 10.1039/b709567h.
KIM S, 2006, SENSORS-BASEL, V6, P503.
KIM SJ, 2007, REV SCI INSTRUM, V78, UNSP 085103-(1-6).
KOJIMA A, 2005, JPN J APPL PHYS 1, V44, P1596, DOI 10.1143/JJAP.44.1596.
KONG J, 2000, SCIENCE, V287, P622.
KRAL P, 2001, PHYS REV LETT, V86, P131.
KUMAR MK, 2008, SENSOR ACTUAT B-CHEM, V130, P653, DOI 10.1016/j.snb.2007.10.033.
KUMARASWAMY BE, 2007, ANALYST, V132, P876.
KUZMYCH O, 2007, NANOTECHNOLOGY, V18, ARTN 375502.
LAWRENCE NS, 2004, TALANTA, V63, P443, DOI 10.1016/j.talanta.2003.11.024.
LAWRENCE NS, 2006, ELECTROCHEM COMMUN, V8, P71, DOI 10.1016/j.elecom.2005.10.026.
LEIHAN JS, 2004, J NANOSCI NANOTECHNO, V4, P600.
LI CM, 2006, ELECTROANAL, V18, P713, DOI 10.1002/elan.200503457.
LI CY, 2003, PHYS REV B, V68, ARTN 073405.
LI CY, 2004, APPL PHYS LETT, V84, P5246, DOI 10.1063/1.1764933.
LI CY, 2004, NANOTECHNOLOGY, V15, P1493, DOI 10.1088/0957-4484/15/11/021.
LI CY, 2006, J INTEL MAT SYST STR, V17, P247, DOI 10.1177/1045389X06058622.
LI G, 2005, BIOSENS BIOELECTRON, V20, P2140, DOI 10.1016/j.bios.2004.09.005.
LI J, 2003, NANO LETT, V3, P597, DOI 10.1021/nl0340677.
LI J, 2006, IEEE SENS J, V6, P1047, DOI 10.1109/JSEN.2006.881018.
LI J, 2009, CARBON NANOTUBE BASE.
LI Y, 2008, NANOTECHNOLOGY, V19, ARTN 165502.
LIANG W, 2003, SENSORS, V3, P544.
LIM DV, 2003, P IEEE, V91, P902, DOI 10.1109/JPROC.2003.813574.
LIU C, 1999, SCIENCE, V286, P1127.
LIU GD, 2006, ANAL CHEM, V78, P835, DOI 10.1021/ac051559q.
LIU GD, 2006, ELECTROCHEM COMMUN, V8, P251, DOI 10.1016/j.elecom.2005.11.015.
LIU NY, 2008, ELECTROANAL, V20, P558, DOI 10.1002/elan.200704080.
LU G, 2005, NANO LETT, V5, P897, DOI 10.1021/nl050354u.
LU YJ, 2004, CHEM PHYS LETT, V391, P344, DOI 10.1016/j.cplett.2004.05.029.
LUONG JHT, 2005, ELECTROANAL, V17, P47, DOI 10.1002/elan.200403117.
MAEHASHI K, 2004, JPN J APPL PHYS 2, V43, L1558, DOI 10.1143/JJAP.43.L1558.
MAEHASHI K, 2007, ANAL CHEM, V79, P782, DOI 10.1021/ac060830g.
MALE KB, 2004, ANAL CHIM ACTA, V516, P35, DOI 10.1016/j.aca.2004.03.075.
MALHOTRA BD, 2003, SENSOR ACTUAT B-CHEM, V91, P117, DOI 10.1016/S0925-4005(03)00075-3.
MALHOTRA BD, 2005, CURR APPL PHYS, V5, P92, DOI 10.1016/j.cap.2004.06.021.
MARTEL R, 1998, APPL PHYS LETT, V73, P2447.
MARTINEZ MT, 2009, NANO LETT, V9, P530, DOI 10.1021/nl8025604.
MATEIU R, 2004, MICROELECTRON ENG, V73, P670, DOI 10.1016/j.mee.2004.03.032.
MAXWELL DJ, 2002, J AM CHEM SOC, V124, P9606, DOI 10.1021/ja025814p.
