Friday, September 24, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281624500007
*Order Full Text [ ]

Title:
Removal of disinfection byproducts from water by carbonized electrospun nanofibrous membranes

Authors:
Gurdev, S; Rana, D; Matsuura, T; Ramakrishna, S; Narbaitz, RM; Tabe, S

Author Full Names:
Singh, Gurdev; Rana, Dipak; Matsuura, Takeshi; Ramakrishna, Seeram; Narbaitz, Roberto M.; Tabe, Shahram

Source:
SEPARATION AND PURIFICATION TECHNOLOGY 74 (2): 202-212 AUG 17 2010

Language:
English

Document Type:
Article

Author Keywords:
Disinfection byproducts; Electrospun membrane; Carbonized nanofibrous membrane; Multiwalled carbon nanotubes; Membrane adsorption

KeyWords Plus:
ENVIRONMENTAL APPLICATIONS; NANOTUBE MEMBRANES; MASS-TRANSPORT; ADSORPTION; PURIFICATION; SURFACE; TRIHALOMETHANES; FILTERS; MEDIA; LAYER

Abstract:
Disinfection byproducts (DBPs), trihalomethanes and haloacetic acids present in water are well known carcinogens and their removal is an important priority. Highly porous nanofibrous membrane filters produced by electro-spinning were carbonized and used for the removal of DBPs from water. In the present investigation, chloroform and monochloroacetic acid (MCAA) was used as model DBPs compounds. The DBPs concentration in the range of 1-100 mg/L was used in well controlled adsorption experiments using the prepared membranes. For chloroform an adsorption capacity of 554 mg/g of carbonized nanofibrous membranes (CNMs) was determined based on the filtration of feed solution (100 mg/L). The adsorption capacity of MCAA was between 287 and 504 mg/g for a feed concentration of 4-18 mg/L based on the static adsorption study. The used membranes were regenerated by chemical/physical treatment and removal efficiencies of the regenerated membranes were determined. The DBPs removal from wat
er was also investigated using multiwalled carbon nanotubes (MWCNTs) incorporated in the CNMs and results were compared. Although the initial removal of MCAA was increased with increasing concentration of the MWCNTs, afterwards, the subsequent removals showed no effect of addition of MWCNTs. The possible mechanism was also discussed to better understand the adsorption phenomenon. These results suggest that the CNMs could be used as DBPs removal filter for drinking water purpose. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Rana, D, Univ Ottawa, Ind Membrane Res Inst, Dept Chem & Biol Engn, 161 Louis Pasteur St, Ottawa, ON K1N 6N5, Canada.

Research Institution addresses:
[Singh, Gurdev; Rana, Dipak; Matsuura, Takeshi] Univ Ottawa, Ind Membrane Res Inst, Dept Chem & Biol Engn, Ottawa, ON K1N 6N5, Canada; [Singh, Gurdev; Ramakrishna, Seeram] Natl Univ Singapore, Fac Engn, Nanosci & Nanotechnol Initiat, Blk Nanobioengn Lab E3 05 12, Singapore 117576, Singapore; [Narbaitz, Roberto M.] Univ Ottawa, Dept Civil Engn, Ottawa, ON K1N 6N5, Canada; [Tabe, Shahram] Ontario Minist Environm, Stand Dev Branch, Water Stand Sect, Toronto, ON M4V 1M2, Canada

E-mail Address:
rana@eng.uottawa.ca; matsuura@eng.uottawa.ca

Cited References:
2005, SPECIAL PUB.
*US EPA, 1994, FED REGISTER, V59, P38668.
*US EPA, 1998, FED REGISTER, V63, P69389.
AJAYAN PM, 1993, NATURE, V361, P333.
AMADOU J, 2006, CARBON, V44, P2587, DOI 10.1016/j.carbon.2006.05.042.
AMMA A, 2003, ADV FUNCT MATER, V13, P365, DOI 10.1002/adfm.200304232.
AUSSAWASATHIEN D, 2008, J MEMBRANE SCI, V315, P11, DOI 10.1016/j.memsci.2008.01.049.
BAKAJIN O, 2009, NANOTECHNOLOGY APPL, P77.
BAOWAN D, 2010, NANOTECHNOLOGY, V21, ARTN 155305.
BARHATE RS, 2007, J MEMBRANE SCI, V296, P1, DOI 10.1016/j.memsci.2007.03.038.
BJORGE D, 2009, DESALINATION, V249, P942, DOI 10.1016/j.desal.2009.06.064.
BURGER C, 2006, ANNU REV MATER RES, V36, P333, DOI 10.1146/annurev.matsci.36.011205.123537.
CAMPBELL P, 2008, NATURE, V452, P269.
CANNON J, 2010, MICROFLUID NANOFLUID, V8, P21, DOI 10.1007/s10404-009-0446-1.
CHAKRAPANI N, 2004, P NATL ACAD SCI USA, V101, P4009, DOI 10.1073/pnas.0400734101.
CHEN W, 2008, ENVIRON SCI TECHNOL, V42, P6862, DOI 10.1021/es8013612.
CHU B, 2009, J POLYM SCI POL PHYS, V47, P2431, DOI 10.1002/polb.21854.
DAELS N, 2010, DESALINATION, V257, P170, DOI 10.1016/j.desal.2010.02.027.
DEEGAN RD, 1997, NATURE, V389, P829.
FITZER E, 1998, CARBON REINFORCEMENT.
HAIDER S, 2009, J MEMBRANE SCI, V328, P90, DOI 10.1016/j.memsci.2008.11.046.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
ISMAIL AF, 2009, SEP PURIF TECHNOL, V70, P12, DOI 10.1016/j.seppur.2009.09.002.
KAUR S, 2008, MRS BULL, V33, P21.
KI CS, 2007, J MEMBRANE SCI, V302, P20, DOI 10.1016/j.memsci.2007.06.003.
KIM J, 2010, ENVIRON POLLUT, V158, P2335, DOI 10.1016/j.envpol.2010.03.024.
LI XS, 2007, SMALL, V3, P595, DOI 10.1002/smll.200600652.
LI YH, 2007, J PHYS C SER, V61, P698, DOI 10.1088/1742-6596/61/1/140.
LIAO Q, 2008, COLLOID SURFACE A, V312, P160, DOI 10.1016/j.colsurfa.2007.06.045.
LIDE DR, 1992, HDB CHEM PHYSICS, P16.
LONG RQ, 2001, J AM CHEM SOC, V123, P2058.
LU CS, 2005, WATER RES, V39, P1183, DOI 10.1016/j.watres.2004.12.033.
MA H, 2010, MATER CHEM, V20, P4692.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI 10.1016/j.memsci.2007.09.068.
MATSUURA T, 1994, SYNTHETIC MEMBRANES, P62.
MAUTER MS, 2008, ENVIRON SCI TECHNOL, V42, P5843, DOI 10.1021/es8006904.
MCKEE MG, 2006, SCIENCE, V311, P353, DOI 10.1126/science.1119790.
MORRIS RD, 1992, AM J PUBLIC HEALTH, V82, P955.
PARK J, 2010, DESALIN WATER TREAT, V15, P76, DOI 10.5004/dwt.2010.1670.
PARK SW, 2009, J APPL POLYM SCI, V112, P2320, DOI 10.1002/app.29520.
PARSONS S, 2004, ADV OXIDATION PROCES.
PENG XJ, 2003, CHEM PHYS LETT, V376, P154, DOI 10.1016/S0009-2614(03)00960-6.
PRILUTSLCY S, 2008, NANOTECHNOLOGY, V19, UNSP 165603-165612.
RAMAKRISHNA S, 2006, MATER TODAY, V9, P40.
RAMAKRISHNA S, 2009, POLYM MEMBRANES BIOT.
RAVAL HD, 2009, INT J NUCL DESAL, V3, P360.
RIVERA JL, 2010, J PHYS CHEM C, V114, P3737, DOI 10.1021/jp906527c.
ROH S, 2004, J VAC SCI TECHNOL B, V22, P1411, DOI 10.1116/1.1740758.
SALIPIRA KL, 2007, CHEM LETT, V5, P13.
SANG YM, 2008, DESALINATION, V223, P349, DOI 10.1016/j.desal.2007.01.208.
SEARS K, 2010, MATERIALS, V3, P127.
SERVICE RF, 2006, SCIENCE, V313, P1088.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SOURIRAJAN BS, 1985, REVERSE OSMOSISULTRA, P979.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
STEMMAN R, 2009, G4S INT, V2, P34.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
TAN K, 2007, J MEMBRANE SCI, V305, P287, DOI 10.1016/j.memsci.2007.08.015.
THAVASI V, 2008, ENERG ENVIRON SCI, V1, P205, DOI 10.1039/b809074m.
TSAI JH, 2008, J HAZARD MATER, V154, P1183.
TUNG HH, 2006, J AM WATER WORKS ASS, V98, P107.
UYAR T, 2009, J MEMBRANE SCI, V332, P129, DOI 10.1016/j.memsci.2009.01.047.
WALLER K, 1998, EPIDEMIOLOGY, V9, P134.
WANG XF, 2010, J MEMBRANE SCI, V356, P110, DOI 10.1016/j.memsci.2010.03.039.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XU X, 2010, J MEMBRANE SCI, V348, P231, DOI 10.1016/j.memsci.2009.11.006.
XU Z, 2009, SURFACE ENG POLYM ME, P306.
YANG RT, 2003, ADSORBENTS FUNDAMENT, P79.
YAO C, 2008, J MEMBRANE SCI, V320, P259, DOI 10.1016/j.memsci.2008.04.012.
YE XY, 2009, MATER LETT, V63, P1810, DOI 10.1016/j.matlet.2009.05.054.
YOON K, 2008, J MATER CHEM, V18, P5326, DOI 10.1039/b804128h.
YOON K, 2009, J MEMBRANE SCI, V338, P145.
YOON K, 2009, POLYMER, V50, P2893, DOI 10.1016/j.polymer.2009.04.047.
ZUSSMAN E, 2005, CARBON, V43, P2175, DOI 10.1016/j.carbon.2005.03.031.

Cited Reference Count:
77

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Engineering, Chemical

ISSN:
1383-5866

DOI:
10.1016/j.seppur.2010.06.006

IDS Number:
647NF

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281693000029
*Order Full Text [ ]

Title:
How Can Hydrophobic Association Be Enthalpy Driven?

Authors:
Setny, P; Baron, R; McCammon, JA

Author Full Names:
Setny, Piotr; Baron, Riccardo; McCammon, J. Andrew

Source:
JOURNAL OF CHEMICAL THEORY AND COMPUTATION 6 (9): 2866-2871 SEP 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MAJOR URINARY PROTEIN; TEMPERATURE-DEPENDENCE; DEWETTING TRANSITION; FREE-ENERGY; COMPUTER-SIMULATION; POTENTIAL FUNCTIONS; MOLECULAR-DYNAMICS; NONPOLAR CAVITIES; LIGAND-BINDING; WATER CLUSTERS

Abstract:
Hydrophobic association is often recognized as being driven by favorable entropic contributions. Here, using explicit solvent molecular dynamics simulations we investigate binding in a model hydrophobic receptor ligand system which appears, instead, to be driven by enthalpy and opposed by entropy. We use the temperature dependence of the potential of mean force to analyze the thermodynamic contributions along the association coordinate. Relating such contributions to the ongoing changes in system hydration allows us to demonstrate that the overall binding thermodynamics is determined by the expulsion of disorganized water from the receptor cavity. Our model study sheds light on the solvent-induced driving forces for receptor ligand association of general, transferable relevance for biological systems with poorly hydrated binding sites.

Reprint Address:
Setny, P, Univ Calif San Diego, Dept Chem & Biochem, Ctr Theoret Biol Phys, Howard Hughes Med Inst,Dept Pharmacol, San Diego, CA 92103 USA.

