Friday, January 29, 2010

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, January 22, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273412000018
*Order Full Text [ ]

Title:
Boron Nitride Nanotubes Selectively Permeable to Cations or Anions

Authors:
Hilder, TA; Gordon, D; Chung, SH

Author Full Names:
Hilder, Tamsyn A.; Gordon, Daniel; Chung, Shin-Ho

Source:
SMALL 5 (24): 2870-2875 DEC 4 2009

Language:
English

Document Type:
Article

Author Keywords:
engineered ion channels; ion selectivity; membranes; molecular dynamics; nanotubes

KeyWords Plus:
CARBON NANOTUBE; MOLECULAR-DYNAMICS; BROWNIAN DYNAMICS; WATER; TRANSPORT; PERMEATION; MEMBRANES; ENERGY; FUNCTIONALIZATION; CONDUCTION

Abstract:
Biological ion channels in membranes are selectively permeable to specific ionic species. They maintain the resting membrane potential, generate propagated action potentials, and control a wide variety of cell functions. Here it is demonstrated theoretically that boron nitride nanotubes have the ability to carry out some of the important functions of biological ion channels. Boron nitride nanotubes with radii of 4.83 and 5.52 angstrom embedded in a silicon nitride membrane are selectively permeable to cations and anions, respectively. They broadly mimic some of the permeation characteristics of gramicidin and chloride channels. Using distributional molecular dynamics, which is a combination of molecular and stochastic dynamics simulations, the properties of these engineered nanotubes are characterized, such as the free energy encountered by charged particles, the water-ion structure within the pore, and the current-voltage and current-concentration profiles. These engineered!
nanotubes have potential applications as sensitive biosensors, antibiotics, or filtration devices.

Reprint Address:
Hilder, TA, Australian Natl Univ, Res Sch Biol, Computat Biophys Grp, GPO Box 4, Canberra, ACT 2601, Australia.

Research Institution addresses:
[Hilder, Tamsyn A.; Gordon, Daniel; Chung, Shin-Ho] Australian Natl Univ, Res Sch Biol, Computat Biophys Grp, Canberra, ACT 2601, Australia

E-mail Address:
tamsyn.hilder@anu.edu.au

Cited References:
*U IL I ADV SCI TE, BION TUT.
AKSIMENTIEV A, 2004, BIOPHYS J, V87, P2086, DOI 10.1529/biophysj.104.042960.
ANDERSEN OS, 2007, BIOL MED PHYS BIOMED, P33.
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
CHEN X, 2009, J AM CHEM SOC, V131, P890, DOI 10.1021/ja807334b.
CHUNG SH, 1999, BIOPHYS J, V77, P2517.
CORRY B, 2004, BIOPHYS J, V86, P846.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DRESSELHAUS MS, 1995, CARBON, V33, P883.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FORTINA P, 2005, TRENDS BIOTECHNOL, V23, P168, DOI 10.1016/j.tibtech.2005.02.007.
GARATE JA, 2009, MOL SIMULAT, V35, P2.
GORDON D, 2009, J CHEM PHYS IN PRESS.
GROSSFIELD A, IMPLEMENTATION WHAM.
HENG JB, 2005, NANO LETT, V5, P1883, DOI 10.1021/nl0510816.
HILDER TA, 2009, SMALL IN PRESS, DOI 10.1002/SMLL.200900349.
HILLE B, 1992, IONIC CHANNELS EXCIT.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
ISHIGAMI M, 2003, AIP CONF PROC, V696, P94.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KALE L, 1999, J COMPUT PHYS, V151, P283.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2000, J CHEM PHYS, V113, P5037.
KOGA K, 2001, NATURE, V412, P802.
KUMAR S, 1995, J COMPUT CHEM, V16, P1339.
KUYUCAK S, 2001, REP PROG PHYS, V64, P1427.
LIU HM, 2008, MOL SIMULAT, V34, P169, DOI 10.1080/08927020801966087.
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI 10.1073/pnas.0400352101.
MACKERELL AD, 1998, ENCY COMPUTATIONAL C, V1, P271.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
OMARA M, 2005, BIOPHYS J, V88, P3286, DOI 10.1529/biophysj.104.051664.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
PARK N, 2004, J PHYS SOC JPN, V73, P2469.
SOLOZHENKO VL, 2001, J PHYS CHEM SOLIDS, V62, P1331.
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WIDMAYER P, 1999, PHYS REV B, V59, P5233.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
WON CY, 2008, J PHYS CHEM C, V112, P1812, DOI 10.1021/jp076747u.
WU XJ, 2006, J AM CHEM SOC, V128, ARTN JA063653+.
ZHI CY, 2005, J AM CHEM SOC, V127, P15996, DOI 10.1021/ja053917c.

Cited Reference Count:
44

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1613-6810

DOI:
10.1002/smll.200901229

IDS Number:
541JV

========================================================================

*Record 2 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273517200012
*Order Full Text [ ]

Title:
Influence of endohedral water on diameter sorting of single-walled carbon nanotubes by density gradient centrifugation

Authors:
Quintilla, A; Hennrich, F; Lebedkin, S; Kappes, MM; Wenzel, W

Author Full Names:
Quintilla, A.; Hennrich, F.; Lebedkin, S.; Kappes, Manfred M.; Wenzel, Wolfgang

Source:
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 12 (4): 902-908 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; SIMULATIONS; BEHAVIOR; GROMACS

Abstract:
Separation of single-walled carbon nanotubes (SWNT) by diameter is an important prerequisite for controlled experimental studies and efficient application of these systems. By comparing experimental data with molecular dynamics (MD) simulations, we demonstrate that water filling has a significant, tube-diameter dependent effect on the effective mass density of individual single-walled carbon nanotubes suspended in aqueous surfactant suspensions. We present a model for the effective density of the nanotube-surfactant complex in aqueous solution that permits a comprehensive description of its density across the entire, experimentally relevant range of SWNT diameters. Parameters for this model can be obtained from molecular dynamics simulations and/or experiment and help explain the subtle interplay of surfactant coverage and endohedral water in the separation of a particular diameter species of SWNT by gradient centrifugation.

Reprint Address:
Wenzel, W, Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany.

Research Institution addresses:
[Quintilla, A.; Hennrich, F.; Lebedkin, S.; Kappes, Manfred M.; Wenzel, Wolfgang] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany; [Kappes, Manfred M.] Univ Karlsruhe, Inst Phys Chem, D-76128 Karlsruhe, Germany; [Kappes, Manfred M.; Wenzel, Wolfgang] Univ Karlsruhe, DFG Zentrum Funkt Nanostrukturen, D-76131 Karlsruhe, Germany

E-mail Address:
wolfgang.wenzel@kit.edu

Cited References:
ARNOLD MS, 2005, NANO LETT, V5, P713, DOI 10.1021/nl050133o.
ARNOLD MS, 2006, NAT NANOTECHNOL, V1, P60, DOI 10.1038/nnano.2006.52.
ARNOLD MS, 2008, ACS NANO, V2, P2291, DOI 10.1021/nn800512t.
BACHILO SM, 2002, SCIENCE, V298, P2361, DOI 10.1126/science.1078727.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BRONIKOWSKI MJ, 2001, J VAC SCI TECHNOL 2, V19, P1800.
BROVCHENKO I, 2005, EUR PHYS J B, V44, P345, DOI 10.1140/epjb/e2005-00133-4.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CALVARESI M, 2009, SMALL, V5, P2191, DOI 10.1002/smll.200900528.
DUJARDIN E, 1998, ADV MATER, V10, P1472.
EVANS DJ, 1985, J CHEM PHYS, V83, P4069.
HINSEN K, 2000, J COMPUT CHEM, V21, P79.
HUANG BD, 2005, J CHEM PHYS, V122, ARTN 084708.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1998, J MOL STRUC-THEOCHEM, V424, P145.
KRUPKE R, 2003, SCIENCE, V301, P344, DOI 10.1126/science.1086534.
LEBEDKIN S, 2003, NEW J PHYS, V5, P140.
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415.
NAIR N, 2008, LANGMUIR, V24, P1790, DOI 10.1021/la702516u.
NIYOGI S, 2009, J AM CHEM SOC, V131, P1144.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
PARINELLO M, 1981, J APPL PHYS, V52, P7182.
REICH S, 2005, PHYS REV LETT, V95, ARTN 077402.
ROSSI MP, 2004, NANO LETT, V4, P989, DOI 10.1021/nl049688u.
SOUZA NRD, 2006, J PHYS CONDENS MATT, V18, S2321.
STRIOLO A, 2008, NANOTECHNOLOGY, V19, ARTN 445606.
TUMMALA NR, 2009, ACS NANO, V3, P595, DOI 10.1021/nn8007756.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
WALLACE EJ, 2007, NANO LETT, V7, P1923, DOI 10.1021/nl070602h.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WANG K, 2004, BMC STRUCT BIOL, V4, P8.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
YIN B, 2009, CHIN PHYS LETT, V26.
YUREKLI K, 2004, J AM CHEM SOC, V126, P9902, DOI 10.1021/ja047451u.