MODI A, 2003, NATURE, V424, P171, DOI 10.1038/nature01777.
MOLDOVAN C, 2003, MAT SCI ENG B-SOLID, V101, P227, DOI 10.1016/S0921-5107(02)00668-2.
MOON SI, 2008, MATER LETT, V62, P2422, DOI 10.1016/j.matlet.2007.12.027.
MOORE RR, 2004, ANAL CHEM, V76, P2677, DOI 10.1021/ac040017q.
MULCHANDANI P, 2005, BIOSENS BIOELECTRON, V21, P523, DOI 10.1016/j.bios.2004.11.011.
MUSAMEH M, 2002, ELECTROCHEM COMMUN, V4, P743.
ONG KG, 2002, IEEE SENS J, V2, P82.
PENG HB, 2006, PHYS REV LETT, V97, ARTN 087203.
PENG N, 2009, NANO LETT, V9, P1626, DOI 10.1021/nl803930w.
PENZA M, 2004, SENSOR ACTUAT B-CHEM, V100, P47, DOI 10.1016/j.snb.2003.12.019.
PENZA M, 2005, THIN SOLID FILMS, V472, P246, DOI 10.1016/j.tsf.2004.07.071.
PONCHARAL P, 1999, SCIENCE, V283, P1513.
POPOV VN, 2004, MAT SCI ENG R, V43, P61, DOI 10.1016/j.mser.2003.10.001.
QI HL, 2005, ELECTROANAL, V17, P832, DOI 10.1002/elan.200403150.
QI P, 2003, NANO LETT, V3, P347.
QU FL, 2005, ANAL BIOCHEM, V344, P108, DOI 10.1016/j.ab.2005.06.007.
RANKY PG, 2002, SENSOR REV, V22, P213.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
ROMERO M, 2000, MED DEV DIAG IND MAG.
RONG LQ, 2007, TALANTA, V72, P819, DOI 10.1016/j.talanta.2006.12.037.
ROY S, 2006, NANOTECHNOLOGY, V17, S14, DOI 10.1088/0957-4484/17/4/003.
RUBIANES MD, 2005, ELECTROANAL, V17, P73, DOI 10.1002/elan.200403121.
RUECKES T, 2000, SCIENCE, V289, P94.
SALIMI A, 2004, ANAL BIOCHEM, V333, P49, DOI 10.1016/j.ab.2004.06.039.
SALIMI A, 2005, TALANTA, V66, P967, DOI 10.1016/j.talanta.2004.12.040.
SARA RM, 2005, TALANTA, V65, P291.
SARAIYA A, 2006, SYNTH REACT INORG ME, V36, P163, DOI 10.1080/15533170500524496.
SAYAGO I, 2005, SYNTHETIC MET, V148, P15, DOI 10.1016/j.synthmet.2004.09.013.
SAZONOVA V, 2004, NATURE, V431, P284, DOI 10.1038/nature02905.
SHI QC, 2005, ELECTROANAL, V17, P857.
SHOJI E, 2001, J AM CHEM SOC, V123, P3383.
SINHA N, 2005, IEEE T NANOBIOSCI, V4, P180, DOI 10.1109/TNB.2005.850478.
SINHA N, 2006, J NANOSCI NANOTECHNO, V6, P573, DOI 10.1166/jnn.2006.121.
SNOW ES, 2005, SCIENCE, V307, P1942, DOI 10.1126/science.1109128.
SO HM, 2005, J AM CHEM SOC, V127, P11906, DOI 10.1021/ja053094r.
SOMEYA T, 2003, NANO LETT, V3, P877, DOI 10.1021/nl034061h.
SRIVASTAVA D, 1999, J PHYS CHEM B, V103, P4330.
STAII C, 2005, NANO LETT, V5, P1774, DOI 10.1021/nl051261f.
STAMPFER C, 2006, NANO LETT, V6, P233, DOI 10.1021/nl052171d.
STAMPFER C, 2006, PHYS STATUS SOLIDI B, V243, P3537, DOI 10.1002/pssb.200669171.