Research Institution addresses:
[Setny, Piotr; Baron, Riccardo; McCammon, J. Andrew] Univ Calif San Diego, Dept Chem & Biochem, Ctr Theoret Biol Phys, Howard Hughes Med Inst,Dept Pharmacol, San Diego, CA 92103 USA; [Setny, Piotr] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany

E-mail Address:
piotr.setny@tum.de; rbaron@mecammon.ucsd.edu

Cited References:
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P156.
ATHAWALE MV, 2007, P NATL ACAD SCI USA, V104, P733, DOI 10.1073/pnas.0605139104.
BARON R, 2010, J AM CHEM SOC, V132, P12091, DOI 10.1021/ja1050082.
BARRATT E, 2005, J AM CHEM SOC, V127, P11827, DOI 10.1021/ja0527525.
BERNE BJ, 2009, ANNU REV PHYS CHEM, V60, P85, DOI 10.1146/annurev.physchem.58.032806.104445.
BINGHAM RJ, 2004, J AM CHEM SOC, V126, P1675, DOI 10.1021/ja038461i.
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
BROVCHENKO I, 2000, J CHEM PHYS, V113, P5026.
CAREY C, 2000, CHEM PHYS, V258, P415.
CHANDLER D, 1993, PHYS REV E, V48, P2898.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
CHOUDHURY N, 2006, J PHYS CHEM B, V110, P8459, DOI 10.1021/jp056909r.
CHOUDHURY N, 2007, J AM CHEM SOC, V129, P4847, DOI 10.1021/ja069242a.
COOPER J, 2007, REVISED RELEASE IAPW.
DENISOV VP, 1997, J PHYS CHEM B, V101, P9380.
DUNITZ JD, 1994, SCIENCE, V264, P670.
ERNST JA, 1995, SCIENCE, V267, P1813.
GIOVAMBATTISTA N, 2008, P NATL ACAD SCI USA, V105, P2274, DOI 10.1073/pnas.0708088105.
HUA L, 2007, J PHYS CHEM B, V111, P9069, DOI 10.1021/jp0707923.
HUANG X, 2003, P NATL ACAD SCI USA, V100, P11953, DOI 10.1073/pnas.1934837100.
HUMMER G, 1996, P NATL ACAD SCI USA, V93, P8951.
HUMMER G, 1998, J PHYS CHEM B, V102, P10469.
HUMMER G, 2001, NATURE, V414, P188.
JENSEN TR, 2003, PHYS REV LETT, V90, P86101, UNSP 086101-1-086101-4.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JORGENSEN WL, 1984, J AM CHEM SOC, V106, P6638.
KUMAR S, 1992, J COMPUT CHEM, V13, P1011.
LEE CY, 1984, J CHEM PHYS, V80, P4448.
LI Z, 2007, PHYS CHEM CHEM PHYS, V9, P573, DOI 10.1039/b612449f.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
LUDEMANN S, 1997, J AM CHEM SOC, V119, P4206.
LUM K, 1997, PHYS REV E, V56, R6283.
MEYER EE, 2006, P NATL ACAD SCI USA, V103, P15739, DOI 10.1073/pnas.0606422103.
OLANO LR, 2004, J AM CHEM SOC, V126, P7991, DOI 10.1021/ja049701c.
PREUSSER A, 1989, ACM T MATH SOFTWARE, V15, P79.
QVIST J, 2008, P NATL ACAD SCI USA, V105, P6296, DOI 10.1073/pnas.0709844105.
RAJAMANI S, 2005, P NATL ACAD SCI USA, V102, P9475, DOI 10.1073/pnas.0504089102.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
RASCHKE TM, 2001, P NATL ACAD SCI USA, V98, P5965.
SETNY P, 2006, J CHEM PHYS, V125, ARTN 144717.
SETNY P, 2007, J CHEM PHYS, V127, ARTN 054505.
SETNY P, 2009, PHYS REV LETT, V103, ARTN 187801.
SHARROW SD, 2003, BIOCHEMISTRY-US, V42, P6302, DOI 10.1021/bi026423q.
SHIMIZU S, 2000, J CHEM PHYS, V113, P4683.
SMITH DE, 1992, J AM CHEM SOC, V114, P5875.
SMITH DE, 1993, J CHEM PHYS, V98, P6445.
STILLINGER FH, 1973, J SOLUTION CHEM, V2, P141.
TENWOLDE PR, 2002, P NATL ACAD SCI USA, V99, P6539.
TORRIE GM, 1977, J COMPUT PHYS, V23, P187.
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI 10.1073/pnas.0407968101.
WALLQVIST A, 1995, J PHYS CHEM-US, V99, P2893.
WALLQVIST A, 2001, J PHYS CHEM B, V105, P6745.
WILLARD AP, 2008, J PHYS CHEM B, V112, P6187, DOI 10.1021/jp077186+.
YIN H, 2007, J AM CHEM SOC, V129, P7369, DOI 10.1021/ja070456h.
YOUNG T, 2007, P NATL ACAD SCI USA, V104, P808, DOI 10.1073/pnas.0610202104.
YOUNG T, 2010, PROTEINS, V78, P1856, DOI 10.1002/prot.22699.
ZANGI R, 2008, J PHYS CHEM B, V112, P8634, DOI 10.1021/jp802135c.

Cited Reference Count:
58

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1549-9618

DOI:
10.1021/ct1003077

IDS Number:
648KQ

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281691100022
*Order Full Text [ ]

Title:
Ion Interactions with the Carbon Nanotube Surface in Aqueous Solutions: Understanding the Molecular Mechanisms

Authors:
Frolov, AI; Rozhin, AG; Fedorov, MV

Author Full Names:
Frolov, Andrey I.; Rozhin, Alex G.; Fedorov, Maxim V.

Source:
CHEMPHYSCHEM 11 (12): 2612-2616 AUG 23 2010

Language:
English

Document Type:
Article

Author Keywords:
molecular simulations; nanotube modeling; nanotubes; photoluminescence; specific salt effects

KeyWords Plus:
DYNAMICS SIMULATIONS; BIOMOLECULAR SIMULATIONS; BIOMEDICAL APPLICATIONS; HYDROPHOBIC SURFACE; WATER-STRUCTURE; SALT-SOLUTIONS; METAL-IONS; HYDRATION; SOLVENT; THERMODYNAMICS

Abstract:
We study the molecular mechanisms of alkali halide ion interactions with the single-wall carbon nanotube surface in water by means of fully atomistic molecular dynamics simulations. We focus on the basic physical-chemical principles of ion-nanotube interactions in aqueous solutions and discuss them in light of recent experimental findings on selective ion effects on carbon nanotubes.

Reprint Address:
Fedorov, MV, Max Planck Inst Math Sci, D-04103 Leipzig, Germany.

Research Institution addresses:
[Frolov, Andrey I.; Fedorov, Maxim V.] Max Planck Inst Math Sci, D-04103 Leipzig, Germany; [Rozhin, Alex G.] Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England

E-mail Address:
fedorov@mis.mpg.de

Cited References:
AHMAD A, 2009, CHEMPHYSCHEM, V10, P905, DOI 10.1002/cphc.200800796.
AUSMAN KD, 2000, J PHYS CHEM B, V104, P8911.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BEECHER P, 2007, J APPL PHYS, V102, ARTN 043710.
BENNAIM A, 2006, MOL THEORY SOLUTIONS, P56.
BERTHIER J, 2006, MICROFLUIDICS BIOTEC, P374.
BIANCO A, 2005, CHEM COMMUN, P571, DOI 10.1039/b410943k.
BREGE JJ, 2007, J PHYS CHEM C, V111, P17812, DOI 10.1021/jp0712856.
BREGE JJ, 2009, J PHYS CHEM C, V113, P4270, DOI 10.1021/jp808667b.
CATHCART H, 2007, J PHYS CHEM C, V111, P66, DOI 10.1021/jp065503r.
CHEN RJ, 2003, P NATL ACAD SCI USA, V100, P4984, DOI 10.1073/pnas.0837064100.
COLLINS KD, 2007, BIOPHYS CHEM, V128, P95, DOI 10.1016/j.bpc.2007.03.009.
COUSINS BG, 2009, SMALL, V5, P587, DOI 10.1002/smll.200801184.
EGOROV AV, 2003, J PHYS CHEM B, V107, P3234, DOI 10.1021/jp026677l.
FEDOROV MV, 2007, MOL PHYS, V105, P1, DOI 10.1080/00268970601110316.
FEDOROV MV, 2007, PHYS CHEM CHEM PHYS, V9, P5423, DOI 10.1039/b706564g.
FEDOROV MV, 2009, J AM CHEM SOC, V131, P10854, DOI 10.1021/ja9030374.
HARSANYI I, 2005, J CHEM PHYS, V122, ARTN 124512.
HASAN T, 2009, ADV MATER, V27, P3874.
HAYAKAWA C, 2009, LANGMUIR, V25, P1795, DOI 10.1021/la803395a.
HIRSCH A, 2002, ANGEW CHEM INT EDIT, V41, P1853.
HIRSCH A, 2002, ANGEW CHEM, V114, P1933.
HORN HW, 2004, J CHEM PHYS, V120, P9665, DOI 10.1063/1.1683075.
HOWELL I, 1996, J PHYS-CONDENS MAT, V8, P4455.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
IBUKI K, 2009, J MOL LIQ, V147, P56, DOI 10.1016/j.molliq.2008.08.005.
JOUNG IS, 2008, J PHYS CHEM B, V112, P9020, DOI 10.1021/jp8001614.
JUNGWIRTH P, 2001, J PHYS CHEM B, V105, P10468.
KATZ E, 2004, CHEMPHYSCHEM, V5, P1084, DOI 10.1002/CPHC.200400193.
KIM Y, 2003, JPN J APPL PHYS 1, V42, P7629, DOI 10.1143/JJAP.42.7629.
KINOSHITA M, 2005, B CHEM SOC JPN, V78, P1431, DOI 10.1246/bcsj.78.1431.
KINOSHITA M, 2007, CONDENS MATTER PHYS, V10, P387.
KUNZ W, 2006, PURE APPL CHEM, V78, P1611, DOI 10.1351/pac200678081611.
LIANG F, 2010, CURR MED CHEM, V17, P10.
LMPEY RW, 1983, J PHYS CHEM-US, V87, P5071.
LUND M, 2008, PHYS REV LETT, V100, ARTN 258105.
MACKERNAN D, 2008, EPL-EUROPHYS LETT, V83, ARTN 66009.
MANCINELLI R, 2007, PHYS CHEM CHEM PHYS, V9, P2959, DOI 10.1039/b701855j.
MARCUS Y, 1987, J CHEM SOC FARAD T 1, V83, P339.
MARCUS Y, 1988, CHEM REV, V88, P1475.
MATUBAYASI N, 1994, J PHYS CHEM-US, V98, P10640.
MATUBAYASI N, 1998, J CHEM PHYS, V109, P4864.
MILE V, 2009, J PHYS CHEM B, V113, P10760, DOI 10.1021/jp900092g.
MOORE VC, 2003, NANO LETT, V3, P1379.
NIYOGI S, 2007, J AM CHEM SOC, V129, P1898, DOI 10.1021/ja068321j.
NIYOGI S, 2009, J AM CHEM SOC, V131, P1144, DOI 10.1021/ja807785e.
OCONNELL MJ, 2002, SCIENCE, V297, P593.
PAL S, 2005, J PHYS CHEM B, V109, P6405, DOI 10.1021/jp045601h.
PEASE LF, 2009, SMALL, V5, P2894, DOI 10.1002/smll.200900928.
PERERA L, 1993, J PHYS CHEM-US, V97, P13803.
SAMOILOV OY, 1957, DISCUSS FARADAY SOC, P141.
SAMOILOV OY, 1965, STRUCTURE AQUEOUS EL.
SHEN JW, 2009, CHEMPHYSCHEM, V10, P1260, DOI 10.1002/cphc.200800836.
SOPER AK, 2006, BIOPHYS CHEM, V124, P180, DOI 10.1016/j.bpc.2006.04.009.
SPOHR E, 1996, ELECTROCHIM ACTA, V41, P2131.
SPOHR E, 2002, SOLID STATE IONICS, V150, P1.
SPOHR E, 2003, ELECTROCHIM ACTA, V49, P23, DOI 10.1016/j.electacta.2003.04.002.
TAN PH, 2007, PHYS REV LETT, V99, ARTN 137402.
TASIS D, 2006, CHEM REV, V106, P1105, DOI 10.1021/cr050569o.
VAISMAN L, 2006, ADV COLLOID INTERFAC, V128, P37, DOI 10.1016/j.cis.2006.11.007.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
VRBKA L, 2006, J PHYS CHEM B, V110, P7036, DOI 10.1021/jp0567624.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
ZELADAGUILLEN GA, 2009, ANGEW CHEM INT EDIT, V48, P7334, DOI 10.1002/anie.200902090.
ZELADAGUILLEN GA, 2009, ANGEW CHEM, V121, P7470.