Cited Reference Count:
34

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1463-9076

DOI:
10.1039/b912847f

IDS Number:
542TB

========================================================================

*Record 3 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273404500055
*Order Full Text [ ]

Title:
Molecular Modeling of Two Distinct Triangular Oligomers in Amyloid beta-protein

Authors:
Zheng, J; Yu, X; Wang, JD; Yang, JC; Wang, QM

Author Full Names:
Zheng, Jie; Yu, Xiang; Wang, Jingdai; Yang, Jui-Chen; Wang, Qiuming

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (1): 463-470 JAN 14 2010

Language:
English

Document Type:
Article

KeyWords Plus:
ALZHEIMERS A-BETA(1-40) PEPTIDE; DYNAMICS SIMULATIONS; FIBRIL ELONGATION; ATOMIC STRUCTURES; COMMON MECHANISM; ION CHANNELS; DISEASE; A-BETA(17-42); POLYMORPHISM; PATHOGENESIS

Abstract:
Arnyloid-beta (A beta) peptides exhibit many distinct structural morphology at the early aggregate stage, some of which are biological relevant to the pathogenesis of Alzheimer's disease (AD). Atomic-resolution structures of the early A beta aggregates and their conformational changes in amyloid aggregation remain elusive. Here, we perform all-atom molecular modeling and dynamics simulations to obtain two stable triangular-like A beta structures with the lowest packing energy, one corresponding to the Tycko's model (Paravastu, A.; Leapman, R.; Yau, W.; Tycko, R. Proc. Nat. Acad. Soc. U.S.A. 2008, 105, 18349-18354) (referred to C-WT model) and the other corresponding to computational model (N-WT model). Both models have the same 3-fold symmetry but distinct beta-sheet organizations in which three A beta hexamers pack together via either C-terminal beta-strand residues or N-terminal beta-strand residues forming distinct hydrophobic cross section. Structural and energetic compa!
risons of two 3-fold A beta oligomers, coupled with Structural changes upon the mutations Occurring at the interacting interfaces, reveal that although hydrophobic interactions are still dominant forces, electrostatic interactions are more favorable in the N-WT model due to the formation of more and stable intersheet salt bridges, while solvation energy is more favorable in the C-WT model due to more exposed hydrophilic residues to solvent. Both models display many common features similar to other amyloid oligomers and therefore are likely to be biologically relevant.

Reprint Address:
Zheng, J, Univ Akron, Dept Chem & Biomol Engn, Akron, OH 44325 USA.

Research Institution addresses:
[Zheng, Jie; Yu, Xiang; Yang, Jui-Chen; Wang, Qiuming] Univ Akron, Dept Chem & Biomol Engn, Akron, OH 44325 USA; [Wang, Jingdai] Zhejiang Univ, Dept Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China

E-mail Address:
zhengj@uakron.edu

Cited References:
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
BUCCIANTINI M, 2002, NATURE, V416, P507.
BUCHETE NV, 2005, J MOL BIOL, V353, P804, DOI 10.1016/j.jmb.2005.08.066.
BUCHETE NV, 2007, BIOPHYS J, V92, P3032, DOI 10.1529/biophysj.106.100404.
BUXBAUM JD, 1993, P NATL ACAD SCI USA, V90, P9195.
CHIMON S, 2007, NAT STRUCT MOL BIOL, V14, P1157, DOI 10.1038/nsmb1345.
CLEARY JP, 2005, NAT NEUROSCI, V8, P79, DOI 10.1038/nn1372.
FAWZI NL, 2007, J MOL BIOL, V365, P535, DOI 10.1016/j.jmb.2006.10.011.
FAWZI NL, 2008, BIOPHYS J, V94, P2007, DOI 10.1529/biophysj.107.121467.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, P NATL ACAD SCI USA, V104, P14883, DOI 10.1073/pnas.0706633104.
IM WP, 2003, J COMPUT CHEM, V24, P1691, DOI 10.1002/jcc.10321.
JIANG DL, 2009, J PHYS CHEM B, V113, P3160, DOI 10.1021/jp8085792.
KALE L, 1999, J COMPUT PHYS, V151, P283.
KAYED R, 2003, SCIENCE, V300, P486.
KAYED R, 2009, J BIOL CHEM, V284, P4230, DOI 10.1074/jbc.M808591200.
KRONE MG, 2008, J MOL BIOL, V381, P221, DOI 10.1016/j.jmb.2008.05.069.
LASHUEL HA, 2006, Q REV BIOPHYS, V39, P167, DOI 10.1017/S0033583506004422.
LEE YH, 2009, J BIOL CHEM, V284, P2169, DOI 10.1074/jbc.M806939200.
LIN H, 2001, FASEB J, V15, P2433.
MA BY, 2003, P NATL ACAD SCI USA, V100, P5772, DOI 10.1073/pnas.1030237100.
MAKABE K, 2006, P NATL ACAD SCI USA, V103, P17753, DOI 10.1073/pnas.0606690103.
MILLER Y, 2009, BIOPHYS J, V97, P1168, DOI 10.1016/j.bpj.2009.05.042.
MUKHERJEE S, 2009, J PHYS CHEM B, V113, P531, DOI 10.1021/jp809817s.
MURAKAMI K, 2003, J BIOL CHEM, V278, P46179, DOI 10.1074/jbc.M301874200.
NGUYEN HD, 2004, P NATL ACAD SCI USA, V101, P16180, DOI 10.1073/pnas.0407273101.
OLOFSSON A, 2006, J BIOL CHEM, V281, P477, DOI 10.1074/jbc.M508962200.
PARAVASTU AK, 2008, P NATL ACAD SCI USA, V105, P18349, DOI 10.1073/pnas.0806270105.
PETKOVA AT, 2005, SCIENCE, V307, P262, DOI 10.1126/science.1105850.
PETKOVA AT, 2006, BIOCHEMISTRY-US, V45, P498, DOI 10.1021/bi051952q.
QUIST A, 2005, P NATL ACAD SCI USA, V102, P10427, DOI 10.1073/pnas.0502066102.
REDDY G, 2009, P NATL ACAD SCI USA, V106, P11948, DOI 10.1073/pnas.0902473106.
SABATE R, 2005, J PHYS CHEM B, V109, P11027, DOI 10.1021/jp050716m.
SATO T, 2006, BIOCHEMISTRY-US, V45, P5503, DOI 10.1021/bi052485f.
SAWAYA MR, 2007, NATURE, V447, P453, DOI 10.1038/nature05695.
SILVA JL, 2009, PHYS BIOL, UNSP 015002.
SMART OS, 1993, BIOPHYS J, V65, P2455.
TAKEDA T, 2009, BIOPHYS J, V96, P4428, DOI 10.1016/j.bpj.2009.03.015.
WACKER JL, 2004, NAT STRUCT MOL BIOL, V11, P1215, DOI 10.1038/nsmb860.
WEI GH, 2006, BIOPHYS J, V91, P1638, DOI 10.1529/biophysj.105.079186.
WERTKIN AM, 1993, P NATL ACAD SCI USA, V90, P9513.
YAMAZAKI T, 2008, BIOPHYS J, V95, P4540, DOI 10.1529/biophysj.107.123000.
YAN L, 2009, PROTEIN-STRUCT FUNCT, V75, P954.
YONG W, 2002, P NATL ACAD SCI USA, V99, P150.
ZHANG R, 2009, P NATL ACAD SCI USA, V106, P4653, DOI 10.1073/pnas.0901085106.
ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702.
ZHENG J, 2007, BIOPHYS J, V93, P3046, DOI 10.1529/biophysj.107.110700.
ZHENG J, 2008, FRONT BIOSCI, V13, P3919, DOI 10.2741/2980.
ZHENG J, 2008, J PHYS CHEM B, V112, P6856, DOI 10.1021/jp711335b.
ZHU M, 2004, J BIOL CHEM, V279, P24452, DOI 10.1074/jbc.M400004200.

Cited Reference Count:
50

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp907608s

IDS Number:
541GY

========================================================================

*Record 4 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273404500074
*Order Full Text [ ]

Title:
Higher Susceptibility to Halothane Modulation in Open- Than in Closed-Channel alpha 4 beta 2 nAChR Revealed by Molecular Dynamics Simulations

Authors:
Liu, LT; Haddadian, EJ; Willenbring, D; Xu, Y; Tang, P

Author Full Names:
Liu, Lu Tian; Haddadian, Esmael J.; Willenbring, Dan; Xu, Yan; Tang, Pei

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (1): 626-632 JAN 14 2010

Language:
English

Document Type:
Article

KeyWords Plus:
NICOTINIC ACETYLCHOLINE-RECEPTOR; LIGAND-BINDING DOMAIN; NORMAL-MODE ANALYSIS; GATED ION CHANNELS; GENERAL-ANESTHETICS; GABA(A) RECEPTOR; AGONIST BINDING; VOLATILE ANESTHETICS; GATING MECHANISM; IDENTIFICATION

Abstract:
The neuronal alpha 4 beta 2 nicotinic acetylcholine receptor (nAChR) is a potential molecular target for general anesthetics. It is unclear, however, whether anesthetic action produces the same effect oil the open and closed channels. Computations parallel to Our previous open channel Study (J. Phys. Chem. B 2009, 113, 12581) were performed oil the closed-channel alpha 4 beta 2 nAChR to investigate the conformation-dependent anesthetic effects oil channel Structures and dynamics. Flexible ligand docking and over 20 ns molecular dynamics simulations revealed similar halothane-binding sites in the closed and open channels. The sites with relatively high binding affinities (similar to -6.0 kcal/mol) were identified at the interface of extracellular (EC) and transmembrane (TM) domains or at the interface between alpha 4 and beta 2 Subunits. Despite similar sites for halothane binding, the closed-channel conformation showed much less sensitivity than the open channel to the struc!
tural and dynamical perturbations from halothane. Compared to the systems Without anesthetics, the amount of water inside the pore decreased by 22% in the presence of halothane in the open channel but only by 6% in the closed channel. Comparison of the nonbonded interactions at the EC/TM interfaces suggested that the beta 2 Subunits were more prone than the alpha 4 subunits to halothane binding. In addition, our data Support the notion that halothane exerts its effect by disturbing the quaternary structure and dynamics of the channel. The study Concludes that sensitivity and global dynamics responsiveness of alpha 4 beta 2 nAChR to halothane are conformation dependent. The effect of halothane on the global dynamics of the open-channel conformation might also account for the action of other inhaled general anesthetics.