STAR A, 2003, NANO LETT, V3, P459, DOI 10.1021/nl0340172.
STEFAN RI, 2003, TALANTA, V60, P1223, DOI 10.1016/S0039-9140(03)00230-3.
SUEHIRO J, 2003, J PHYS D, V36, P109.
SUEHIRO J, 2006, SENSOR ACTUAT B-CHEM, V114, P943, DOI 10.1016/j.snb.2005.08.043.
TAN XC, 2005, ANAL BIOCHEM, V337, P111, DOI 10.1016/j.ab.2004.10.040.
TANG XP, 2000, SCIENCE, V288, P492.
TANS SJ, 1998, NATURE, V393, P49.
TANS SJ, 2000, NATURE, V404, P834.
TARDY P, 2004, SENSOR ACTUAT B-CHEM, V98, P63, DOI 10.1016/j.snb.2003.09.019.
TERRONES M, 2003, ANNU REV MATER RES, V33, P419, DOI 10.1146/annurev.matsei.33.012802.100255.
TOGAWA K, 2005, JPN J APPL PHYS, V44, T1494.
TOMBLER TW, 2000, NATURE, V405, P769.
TROJANOWICZ M, 2006, TRAC-TREND ANAL CHEM, V25, P480, DOI 10.1016/j.trac.2005.11.008.
TSAI MC, 2009, SENSOR ACTUAT B-CHEM, V141, P592, DOI 10.1016/j.snb.2009.06.016.
TSAI YC, 2005, LANGMUIR, V21, P3653, DOI 10.1021/la0470535.
TSAI YC, 2007, SENSOR ACTUAT B-CHEM, V125, P10, DOI 10.1016/j.snb.2007.01.032.
TSANG SC, 1997, ANGEW CHEM INT EDIT, V36, P2198.
UEDA T, 2008, DIAM RELAT MATER, V17, P1586, DOI 10.1016/j.diamond.2008.03.009.
VALENTINI L, 2004, DIAM RELAT MATER, V13, P1301, DOI 10.1016/j.diamond.2003.11.011.
VARGHESE OK, 2001, SENSOR ACTUAT B-CHEM, V81, P32.
VEGA D, 2007, TALANTA, V71, P1031, DOI 10.1016/j.talanta.2006.05.071.
VICTOR TS, 2003, P IEEE INT S CIRC SY, V4, P844.
VOLODIN A, 2004, NANO LETT, V4, P1775, DOI 10.1021/nl0491576.
WANG HS, 2006, BIOSENS BIOELECTRON, V22, P664, DOI 10.1016/j.bios.2006.02.007.
WANG J, 2003, ANALYST, V128, P1382, DOI 10.1039/b309928h.
WANG J, 2003, ELECTROANAL, V15, P1830, DOI 10.1002/elan.200302772.
WANG J, 2003, ELECTROCHEM COMMUN, V5, P1000, DOI 10.1016/j.elecom.2003.09.010.
WANG J, 2004, BIOSENS BIOELECTRON, V20, P995, DOI 10.1016/j.bios.2004.06.016.
WANG J, 2004, J AM CHEM SOC, V126, P3010, DOI 10.1021/ja031723w.
WANG J, 2005, ANAL CHIM ACTA, V539, P209, DOI 10.1016/j.aca.2005.02.059.
WANG J, 2006, ANALYST, V131, P477, DOI 10.1039/b516038c.
WANG JX, 2002, ANAL CHEM, V74, P1993.
WANG JX, 2007, ELECTROCHEM SOLID ST, V10, J58, DOI 10.1149/1.2710184.
WANG SG, 2003, BIOCHEM BIOPH RES CO, V311, P572, DOI 10.1016/j.bbrc.2003.10.031.
WANG SG, 2004, BIOCHEM BIOPH RES CO, V325, P1433, DOI 10.1016/j.bbrc.2004.10.188.
WANG SG, 2004, DIAM RELAT MATER, V13, P1327, DOI 10.1016/j.diamond.2003.11.070.
WANG YZ, 2005, BIOELECTROCHEMISTRY, V65, P135, DOI 10.1016/j.bioelechem.2004.10.002.