Cited Reference Count:
66

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1439-4235

DOI:
10.1002/cphc.201000231

IDS Number:
648JZ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281624500007
*Order Full Text [ ]

Title:
Removal of disinfection byproducts from water by carbonized electrospun nanofibrous membranes

Authors:
Gurdev, S; Rana, D; Matsuura, T; Ramakrishna, S; Narbaitz, RM; Tabe, S

Author Full Names:
Singh, Gurdev; Rana, Dipak; Matsuura, Takeshi; Ramakrishna, Seeram; Narbaitz, Roberto M.; Tabe, Shahram

Source:
SEPARATION AND PURIFICATION TECHNOLOGY 74 (2): 202-212 AUG 17 2010

Language:
English

Document Type:
Article

Author Keywords:
Disinfection byproducts; Electrospun membrane; Carbonized nanofibrous membrane; Multiwalled carbon nanotubes; Membrane adsorption

KeyWords Plus:
ENVIRONMENTAL APPLICATIONS; NANOTUBE MEMBRANES; MASS-TRANSPORT; ADSORPTION; PURIFICATION; SURFACE; TRIHALOMETHANES; FILTERS; MEDIA; LAYER

Abstract:
Disinfection byproducts (DBPs), trihalomethanes and haloacetic acids present in water are well known carcinogens and their removal is an important priority. Highly porous nanofibrous membrane filters produced by electro-spinning were carbonized and used for the removal of DBPs from water. In the present investigation, chloroform and monochloroacetic acid (MCAA) was used as model DBPs compounds. The DBPs concentration in the range of 1-100 mg/L was used in well controlled adsorption experiments using the prepared membranes. For chloroform an adsorption capacity of 554 mg/g of carbonized nanofibrous membranes (CNMs) was determined based on the filtration of feed solution (100 mg/L). The adsorption capacity of MCAA was between 287 and 504 mg/g for a feed concentration of 4-18 mg/L based on the static adsorption study. The used membranes were regenerated by chemical/physical treatment and removal efficiencies of the regenerated membranes were determined. The DBPs removal from wat
er was also investigated using multiwalled carbon nanotubes (MWCNTs) incorporated in the CNMs and results were compared. Although the initial removal of MCAA was increased with increasing concentration of the MWCNTs, afterwards, the subsequent removals showed no effect of addition of MWCNTs. The possible mechanism was also discussed to better understand the adsorption phenomenon. These results suggest that the CNMs could be used as DBPs removal filter for drinking water purpose. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Rana, D, Univ Ottawa, Ind Membrane Res Inst, Dept Chem & Biol Engn, 161 Louis Pasteur St, Ottawa, ON K1N 6N5, Canada.

Research Institution addresses:
[Singh, Gurdev; Rana, Dipak; Matsuura, Takeshi] Univ Ottawa, Ind Membrane Res Inst, Dept Chem & Biol Engn, Ottawa, ON K1N 6N5, Canada; [Singh, Gurdev; Ramakrishna, Seeram] Natl Univ Singapore, Fac Engn, Nanosci & Nanotechnol Initiat, Blk Nanobioengn Lab E3 05 12, Singapore 117576, Singapore; [Narbaitz, Roberto M.] Univ Ottawa, Dept Civil Engn, Ottawa, ON K1N 6N5, Canada; [Tabe, Shahram] Ontario Minist Environm, Stand Dev Branch, Water Stand Sect, Toronto, ON M4V 1M2, Canada

E-mail Address:
rana@eng.uottawa.ca; matsuura@eng.uottawa.ca

Cited References:
2005, SPECIAL PUB.
*US EPA, 1994, FED REGISTER, V59, P38668.
*US EPA, 1998, FED REGISTER, V63, P69389.
AJAYAN PM, 1993, NATURE, V361, P333.
AMADOU J, 2006, CARBON, V44, P2587, DOI 10.1016/j.carbon.2006.05.042.
AMMA A, 2003, ADV FUNCT MATER, V13, P365, DOI 10.1002/adfm.200304232.
AUSSAWASATHIEN D, 2008, J MEMBRANE SCI, V315, P11, DOI 10.1016/j.memsci.2008.01.049.
BAKAJIN O, 2009, NANOTECHNOLOGY APPL, P77.
BAOWAN D, 2010, NANOTECHNOLOGY, V21, ARTN 155305.
BARHATE RS, 2007, J MEMBRANE SCI, V296, P1, DOI 10.1016/j.memsci.2007.03.038.
BJORGE D, 2009, DESALINATION, V249, P942, DOI 10.1016/j.desal.2009.06.064.
BURGER C, 2006, ANNU REV MATER RES, V36, P333, DOI 10.1146/annurev.matsci.36.011205.123537.
CAMPBELL P, 2008, NATURE, V452, P269.
CANNON J, 2010, MICROFLUID NANOFLUID, V8, P21, DOI 10.1007/s10404-009-0446-1.
CHAKRAPANI N, 2004, P NATL ACAD SCI USA, V101, P4009, DOI 10.1073/pnas.0400734101.
CHEN W, 2008, ENVIRON SCI TECHNOL, V42, P6862, DOI 10.1021/es8013612.
CHU B, 2009, J POLYM SCI POL PHYS, V47, P2431, DOI 10.1002/polb.21854.
DAELS N, 2010, DESALINATION, V257, P170, DOI 10.1016/j.desal.2010.02.027.
DEEGAN RD, 1997, NATURE, V389, P829.
FITZER E, 1998, CARBON REINFORCEMENT.
HAIDER S, 2009, J MEMBRANE SCI, V328, P90, DOI 10.1016/j.memsci.2008.11.046.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
ISMAIL AF, 2009, SEP PURIF TECHNOL, V70, P12, DOI 10.1016/j.seppur.2009.09.002.
KAUR S, 2008, MRS BULL, V33, P21.
KI CS, 2007, J MEMBRANE SCI, V302, P20, DOI 10.1016/j.memsci.2007.06.003.
KIM J, 2010, ENVIRON POLLUT, V158, P2335, DOI 10.1016/j.envpol.2010.03.024.
LI XS, 2007, SMALL, V3, P595, DOI 10.1002/smll.200600652.
LI YH, 2007, J PHYS C SER, V61, P698, DOI 10.1088/1742-6596/61/1/140.
LIAO Q, 2008, COLLOID SURFACE A, V312, P160, DOI 10.1016/j.colsurfa.2007.06.045.
LIDE DR, 1992, HDB CHEM PHYSICS, P16.
LONG RQ, 2001, J AM CHEM SOC, V123, P2058.
LU CS, 2005, WATER RES, V39, P1183, DOI 10.1016/j.watres.2004.12.033.
MA H, 2010, MATER CHEM, V20, P4692.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI 10.1016/j.memsci.2007.09.068.
MATSUURA T, 1994, SYNTHETIC MEMBRANES, P62.
MAUTER MS, 2008, ENVIRON SCI TECHNOL, V42, P5843, DOI 10.1021/es8006904.
MCKEE MG, 2006, SCIENCE, V311, P353, DOI 10.1126/science.1119790.
MORRIS RD, 1992, AM J PUBLIC HEALTH, V82, P955.
PARK J, 2010, DESALIN WATER TREAT, V15, P76, DOI 10.5004/dwt.2010.1670.
PARK SW, 2009, J APPL POLYM SCI, V112, P2320, DOI 10.1002/app.29520.
PARSONS S, 2004, ADV OXIDATION PROCES.
PENG XJ, 2003, CHEM PHYS LETT, V376, P154, DOI 10.1016/S0009-2614(03)00960-6.
PRILUTSLCY S, 2008, NANOTECHNOLOGY, V19, UNSP 165603-165612.
RAMAKRISHNA S, 2006, MATER TODAY, V9, P40.
RAMAKRISHNA S, 2009, POLYM MEMBRANES BIOT.
RAVAL HD, 2009, INT J NUCL DESAL, V3, P360.
RIVERA JL, 2010, J PHYS CHEM C, V114, P3737, DOI 10.1021/jp906527c.
ROH S, 2004, J VAC SCI TECHNOL B, V22, P1411, DOI 10.1116/1.1740758.
SALIPIRA KL, 2007, CHEM LETT, V5, P13.
SANG YM, 2008, DESALINATION, V223, P349, DOI 10.1016/j.desal.2007.01.208.
SEARS K, 2010, MATERIALS, V3, P127.
SERVICE RF, 2006, SCIENCE, V313, P1088.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SOURIRAJAN BS, 1985, REVERSE OSMOSISULTRA, P979.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
STEMMAN R, 2009, G4S INT, V2, P34.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
TAN K, 2007, J MEMBRANE SCI, V305, P287, DOI 10.1016/j.memsci.2007.08.015.
THAVASI V, 2008, ENERG ENVIRON SCI, V1, P205, DOI 10.1039/b809074m.
TSAI JH, 2008, J HAZARD MATER, V154, P1183.
TUNG HH, 2006, J AM WATER WORKS ASS, V98, P107.
UYAR T, 2009, J MEMBRANE SCI, V332, P129, DOI 10.1016/j.memsci.2009.01.047.
WALLER K, 1998, EPIDEMIOLOGY, V9, P134.
WANG XF, 2010, J MEMBRANE SCI, V356, P110, DOI 10.1016/j.memsci.2010.03.039.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XU X, 2010, J MEMBRANE SCI, V348, P231, DOI 10.1016/j.memsci.2009.11.006.
XU Z, 2009, SURFACE ENG POLYM ME, P306.
YANG RT, 2003, ADSORBENTS FUNDAMENT, P79.
YAO C, 2008, J MEMBRANE SCI, V320, P259, DOI 10.1016/j.memsci.2008.04.012.
YE XY, 2009, MATER LETT, V63, P1810, DOI 10.1016/j.matlet.2009.05.054.
YOON K, 2008, J MATER CHEM, V18, P5326, DOI 10.1039/b804128h.
YOON K, 2009, J MEMBRANE SCI, V338, P145.
YOON K, 2009, POLYMER, V50, P2893, DOI 10.1016/j.polymer.2009.04.047.
ZUSSMAN E, 2005, CARBON, V43, P2175, DOI 10.1016/j.carbon.2005.03.031.