Reprint Address:
Tang, P, Univ Pittsburgh, Sch Med, Dept Anesthesiol, 2049 Biomed Sci Tower 3,3501 5th Ave, Pittsburgh, PA 15261 USA.

Research Institution addresses:
[Liu, Lu Tian; Haddadian, Esmael J.; Willenbring, Dan; Xu, Yan; Tang, Pei] Univ Pittsburgh, Sch Med, Dept Anesthesiol, Pittsburgh, PA 15261 USA; [Xu, Yan; Tang, Pei] Univ Pittsburgh, Sch Med, Dept Pharmacol & Chem Biol, Pittsburgh, PA 15261 USA; [Xu, Yan] Univ Pittsburgh, Sch Med, Dept Biol Struct, Pittsburgh, PA 15261 USA; [Tang, Pei] Univ Pittsburgh, Sch Med, Dept Computat Biol, Pittsburgh, PA 15261 USA

E-mail Address:
tangp@anes.upmc.edu

Cited References:
ARIAS HR, 2003, INT REV NEUROBIOL, V54, P1.
BAHAR I, 1997, FOLD DES, V2, P173.
BAHAR I, 1999, J MOL BIOL, V285, P1023.
BECKSTEIN O, 2004, PHYS BIOL, V1, P42.
BREJC K, 2001, NATURE, V411, P269.
CELIE PHN, 2004, NEURON, V41, P907.
CHENG MHY, 2007, J PHYS CHEM B, V111, P14186, DOI 10.1021/jp075467b.
CHENG XL, 2007, BIOPHYS J, V93, P2622, DOI 10.1529/biophysj.107.109843.
CHIARA DC, 2003, BIOCHEMISTRY-US, V42, P13457, DOI 10.1021/bi0351561.
CHIARA DC, 2009, MOL PHARMACOL, V75, P1084, DOI 10.1124/mol.108.054353.
CHIPOT C, 2002, MOL SIMULAT, V28, P1.
CORRINGER PJ, 1995, J BIOL CHEM, V270, P11749.
DILGER JP, 1992, MOL PHARMACOL, V41, P127.
DILGER JP, 1993, MOL PHARMACOL, V44, P1056.
DILGER JP, 2002, BRIT J ANAESTH, V89, P41.
DUNDAS J, 2006, NUCLEIC ACIDS RES, V34, P116.
ECKENHOFF RG, 1996, P NATL ACAD SCI USA, V93, P2807.
ECKENHOFF RG, 1998, BIOPHYS J, V75, P477.
FLOOD P, 1997, ANESTHESIOLOGY, V86, P859.
FLOOD P, 1998, TOXICOL LETT, V100, P149.
FORMAN SA, 1995, MOL PHARMACOL, V48, P574.
GALZI JL, 1991, P NATL ACAD SCI USA, V88, P5051.
GALZI JL, 1992, NATURE, V359, P500.
HADDADIAN EJ, 2008, J PHYS CHEM B, V112, P13981, DOI 10.1021/jp804868s.
HANSEN SB, 2005, EMBO J, V24, P3635, DOI 10.1038/sj.emboj.7600828.
HARA K, 2002, ANESTH ANALG, V94, P313.
HEMMINGS HC, 2005, TRENDS PHARMACOL SCI, V26, P503, DOI 10.1016/j.tips.2005.08.006.
HENCHMAN RH, 2003, BIOPHYS J, V85, P3007.
HOLLADAY MW, 1997, J MED CHEM, V40, P4169.
HUMMER G, 2001, NATURE, V414, P188.
KARLIN A, 2002, NAT REV NEUROSCI, V3, P102.
KASH TL, 2003, NATURE, V421, P272, DOI 10.1038/nature01280.
KERAMIDAS A, 2006, J PHYSIOL-LONDON, V575, P11, DOI 10.1113/jphysiol.2005.102756.
KOTZYBAHIBERT F, 1999, MOL NEUROBIOL, V20, P45.
LAW RJ, 2005, P NATL ACAD SCI USA, V102, P6813.
LEE WY, 2005, NATURE, V438, P243, DOI 10.1038/nature04156.
LI GD, 2006, J NEUROSCI, V26, P11599, DOI 10.1523/JNEUROSCI.3467-06.2006.
LIU LT, 2009, J PHYS CHEM B, V113, P12581, DOI 10.1021/jp9039513.
LIU Y, 1994, MOL PHARMACOL, V45, P1235.
LIU ZW, 2004, J PHYS CHEM A, V108, P781, DOI 10.1021/jp0368482.
LIU ZW, 2006, J PHYS CHEM B, V110, P12789, DOI 10.1021/jp060688n.
LYNDENBELL RM, 1996, J CHEM PHYS, V105, P9266.
MA JP, 2004, CURR PROTEIN PEPT SC, V5, P119.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MORI T, 2001, MOL PHARMACOL, V59, P732.
MORRIS GM, 1998, J COMPUT CHEM, V19, P1639.
NIRTHANAN S, 2008, J BIOL CHEM, V283, P22051, DOI 10.1074/jbc.M801332200.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781.
RADA EM, 2003, ANESTH ANALG, V96, P108, DOI 10.1213/01.ANE.0000041901.85266.92.
REVAH F, 1991, NATURE, V353, P846.
SINE SM, 2006, NATURE, V440, P448, DOI 10.1038/nature04708.
SMART OS, 1996, J MOL GRAPH MODEL, V14, P354.
SZARECKA A, 2007, PROTEINS, V68, P948, DOI 10.1002/prot.21462.
TAMA F, 2001, PROTEIN ENG, V14, P1.
UNWIN N, 2005, J MOL BIOL, V346, P967, DOI 10.1016/j.jmb.2004.12.031.
VEMPARALA S, 2008, BIOPHYS J, V94, P4260, DOI 10.1529/biophysj.107.119958.
VIOLET JM, 1997, ANESTHESIOLOGY, V86, P866.
WANG HL, 2008, PLOS COMPUT BIOL, V4, ARTN e41.
WILSON GG, 1998, NEURON, V20, P1269.
WILSON GG, 2001, P NATL ACAD SCI USA, V98, P1241.
XI J, 2004, J BIOL CHEM, V279, P19628, DOI 10.1074/jbc.M313864200.
YAMASHITA M, 2005, ANESTHESIOLOGY, V102, P76.
YAMASHITA M, 2005, T C SER, V1283, P243.
YANG LW, 2005, BIOINFORMATICS, V21, P2978, DOI 10.1093/bioinformatics/bti469.
YANG LW, 2005, STRUCTURE, V13, P893, DOI 10.1016/j.str.2005.03.015.
ZACHARIAS M, 1994, J CHEM PHYS, V100, P9025.
ZUO Y, 2001, MOL PHARMACOL, V60, P700.

Cited Reference Count:
67

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp908944e

IDS Number:
541GY

========================================================================

*Record 5 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273405000059
*Order Full Text [ ]

Title:
Controllable Synthetic Molecular Channels: Biomimetic Ammonia Switch

Authors:
Titov, AV; Wang, BY; Sint, K; Kral, P

Author Full Names:
Titov, Alexey V.; Wang, Boyang; Sint, Kyaw; Kral, Petr

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (2): 1174-1179 JAN 21 2010

Language:
English

Document Type:
Article

KeyWords Plus:
FUNCTIONALIZED CARBON NANOTUBES; AQUAPORIN WATER CHANNELS; ION CHANNELS; DYNAMICS SIMULATIONS; PEPTIDE NANOTUBES; FLOWING LIQUIDS; GAS SEPARATION; K+ CHANNEL; PROTEIN; DESIGN

Abstract:
We use molecular dynamics simulations combined with iterative screening to test if one can design mechanically controllable and selective molecular pores. The first model pore is formed by two stacked carbon nanocones connected by aliphatic chains at their open tips, in analogy to aquaporins. It turns out that when one nanocone is gradually rotated with respect to the other, the molecular chains alter the size of the nanopore formed at the cone tips and control the flow rates of liquid pentane through it. The second model pore is formed by two carbon nanotubes joined by a cylindrical structure of antiparallel peptides. By application of a torque to one of the nanotubes, while holding the other, we can reversibly fold the peptides into forward or backward-twisted barrels. We have modified the internal residues in these barrels to make these pores selective and controllable. Eventually, we found a nanopore that in the two folded configurations has very different transmission r!
ates for hydrated NH3 molecules.

Reprint Address:
Kral, P, Univ Illinois, Dept Chem, Chicago, IL 60607 USA.