WARD WK, 2007, J DIABETES SCI TECHN, V1, P201.
WEI BY, 2004, SENSOR ACTUAT B-CHEM, V101, P81, DOI 10.1016/j.snb.2004.02.028.
WHALEY SR, 2000, NATURE, V405, P665.
WHITE BJ, 2002, BIOCHEM BIOPH RES CO, V296, P1069.
WILLIAMS KA, 2002, NATURE, V420, P761, DOI 10.1038/420761a.
WILSON GS, 2005, BIOSENS BIOELECTRON, V20, P2388, DOI 10.1016/j.bios.2004.12.003.
WONG YM, 2003, SENSOR ACTUAT B-CHEM, V93, P327, DOI 10.1016/S0925-4005(03)00213-2.
WOOD JR, 2000, APPL PHYS LETT, V76, P2883.
WOOD JR, 2000, PHYS REV B, V62, P7571.
WU FH, 2002, ELECTROCHEM COMMUN, V4, P690.
WU JA, 2004, PHYS REV B, V69, ARTN 153406.
WU W, 2007, CHEM COMMUN, P2345, DOI 10.1039/b701254c.
WU YH, 2005, COLLOID SURFACE B, V41, P299, DOI 10.1016/j.colsurfb.2004.12.019.
XIAN YZ, 2006, BIOSENS BIOELECTRON, V21, P1996, DOI 10.1016/j.bios.2005.09.014.
XIE JN, 2007, NANOTECHNOLOGY, V18, ARTN 065503.
XU GX, 2005, P ANN INT IEEE EMBS, P1948.
XU Y, 2004, ANAL CHIM ACTA, V516, P19, DOI 10.1016/j.aca.2004.04.013.
XU Z, 2004, ELECTROANAL, V16, P684, DOI 10.1002/elan.200302843.
YE JS, 2004, ELECTROCHEM COMMUN, V6, P66, DOI 10.1016/j.elecom.2003.10.013.
YE JS, 2005, ELECTROANAL, V17, P89, DOI 10.1002/elan.200403124.
YOUNG SL, 2006, BIOELECTROCHEMISTRY, V68, P227.
ZENG JX, 2006, J ELECTROANAL CHEM, V595, P152, DOI 10.1016/j.jelechem.2006.07.014.
ZHANG L, 2008, INT J ELECTROCHEM SC, V3, P746.
ZHANG MN, 2005, BIOSENS BIOELECTRON, V20, P1270, DOI 10.1016/j.bios.2004.04.018.
ZHANG X, 1997, J ELECTROANAL CHEM, V430, P147.
ZHANG YM, 2006, J PHYS CHEM B, V110, P4671, DOI 10.1021/jp0602272.
ZHAO GC, 2002, CHEM LETT 0505, P520.
ZHAO GC, 2003, ELECTROCHEM COMMUN, V5, P825, DOI 10.1016/j.elecom.2003.07.006.
ZHAO HQ, 2001, J NANOPART RES, V3, P321.
ZHAO HT, 2006, ANAL BIOCHEM, V350, P138, DOI 10.1016/j.ab.2005.11.034.
ZHAO JJ, 2002, NANOTECHNOLOGY, V13, P195.
ZHAO Q, 2001, APPL PHYS LETT, V78, P1748.
ZHAO Q, 2002, COMPOS SCI TECHNOL, V62, P147.
ZHAO Q, 2005, ELECTROANAL, V17, P85, DOI 10.1002/elan.200403123.
ZHAO YD, 2003, SENSOR ACTUAT B-CHEM, V92, P279, DOI 10.1016/S0925-4005(03)00312-5.
ZHAO YF, 2005, TALANTA, V66, P51, DOI 10.1016/j.talanta.2004.09.019.
ZHAO YL, 2008, ADV MATER, V20, P1910, DOI 10.1002/adma.200702804.
ZHAO Z, 2007, FRONT CHEM CHINA, V2, P146.
ZHENG M, 2003, NAT MATER, V2, P338, DOI 10.1038/nmat877.
ZHU NN, 2005, ANAL CHIM ACTA, V545, P21, DOI 10.1016/j.aca.2005.04.015.