Cited Reference Count:
77

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Engineering, Chemical

ISSN:
1383-5866

DOI:
10.1016/j.seppur.2010.06.006

IDS Number:
647NF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281624500007>
*Order Full Text [ ]
AU Gurdev, S
Rana, D
Matsuura, T
Ramakrishna, S
Narbaitz, RM
Tabe, S
AF Singh, Gurdev
Rana, Dipak
Matsuura, Takeshi
Ramakrishna, Seeram
Narbaitz, Roberto M.
Tabe, Shahram
TI Removal of disinfection byproducts from water by carbonized electrospun
nanofibrous membranes
SO SEPARATION AND PURIFICATION TECHNOLOGY
LA English
DT Article
DE Disinfection byproducts; Electrospun membrane; Carbonized nanofibrous
membrane; Multiwalled carbon nanotubes; Membrane adsorption
ID ENVIRONMENTAL APPLICATIONS; NANOTUBE MEMBRANES; MASS-TRANSPORT;
ADSORPTION; PURIFICATION; SURFACE; TRIHALOMETHANES; FILTERS; MEDIA;
LAYER
AB Disinfection byproducts (DBPs), trihalomethanes and haloacetic acids
present in water are well known carcinogens and their removal is an
important priority. Highly porous nanofibrous membrane filters produced
by electro-spinning were carbonized and used for the removal of DBPs
from water. In the present investigation, chloroform and
monochloroacetic acid (MCAA) was used as model DBPs compounds. The DBPs
concentration in the range of 1-100 mg/L was used in well controlled
adsorption experiments using the prepared membranes. For chloroform an
adsorption capacity of 554 mg/g of carbonized nanofibrous membranes
(CNMs) was determined based on the filtration of feed solution (100
mg/L). The adsorption capacity of MCAA was between 287 and 504 mg/g for
a feed concentration of 4-18 mg/L based on the static adsorption study.
The used membranes were regenerated by chemical/physical treatment and
removal efficiencies of the regenerated membranes were determined. The
DBPs removal from water was also investigated using multiwalled carbon
nanotubes (MWCNTs) incorporated in the CNMs and results were compared.
Although the initial removal of MCAA was increased with increasing
concentration of the MWCNTs, afterwards, the subsequent removals showed
no effect of addition of MWCNTs. The possible mechanism was also
discussed to better understand the adsorption phenomenon. These results
suggest that the CNMs could be used as DBPs removal filter for drinking
water purpose. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Singh, Gurdev; Rana, Dipak; Matsuura, Takeshi] Univ Ottawa, Ind Membrane Res Inst, Dept Chem & Biol Engn, Ottawa, ON K1N 6N5, Canada.
[Singh, Gurdev; Ramakrishna, Seeram] Natl Univ Singapore, Fac Engn, Nanosci & Nanotechnol Initiat, Blk Nanobioengn Lab E3 05 12, Singapore 117576, Singapore.
[Narbaitz, Roberto M.] Univ Ottawa, Dept Civil Engn, Ottawa, ON K1N 6N5, Canada.
[Tabe, Shahram] Ontario Minist Environm, Stand Dev Branch, Water Stand Sect, Toronto, ON M4V 1M2, Canada.
RP Rana, D, Univ Ottawa, Ind Membrane Res Inst, Dept Chem & Biol Engn, 161
Louis Pasteur St, Ottawa, ON K1N 6N5, Canada.
EM rana@eng.uottawa.ca
matsuura@eng.uottawa.ca
CR 2005, SPECIAL PUB
*US EPA, 1994, FED REGISTER, V59, P38668
*US EPA, 1998, FED REGISTER, V63, P69389
AJAYAN PM, 1993, NATURE, V361, P333
AMADOU J, 2006, CARBON, V44, P2587, DOI 10.1016/j.carbon.2006.05.042
AMMA A, 2003, ADV FUNCT MATER, V13, P365, DOI 10.1002/adfm.200304232
AUSSAWASATHIEN D, 2008, J MEMBRANE SCI, V315, P11, DOI
10.1016/j.memsci.2008.01.049
BAKAJIN O, 2009, NANOTECHNOLOGY APPL, P77
BAOWAN D, 2010, NANOTECHNOLOGY, V21, ARTN 155305
BARHATE RS, 2007, J MEMBRANE SCI, V296, P1, DOI
10.1016/j.memsci.2007.03.038
BJORGE D, 2009, DESALINATION, V249, P942, DOI
10.1016/j.desal.2009.06.064
BURGER C, 2006, ANNU REV MATER RES, V36, P333, DOI
10.1146/annurev.matsci.36.011205.123537
CAMPBELL P, 2008, NATURE, V452, P269
CANNON J, 2010, MICROFLUID NANOFLUID, V8, P21, DOI
10.1007/s10404-009-0446-1
CHAKRAPANI N, 2004, P NATL ACAD SCI USA, V101, P4009, DOI
10.1073/pnas.0400734101
CHEN W, 2008, ENVIRON SCI TECHNOL, V42, P6862, DOI 10.1021/es8013612
CHU B, 2009, J POLYM SCI POL PHYS, V47, P2431, DOI 10.1002/polb.21854
DAELS N, 2010, DESALINATION, V257, P170, DOI 10.1016/j.desal.2010.02.027
DEEGAN RD, 1997, NATURE, V389, P829
FITZER E, 1998, CARBON REINFORCEMENT
HAIDER S, 2009, J MEMBRANE SCI, V328, P90, DOI
10.1016/j.memsci.2008.11.046
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
ISMAIL AF, 2009, SEP PURIF TECHNOL, V70, P12, DOI
10.1016/j.seppur.2009.09.002
KAUR S, 2008, MRS BULL, V33, P21
KI CS, 2007, J MEMBRANE SCI, V302, P20, DOI 10.1016/j.memsci.2007.06.003
KIM J, 2010, ENVIRON POLLUT, V158, P2335, DOI
10.1016/j.envpol.2010.03.024
LI XS, 2007, SMALL, V3, P595, DOI 10.1002/smll.200600652
LI YH, 2007, J PHYS C SER, V61, P698, DOI 10.1088/1742-6596/61/1/140
LIAO Q, 2008, COLLOID SURFACE A, V312, P160, DOI
10.1016/j.colsurfa.2007.06.045
LIDE DR, 1992, HDB CHEM PHYSICS, P16
LONG RQ, 2001, J AM CHEM SOC, V123, P2058
LU CS, 2005, WATER RES, V39, P1183, DOI 10.1016/j.watres.2004.12.033
MA H, 2010, MATER CHEM, V20, P4692
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI
10.1016/j.memsci.2007.09.068
MATSUURA T, 1994, SYNTHETIC MEMBRANES, P62
MAUTER MS, 2008, ENVIRON SCI TECHNOL, V42, P5843, DOI 10.1021/es8006904
MCKEE MG, 2006, SCIENCE, V311, P353, DOI 10.1126/science.1119790
MORRIS RD, 1992, AM J PUBLIC HEALTH, V82, P955
PARK J, 2010, DESALIN WATER TREAT, V15, P76, DOI 10.5004/dwt.2010.1670
PARK SW, 2009, J APPL POLYM SCI, V112, P2320, DOI 10.1002/app.29520
PARSONS S, 2004, ADV OXIDATION PROCES
PENG XJ, 2003, CHEM PHYS LETT, V376, P154, DOI
10.1016/S0009-2614(03)00960-6
PRILUTSLCY S, 2008, NANOTECHNOLOGY, V19, UNSP 165603-165612
RAMAKRISHNA S, 2006, MATER TODAY, V9, P40
RAMAKRISHNA S, 2009, POLYM MEMBRANES BIOT
RAVAL HD, 2009, INT J NUCL DESAL, V3, P360
RIVERA JL, 2010, J PHYS CHEM C, V114, P3737, DOI 10.1021/jp906527c
ROH S, 2004, J VAC SCI TECHNOL B, V22, P1411, DOI 10.1116/1.1740758
SALIPIRA KL, 2007, CHEM LETT, V5, P13
SANG YM, 2008, DESALINATION, V223, P349, DOI 10.1016/j.desal.2007.01.208
SEARS K, 2010, MATERIALS, V3, P127
SERVICE RF, 2006, SCIENCE, V313, P1088
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
SOURIRAJAN BS, 1985, REVERSE OSMOSISULTRA, P979
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192
STEMMAN R, 2009, G4S INT, V2, P34
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w
TAN K, 2007, J MEMBRANE SCI, V305, P287, DOI
10.1016/j.memsci.2007.08.015
THAVASI V, 2008, ENERG ENVIRON SCI, V1, P205, DOI 10.1039/b809074m
TSAI JH, 2008, J HAZARD MATER, V154, P1183
TUNG HH, 2006, J AM WATER WORKS ASS, V98, P107
UYAR T, 2009, J MEMBRANE SCI, V332, P129, DOI
10.1016/j.memsci.2009.01.047
WALLER K, 1998, EPIDEMIOLOGY, V9, P134
WANG XF, 2010, J MEMBRANE SCI, V356, P110, DOI
10.1016/j.memsci.2010.03.039
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
XU X, 2010, J MEMBRANE SCI, V348, P231, DOI 10.1016/j.memsci.2009.11.006
XU Z, 2009, SURFACE ENG POLYM ME, P306
YANG RT, 2003, ADSORBENTS FUNDAMENT, P79
YAO C, 2008, J MEMBRANE SCI, V320, P259, DOI
10.1016/j.memsci.2008.04.012
YE XY, 2009, MATER LETT, V63, P1810, DOI 10.1016/j.matlet.2009.05.054
YOON K, 2008, J MATER CHEM, V18, P5326, DOI 10.1039/b804128h
YOON K, 2009, J MEMBRANE SCI, V338, P145
YOON K, 2009, POLYMER, V50, P2893, DOI 10.1016/j.polymer.2009.04.047
ZUSSMAN E, 2005, CARBON, V43, P2175, DOI 10.1016/j.carbon.2005.03.031
NR 77
TC 0
PU ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1383-5866
DI 10.1016/j.seppur.2010.06.006
PD AUG 17
VL 74
IS 2
BP 202
EP 212
SC Engineering, Chemical
GA 647NF
UT ISI:000281624500007
ER

PT J
*Record 2 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281657300032>
*Order Full Text [ ]
AU Lee, CY
Choi, W
Han, JH
Strano, MS
AF Lee, Chang Young
Choi, Wonjoon
Han, Jae-Hee
Strano, Michael S.
TI Coherence Resonance in a Single-Walled Carbon Nanotube Ion Channel
SO SCIENCE
LA English
DT Article
ID STOCHASTIC RESONANCE; MEMBRANE PATCHES; SURFACE-CHARGE; K+ CHANNEL;
NOISE; TRANSPORT; WATER; TRANSLOCATION; COORDINATION; ENHANCEMENT
AB Biological ion channels are able to generate coherent and oscillatory
signals from intrinsically noisy and stochastic components for
ultrasensitive discrimination with the use of stochastic resonance, a
concept not yet demonstrated in human-made analogs. We show that a
single-walled carbon nanotube demonstrates oscillations in
electroosmotic current through its interior at specific ranges of
electric field that are the signatures of coherence resonance.
Stochastic pore blocking is observed when individual cations partition
into the nanotube obstructing an otherwise stable proton current. The
observed oscillations occur because of coupling between pore blocking
and a proton-diffusion limitation at the pore mouth. The result
illustrates how simple ionic transport can generate coherent waveforms
within an inherently noisy environment and points to new types of
nanoreactors, sensors, and nanofluidic channels based on this platform.
C1 [Lee, Chang Young; Choi, Wonjoon; Han, Jae-Hee; Strano, Michael S.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA.
[Choi, Wonjoon] MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
RP Strano, MS, MIT, Dept Chem Engn, Cambridge, MA 02139 USA.
EM strano@mit.edu
CR AGMON N, 1995, CHEM PHYS LETT, V244, P456
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f
BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e
BENZI R, 1981, J PHYS A, V14, P453
BERNECHE S, 2001, NATURE, V414, P73
BEZRUKOV SM, 1995, NATURE, V378, P362
CARRILLOTRIPP M, 2003, J CHEM PHYS, V118, P7062, DOI 10.1063/1.1559673
CARRILLOTRIPP M, 2004, PHYS REV LETT, V93, ARTN 168104
CHEN YF, 2008, NANO LETT, V8, P42, DOI 10.1021/nI0718566
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u
DECOURSEY TE, 2003, PHYSIOL REV, V83, P475, DOI
10.1152/physrev.00028.2002
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902
DOUGLASS JK, 1993, NATURE, V365, P337
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
10.1073/pnas.0710437105
GAMMAITONI L, 1998, REV MOD PHYS, V70, P223
GEORGALIS Y, 2000, J PHYS CHEM B, V104, P3405
GILLESPIE DT, 1977, J PHYS CHEM-US, V81, P2340, DOI 10.1021/J100540A008
HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85
HANGGI P, 2002, CHEMPHYSCHEM, V3, P285
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUANG SM, 2003, J AM CHEM SOC, V125, P5636, DOI 10.1021/ja034475c
KARNIK R, 2005, NANO LETT, V5, P943, DOI 10.1021/nl050493b
KOGA K, 2001, NATURE, V412, P802
LEVIN JE, 1996, NATURE, V380, P165
LI J, 2001, NATURE, V412, P166
LIU HT, 2010, SCIENCE, V327, P64, DOI 10.1126/science.1181799
PIKOVSKY AS, 1997, PHYS REV LETT, V78, P775
POWELL MR, 2008, NAT NANOTECHNOL, V3, P51, DOI 10.1038/nnano.2007.420
PRIPLATA AA, 2003, LANCET, V362, P1123
RUSSELL DF, 1999, NATURE, V402, P291
SAKMANN B, 1995, SINGLE CHANNEL RECOR
SCHMID G, 2007, MATH BIOSCI, V207, P235, DOI 10.1016/j.mbs.2006.08.024
SIMONOTTO E, 1997, PHYS REV LETT, V78, P1186
SIWY Z, 2004, J AM CHEM SOC, V126, P10850, DOI 10.1021/ja047675c
SMEETS RMM, 2006, NANO LETT, V6, P89, DOI 10.1021/nl052107w
SMEETS RMM, 2006, PHYS REV LETT, V97, ARTN 088101
VARMA S, 2006, BIOPHYS CHEM, V124, P192, DOI 10.1016/j.bpc.2006.07.002
WONG SS, 1998, NATURE, V394, P52
ZHOU YF, 2001, NATURE, V414, P43
NR 39
TC 0
PU AMER ASSOC ADVANCEMENT SCIENCE; 1200 NEW YORK AVE, NW, WASHINGTON, DC
20005 USA
SN 0036-8075
DI 10.1126/science.1193383
PD SEP 10
VL 329
IS 5997
BP 1320
EP 1324
SC Multidisciplinary Sciences
GA 647YR
UT ISI:000281657300032
ER