Research Institution addresses:
[Titov, Alexey V.; Wang, Boyang; Sint, Kyaw; Kral, Petr] Univ Illinois, Dept Chem, Chicago, IL 60607 USA

E-mail Address:
pkral@uic.edu

Cited References:
ADIGA SP, 2005, NANO LETT, V5, P2509, DOI 10.1021/nl051843x.
ALI M, 2008, J AM CHEM SOC, V130, P16351, DOI 10.1021/ja8071258.
ALI M, 2009, LANGMUIR, V25, P11993, DOI 10.1021/la902792f.
BALASUBRAMANIAN K, 2005, SMALL, V1, P180, DOI 10.1002/smll.200400118.
BAUDRY Y, 2006, ADV FUNCT MATER, V16, P169, DOI 10.1002/adfm.200500198.
BIANCO A, 2005, CHEM COMMUN, P571, DOI 10.1039/b410943k.
BICHET D, 2003, NAT REV NEUROSCI, V4, P957, DOI 10.1038/nrn1244.
BOON JM, 2002, CURR OPIN CHEM BIOL, V6, P749.
BORGNIA M, 1999, ANNU REV BIOCHEM, V68, P425.
CUMINGS J, 2000, SCIENCE, V289, P602.
DOYLE DA, 1998, SCIENCE, V280, P69.
DUKE MC, 2006, ADV FUNCT MATER, V16, P1215, DOI 10.1002/adfm.200500456.
ELLIS RJ, 1991, ANNU REV BIOCHEM, V60, P321.
ERILOV D, 2007, J AM CHEM SOC, V129, P8938, DOI 10.1021/ja0718927.
FASSHAUER D, 2002, NAT STRUCT BIOL, V9, P144.
FELLER SE, 1995, J CHEM PHYS, V103, P4613.
FIAMMENGO R, 2001, CURR OPIN CHEM BIOL, V5, P660.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FUJIYOSHI Y, 2002, CURR OPIN STRUC BIOL, V12, P509.
GANDHI CS, 2008, SCIENCE, V321, P1166, DOI 10.1126/science.1162963.
GHADIRI MR, 1993, NATURE, V366, P324.
GHADIRI MR, 1994, NATURE, V369, P301.
GILJE S, 2007, NANO LETT, V7, P3394, DOI 10.1021/n10717715.
GUMBART J, 2005, CURR OPIN STRUC BIOL, V15, P423, DOI 10.1016/j.sbi.2005.07.007.
GUO XF, 2007, NANO LETT, V7, P1119, DOI 10.1021/nl070245a.
HARRIS RA, 1995, FASEB J, V9, P1454.
HASHIMOTO A, 2004, P NATL ACAD SCI USA, V101, P8527, DOI 10.1073/pnas.0400596101.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
IIJIMA S, 1999, CHEM PHYS LETT, V309, P165.
JACKEL C, 2008, ANN REV BIOPHYS, V37, P153, DOI 10.1146/anuurev.biophys.37.032807.125832.
JORDAN E, 2006, J AM CHEM SOC, V128, P558, DOI 10.1021/ja0551887.
KALE L, 1999, J COMPUT PHYS, V151, P283.
KAPLAN J, 2004, P NATL ACAD SCI USA, V101, P11566, DOI 10.1073/pnas.0404387101.
KOBUKE Y, 1992, J AM CHEM SOC, V114, P7618.
KRAL P, 2001, PHYS REV LETT, V86, P131.
KRISHNAN A, 1997, NATURE, V388, P451.
KUHLMAN B, 2003, SCIENCE, V302, P1364.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU B, 2009, NANO LETT, V9, P1386, DOI 10.1021/nl8030339.
LIU HM, 2006, J CHEM PHYS, V125, ARTN 084713.
LONG SB, 2005, SCIENCE, V309, P897, DOI 10.1126/science.1116269.
LONG SB, 2007, NATURE, V450, P376, DOI 10.1038/nature06265.
MA HR, 2006, J COMPUT CHEM, V27, P125, DOI 10.1002/jcc.20311.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MACKINNON R, 1998, SCIENCE, V280, P106.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MURAKAMI Y, 1996, CHEM REV, V96, P721.
OKAMOTO H, 2003, J AM CHEM SOC, V125, P2756, DOI 10.1021/ja0212720.
PICKETT SD, 1993, J MOL BIOL, V231, P825.
QI Z, 1999, BIOPHYS J, V76, P631.
SANCHEZOUESADA J, 2002, J AM CHEM SOC, V124, P10004, DOI 10.1021/ja025783+.
SAUFI SM, 2004, CARBON, V42, P241, DOI 10.1016/j.carbon.2003.10.022.
SIMONSON T, 1996, J AM CHEM SOC, V118, P8452.
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f.
SKOULIDAS AI, 2003, PHYS REV LETT, V89, UNSP 185901.
SOLARES SD, 2004, NANOTECHNOLOGY, V15, P1405, DOI 10.1088/0957-4484/15/11/004.
TSAI CJ, 2006, PLOS COMPUT BIOL, V2, P311, ARTN e42.
VERKMAN AS, 2000, AM J PHYSIOL-RENAL, V278, F13.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG B, 2007, SMALL, V3, P580, DOI 10.1002/smll.200600433.
WANG BY, 2006, J AM CHEM SOC, V128, P15984, DOI 10.1021/ja066431k.
WANG BY, 2006, NANO LETT, V6, P1918, DOI 10.1021/nl0610073.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WIMLEY WC, 2003, CURR OPIN STRUC BIOL, V13, P404, DOI 10.1016/S0959-440X(03)00099-X.

Cited Reference Count:
67

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp9103933

IDS Number:
541HD

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273412000018
*Order Full Text [ ]

Title:
Boron Nitride Nanotubes Selectively Permeable to Cations or Anions

Authors:
Hilder, TA; Gordon, D; Chung, SH

Author Full Names:
Hilder, Tamsyn A.; Gordon, Daniel; Chung, Shin-Ho

Source:
SMALL 5 (24): 2870-2875 DEC 4 2009

Language:
English

Document Type:
Article

Author Keywords:
engineered ion channels; ion selectivity; membranes; molecular dynamics; nanotubes

KeyWords Plus:
CARBON NANOTUBE; MOLECULAR-DYNAMICS; BROWNIAN DYNAMICS; WATER; TRANSPORT; PERMEATION; MEMBRANES; ENERGY; FUNCTIONALIZATION; CONDUCTION

Abstract:
Biological ion channels in membranes are selectively permeable to specific ionic species. They maintain the resting membrane potential, generate propagated action potentials, and control a wide variety of cell functions. Here it is demonstrated theoretically that boron nitride nanotubes have the ability to carry out some of the important functions of biological ion channels. Boron nitride nanotubes with radii of 4.83 and 5.52 angstrom embedded in a silicon nitride membrane are selectively permeable to cations and anions, respectively. They broadly mimic some of the permeation characteristics of gramicidin and chloride channels. Using distributional molecular dynamics, which is a combination of molecular and stochastic dynamics simulations, the properties of these engineered nanotubes are characterized, such as the free energy encountered by charged particles, the water-ion structure within the pore, and the current-voltage and current-concentration profiles. These engineered!
nanotubes have potential applications as sensitive biosensors, antibiotics, or filtration devices.

Reprint Address:
Hilder, TA, Australian Natl Univ, Res Sch Biol, Computat Biophys Grp, GPO Box 4, Canberra, ACT 2601, Australia.

Research Institution addresses:
[Hilder, Tamsyn A.; Gordon, Daniel; Chung, Shin-Ho] Australian Natl Univ, Res Sch Biol, Computat Biophys Grp, Canberra, ACT 2601, Australia

E-mail Address:
tamsyn.hilder@anu.edu.au

Cited References:
*U IL I ADV SCI TE, BION TUT.
AKSIMENTIEV A, 2004, BIOPHYS J, V87, P2086, DOI 10.1529/biophysj.104.042960.
ANDERSEN OS, 2007, BIOL MED PHYS BIOMED, P33.
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
CHEN X, 2009, J AM CHEM SOC, V131, P890, DOI 10.1021/ja807334b.
CHUNG SH, 1999, BIOPHYS J, V77, P2517.
CORRY B, 2004, BIOPHYS J, V86, P846.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DRESSELHAUS MS, 1995, CARBON, V33, P883.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FORTINA P, 2005, TRENDS BIOTECHNOL, V23, P168, DOI 10.1016/j.tibtech.2005.02.007.
GARATE JA, 2009, MOL SIMULAT, V35, P2.
GORDON D, 2009, J CHEM PHYS IN PRESS.
GROSSFIELD A, IMPLEMENTATION WHAM.
HENG JB, 2005, NANO LETT, V5, P1883, DOI 10.1021/nl0510816.
HILDER TA, 2009, SMALL IN PRESS, DOI 10.1002/SMLL.200900349.
HILLE B, 1992, IONIC CHANNELS EXCIT.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
ISHIGAMI M, 2003, AIP CONF PROC, V696, P94.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KALE L, 1999, J COMPUT PHYS, V151, P283.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2000, J CHEM PHYS, V113, P5037.
KOGA K, 2001, NATURE, V412, P802.
KUMAR S, 1995, J COMPUT CHEM, V16, P1339.
KUYUCAK S, 2001, REP PROG PHYS, V64, P1427.
LIU HM, 2008, MOL SIMULAT, V34, P169, DOI 10.1080/08927020801966087.
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI 10.1073/pnas.0400352101.
MACKERELL AD, 1998, ENCY COMPUTATIONAL C, V1, P271.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
OMARA M, 2005, BIOPHYS J, V88, P3286, DOI 10.1529/biophysj.104.051664.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
PARK N, 2004, J PHYS SOC JPN, V73, P2469.
SOLOZHENKO VL, 2001, J PHYS CHEM SOLIDS, V62, P1331.
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WIDMAYER P, 1999, PHYS REV B, V59, P5233.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
WON CY, 2008, J PHYS CHEM C, V112, P1812, DOI 10.1021/jp076747u.
WU XJ, 2006, J AM CHEM SOC, V128, ARTN JA063653+.
ZHI CY, 2005, J AM CHEM SOC, V127, P15996, DOI 10.1021/ja053917c.