Cited Reference Count:
243

Times Cited:
0

Publisher:
BENTHAM SCIENCE PUBL LTD; EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES

Subject Category:
Biotechnology & Applied Microbiology; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1573-4137

IDS Number:
633MJ

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280364800007
*Order Full Text [ ]

Title:
Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations

Authors:
Lee, J; Mahendra, S; Alvarez, PJJ

Author Full Names:
Lee, Jaesang; Mahendra, Shaily; Alvarez, Pedro J. J.

Source:
ACS NANO 4 (7): 3580-3590 JUL 2010

Language:
English

Document Type:
Review

Author Keywords:
concrete; windows; sensor; exposure; bioavailability; toxicity; oxidative stress; industrial ecology; risk assessment; labeling

KeyWords Plus:
FULLERENE WATER SUSPENSIONS; QUANTUM-DOT NANOPARTICLES; CARBON NANOTUBES; MANUFACTURED NANOMATERIALS; ANTIMICROBIAL ACTIVITY; DEMOLITION WASTE; ANTIBACTERIAL ACTIVITY; COPPER NANOPARTICLES; SURFACE MODIFICATION; COMPARATIVE TOXICITY

Abstract:
The extraordinary chemical and physical properties of materials at the nanometer scale enable novel applications ranging from structural strength enhancement and energy conservation to antimicrobial properties and self-cleaning surfaces. Consequently, manufactured nanomaterials (MNMs) and nanocomposites are being considered for various uses in the construction and related infrastructure industries. To achieve environmentally responsible nanotechnology in construction, it is important to consider the lifecycle impacts of MNMs on the health of construction workers and dwellers, as well as unintended environmental effects at all stages of manufacturing, construction, use, demolition, and disposal. Here, we review state-of-the-art applications of MNMs that improve conventional construction materials, suggest likely environmental release scenarios, and summarize potential adverse biological and toxicological effects and their mitigation. Aligned with multidisciplinary assessment !
of the environmental implications of emerging technologies, this review seeks to promote awareness of potential benefits of MNMs in construction and stimulate the development of guidelines to regulate their use and disposal to mitigate potential adverse effects on human and environmental health.

Reprint Address:
Alvarez, PJJ, Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA.

Research Institution addresses:
[Lee, Jaesang; Alvarez, Pedro J. J.] Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA; [Mahendra, Shaily] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA

E-mail Address:
alvarez@rice.edu

Cited References:
2007, NANOMATERIAL RISK AS, P1.
2008, DUPONT TM CRYSTAR 69, P1.
*US EN INF ADM, EN EXPL YOUR GUID UN.
*WHO INT AG RES CA, 1997, IARC MON EV CARC RIS, V68, P41.
ADAMS LK, 2006, WATER RES, V40, P3527, DOI 10.1016/j.watres.2006.08.004.
ALVAREZ PJJ, 2009, ACS NANO, V3, P1616, DOI 10.1021/nn9006835.
ANASTAS PT, 2003, ENVIRON SCI TECHNOL, V37, A94.
ANIKEEVA PO, 2009, NANO LETT, V9, P2532, DOI 10.1021/nl9002969.
ARICO AS, 2005, NAT MATER, V4, P366, DOI 10.1038/nmat1368.
ARUOJA V, 2009, SCI TOTAL ENVIRON, V407, P1461, DOI 10.1016/j.scitotenv.2008.10.053.
ATTIK G, 2008, INHAL TOXICOL, V20, P1101, DOI 10.1080/08958370802136731.
BECHER PF, 1991, J AM CERAM SOC, V74, P255.
BLAISE C, 2008, ENVIRON TOXICOL, V23, P591, DOI 10.1002/tox.20402.
BOTTINI M, 2006, TOXICOL LETT, V160, P121, DOI 10.1016/j.toxlet.2005.06.020.
BROWN P, 2008, J AM CHEM SOC, V130, P8890, DOI 10.1021/ja802810c.
BULLARDDILLARD R, 1996, BIOORG CHEM, V24, P376.
CARWILE JL, 2009, ENVIRON HEALTH PERSP, V117, P1368, DOI 10.1289/ehp.0900604.
CHA EK, 2007, J MICROBIOL BIOTECHN, V17, P1573.
CHAN WCW, 2002, CURR OPIN BIOTECH, V13, P40.
CHANG E, 2006, SMALL, V2, P1412, DOI 10.1002/smll.200600218.
CHEN Z, 2006, TOXICOL LETT, V163, P109, DOI 10.1016/j.toxlet.2005.10.003.
COLVIN VL, 2003, NAT BIOTECHNOL, V21, P1166, DOI 10.1038/nbt875.
CROUZIER T, 2008, LANGMUIR, V24, P13173, DOI 10.1021/la801999n.
DANIEL MC, 2004, CHEM REV, V104, P293, DOI 10.1021/cr030698+.
DEIBARRA YS, 2006, PHYS STATUS SOLIDI A, V203, P1076, DOI 10.1002/pssa.200566166.
DERFUS AM, 2004, NANO LETT, V4, P11, DOI 10.1021/nl0347334.
DHOKE SK, 2009, MATER CHEM PHYS, V177, P550.
DING LH, 2005, NANO LETT, V5, P2448, DOI 10.1021/nl051748o.
DING YL, 2006, INT J HEAT MASS TRAN, V49, P240, DOI 10.1016/j.ijheatmasstransfer.2005.07.009.
DONG LF, 2009, NANOSCALE RES LETT, V4, P1517, DOI 10.1007/s11671-009-9429-0.
DUTTA D, 2007, TOXICOL SCI, V100, P303, DOI 10.1093/toxsci/kfm217.
FANG JS, 2007, ENVIRON SCI TECHNOL, V41, P2636, DOI 10.1021/es062181w.
FARRE M, 2009, ANAL BIOANAL CHEM, V393, P81, DOI 10.1007/s00216-008-2458-1.
FIELD JA, 2006, ENVIRON SCI TECHNOL, V40, P7105.
FLANDROIS S, 1999, CARBON, V37, P165.
FORTNER JD, 2005, ENVIRON SCI TECHNOL, V39, P4307, DOI 10.1021/es0498099n.
FRACKOWIAK E, 2002, CARBON, V40, P1775.
FUJIWARA K, 2008, J ENVIRON SCI HEAL A, V43, P1167, DOI 10.1080/10934520802171675.
GE Z, 2008, 1 INT C CONSTR DEV C, P235.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GIRISHKUMAR G, 2005, LANGMUIR, V21, P8487, DOI 10.1021/la051499j.
GUSKOS N, 2010, REV ADV MATER SCI, V23, P113.
HANDY RD, 2008, ECOTOXICOLOGY, V17, P396, DOI 10.1007/s10646-008-0205-1.
HARDMAN R, 2006, ENVIRON HEALTH PERSP, V114, P165, DOI 10.1289/ehp.8284.
HERZOG E, 2009, TOXICOL APPL PHARM, V234, P378, DOI 10.1016/j.taap.2008.10.015.
HOCH M, 2001, APPL GEOCHEM, V16, P719.
HOLMAN M, 2007, ICON NANOMATERIAL EN.
HOSHINO A, 2004, NANO LETT, V4, P2163, DOI 10.1021/nl048715d.
HOSHINO A, 2007, J ARTIF ORGANS, V10, P149, DOI 10.1007/s10047-007-0379-y.