PT J
*Record 3 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281571100008>
*Order Full Text [ ]
AU Kong, CL
Kanezashi, M
Yamomoto, T
Shintani, T
Tsuru, T
AF Kong, Chunlong
Kanezashi, Masakoto
Yamomoto, Tetsuya
Shintani, Takuji
Tsuru, Toshinori
TI Controlled synthesis of high performance polyamide membrane with thin
dense layer for water desalination
SO JOURNAL OF MEMBRANE SCIENCE
LA English
DT Article
DE Polyamide; Co-solvent; Interfacial polymerization; Nanofiltration;
Desalination
ID REVERSE-OSMOSIS MEMBRANES; NANOFILTRATION MEMBRANES; INTERFACIAL
POLYMERIZATION; RO MEMBRANES; SEPARATION; ELECTROLYTES; TRANSPORT
AB A new concept for the synthesis of thin polyamide nanofiltration
membranes on ultrafiltration polysulfone supports is reported.
Polyamide membranes with controllable thin dense layer and effective
"nanopores" were fabricated by adding co-solvent (acetone) to nonpolar
organic phase (hexane), referred to as co-solvent assisted interfacial
polymerization (CAIP), which exhibited a high water flux with no
considerable salt rejection loss Higher co-solvent addition into the
hexane solution resulted in relatively larger pore sizes as well as
higher water fluxes, which were determined by the analysis of membrane
permeation data using aqueous solutions of sodium chloride. The best
nanocomposite membrane that was prepared with 2 wt% of acetone showed
approximate 4 times higher water flux with no considerable rejection
loss than polyamide membranes fabricated with no acetone co-solvent The
CAIP method will offer new degrees of freedom in modifying polymer
membrane with high separation performance (C) 2010 Elsevier B V All
rights reserved
C1 [Kong, Chunlong; Kanezashi, Masakoto; Yamomoto, Tetsuya; Tsuru, Toshinori] Hiroshima Univ, Dept Chem Engn, Higashihiroshima 7398527, Japan.
[Shintani, Takuji] Nitto Denko Corp, Osaka 5678860, Japan.
RP Tsuru, T, Hiroshima Univ, Dept Chem Engn, Higashihiroshima 7398527,
Japan.
CR BENAMAR N, 2007, LANGMUIR, V27, P2952
BHATTACHARYA A, 2004, REV CHEM ENG, V20, P111
FREEMAN BD, 1999, MACROMOLECULES, V32, P375
FREGER V, 2005, LANGMUIR, V21, P1884, DOI 10.1021/la048085v
GHOSH AK, 2009, J MEMBRANE SCI, V336, P140, DOI
10.1016/j.memsci.2009.03.024
HIROSE M, 1997, 5614099, US
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
JADAV GL, 2009, J MEMBRANE SCI, V328, P257, DOI
10.1016/j.memsci.2008.12.014
JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI
10.1016/j.memsci.2007.02.025
JHOANY AE, 2006, THERMOCHIM ACTA, V443, P93
KIM SH, 2005, ENVIRON SCI TECHNOL, V39, P1764, DOI 10.1021/es049453k
LI L, 2009, J MEMBRANE SCI, V335, P133, DOI 10.1016/j.memsci.2009.03.011
NIGHTINGALE ER, 1959, J PHYS CHEM-US, V63, P1381, DOI
10.1021/J150579A011
PENG XS, 2009, NAT NANOTECHNOL, V4, P353, DOI 10.1038/NNANO.2009.90
PETERSEN RJ, 1993, J MEMBRANE SCI, V83, P81
RAO AP, 1997, J MEMBRANE SCI, V124, P263
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120
TARBOUSH BJA, 2008, J MEMBRANE SCI, V325, P166
TSURU T, 1991, J CHEM ENG JPN, V24, P518
TSURU T, 2001, SEPAR PURIF METHOD, V30, P191
VANVOORTHUIZEN EM, 2005, WATER RES, V39, P3657, DOI
10.1016/j.watres.2005.06.005
WANG XL, 1997, J MEMBRANE SCI, V135, P19
YOON K, 2009, J MEMBRANE SCI, V326, P484, DOI
10.1016/j.memsci.2008.10.023
ZHOU MJ, 2007, J AM CHEM SOC, V129, P9574, DOI 10.1021/ja073067w
NR 24
TC 0
PU ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0376-7388
DI 10.1016/j.memsci.2010.06.022
PD OCT 15
VL 362
IS 1-2
BP 76
EP 80
SC Engineering, Chemical; Polymer Science
GA 646VK
UT ISI:000281571100008
ER

PT J
*Record 4 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281571100042>
*Order Full Text [ ]
AU Wu, HQ
Tang, BB
Wu, PY
AF Wu, Huiqing
Tang, Beibei
Wu, Peiyi
TI Novel ultrafiltration membranes prepared from a multi-walled carbon
nanotubes/polymer composite
SO JOURNAL OF MEMBRANE SCIENCE
LA English
DT Article
DE Multi-walled carbon nanotubes (MWNTs); Brominated polyphenylene oxide
(BPPO); Dry-wet phase inversion; Hydrophilicity
ID GAS SEPARATION; INTERFACIAL POLYMERIZATION; NANOTUBE MEMBRANES; PHASE
INVERSION; MASS-TRANSPORT; POLYSULFONE; FABRICATION; PERMEATION;
MIXTURES; TRADEOFF
AB Novel ultrafiltration membranes were prepared by incorporating
multi-walled carbon nanotubes (MWNTs) Into a matrix of brominated
polyphenylene oxide (BPPO) and using triethanolamine (TEOA) as the
crosslinking agent The membranes exhibited not only high permeability
and hydrophilicity but also excellent separation performance and
chemical stability Furthermore, the water permeability increased as the
weight fraction of MWNTs Increased, reaching a maximum of 487 L/m(2) h
at 5 wt% of MWNTs, while maintaining a 94% membrane rejection rate to
egg albumin The addition of TEOA into the BPPO/MWNTs casting solution
might result in an increase in water permeation rate of membrane if the
amount of TEOA exceeded a threshold value, however, the membrane
rejection rate was essentially constant despite increasing the molar
fraction of TEOA in the casting solution. Using an adequate amount of
MWNTs and a proper TEOA/BPPO ratio, it is feasible to make
MWNTs/polymer ultrafiltration membranes with both high permeation flux
and excellent selectivity (C) 2010 Elsevier B.V. All rights reserved.
C1 [Tang, Beibei] Fudan Univ, Dept Macromol Sci, Key Lab Mol Engn Polymers, Minist Educ, Shanghai 200433, Peoples R China.
Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China.
RP Tang, BB, Fudan Univ, Dept Macromol Sci, Key Lab Mol Engn Polymers,
Minist Educ, Shanghai 200433, Peoples R China.
CR CHOI JH, 2006, J MEMBRANE SCI, V284, P406, DOI
10.1016/j.memsei.2006.08.013
CHOI JH, 2007, MACROMOL SYMP, V249, P610, DOI 10.1002/masy.200750444
COLEMAN JN, 2006, ADV MATER, V18, P689, DOI 10.1002/adma.200501851
CONG HL, 2007, J MEMBRANE SCI, V294, P178, DOI
10.1016/j.memsci.2007.02.035
FREEMAN BD, 1999, MACROMOLECULES, V32, P375
FU JF, 1986, CHEM ENG SCI, V41, P2673
GAO L, 2009, J MEMBRANE SCI, V326, P168, DOI
10.1016/j.memsci.2008.09.048
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI
10.1016/j.memsci.2007.02.025
KIM JH, 1998, J MEMBRANE SCI, V138, P153
KIM S, 2007, J MEMBRANE SCI, V294, P147, DOI
10.1016/j.memsci.2007.02.028
LU LY, 2006, J MEMBRANE SCI, V281, P245, DOI
10.1016/j.memsci.2006.03.041
LUO JXM, 1996, WATER TREAT TECHNOL, V22, P254
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b
MALAISAMY R, 2002, J APPL POLYM SCI, V86, P1749, DOI 10.1002/app.11087
MANCHADO MAL, 2005, CARBON, V43, P1499, DOI 10.1016/j.carbon.2005.01.031
MCGUIRE KS, 1995, J MEMBRANE SCI, V99, P127
PENG FB, 2005, CHEM MATER, V17, P6790, DOI 10.1021/cm051890q
QIU S, 2009, J MEMBRANE SCI, V342, P165, DOI
10.1016/j.memsci.2009.06.041
SPINKS GM, 2006, ADV MATER, V18, P637, DOI 10.1002/adma.200502366
TANG BB, 2006, J MEMBRANE SCI, V268, P123, DOI
10.1016/j.memsci.2005.05.029
TANG BB, 2008, J MEMBRANE SCI, V320, P198, DOI
10.1016/j.memsci.2008.04.002
URAGAMI T, 2002, MACROMOLECULES, V35, P9156, DOI 10.1021/ma020850u
WALCARIUS A, 2001, CHEM MATER, V13, P3351
NR 26
TC 0
PU ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0376-7388
DI 10.1016/j.memsci.2010.06.064
PD OCT 15
VL 362
IS 1-2
BP 374
EP 383
SC Engineering, Chemical; Polymer Science
GA 646VK
UT ISI:000281571100042
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, September 17, 2010

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281354000006
*Order Full Text [ ]

Title:
Detection of C-Reactive Protein in Evanescent Wave Field Using Microparticle-Tracking Velocimetry

Authors:
Fan, YJ; Sheen, HJ; Liu, YH; Tsai, JF; Wu, TH; Wu, KC; Lin, SM

Author Full Names:
Fan, Yu-Jui; Sheen, Horn-Jiunn; Liu, Yi-Hsing; Tsai, Jing-Fa; Wu, Tzu-Heng; Wu, Kuang-Chong; Lin, Shiming

Source:
LANGMUIR 26 (17): 13751-13754 SEP 7 2010

Language:
English

Document Type:
Article

KeyWords Plus:
REFLECTION FLUORESCENCE MICROSCOPY; SLOW VISCOUS MOTION; SPHERE PARALLEL; PLANE WALL; FLOW; NANOPARTICLES; IMMUNOSENSOR; ILLUMINATION; SURFACE

Abstract:
A new technique is developed to measure the nanoparticles' Brownian motions by employing microparticle-tracking velocimetry (micro-PTV) in evanescent wave field, which can provide high signal-to-noise ratio images for analyzing nanoparticles. movements. This method enables real-time detection of C-reactive proteins (CRPs) during the rapid interaction between CRPs and anti-CRP-coated nanobeads as CRP concentrations are related to the nanobeads' Brownian velocity in the equilibrium state. The smallest observable nanobeads with 185 nm were utilized in this experiment to detect CRP concentrations as low as 0.1 mu g/mL. even in a high-viscosity solution. Further, the dissociation constant, K-D, can be evaluated based on the experimental results.