Cited Reference Count:
44

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1613-6810

DOI:
10.1002/smll.200901229

IDS Number:
541JV

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273405000059
*Order Full Text [ ]

Title:
Controllable Synthetic Molecular Channels: Biomimetic Ammonia Switch

Authors:
Titov, AV; Wang, BY; Sint, K; Kral, P

Author Full Names:
Titov, Alexey V.; Wang, Boyang; Sint, Kyaw; Kral, Petr

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (2): 1174-1179 JAN 21 2010

Language:
English

Document Type:
Article

KeyWords Plus:
FUNCTIONALIZED CARBON NANOTUBES; AQUAPORIN WATER CHANNELS; ION CHANNELS; DYNAMICS SIMULATIONS; PEPTIDE NANOTUBES; FLOWING LIQUIDS; GAS SEPARATION; K+ CHANNEL; PROTEIN; DESIGN

Abstract:
We use molecular dynamics simulations combined with iterative screening to test if one can design mechanically controllable and selective molecular pores. The first model pore is formed by two stacked carbon nanocones connected by aliphatic chains at their open tips, in analogy to aquaporins. It turns out that when one nanocone is gradually rotated with respect to the other, the molecular chains alter the size of the nanopore formed at the cone tips and control the flow rates of liquid pentane through it. The second model pore is formed by two carbon nanotubes joined by a cylindrical structure of antiparallel peptides. By application of a torque to one of the nanotubes, while holding the other, we can reversibly fold the peptides into forward or backward-twisted barrels. We have modified the internal residues in these barrels to make these pores selective and controllable. Eventually, we found a nanopore that in the two folded configurations has very different transmission r!
ates for hydrated NH3 molecules.

Reprint Address:
Kral, P, Univ Illinois, Dept Chem, Chicago, IL 60607 USA.

Research Institution addresses:
[Titov, Alexey V.; Wang, Boyang; Sint, Kyaw; Kral, Petr] Univ Illinois, Dept Chem, Chicago, IL 60607 USA

E-mail Address:
pkral@uic.edu

Cited References:
ADIGA SP, 2005, NANO LETT, V5, P2509, DOI 10.1021/nl051843x.
ALI M, 2008, J AM CHEM SOC, V130, P16351, DOI 10.1021/ja8071258.
ALI M, 2009, LANGMUIR, V25, P11993, DOI 10.1021/la902792f.
BALASUBRAMANIAN K, 2005, SMALL, V1, P180, DOI 10.1002/smll.200400118.
BAUDRY Y, 2006, ADV FUNCT MATER, V16, P169, DOI 10.1002/adfm.200500198.
BIANCO A, 2005, CHEM COMMUN, P571, DOI 10.1039/b410943k.
BICHET D, 2003, NAT REV NEUROSCI, V4, P957, DOI 10.1038/nrn1244.
BOON JM, 2002, CURR OPIN CHEM BIOL, V6, P749.
BORGNIA M, 1999, ANNU REV BIOCHEM, V68, P425.
CUMINGS J, 2000, SCIENCE, V289, P602.
DOYLE DA, 1998, SCIENCE, V280, P69.
DUKE MC, 2006, ADV FUNCT MATER, V16, P1215, DOI 10.1002/adfm.200500456.
ELLIS RJ, 1991, ANNU REV BIOCHEM, V60, P321.
ERILOV D, 2007, J AM CHEM SOC, V129, P8938, DOI 10.1021/ja0718927.
FASSHAUER D, 2002, NAT STRUCT BIOL, V9, P144.
FELLER SE, 1995, J CHEM PHYS, V103, P4613.
FIAMMENGO R, 2001, CURR OPIN CHEM BIOL, V5, P660.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FUJIYOSHI Y, 2002, CURR OPIN STRUC BIOL, V12, P509.
GANDHI CS, 2008, SCIENCE, V321, P1166, DOI 10.1126/science.1162963.
GHADIRI MR, 1993, NATURE, V366, P324.
GHADIRI MR, 1994, NATURE, V369, P301.
GILJE S, 2007, NANO LETT, V7, P3394, DOI 10.1021/n10717715.
GUMBART J, 2005, CURR OPIN STRUC BIOL, V15, P423, DOI 10.1016/j.sbi.2005.07.007.
GUO XF, 2007, NANO LETT, V7, P1119, DOI 10.1021/nl070245a.
HARRIS RA, 1995, FASEB J, V9, P1454.
HASHIMOTO A, 2004, P NATL ACAD SCI USA, V101, P8527, DOI 10.1073/pnas.0400596101.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
IIJIMA S, 1999, CHEM PHYS LETT, V309, P165.
JACKEL C, 2008, ANN REV BIOPHYS, V37, P153, DOI 10.1146/anuurev.biophys.37.032807.125832.
JORDAN E, 2006, J AM CHEM SOC, V128, P558, DOI 10.1021/ja0551887.
KALE L, 1999, J COMPUT PHYS, V151, P283.
KAPLAN J, 2004, P NATL ACAD SCI USA, V101, P11566, DOI 10.1073/pnas.0404387101.
KOBUKE Y, 1992, J AM CHEM SOC, V114, P7618.
KRAL P, 2001, PHYS REV LETT, V86, P131.
KRISHNAN A, 1997, NATURE, V388, P451.
KUHLMAN B, 2003, SCIENCE, V302, P1364.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU B, 2009, NANO LETT, V9, P1386, DOI 10.1021/nl8030339.
LIU HM, 2006, J CHEM PHYS, V125, ARTN 084713.
LONG SB, 2005, SCIENCE, V309, P897, DOI 10.1126/science.1116269.
LONG SB, 2007, NATURE, V450, P376, DOI 10.1038/nature06265.
MA HR, 2006, J COMPUT CHEM, V27, P125, DOI 10.1002/jcc.20311.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MACKINNON R, 1998, SCIENCE, V280, P106.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MURAKAMI Y, 1996, CHEM REV, V96, P721.
OKAMOTO H, 2003, J AM CHEM SOC, V125, P2756, DOI 10.1021/ja0212720.
PICKETT SD, 1993, J MOL BIOL, V231, P825.
QI Z, 1999, BIOPHYS J, V76, P631.
SANCHEZOUESADA J, 2002, J AM CHEM SOC, V124, P10004, DOI 10.1021/ja025783+.
SAUFI SM, 2004, CARBON, V42, P241, DOI 10.1016/j.carbon.2003.10.022.
SIMONSON T, 1996, J AM CHEM SOC, V118, P8452.
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f.
SKOULIDAS AI, 2003, PHYS REV LETT, V89, UNSP 185901.
SOLARES SD, 2004, NANOTECHNOLOGY, V15, P1405, DOI 10.1088/0957-4484/15/11/004.
TSAI CJ, 2006, PLOS COMPUT BIOL, V2, P311, ARTN e42.
VERKMAN AS, 2000, AM J PHYSIOL-RENAL, V278, F13.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG B, 2007, SMALL, V3, P580, DOI 10.1002/smll.200600433.
WANG BY, 2006, J AM CHEM SOC, V128, P15984, DOI 10.1021/ja066431k.
WANG BY, 2006, NANO LETT, V6, P1918, DOI 10.1021/nl0610073.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WIMLEY WC, 2003, CURR OPIN STRUC BIOL, V13, P404, DOI 10.1016/S0959-440X(03)00099-X.

Cited Reference Count:
67

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp9103933

IDS Number:
541HD

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273472300023
*Order Full Text [ ]

Title:
Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes

Authors:
Malek, K; Sahimi, M

Author Full Names:
Malek, Kourosh; Sahimi, Muhammad

Source:
JOURNAL OF CHEMICAL PHYSICS 132 (1): Art. No. 014310 JAN 7 2010

Language:
English

Document Type:
Review

Author Keywords:
adsorption; carbon compounds; chirality; hydrogen; hydrogen production; hydrogen storage; molecular dynamics method; nitrogen; organic compounds; self-diffusion; semiconductor nanotubes; wide band gap semiconductors

KeyWords Plus:
WALLED CARBON NANOTUBES; DIOXIDE-ALKANE MIXTURES; PHASE-EQUILIBRIA; MONTE-CARLO; ELECTRICAL-PROPERTIES; COMPUTER-SIMULATIONS; ORGANIC FRAMEWORKS; HYDROGEN STORAGE; CHAIN MOLECULES; SIEVE MEMBRANES

Abstract:
Silicon carbide nanotubes (SiCNTs) are new materials with excellent properties, such as high thermal stability and mechanical strength, which are much improved over those of their carboneous counterparts, namely, carbon nanotubes (CNTs). Gas separation processes at high temperatures and pressures may be improved by developing mixed-matrix membranes that contain SiCNTs. Such nanotubes are also of interest in other important processes, such as hydrogen production and its storage, as well as separation by supercritical adsorption. The structural parameters of the nanotubes, i.e., their diameter, curvature, and chirality, as well as the interaction strength between the gases and the nanotubes' walls, play a fundamental role in efficient use of the SiCNTs in such processes. We employ molecular dynamics simulations in order to examine the adsorption and diffusion of N-2, H-2, CO2, CH4, and n-C4H10 in the SiCNTs, as a function of the pressure and the type of the nanotubes, namely, !
the zigzag, armchair, and chiral tubes. The simulations indicate the strong effect of the nanotubes' chirality and curvature on the pressure dependence of the adsorption isotherms and the self-diffusivities. Detailed comparison is made between the results and those for the CNTs. In particular, we find that the adsorption capacity of the SiCNTs for hydrogen is higher than the CNTs' under the conditions that we have studied.

Reprint Address:
Sahimi, M, Univ So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA.