IRIE H, 2004, ELECTROCHEMISTRY, V72, P807.
ISAKOVIC A, 2006, TOXICOL SCI, V91, P173, DOI 10.1093/toxsci/kfj127.
JENNINGS AA, 2009, J ENVIRON ENG-ASCE, V135, P46, DOI 10.1061/(ASCE)0733-9372(2009)135:1(46).
JIA G, 2005, ENVIRON SCI TECHNOL, V39, P1378, DOI 10.1021/es048729l.
JOHNSON DR, 2010, ENV HLTH PERSPECT, V718, P49.
KAMAT JP, 2000, TOXICOLOGY, V155, P55.
KAMRIN MA, 2009, J TOXICOL ENV HEAL B, V12, P157, DOI 10.1080/10937400902729226.
KANAREK S, 2006, EPIDEMIOLOGY S, V17, S443.
KANG S, 2007, LANGMUIR, V23, P8670, DOI 10.1021/la701067r.
KANG S, 2008, ENVIRON SCI TECHNOL, V42, P7528, DOI 10.1021/es8010173.
KANG S, 2008, LANGMUIR, V24, P6409, DOI 10.1021/la800951v.
KANG S, 2009, ENVIRON SCI TECHNOL, V43, P2648, DOI 10.1021/es8031506.
KARLSSON HL, 2008, CHEM RES TOXICOL, V21, P1726, DOI 10.1021/tx800064j.
KARTAM N, 2004, WASTE MANAGE, V24, P1049, DOI 10.1016/j.wasman.2004.06.003.
KASEMETS K, 2009, TOXICOL IN VITRO, V23, P1116, DOI 10.1016/j.tiv.2009.05.015.
KATO S, 2009, BASIC CLIN PHARMACOL, V104, P483, DOI 10.1111/j.1742-7843.2009.00396.x.
KATO S, 2009, TOXICOL IND HEALTH, V25, P197, DOI 10.1177/0748233709106186.
KIRCHNER C, 2005, NANO LETT, V5, P331, DOI 10.1021/nl047996m.
KLAINE SJ, 2008, ENVIRON TOXICOL CHEM, V27, P1825.
KLOEPFER JA, 2005, APPL ENVIRON MICROB, V71, P2548, DOI 10.1128/AEM.71.5.2548-2557.2005.
KNEPPER TP, 2003, WILSON WILSONS ANAL, P2.
KNIEF P, 2009, ANALYST, V134, P1182, DOI 10.1039/b821393c.
KONTOS AI, 2007, THIN SOLID FILMS, V515, P7370, DOI 10.1016/j.tsf2007.02.082.
KOURMPANIS B, 2008, WASTE MANAGE RES, V26, P267, DOI 10.1177/0734242X07083344.
KOVOCHICH M, 2009, ENVIRON SCI TECHNOL, V43, P6378, DOI 10.1021/es900990d.
KUMAR A, 2008, NAT MATER, V7, P236, DOI 10.1038/nmat2099.
LAM CW, 2006, CRIT REV TOXICOL, V36, P189, DOI 10.1080/10408440600570233.
LEE HA, 2007, NANO LETT, V7, P2865, DOI 10.1021/nl071563c.
LEE J, 2009, NANOTECHNOLOGY CONST, V3, P1.
LEE WM, 2008, ENVIRON TOXICOL CHEM, V27, P1915.
LI GY, 2004, CEMENT CONCRETE RES, V34, P1043, DOI 10.1016/j.cemconres.2003.11.013.
LIN P, 2008, ENVIRON SCI TECHNOL, V42, P6264, DOI 10.1021/es800254a.
LIN WS, 2006, INT J TOXICOL, V25, P451, DOI 10.1080/10915810600959543.
LIU SB, 2009, ACS NANO, V3, P3891, DOI 10.1021/nn901252r.
LONG TC, 2006, ENVIRON SCI TECHNOL, V40, P4346, DOI 10.1021/es060589n.
LOVRIC J, 2005, CHEM BIOL, V12, P1227, DOI 10.1016/j.chembiol.2005.09.008.
LU ZS, 2008, LANGMUIR, V24, P5445, DOI 10.1021/la704075r.
LUCARELLI M, 2004, EUR CYTOKINE NETW, V15, P339.
LUO TY, 2004, POWDER TECHNOL, V139, P118, DOI 10.1016/j.powtec.2003.12.001.
LYON DY, 2005, ENVIRON TOXICOL CHEM, V24, P2757.
LYON DY, 2006, ENVIRON SCI TECHNOL, V40, P4360, DOI 10.1021/es0603655.
LYON DY, 2007, CHEM RES TOXICOL, V20, P1991.
LYON DY, 2008, NANO LETT, V8, P1539, DOI 10.1021/nl0726398.
MAHENDRA S, 2008, ENVIRON SCI TECHNOL, V42, P9424, DOI 10.1021/es8023385.
MANN S, 2006, NANOFORUM REPOR 0530.
MCFARLAND M, 1992, P NATL ACAD SCI USA, V89, P807.
MIDANDER M, 2009, SMALL, V5, P389, DOI 10.1002/smll.200801220.