Reprint Address:
Sheen, HJ, Natl Taiwan Univ, Inst Appl Mech, Taipei 106, Taiwan.

Research Institution addresses:
[Fan, Yu-Jui; Sheen, Horn-Jiunn; Wu, Tzu-Heng; Wu, Kuang-Chong; Lin, Shiming] Natl Taiwan Univ, Inst Appl Mech, Taipei 106, Taiwan; [Lin, Shiming] Natl Taiwan Univ, Ctr Optoelect Biomed, Taipei 106, Taiwan

E-mail Address:
sheenh@ntu.edu.tw

Cited References:
BURMEISTER JS, 1998, BIOMATERIALS, V19, P307.
CAO YC, 2006, ANAL BIOCHEM, V351, P193, DOI 10.1016/j.ab.2006.01.007.
CHOI CK, 2007, PHYS FLUIDS, V19, ARTN 103305.
EINSTEIN A, 1956, INVESTIGATIONS THEOR.
FAN YJ, 2009, BIOSENS BIOELECTRON, V25, P688, DOI 10.1016/j.bios.2009.07.037.
GOLDMAN AJ, 1967, CHEM ENGNG SCI, V22, P637.
GOLDMAN AJ, 1967, CHEM ENGNG SCI, V22, P653.
GORTI VA, 2008, LANGMUIR, V24, P2947, DOI 10.1021/la703224b.
HAPPEL J, 1983, LOW REYNOLDS NUMBER, CH7.
HUANG P, 2007, PHYS FLUIDS, V19, ARTN 028104.
HUANG P, 2007, PHYS REV E, V76, P46307.
JIN S, 2004, EXP FLUIDS, V37, P825, DOI 10.1007/s00348-004-0870-7.
KIHM KD, 2004, EXP FLUIDS, V37, P811, DOI 10.1007/s00348-004-0865-4.
KULIN S, 2002, BIOPHYS J, V83, P1965.
KUROSAWA S, 2004, BIOSENS BIOELECTRON, V20, P1134, DOI 10.1016/j.bios.2004.05.016.
LANGEVIN P, 1908, CR HEBD ACAD SCI, V146, P530.
LIN BH, 2000, PHYS REV E B, V62, P3909.
LIN LP, 2005, CURR DRUG TARGETS IM, V5, P61.
LIN SM, 2006, BIOSENS BIOELECTRON, V22, P715, DOI 10.1016/j.bios.2006.02.011.
MEYER MHF, 2006, BIOSENS BIOELECTRON, V21, P1987, DOI 10.1016/j.bios.2005.09.010.
ROCHA SM, 2002, REV INST MED TROP SP, V44, P57.
THOMPSON PA, 1997, NATURE, V389, P360.
TOOMRE D, 2001, TRENDS CELL BIOL, V11, P298.
TSAI HY, 2007, ANAL CHEM, V79, P8416, DOI 10.1021/ac071262n.
WEE KW, 2005, BIOSENS BIOELECTRON, V20, P1932, DOI 10.1016/j.bios.2004.09.023.
ZETTNER CM, 2003, EXP FLUIDS, V34, P115, DOI 10.1007/s00348-002-0541-5.

Cited Reference Count:
26

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0743-7463

DOI:
10.1021/la102137j

IDS Number:
644DX

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281378400007>
*Order Full Text [ ]
AU Khan, SH
Matei, G
Patil, S
Hoffmann, PM
AF Khan, Shah H.
Matei, George
Patil, Shivprasad
Hoffmann, Peter M.
TI Dynamic Solidification in Nanoconfined Water Films
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID INTERFACIAL WATER; VISCOSITY
AB Mechanical properties of nanoconfined water layers are still poorly
understood and continue to create controversy, despite their importance
for biology and nanotechnology. We report on dynamic nano-mechanical
measurements of water films compressed to a few single molecular
layers. We show that the mechanical properties of nanoconfined water
layers change significantly with their dynamic state. In particular, we
observed a sharp transition from viscous to elastic response even at
extremely slow compression rates, indicating that mechanical relaxation
times increase dramatically once water is compressed to less than 3-4
molecular layers.
C1 [Khan, Shah H.; Matei, George; Hoffmann, Peter M.] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA.
[Patil, Shivprasad] Indian Inst Sci Educ & Res, Pune 411021, Maharashtra, India.
RP Khan, SH, Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA.
EM hoffmann@wayne.edu
CR ANTOGNOZZI M, 2001, APPL PHYS LETT, V78, P300
BONACCURSO E, 2003, PHYS REV LETT, V90, ARTN 144501
DERJAGUIN B, 1934, KOLLOID Z, V69, P155
FINNEY JL, 1996, FARADAY DISCUSS, V103, P1
GOERTZ MP, 2007, LANGMUIR, V23, P5491, DOI 10.1021/la062299q
HOFBAUER W, 2009, PHYS REV B, V80, ARTN 134104
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HONIG CDF, 2007, PHYS REV LETT, V98, ARTN 028305
ISRAELACHVILI JN, 1983, NATURE, V306, P249
JEFFERY S, 2004, PHYS REV B, V70, ARTN 054114
KAGGWA GB, 2008, APPL PHYS LETT, V93, P11909, ARTN 011909
LI TD, 2007, PHYS REV B, V75, ARTN 115415
LI TD, 2008, PHYS REV LETT, V100, ARTN 106102
MAALI A, 2006, PHYS REV LETT, V96, ARTN 086105
OSHEA SJ, 2006, PHYS REV LETT, V97, ARTN 179601
PATIL S, 2005, REV SCI INSTRUM, V76, ARTN 103705
PATIL S, 2006, LANGMUIR, V22, P6485, DOI 10.1021/la060504w
POYNOR A, 2006, PHYS REV LETT, V97, ARTN 266101
RAVIV U, 2001, NATURE, V413, P51
UCHIHASHI T, 2005, NANOTECHNOLOGY, V16, S49, DOI
10.1088/0957-4484/16/3/009
VERDAGUER A, 2006, CHEM REV, V106, P1478, DOI 10.1021/cr040376l
ZHU Y, 2003, LANGMUIR, V19, P8148, DOI 10.1021/la035155+
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096104
NR 23
TC 0
PU AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
DI 10.1103/PhysRevLett.105.106101
PD AUG 30
VL 105
IS 10
AR 106101
SC Physics, Multidisciplinary
GA 644LH
UT ISI:000281378400007
ER

PT J
*Record 2 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281616300030>
*Order Full Text [ ]
AU Garaj, S
Hubbard, W
Reina, A
Kong, J
Branton, D
Golovchenko, JA
AF Garaj, S.
Hubbard, W.
Reina, A.
Kong, J.
Branton, D.
Golovchenko, J. A.
TI Graphene as a subnanometre trans-electrode membrane
SO NATURE
LA English
DT Article
ID CARBON NANOTUBES; LARGE-AREA; DNA; NANOPORES; MOLECULES; WATER
AB Isolated, atomically thin conducting membranes of graphite, called
graphene, have recently been the subject of intense research with the
hope that practical applications in fields ranging from electronics to
energy science will emerge(1). The atomic thinness, stability and
electrical sensitivity of graphene motivated us to investigate the
potential use of graphene membranes and graphene nanopores to
characterize single molecules of DNA in ionic solution. Here we show
that when immersed in an ionic solution, a layer of graphene becomes a
new electrochemical structure that we call a transelectrode. The
trans-electrode's unique properties are the consequence of the
atomic-scale proximity of its two opposing liquid-solid interfaces
together with graphene's well known inplane conductivity. We show that
several trans-electrode properties are revealed by ionic conductance
measurements on a graphene membrane that separates two aqueous ionic
solutions. Although our membranes are only one to two atomic
layers(2,3) thick, we find they are remarkable ionic insulators with a
very small stable conductance that depends on the ion species in
solution. Electrical measurements on graphene membranes in which a
single nanopore has been drilled show that the membrane's effective
insulating thickness is less than one nanometre. This small effective
thickness makes graphene an ideal substrate for very high resolution,
high throughput nanopore-based single-molecule detectors. The
sensitivity of graphene's in-plane electronic conductivity to its
immediate surface environment and trans-membrane solution potentials
will offer new insights into atomic surface processes and sensor
development opportunities.
C1 [Garaj, S.; Golovchenko, J. A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
[Hubbard, W.; Golovchenko, J. A.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Reina, A.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.
[Kong, J.] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA.
[Branton, D.] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA.
RP Golovchenko, JA, Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
EM sgaraj@fas.harvard.edu
golovchenko@physics.harvard.edu
CR ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f
BARD AJ, 2001, ELECTROCHEMICAL METH, P534
BRANTON D, 2008, NAT BIOTECHNOL, V26, P1146, DOI 10.1038/nbt.1495
FERRARI AC, 2006, PHYS REV LETT, V97, ARTN 187401
GEIM AK, 2009, SCIENCE, V324, P1530, DOI 10.1126/science.1158877
HALL JE, 1975, J GEN PHYSIOL, V66, P531
HILLE B, 2001, ION CHANNELS EXCITAB, CH11
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HOOGERHEIDE DP, 2009, PHYS REV LETT, V102, ARTN 256804
KASIANOWICZ JJ, 1996, P NATL ACAD SCI USA, V93, P13770
LI JL, 2003, NAT MATER, V2, P611, DOI 10.1038/nmat965
LIU HT, 2010, SCIENCE, V327, P64, DOI 10.1126/science.1181799
MERCHANT CA, 2010, NANO LETT, DOI 10.1021/NL101046T
REINA A, 2009, NANO LETT, V9, P30, DOI 10.1021/nl801827v
REINA A, 2009, NANO RES, V2, P509, DOI 10.1007/s12274-009-9059-y
SCHNEIDER GF, 2010, NANO LETT, V10, P3163, DOI 10.1021/nl102069z
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f
STORM AJ, 2003, NAT MATER, V2, P537, DOI 10.1038/nmat941
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112
ZWOLAK M, 2008, REV MOD PHYS, V80, P141, DOI 10.1103/RevModPhys.80.141
ZWOLAK M, 2009, PHYS REV LETT, V103, ARTN 128102
NR 21
TC 1
PU NATURE PUBLISHING GROUP; MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1
9XW, ENGLAND
SN 0028-0836
DI 10.1038/nature09379
PD SEP 9
VL 467
IS 7312
BP 190
EP U73
SC Multidisciplinary Sciences
GA 647KB
UT ISI:000281616300030
ER