Research Institution addresses:
[Sahimi, Muhammad] Univ So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA; [Malek, Kourosh] Natl Res Council Canada, Inst Fuel Cell Innovat, Vancouver, BC V6T 1W5, Canada

E-mail Address:
moe@iran.usc.edu

Cited References:
ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI 10.1080/0892702031000103239.
ALIVISATOS AP, 1996, SCIENCE, V271, P933.
BAGHERITAR F, 2007, IND ENG CHEM RES, V46, P3348, DOI 10.1021/ie061151z.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BETHUNE DS, 1993, NATURE, V363, P605.
BRUCHEZ M, 1998, SCIENCE, V281, P2013.
CHEN F, 2008, CHEM ENG SCI, V63, P1460, DOI 10.1016/j.ces.2007.12.001.
CHEN HB, 2004, J AM CHEM SOC, V126, P7778, DOI 10.1021/ja039462d.
CHEN P, 1999, SCIENCE, V285, P91.
CIORA RJ, 2004, CHEM ENG SCI, V59, P4957, DOI 10.1016/j.ces.2004.07.015.
COTE AP, 2005, SCIENCE, V310, P1166, DOI 10.1126/science.1120411.
CRUZ FJAL, 2009, ADSORPTION, V15, P13, DOI 10.1007/s10450-008-9148-3.
DALTON AB, 2003, NATURE, V423, P703.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DELEEUW SW, 1979, MOL PHYS, V37, P1313.
DEPABLO JJ, 1992, FLUID PHASE EQUILIBR, V73, P187.
DEVRIES GA, 2007, SCIENCE, V315, P358, DOI 10.1126/science.1133162.
DILLON AC, 1997, NATURE, V386, P377.
DRESSELHAUS MS, 1996, SCI FULLERENES CARBO.
DRESSELHAUS MS, 2001, SCI FULLERENES CARBO, V105, P6916, DOI 10.1021/JP0103272.
DRESSELHAUS MS, 2002, PHYS REV LETT, V89, DOI 10.1103/PHYSREVLETT.89.278301.
EDBERG R, 1986, J CHEM PHYS, V84, P6933.
ELYASSI B, 2007, J MEMBRANE SCI, V288, P290, DOI 10.1016/j.memsci.2006.11.027.
ELYASSI B, 2009, MATER CHEM PHYS, V118, P259, DOI 10.1016/j.matchemphys.2009.07.052.
FELLER SE, 1995, J CHEM PHYS, V103, P4613.
FIROUZI M, 2003, J CHEM PHYS, V119, P6810, DOI 10.1063/1.1605373.
FIROUZI M, 2004, J CHEM PHYS, V120, P8172, DOI 10.1063/1.1688313.
FIROUZI M, 2006, PHYS REV E 2, V73, ARTN 036312.
FIROUZI M, 2007, CHEM ENG SCI, V62, P2777.
FREEMAN BD, 1999, MACROMOLECULES, V32, P375.
FRENKEL D, 1992, J PHYS-CONDENS MAT, V4, P3053.
HAN Y, 2007, COMP MATER SCI, V39, P315, DOI 10.1016/j.commatsci.2006.06.011.
HARRIS J, 1988, J CHEM PHYS, V88, P1298.
HEFFELFINGER GS, 1994, J CHEM PHYS, V100, P7548.
HESS B, 1997, J COMPUT CHEM, V18, P1463.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLMES JD, 2000, SCIENCE, V287, P1471.
HU J, 1998, SCIENCE, V272, P523.
HU JT, 1999, NATURE, V399, P48.
IIJIMA S, 1991, NATURE, V354, P56.
IIJIMA S, 1993, NATURE, V363, P603.
JAKOBTORWEIHEN S, 2007, J CHEM PHYS, V127, ARTN 024904.
JIANG J, 2005, PHYS REV B, V72, UNSP 045447.
KELLER N, 2003, CARBON, V41, P2131, DOI 10.1016/S0008-6223(03)00239-2.
KHADEMI M, UNPUB.
LANGER R, 2001, SCIENCE, V293, P58.
LASO M, 1992, J CHEM PHYS, V97, P2817.
LIM SY, 2007, PHYS REV E 1, V76, ARTN 011810.
LIM SY, 2008, J MEMBRANE SCI, V316, P73, DOI 10.1016/J.MEMSCI.2007.09.044.
LIU YC, 2008, PHYS REV B, V77, ARTN 125438.
MACEDONIA MD, 1999, MOL PHYS, V96, P1375.
MACELROY JMD, 1994, J CHEM PHYS, V101, P5274.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
MARRINK SJ, 2007, J PHYS CHEM B, V111, P7812, DOI 10.1021/jp071097f.
MARTIN MG, 1998, J PHYS CHEM B, V102, P2569.
MARTYNA GJ, 1994, J CHEM PHYS, V101, P4177.
MAVRANDONAKIS A, 2003, NANO LETT, V3, P1481, DOI 10.1021/nl0343250.
MENON M, 2004, PHYS REV B, V69, ARTN 115322.
MIAO L, 2008, J APPL PHYS, V103, ARTN 016106.
MOOIJ GCA, 1992, J PHYS CONDENS MATT, V4, L255.
MORALES AM, 1998, SCIENCE, V279, P208.
MORISADA Y, 2004, MAT SCI ENG A-STRUCT, V381, P57, DOI 10.1016/j.msea.2004.03.055.
MPOURMPAKIS G, 2006, NANO LETT, V6, P1581, DOI 10.1021/nl10603911.
MPOURMPAKIS G, 2007, J CHEM PHYS, V126, ARTN 144704.
OSKOEE EN, 2006, PHYS REV B, V74, ARTN 045413.
PAPADOPOULOS GK, 2001, J CHEM PHYS, V114, P8139.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
PHAMHUU C, 2001, J CATAL, V200, P400.
PONCE FA, 1997, NATURE, V386, P351.
POWER TD, 2002, J AM CHEM SOC, V124, P1858.
RAJABBEIGI N, 2009, J MEMBRANE SCI, V345, P323, DOI 10.1016/j.memsci.2009.09.019.
RIDLEY BA, 1999, SCIENCE, V286, P746.
ROBESON LM, 1991, J MEMBRANE SCI, V62, P165.
ROSI NL, 2003, SCIENCE, V300, P1127.
RYCKAERT JP, 1975, CHEM PHYS LETT, V30, P123.
RYCKAERT JP, 1978, FARADAY DISCUSS, V66, P95.
SEDIGH MG, 1998, J PHYS CHEM A, V102, P8580.
SEDIGH MG, 1999, IND ENG CHEM RES, V38, P3367.
SHAYEGANFAR F, 2008, PHYS REV E.
SHEN HJ, 2007, J MATER SCI, V42, P6382, DOI 10.1007/s10853-006-1205-2.
SHEVCHENKO EV, 2006, NATURE, V439, P55, DOI 10.1038/nature04414.
SIEPMANN JI, 1992, MOL PHYS, V75, P59.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SKOULIDAS AI, 2006, J CHEM PHYS, V124, ARTN 054708.
SMIT B, 1995, J CHEM PHYS, V102, P2126.
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726.
SUN XH, 2002, J AM CHEM SOC, V124, P14464, DOI 10.1021/ja0273997.
SUWANMETHANOND V, 2000, IND ENG CHEM RES, V39, P3264.
VANDERPLOEG P, 1982, J CHEM PHYS, V76, P3271.
VANDERPLOEG P, 1999, J CHEM PHYS, V103, P4508, DOI 10.1021/JP984742E.
VANGUNSTEREN WF, 1990, ANGEW CHEM INT EDIT, V29, P992.
WANG YT, 1994, J CHEM PHYS, V100, P3276.
XU LF, 1998, PHYS REV LETT, V80, P3511.
XU LF, 1999, J CHEM PHYS, V111, P3252.
XU LF, 2000, J CHEM PHYS, V112, P910.
XU LF, 2000, PHYS REV E B, V62, P6942.
YAGHI OM, 2003, NATURE, V423, P705, DOI 10.1038/nature01650.
ZHANG YF, 2008, COMP MATER SCI, V43, P664, DOI 10.1016/j.commatsci.2008.01.038.
ZHOU WM, 2006, APPL PHYS LETT, V89, ARTN 223124.