MURBACH DM, 2008, EPIDEMIOLOGY S, V19, S256.
OBERDORSTER E, 2004, ENVIRON HEALTH PERSP, V112, P1058, DOI 10.1289/ehp.7021.
OBERDORSTER G, 1995, INHAL TOXICOL, V7, P111.
OBRIEN N, 2008, HUM ECOL RISK ASSESS, V14, P568, DOI 10.1080/10807030802074261.
PARK S, 2007, INHAL TOXICOL S1, V19, P59, DOI 10.1080/08958370701493282.
PAZ Y, 1995, J MATER RES, V10, P2842.
PISHCH IV, 2007, GLASS CERAM, V64, P15.
POON CS, 2007, WASTE MANAGE, V27, P159, DOI 10.1016/j.wasman.2006.10.012.
RAKI L, 2010, MATERIALS, V3, P918.
RAMOT Y, 2010, NANOTOXICOLOGY, V4, P98, DOI 10.3109/17435390903470093.
RANA AK, 2009, INT J RECENT TRENDS, V1, P46.
REEVES JF, 2008, MUTAT RES-FUND MOL M, V640, P113, DOI 10.1016/j.mrfmmm.2007.12.010.
RINCON AG, 2004, APPL CATAL B-ENVIRON, V49, P99, DOI 10.1016/j.apcatb.2003.11.013.
RINCON AG, 2004, APPL CATAL B-ENVIRON, V51, P283, DOI 10.1016/j.apcatb.2004.03.007.
ROZHKOV SP, 2003, BIOCHEM BIOPH RES CO, V303, P562, DOI 10.1016/S0006-291X(03)00392-9.
RYMANRASMUSSEN JP, 2007, J INVEST DERMATOL, V127, P143, DOI 10.1038/sj.jid.5700508.
SAAFI M, 2005, CONCRETE INT, V27, P28.
SAYES CM, 2004, NANO LETT, V4, P1881, DOI 10.1021/nl0489586.
SAYES CM, 2005, BIOMATERIALS, V26, P7587, DOI 10.1016/j.biomaterials.2005.05.027.
SAYES CM, 2006, TOXICOL SCI, V92, P174, DOI 10.1093/toxsci/kfj197.
SAYES CM, 2007, NANO LETT, V7, P2399, DOI 10.1021/nl0710710.
SCRIVENS WA, 1994, J AM CHEM SOC, V116, P4517.
SHIOHARA A, 2004, MICROBIOL IMMUNOL, V48, P669.
SOBOLEV K, 2005, AM CERAM SOC BULL, V84, P16.
SONG GB, 2008, SMART MATER STRUCT, V17, P1.
SOTO KF, 2008, ATMOS ENVIRON, V42, P1970, DOI 10.1016/j.atmosenv.2007.12.027.
TANEIKE M, 2003, NATURE, V424, P294, DOI 10.1038/nature01740.
TANS SJ, 1998, NATURE, V393, P49.
TOLNAI G, 2001, LANGMUIR, V17, P2683, DOI 10.1021/la0007372.
TSAO N, 2002, J ANTIMICROB CHEMOTH, V49, P641.
TURNER A, 2010, MAR POLLUT BULL, V60, P159, DOI 10.1016/j.marpolbul.2009.12.004.
VOURA EB, 2004, NAT MED, V10, P993, DOI 10.1038/nm1096.
WANG JX, 2008, CHEMOSPHERE, V73, P1121, DOI 10.1016/j.chemosphere.2008.07.040.
WANG ZL, 2006, SCIENCE, V312, P242, DOI 10.1126/science.1124005.
WANG ZY, 2010, CHEMOSPHERE, V79, P86, DOI 10.1016/j.chemosphere.2009.12.051.
WATANABE I, 2003, ENVIRON INT, V29, P665, DOI 10.1016/S0160-4120(03)00123-5.
WEI W, 2007, J NANOSCI NANOTECHNO, V7, P1284, DOI 10.1166/jnn.2007.655.
WIESNER MR, 2006, ENVIRON SCI TECHNOL, V40, P4336.
WOLFRUM EJ, 2002, ENVIRON SCI TECHNOL, V36, P3412, DOI 10.1021/es011423j.
YANG XL, 2002, TOXICOL IN VITRO, V16, P41.
YU WW, 2007, J AM CHEM SOC, V129, P2871, DOI 10.1021/ja067184n.
ZHANG QW, 1998, J TOXICOL ENV HEAL A, V53, P423.
ZHANG TT, 2006, NANO LETT, V6, P800, DOI 10.1021/nl0603350.
ZHANG W, 2006, J NANOSCI NANOTECHNO, V6, P960, DOI 10.1166/jnn.2006.171.
ZHU W, 2004, MATER STRUCT, V37, P649.
ZHU XS, 2008, J ENVIRON SCI HEAL A, V43, P278, DOI 10.1080/10934520701792779.

Cited Reference Count:
142

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn100866w

IDS Number:
631RG

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================