PT J
*Record 3 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281498200068>
*Order Full Text [ ]
AU Schoen, DT
Schoen, AP
Hu, LB
Kim, HS
Heilshorn, SC
Cui, Y
AF Schoen, David T.
Schoen, Alia P.
Hu, Liangbing
Kim, Han Sun
Heilshorn, Sarah C.
Cui, Yi
TI High Speed Water Sterilization Using One-Dimensional Nanostructures
SO NANO LETTERS
LA English
DT Article
DE Nanowires; nanotubes; environmental applications; multiscale; textile
ID SILICON NANOWIRES; CARBON NANOTUBES; SOLAR-CELLS; MEMBRANES;
PERFORMANCE; PARTICLES
AB The removal of bacteria and other organisms from water is an extremely
important process, not only for drinking and sanitation but also
industrially as biofouling is a commonplace and serious problem. We
here present a textile based multiscale device for the high speed
electrical sterilization of water using silver nanowires, carbon
nanotubes, and cotton. This approach, which combines several materials
spanning three very different length scales with simple dying based
fabrication, makes a gravity fed device operating at 100000 L/(h m(2))
which can inactivate >98% of bacteria with only several seconds of
total incubation time. This excellent performance is enabled by the use
of an electrical mechanism rather than size exclusion, while the very
high surface area of the device coupled with large electric field
concentrations near the silver nanowire tips allows for effective
bacterial inactivation.
C1 [Schoen, David T.; Schoen, Alia P.; Hu, Liangbing; Kim, Han Sun; Heilshorn, Sarah C.; Cui, Yi] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.
RP Cui, Y, Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.
EM yicui@stanford.edu
CR AKHAVAN O, 2009, SCI TECHNOL ADV MAT, V10, ARTN 015003
BOUKAI AI, 2008, NATURE, V451, P168, DOI 10.1038/nature06458
CHAN CK, 2008, NAT NANOTECHNOL, V3, P31, DOI 10.1038/nnano.2007.411
CUI Y, 2001, SCIENCE, V291, P851
GIBBINS B, 2005, DEVICE DIAGN IND, V27, P2
HECHT DS, 2007, CURR APPL PHYS, V7, P60, DOI 10.1016/j.cap.2005.09.001
HOCHBAUM AI, 2008, NATURE, V451, P163, DOI 10.1038/nature06381
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUANG MH, 2001, SCIENCE, V292, P1897
ISLAM MF, 2003, NANO LETT, V3, P269, DOI 10.1021/nl025924u
JAIN P, 2005, BIOTECHNOL BIOENG, V90, P59, DOI 10.1002/bit.20368
LAM CW, 2006, CRIT REV TOXICOL, V36, P189, DOI 10.1080/10408440600570233
LAW M, 2005, NAT MATER, V4, P455, DOI 10.1038/nmat1387
LI XY, 2002, J ENVIRON ENG-ASCE, V128, P697
LV YH, 2009, J MEMBRANE SCI, V331, P50, DOI 10.1016/j.memsci.2009.01.007
MELOSH NA, 2003, SCIENCE, V300, P112, DOI 10.1126/science.1081940
MORONES JR, 2005, NANOTECHNOLOGY, V16, P2346, DOI
10.1088/0957-4484/16/10/059
OBERDORSTER G, 2005, ENVIRON HEALTH PERSP, V113, P823, DOI
10.1289/ehp.7339
PANHUIS MIH, 2007, SYNTHETIC MET, V157, P358, DOI
10.1016/j.synthmet.2007.04.010
SCHOENBACH KH, 2002, IEEE T PLASMA SCI 2, V30, P293
SHIM BS, 2008, NANO LETT, V8, P4151, DOI 10.1021/nl801495p
SPADARO JA, 1974, ANTIMICROB AGENTS CH, V6, P637
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192
SUN YG, 2002, ADV MATER, V14, P833
TIAN BZ, 2007, NATURE, V449, P885, DOI 10.1038/nature06181
TSONG TY, 1991, BIOPHYS J, V60, P297
WANG XD, 2007, SCIENCE, V316, P102, DOI 10.1126/science.1139366
WU ZC, 2004, SCIENCE, V305, P1273
YOON K, 2006, POLYMER, V47, P2434, DOI 10.1016/j.polymer.2006.01.042
YOON KY, 2008, ENVIRON SCI TECHNOL, V42, P1251, DOI 10.1021/es0720199
YUAN JK, 2008, NAT NANOTECHNOL, V3, P332, DOI 10.1038/nnano.2008.136
ZHANG X, 2009, ADV FUNCT MATER, V9, P3731
NR 32
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
DI 10.1021/nl101944e
PD SEP
VL 10
IS 9
BP 3628
EP 3632
SC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary
GA 645WZ
UT ISI:000281498200068
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, September 10, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281311500027
*Order Full Text [ ]

Title:
Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus

Authors:
Acharya, R; Carnevale, V; Fiorin, G; Levine, BG; Polishchuk, AL; Balannik, V; Samish, I; Lamb, RA; Pinto, LH; DeGrado, WF; Klein, ML

Author Full Names:
Acharya, Rudresh; Carnevale, Vincenzo; Fiorin, Giacomo; Levine, Benjamin G.; Polishchuk, Alexei L.; Balannik, Victoria; Samish, Ilan; Lamb, Robert A.; Pinto, Lawrence H.; DeGrado, William F.; Klein, Michael L.

Source:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 107 (34): 15075-15080 AUG 24 2010

Language:
English

Document Type:
Article

Author Keywords:
ion channels; M2 proton channel; membrane proteins; water clusters; histidine protonation

KeyWords Plus:
SELECTIVE ION-CHANNEL; MOLECULAR-DYNAMICS; LIPID-BILAYERS; DRUG-RESISTANCE; WATER CLUSTERS; ACTIVATION; CONDUCTION; HISTIDINE; DOMAIN; STATE

Abstract:
The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2(+) and 3(+) with a pK(a) near 6. A 1.65 angstrom resolution X-ray structure of the transmembrane protein (residues 25-46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at
higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.

Reprint Address:
DeGrado, WF, Univ Penn, Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA.

Research Institution addresses:
[Acharya, Rudresh; Polishchuk, Alexei L.; Samish, Ilan; DeGrado, William F.] Univ Penn, Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA; [Carnevale, Vincenzo; Fiorin, Giacomo; Levine, Benjamin G.; Klein, Michael L.] Temple Univ, Inst Computat Mol Sci, Philadelphia, PA 19122 USA; [Carnevale, Vincenzo; Fiorin, Giacomo; Levine, Benjamin G.; Klein, Michael L.] Temple Univ, Dept Chem, Philadelphia, PA 19122 USA; [Balannik, Victoria; Pinto, Lawrence H.] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA; [Lamb, Robert A.] Northwestern Univ, Howard Hughes Med Inst, Evanston, IL 60208 USA; [Lamb, Robert A.] Northwestern Univ, Dept Biochem Mol Biol & Cell Biol, Evanston, IL 60208 USA

E-mail Address:
wdegrado@mail.med.upenn.edu; mlklein@temple.edu

Cited References:
BALANNIK V, 2009, BIOCHEMISTRY-US, V49, P696.
CADY SD, 2008, P NATL ACAD SCI USA, V105, P1483, DOI 10.1073/pnas.0711500105.
CADY SD, 2009, BIOCHEMISTRY-US, V48, P7356, DOI 10.1021/bi9008837.
CADY SD, 2010, NATURE, V463, P689, DOI 10.1038/nature08722.
CHAKRABARTI N, 2004, J MOL BIOL, V343, P493, DOI 10.1016/j.jmb.2004.08.036.
CHEN HN, 2007, BIOPHYS J, V93, P3470, DOI 10.1529/biophysj.107.105742.
CHIZHMAKOV IV, 1996, J PHYSIOL-LONDON, V494, P329.
DECOURSEY TE, 2003, PHYSIOL REV, V83, P475, DOI 10.1152/physrev.00028.2002.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
FORREST LR, 1999, BIOPHYS J, V76, P1886.
HARRIES WEC, 2004, P NATL ACAD SCI USA, V101, P14045, DOI 10.1073/pnas.0405274101.
HEADRICK JM, 2005, SCIENCE, V308, P1765, DOI 10.1126/science.1113094.
HILLE B, 2001, ION CHANNELS EXCITAB.
HU J, 2006, P NATL ACAD SCI USA, V103, P6865, DOI 10.1073/pnas.0601944103.
HU J, 2007, BIOPHYS J, V92, P4335, DOI 10.1529/biophysj.106.090183.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JING XH, 2008, P NATL ACAD SCI USA, V105, P10967, DOI 10.1073/pnas.0804958105.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KHURANA E, 2009, P NATL ACAD SCI USA, V106, P1069, DOI 10.1073/pnas.0811720106.
LI C, 2007, BBA-BIOMEMBRANES, V1768, P3162, DOI 10.1016/j.bbamem.2007.08.025.
LIN TI, 2001, J VIROL, V75, P3647.
LIU K, 1996, SCIENCE, V271, P929.
LIU ZF, 2009, NATURE, V461, P120, DOI 10.1038/nature08277.
MA CL, 2008, J BIOL CHEM, V283, P15921, DOI 10.1074/jbc.M710302200.
MA CL, 2009, P NATL ACAD SCI USA, V106, P12283, DOI 10.1073/pnas.0905726106.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MOULD JA, 2000, J BIOL CHEM, V275, P31038.
MOULD JA, 2000, J BIOL CHEM, V275, P8592.
OKADA A, 2001, BIOCHEMISTRY-US, V40, P6053.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289.
PIELAK RM, 2009, P NATL ACAD SCI USA, V106, P7379, DOI 10.1073/pnas.0902548106.
PINTO LH, 1992, CELL, V69, P517.
PINTO LH, 1997, P NATL ACAD SCI USA, V94, P11301.
PINTO LH, 2006, J BIOL CHEM, V281, P8997, DOI 10.1074/jbc.R500020200.
ROBERTSON WH, 2003, SCIENCE, V299, P1367, DOI 10.1126/science.1079666.
SCHNELL JR, 2008, NATURE, V451, P591, DOI 10.1038/nature06531.
SHIN JW, 2004, SCIENCE, V304, P1137, DOI 10.1126/science.1096466.
STOUFFER AL, 2008, NATURE, V451, P596, DOI 10.1038/nature06528.
STOUFFER AL, 2008, STRUCTURE, V16, P1067, DOI 10.1016/j.str.2008.04.011.
SUGRUE RJ, 1991, VIROLOGY, V180, P617.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TANG YJ, 2002, J BIOL CHEM, V277, P39880, DOI 10.1074/jbc.M206582200.
TIAN CL, 2003, PROTEIN SCI, V12, P2597, DOI 10.1110/ps.03168503.
TUMPEY TM, 2002, P NATL ACAD SCI USA, V99, P13849, DOI 10.1073/pnas.212519699.
VENKATARAMAN P, 2005, J BIOL CHEM, V280, P21463, DOI 10.1074/jbc.M412406200.
VIJAYVERGIYA V, 2004, BIOPHYS J, V87, P1697, DOI 10.1529/biophysj.104.043018.
WANG C, 1993, J VIROL, V67, P5585.
WANG C, 1995, BIOPHYS J, V69, P1363.
WITTER R, 2008, J AM CHEM SOC, V130, P918, DOI 10.1021/ja0754305.
YI MG, 2009, P NATL ACAD SCI USA, V106, P13311, DOI 10.1073/pnas.0906553106.
YIFRACH O, 2002, CELL, V111, P231.
ZHIRNOV OP, 1992, VIROLOGY, V186, P324.