Cited Reference Count:
101

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3284542

IDS Number:
542DQ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 2.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000273395400030>
*Order Full Text [ ]
AU Liu, HT
He, J
Tang, JY
Liu, H
Pang, P
Cao, D
Krstic, P
Joseph, S
Lindsay, S
Nuckolls, C
AF Liu, Haitao
He, Jin
Tang, Jinyao
Liu, Hao
Pang, Pei
Cao, Di
Krstic, Predrag
Joseph, Sony
Lindsay, Stuart
Nuckolls, Colin
TI Translocation of Single-Stranded DNA Through Single-Walled Carbon
Nanotubes
SO SCIENCE
LA English
DT Article
ID SOLID-STATE NANOPORES; TRANSPORT; MOLECULES; CHANNEL; FABRICATION;
MEMBRANES; ACID
AB We report the fabrication of devices in which one single-walled carbon
nanotube spans a barrier between two fluid reservoirs, enabling direct
electrical measurement of ion transport through the tube. A fraction of
the tubes pass anomalously high ionic currents. Electrophoretic
transport of small single-stranded DNA oligomers through these tubes is
marked by large transient increases in ion current and was confirmed by
polymerase chain reaction analysis. Each current pulse contains about
10(7) charges, an enormous amplification of the translocated charge.
Carbon nanotubes simplify the construction of nanopores, permit new
types of electrical measurements, and may open avenues for control of
DNA translocation.
C1 [He, Jin; Liu, Hao; Pang, Pei; Cao, Di; Lindsay, Stuart] Biodesign Inst, Tempe, AZ 85287 USA.
[Liu, Haitao; Tang, Jinyao; Nuckolls, Colin] Columbia Univ, Dept Chem, New York, NY 10027 USA.
[Liu, Hao; Lindsay, Stuart] Dept Chem & Biochem, Tempe, AZ 85287 USA.
[Pang, Pei; Cao, Di; Lindsay, Stuart] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA.
[Krstic, Predrag; Joseph, Sony] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
RP Lindsay, S, Biodesign Inst, Tempe, AZ 85287 USA.
EM Stuart.Lindsay@asu.edu
cn37@columbia.edu
CR AKESON M, 1999, BIOPHYS J, V77, P3227
BRANTON D, 2008, NAT BIOTECHNOL, V26, P1146, DOI 10.1038/nbt.1495
CHANG H, 2006, APPL PHYS LETT, V88, ARTN 103109
CHOW KF, 2008, J AM CHEM SOC, V130, P7544, DOI 10.1021/ja802013q
DEKKER C, 2007, NAT NANOTECHNOL, V2, P209, DOI 10.1038/nnano.2007.27
FAN R, 2005, NANO LETT, V5, P1633, DOI 10.1021/nl0509677
GUO XF, 2006, SCIENCE, V311, P356, DOI 10.1126/science.1120986
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
ITO T, 2003, CHEM COMMUN, P1482, DOI 10.1039/b302511j
JIN XZ, 2007, LANGMUIR, V23, P13209, DOI 10.1021/la702326v
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
KASIANOWICZ JJ, 1996, P NATL ACAD SCI USA, V93, P13770
KASIANOWICZ JJ, 2001, ANAL CHEM, V73, P2268
KIM MJ, 2006, ADV MATER, V18, P3149, DOI 10.1002/adma.200601191
LI J, 2001, NATURE, V412, P166
LIANG XG, 2008, NANO LETT, V8, P1472, DOI 10.1021/nl080473k
MELLER A, 2002, ELECTROPHORESIS, V23, P2583
RHEE M, 2007, TRENDS BIOTECHNOL, V25, P174, DOI
10.1016/j.tibtech.2007.02.008
STEIN D, 2004, PHYS REV LETT, V93, ARTN 035901
STORM AJ, 2003, NAT MATER, V2, P537, DOI 10.1038/nmat941
TU XM, 2009, NATURE, V460, P250, DOI 10.1038/nature08116
WARAKULWIT C, 2008, NANO LETT, V8, P500, DOI 10.1021/nl072652s
XIE YH, 2007, J CHEM PHYS, V127, ARTN 225101
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI
10.1073/pnas.0402699101
NR 26
TC 0
PU AMER ASSOC ADVANCEMENT SCIENCE; 1200 NEW YORK AVE, NW, WASHINGTON, DC
20005 USA
SN 0036-8075
DI 10.1126/science.1181799
PD JAN 1
VL 327
IS 5961
BP 64
EP 67
SC Multidisciplinary Sciences
GA 541DZ
UT ISI:000273395400030
ER

PT J
*Record 2 of 2.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000273405000059>
*Order Full Text [ ]
AU Titov, AV
Wang, BY
Sint, K
Kral, P
AF Titov, Alexey V.
Wang, Boyang
Sint, Kyaw
Kral, Petr
TI Controllable Synthetic Molecular Channels: Biomimetic Ammonia Switch
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID FUNCTIONALIZED CARBON NANOTUBES; AQUAPORIN WATER CHANNELS; ION
CHANNELS; DYNAMICS SIMULATIONS; PEPTIDE NANOTUBES; FLOWING LIQUIDS; GAS
SEPARATION; K+ CHANNEL; PROTEIN; DESIGN
AB We use molecular dynamics simulations combined with iterative screening
to test if one can design mechanically controllable and selective
molecular pores. The first model pore is formed by two stacked carbon
nanocones connected by aliphatic chains at their open tips, in analogy
to aquaporins. It turns out that when one nanocone is gradually rotated
with respect to the other, the molecular chains alter the size of the
nanopore formed at the cone tips and control the flow rates of liquid
pentane through it. The second model pore is formed by two carbon
nanotubes joined by a cylindrical structure of antiparallel peptides.
By application of a torque to one of the nanotubes, while holding the
other, we can reversibly fold the peptides into forward or
backward-twisted barrels. We have modified the internal residues in
these barrels to make these pores selective and controllable.
Eventually, we found a nanopore that in the two folded configurations
has very different transmission rates for hydrated NH3 molecules.
C1 [Titov, Alexey V.; Wang, Boyang; Sint, Kyaw; Kral, Petr] Univ Illinois, Dept Chem, Chicago, IL 60607 USA.
RP Kral, P, Univ Illinois, Dept Chem, Chicago, IL 60607 USA.
EM pkral@uic.edu
CR ADIGA SP, 2005, NANO LETT, V5, P2509, DOI 10.1021/nl051843x
ALI M, 2008, J AM CHEM SOC, V130, P16351, DOI 10.1021/ja8071258
ALI M, 2009, LANGMUIR, V25, P11993, DOI 10.1021/la902792f
BALASUBRAMANIAN K, 2005, SMALL, V1, P180, DOI 10.1002/smll.200400118
BAUDRY Y, 2006, ADV FUNCT MATER, V16, P169, DOI 10.1002/adfm.200500198
BIANCO A, 2005, CHEM COMMUN, P571, DOI 10.1039/b410943k
BICHET D, 2003, NAT REV NEUROSCI, V4, P957, DOI 10.1038/nrn1244
BOON JM, 2002, CURR OPIN CHEM BIOL, V6, P749
BORGNIA M, 1999, ANNU REV BIOCHEM, V68, P425
CUMINGS J, 2000, SCIENCE, V289, P602
DOYLE DA, 1998, SCIENCE, V280, P69
DUKE MC, 2006, ADV FUNCT MATER, V16, P1215, DOI 10.1002/adfm.200500456
ELLIS RJ, 1991, ANNU REV BIOCHEM, V60, P321
ERILOV D, 2007, J AM CHEM SOC, V129, P8938, DOI 10.1021/ja0718927
FASSHAUER D, 2002, NAT STRUCT BIOL, V9, P144
FELLER SE, 1995, J CHEM PHYS, V103, P4613
FIAMMENGO R, 2001, CURR OPIN CHEM BIOL, V5, P660
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
10.1073/pnas.0710437105
FUJIYOSHI Y, 2002, CURR OPIN STRUC BIOL, V12, P509
GANDHI CS, 2008, SCIENCE, V321, P1166, DOI 10.1126/science.1162963
GHADIRI MR, 1993, NATURE, V366, P324
GHADIRI MR, 1994, NATURE, V369, P301
GILJE S, 2007, NANO LETT, V7, P3394, DOI 10.1021/n10717715
GUMBART J, 2005, CURR OPIN STRUC BIOL, V15, P423, DOI
10.1016/j.sbi.2005.07.007
GUO XF, 2007, NANO LETT, V7, P1119, DOI 10.1021/nl070245a
HARRIS RA, 1995, FASEB J, V9, P1454
HASHIMOTO A, 2004, P NATL ACAD SCI USA, V101, P8527, DOI
10.1073/pnas.0400596101
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33
IIJIMA S, 1999, CHEM PHYS LETT, V309, P165
JACKEL C, 2008, ANN REV BIOPHYS, V37, P153, DOI
10.1146/anuurev.biophys.37.032807.125832
JORDAN E, 2006, J AM CHEM SOC, V128, P558, DOI 10.1021/ja0551887
KALE L, 1999, J COMPUT PHYS, V151, P283
KAPLAN J, 2004, P NATL ACAD SCI USA, V101, P11566, DOI
10.1073/pnas.0404387101
KOBUKE Y, 1992, J AM CHEM SOC, V114, P7618
KRAL P, 2001, PHYS REV LETT, V86, P131
KRISHNAN A, 1997, NATURE, V388, P451
KUHLMAN B, 2003, SCIENCE, V302, P1364
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI
10.1073/pnas.0604541104
LIU B, 2009, NANO LETT, V9, P1386, DOI 10.1021/nl8030339
LIU HM, 2006, J CHEM PHYS, V125, ARTN 084713
LONG SB, 2005, SCIENCE, V309, P897, DOI 10.1126/science.1116269
LONG SB, 2007, NATURE, V450, P376, DOI 10.1038/nature06265
MA HR, 2006, J COMPUT CHEM, V27, P125, DOI 10.1002/jcc.20311
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586
MACKINNON R, 1998, SCIENCE, V280, P106
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MURAKAMI Y, 1996, CHEM REV, V96, P721
OKAMOTO H, 2003, J AM CHEM SOC, V125, P2756, DOI 10.1021/ja0212720
PICKETT SD, 1993, J MOL BIOL, V231, P825
QI Z, 1999, BIOPHYS J, V76, P631
SANCHEZOUESADA J, 2002, J AM CHEM SOC, V124, P10004, DOI
10.1021/ja025783+
SAUFI SM, 2004, CARBON, V42, P241, DOI 10.1016/j.carbon.2003.10.022
SIMONSON T, 1996, J AM CHEM SOC, V118, P8452
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f
SKOULIDAS AI, 2003, PHYS REV LETT, V89, UNSP 185901
SOLARES SD, 2004, NANOTECHNOLOGY, V15, P1405, DOI
10.1088/0957-4484/15/11/004
TSAI CJ, 2006, PLOS COMPUT BIOL, V2, P311, ARTN e42
VERKMAN AS, 2000, AM J PHYSIOL-RENAL, V278, F13
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d
WANG B, 2007, SMALL, V3, P580, DOI 10.1002/smll.200600433
WANG BY, 2006, J AM CHEM SOC, V128, P15984, DOI 10.1021/ja066431k
WANG BY, 2006, NANO LETT, V6, P1918, DOI 10.1021/nl0610073
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
WIMLEY WC, 2003, CURR OPIN STRUC BIOL, V13, P404, DOI
10.1016/S0959-440X(03)00099-X
NR 67
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
DI 10.1021/jp9103933
PD JAN 21
VL 114
IS 2
BP 1174
EP 1179
SC Chemistry, Physical
GA 541HD
UT ISI:000273405000059
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, January 15, 2010

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273161500189
*Order Full Text [ ]

Title:
Experimental Investigation on the Dynamic Response of Thermal EG-CNT Flow Sensors

Authors:
Qu, YL; Dong, ZL; Tung, SCH; Li, WJ

Author Full Names:
Qu, Yan-li; Dong, Zai-li; Tung, Steve C. H.; Li, Wen J.