Cited Reference Count:
53

Times Cited:
0

Publisher:
NATL ACAD SCIENCES; 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA

Subject Category:
Multidisciplinary Sciences

ISSN:
0027-8424

DOI:
10.1073/pnas.1007071107

IDS Number:
643PT

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281296900010
*Order Full Text [ ]

Title:
Filling carbon nanotubes with liquid acetonitrile

Authors:
Chaban, V

Author Full Names:
Chaban, Vitaly

Source:
CHEMICAL PHYSICS LETTERS 496 (1-3): 50-55 AUG 20 2010

Language:
English

Document Type:
Article

KeyWords Plus:
WATER; DYNAMICS; SUPERCAPACITOR; FLUID; CAPILLARITY; SIMULATIONS; CRYSTALS; MODEL

Abstract:
Carbon nanotubes and acetonitrile are of interest for modern electrochemistry since they are used to make supercapacitors more efficient. In order to assess the feasibility of this setup, molecular dynamics simulations were performed to investigate the hydrophobic degasified single-walled nanotubes filling with liquid acetonitrile. The simulation shows that nanotubes with 10 nm of length can be completely filled with acetonitrile during less than 100 ps. Surprisingly, the filling process is not significantly affected by nanotube diameter and ambient conditions. In general, the ability of small hydrophobic carbon nanotubes to be completely filled with acetonitrile is an important feature for supercapacitors. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Chaban, V, Kharkov Natl Univ, Sch Chem, Svoboda Sq 4, UA-61077 Kharkov, Ukraine.

Research Institution addresses:
Kharkov Natl Univ, Sch Chem, UA-61077 Kharkov, Ukraine

E-mail Address:
vvchaban@gmail.com

Cited References:
AJAYAN PM, 1993, NATURE, V361, P333.
AZAIS P, 2007, J POWER SOURCES, V171, P1046, DOI 10.1016/j.jpowsour.2007.07.001.
BANERJEE S, 2007, CHEM PHYS LETT, V434, P292, DOI 10.1016/j.cplett.2006.12.025.
BUSSI G, 2007, J CHEM PHYS, V126, ARTN 014101.
DUJARDIN E, 1994, SCIENCE, V265, P1850.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
GORDILLO MC, 2001, CHEM PHYS LETT, V341, P250.
HESS B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q.
HUANG JS, 2008, CHEM-EUR J, V14, P6614, DOI 10.1002/chem.200800639.
HUMMER G, 2001, NATURE, V414, P188.
JAGANNATHAN S, 2010, COMPOS SCI TECHNOL, V70, P593, DOI 10.1016/j.compscitech.2009.12.008.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALUGIN ON, 2008, NANO LETT, V8, P2126, DOI 10.1021/nl072976g.
KOFINGER J, 2009, REV LETT, V103, UNSP 080601.
KORENBLIT Y, 2010, ACS NANO, V4, P1337, DOI 10.1021/nn901825y.
LEE J, 2010, APPL PHYS LETT, V96, ARTN 133108.
LIU YC, 2005, LANGMUIR, V21, P12025, DOI 10.1021/la0517181.
LUO R, 2002, ABSTR PAP AM CHEM 1, V224, U470.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
MENG J, 2010, NANOTECHNOLOGY, V21, ARTN 145104.
MITTAL J, 2001, CHEM PHYS LETT, V339, P311.
MONTHIOUX M, 2002, CARBON, V40, P1809.
NIKITIN AM, 2007, J COMPUT CHEM, V28, P2020, DOI 10.1002/jcc.20721.
PARRINELLO M, 1981, J APPL PHYS, V52, P7182.
SLOAN J, 2003, CR PHYS, V4, P1063, DOI 10.1016/S1631-0705(03)00102-6.
TABERNA PL, 2006, MATER RES BULL, V41, P478, DOI 10.1016/j.materresbull.2005.09.029.
TAWABINI B, 2010, WATER SCI TECHNOL, V61, P591, DOI 10.2166/wst.2010.897.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
UGARTE D, 1998, APPL PHYS A-MATER, V67, P101.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
XIAO QF, 2003, ELECTROCHIM ACTA, V48, P575.
XU CG, 2000, CHEM COMMUN, P2427.
YU HW, 2010, J HAZARD MATER, V177, P138, DOI 10.1016/j.jhazmat.2009.12.007.

Cited Reference Count:
35

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
0009-2614

DOI:
10.1016/j.cplett.2010.07.003

IDS Number:
643LC

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281307400011
*Order Full Text [ ]

Title:
Microscale Falling Cylinder Viscometer With Slip Boundary

Authors:
Bataineh, KM; Al-Nimr, MA; Batayneh, W

Author Full Names:
Bataineh, Khaled M.; Al-Nimr, Moh'd A.; Batayneh, Wafa

Source:
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME 132 (8): Art. No. 084502 AUG 2010

Language:
English

Document Type:
Article

Author Keywords:
microfluidics; microchannel flow; falling cylinder viscometer; slip flow; analytical solution

KeyWords Plus:
HYDROPHOBIC MICROCHANNEL WALLS; SOLID-SURFACES; CONTACT-LINE; FLUID SLIP; LIQUID; PRESSURE; WATER; FLOW; SINGULARITY; INTERFACES

Abstract:
This paper theoretically investigates the hydrodynamic behavior of a falling microcylinder viscometer. The Navier slip conditions are applied to all fluid/solid interfacial boundary conditions of the device. Previous investigations focused on the behavior at the macroscale level and did not consider the slip conditions. The slip coefficients for typical devices and operating conditions are found to be major parameters that affect the behavior of the microscale viscometer. Formulas for determining the viscosity coefficients using a microscale viscometer without considering slip conditions give inaccurate results. The theoretical model has been verified by comparing its predictions with that of the macroviscometer after neglecting the slip conditions. [DOI: 10.1115/1.4002168]

Reprint Address:
Bataineh, KM, Jordan Univ Sci & Technol, Dept Mech Engn, Irbid 22110, Jordan.

Research Institution addresses:
[Bataineh, Khaled M.; Al-Nimr, Moh'd A.; Batayneh, Wafa] Jordan Univ Sci & Technol, Dept Mech Engn, Irbid 22110, Jordan

E-mail Address:
k.bataineh@just.edu.jo

Cited References:
ARKILIC EB, 1997, J MICROELECTROMECH S, V6, P167.
ASHARE E, 1965, AICHE J, V11, P910.
BATAINEH KM, 2009, ASME, V131, UNSP 051105.
BIRD B, 2002, TRANSPORT PHENOMENA.
BIRD BR, 1987, DYNAMICS POLYM LIQUI.
BRIDGMAN PW, 1926, P AM ACAD ARTS SCI, V61, P57.
CHAN RKY, 1985, J PHYS E SCI INSTRUM, V18, P510.
CHEN MCS, 1968, AICHE J, V14, P123.
CHEN MCS, 1972, AICHE J, V18, P146.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
CHURAEV NV, 1984, J COLLOID INTERF SCI, V97, P574.
COTTINBIZONNE C, 2003, NAT MATER, V2, P237, DOI 10.1038/nmat857.
CRAIG VSJ, 2001, PHYS REV LETT, V87, ARTN 054504.
CRISTESCU ND, 2002, INT J ENG SCI, V40, P605.
DUSSANV EB, 1976, J FLUID MECH, V77, P665.
EICHSTADT FJ, 1966, AICHE J, V12, P1179.
GADELHAK M, 1999, ASME, V121, P5.
GADELHAK M, 2002, HDB MEMS.
HOCKING LM, 1977, J FLUID MECH, V79, P209.
IRVING JB, 1971, J PHYS E, V4, P232.
KARNIADAKIS G, 2002, MICRO FLOW FUNDAMENT.
LAMB H, 1932, HYDRODYNAMICS, P594.
LOHRENZ J, 1960, AICHE J, V6, P547.
NAVIER CLM, 1823, MEM ACAD SCI I FR, V6, P432.
NAVIER CLM, 1823, MEMOIRES ACAD ROYALE, V6, P389.
ONEILL ME, 1986, PHYS FLUIDS, V29, P913.
PARANJAPE BV, 1990, PHYS CHEM LIQ, V21, P147.
PIT R, 2000, PHYS REV LETT, V85, P980.
RUCKENSTEIN E, 1983, J COLLOID INTERF SCI, V96, P488.
SCHNELL E, 1956, J APPL PHYS, V27, P1149.
SPIKES H, 2003, LANGMUIR, V19, P5065, DOI 10.1021/la034123j.
SWIFT GW, 1960, AICHE J, V6, P415.
THOMPSON PA, 1997, NATURE, V389, P360.
TRANSONTAY R, 1988, REV SCI INSTRUM, V59, P1399.
TRETHEWAY DC, 2002, PHYS FLUIDS, V14, L9.
VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31.
WATANABE K, 1999, J FLUID MECH, V381, P225.
WEHBEH EG, 1993, PHYS FLUIDS A-FLUID, V5, P25.
ZHU LD, 2005, J COMPUT PHYS, V202, P181, DOI 10.1016/j.jcp.2004.07.004.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.

Cited Reference Count:
40

Times Cited:
0

Publisher:
ASME-AMER SOC MECHANICAL ENG; THREE PARK AVE, NEW YORK, NY 10016-5990 USA

Subject Category:
Engineering, Mechanical

ISSN:
0098-2202

DOI:
10.1115/1.4002168

IDS Number:
643OT

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281199000095
*Order Full Text [ ]

Title:
State-of-art of Slip Flow in Nanochannel

Authors:
Zhang, XL; Liu, K; Li, T; Xiao, Y; Ba, DC; Wu, CM

Author Full Names:
Zhang Xiao-ling; Liu Kun; Li Tao; Xiao Yu; Ba De-chun; Wu Chun-mei

Source:
VACUUM TECHNOLOGY AND SURFACE ENGINEERING - PROCEEDINGS OF THE 9TH VACUUM METALLURGY AND SURFACE ENGINEERING CONFERENCE : 512-516 2009

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Micro-nanofluidics; Nanochannel; Velocity slip

KeyWords Plus:
HYDROPHOBIC MICROCHANNELS; BOUNDARY-CONDITION; LIQUID FLOW; NANOFLUIDICS; WATER

Abstract:
In the fields of micro-nanofluidics studies, with the channel from the micro into the nano-scale, surface properties have changed dramatically. The nano-scale slip flow of fluid has brought a significant impact on fluid transport. This article briefly introduces velocity slip factors in the nanochannel, including channel potential energy, temperatures, variable cross-section and wall roughness and so on..

Reprint Address:
Zhang, XL, Northeastern Univ, Shenyang 11004, Peoples R China.

Research Institution addresses:
[Zhang Xiao-ling; Liu Kun; Li Tao; Xiao Yu; Ba De-chun] Northeastern Univ, Shenyang 11004, Peoples R China

Cited References:
BIZONNE CC, 2005, PHYS REV LETT, V94, UNSP 056102.
CAO BY, 2006, ACTA PHYS SIN-CH ED, V55, P5305.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
CRAIG VSJ, 2001, PHYS REV LETT, UNSP 87054504.
EIJKEL J, 2007, LAB CHIP, V7, P299, DOI 10.1039/b700364c.
EIJKEL JCT, 2005, LAB CHIP, V5, P1202, DOI 10.1039/b509819j.
GADELHAK M, 2001, MEC IND, V2, P313.
GRANICK S, 1991, SCIENCE, V253, P1374.
MUKHOPADHYAY R, 2006, ANAL CHEM, V78, P7379.
SUGIYAMA W, 1996, VACUUM, V47, P791.
TAS NR, 2003, NANO LETT, V3, P1537, DOI 10.1021/nl034676e.
THOMPSON PA, 1989, PHYS REV LETT, V63, P766.
THOMPSON PA, 1997, NATURE, V389, P360.
TRETHEWAY DC, 2004, PHYS FLUIDS, V16, P1509, DOI 10.1063/1.1669400.
VOIKOV IV, 1988, COMP MATH MATH PHYS, V28, P52.
XIANG H, 2008, J ENG THERMOPHYSICS, V29, P1557.
XU C, 2005, J ENG THERMOPHYSICS, V26, P912.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.

Cited Reference Count:
19

Times Cited:
0

Publisher:
PUBLISHING HOUSE ELECTRONICS INDUSTRY; PO BOX 173 WANSHOU ROAD, BEIJING 100036, PEOPLES R CHINA

IDS Number:
BQK17

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================