Source:
2009 4TH IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1 AND 2 : 813-817 2009

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Aqueous Flow Sensor; Carbon Nanotubes; Heat Dissipation; Ultra-Low-Power Sensor; Thermal Effect

Abstract:
Features of the I-V characteristics and the electrical properties of electronics-grade carbon nanotube (EG-CNT) sensors, which were fabricated and integrated in micro fluidic system by combining MEMS-compatible fabrication technology with AC dielectrophoresis technique, were investigated at room temperature to account for significant Joule heating effect under high activation current. The experimental results together with the traditional heat transfer theory indicate that the nonlinearity of the I-V curves and the negative resistance change of the EG-CNT sensors are basically induced and controlled by the thermal effect. In particular, it was found that the lower the original resistance of EG-CNT sensors, the higher the normalized resistance change and lower the sensor's time response. Then, the sensor's capability for aqueous flow detection was exploited upon exposure to DI-water flow in micro fluidic system. The operation power of the sensors was found to be extremely low!
, i.e., in the range of mu W. Furthermore, higher activation power may degrade the sensor's responsivity.

Reprint Address:
Li, WJ, Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China.

Research Institution addresses:
[Qu, Yan-li; Dong, Zai-li; Tung, Steve C. H.; Li, Wen J.] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang, Peoples R China

Cited References:
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
KURODA MA, 2006, APPL PHYS LETT, V89, P3102.
NI CN, 2007, P MAT RES SOC S.
OUYANG Y, 2006, APPL PHYS LETT, V89, P83122.
POP E, 2005, PHYS REV LETT, V95, P5505.
QU YL, 2007, IEEE T NANO IN PRESS, P11.
SINHA N, 2006, J NANOSCI NANOTECHNO, V6, P573, DOI 10.1166/jnn.2006.121.
ZOHAR Y, 2003, HEAT CONVECTION MICR, P53.

Cited Reference Count:
8

Times Cited:
0

Publisher:
IEEE; 345 E 47TH ST, NEW YORK, NY 10017 USA

IDS Number:
BMO78

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273211000008
*Order Full Text [ ]

Title:
Stability of Liquid-Liquid Stratified Microchannel Flow under the Effects of Boundary Slip

Authors:
You, XY; Zheng, JR

Author Full Names:
You, Xue-Yi; Zheng, Jing-Ru

Source:
INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 7: Art. No. A85 2009

Language:
English

Document Type:
Article

Author Keywords:
liquid-liquid stratified flow; microchannel; microextraction; stability; flow control; boundary slip

KeyWords Plus:
CO-CURRENT FLOW; FLUIDS; INSTABILITY; VISCOSITY; CHANNEL

Abstract:
The effects of boundary slip on the stability of viscosity-stratified microchannel flow are investigated. In this approach, the boundary slip is considered by Navier slip assumption and the stability of the flow is studied by the small disturbance theory. Numerical results indicate that the stability of stratified microchannel flow is enhanced by boundary slip and it is controlled by boundary slip, the ratio of viscosity, surface tension and interface location.

Reprint Address:
You, XY, Tianjin Univ, Tianjin, Peoples R China.

Research Institution addresses:
[You, Xue-Yi; Zheng, Jing-Ru] Tianjin Univ, Tianjin, Peoples R China

E-mail Address:
xyyou@tju.edu.cn; azx20030322@163.com

Cited References:
BONACCURSO E, 2002, PHYS REV LETT, V88, UNSP 076103.
CHARLES ME, 1965, J FLUID MECH, V22, P217.
GADELHAK M, 1999, J FLUID ENG-T ASME, V121, P5.
HIBARA A, 2001, ANAL SCI, V17, P89.
HOOPER AP, 1989, PHYS FLUIDS A-FLUID, V1, P1133.
ISRAELACHVILI JN, 1992, INTERMOLECULAR SURFA.
KAO TW, 1972, J FLUID MECH, V52, P401.
KOPLIK J, 2006, PHYS REV LETT, V96, ARTN 044505.
LAUGA E, 2005, PHYS FLUIDS, V17, ARTN 088106.
NEPOMNYASHCHY AA, 2009, MICROGRAVITY SCI S1, V21, S261.
PIT R, 2000, PHYS REV LETT, V85, P980.
SATO K, 2003, ADV DRUG DELIVER REV, V55, P379, DOI 10.1016/S0169-409X(02)00225-9.
SQUIRES TM, 2005, REV MOD PHYS, V77, P977.
SUN M, 1992, PHYS REV LETT, V69, P3491.
THOMPSON PA, 1997, NATURE, V389, P360.
TRETHEWAY DC, 2002, PHYS FLUIDS, V14, L9.
WATANABE K, 1998, JSME INT J B-FLUID T, V41, P525.
YIANTSIOS SG, 1988, PHYS FLUIDS, V31, P3225.
YIH CS, 1967, J FLUID MECH, V27, P337.
YOU XY, 2002, INT J HEAT MASS TRAN, V45, P4537.
YOU XY, 2005, J TIANJIN U NATURE S, V23, P1017.
YOU XY, 2007, FORSCH INGENIEURWES, V71, P99.
ZUBRITSKY E, 2001, ANAL CHEM, V73, A188.

Cited Reference Count:
23

Times Cited:
0

Publisher:
BERKELEY ELECTRONIC PRESS; 2809 TELEGRAPH AVENUE, STE 202, BERKELEY, CA 94705 USA

Subject Category:
Engineering, Chemical

ISSN:
1542-6580

IDS Number:
538UZ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273229500001
*Order Full Text [ ]

Title:
Complex plasmas: An interdisciplinary research field

Authors:
Morfill, GE; Ivlev, AV

Author Full Names:
Morfill, Gregor E.; Ivlev, Alexei V.

Source:
REVIEWS OF MODERN PHYSICS 81 (4): 1353-1404 OCT-DEC 2009

Language:
English

Document Type:
Review

Author Keywords:
dusty plasmas; plasma collision processes; plasma nonlinear waves; plasma temperature

KeyWords Plus:
DUST-ACOUSTIC-WAVES; ONE-COMPONENT-PLASMA; X-RAY-DIFFRACTION; MOLECULAR-DYNAMICS SIMULATIONS; COUPLED YUKAWA SYSTEMS; GRAIN-BOUNDARY THEORY; GAS-DISCHARGE PLASMA; LENNARD-JONES SYSTEM; 2 DIMENSIONS; PHASE-TRANSITIONS

Abstract:
Complex (dusty) plasmas are composed of a weakly ionized gas and charged microparticles and represent the plasma state of soft matter. Complex plasmas have several remarkable features: Dynamical time scales associated with microparticles are "stretched" to tens of milliseconds, yet the microparticles themselves can be easily visualized individually. Furthermore, since the background gas is dilute, the particle dynamics in strongly coupled complex plasmas is virtually undamped, which provides a direct analogy to regular liquids and solids in terms of the atomistic dynamics. Finally, complex plasmas can be easily manipulated in different ways-also at the level of individual particles. Altogether, this gives us a unique opportunity to go beyond the limits of continuous media and study-at the kinetic level-various generic processes occurring in liquids or solids, in regimes ranging from the onset of cooperative phenomena to large strongly coupled systems. In the first part of th!
e review some of the basic and new physics are highlighted which complex plasmas enable us to study, and in the second (major) part strong coupling phenomena in an interdisciplinary context are examined. The connections with complex fluids are emphasized and a number of generic liquid and solid-state issues are addressed. In summary, application oriented research is discussed.

Reprint Address:
Morfill, GE, Max Planck Inst Extraterr Phys, D-85741 Garching, Germany.

Research Institution addresses:
[Morfill, Gregor E.; Ivlev, Alexei V.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany

E-mail Address:
gem@mpe.mpg.de

Cited References:
ABDELKADER A, 1999, PHYS REV LETT, V82, P2610.
ABRAHAM FF, 2000, PHYS REV LETT, V84, P3113.
ALBASIMIONESCO A, 2006, J PHYS CONDENS MATT, V18, R15.
ALEKSANDROV AF, 1984, PRINCIPLES PLASMA EL.
ALLEN JE, 1992, PHYS SCR, V45, P497.
ALPERT YL, 1965, SPACE PHYS ARTIFICIA.
ALSAYED AM, 2005, SCIENCE, V309, P1207, DOI 10.1126/science.1112399.
ANDERSON VJ, 2002, NATURE, V416, P811.
ANNIBALDI SV, 2007, NEW J PHYS, V9, ARTN 327.
ARCHER LA, 1997, RHEOL ACTA, V36, P579.
ARP O, 2004, PHYS REV LETT, V93, ARTN 165004.
BARKAN A, 1994, PHYS REV LETT, V73, P3093.
BARNES MS, 1992, PHYS REV LETT, V68, P313.
BAROODY EM, 1962, PHYS FLUIDS, V5, P925.
BATCHELOR GK, 1953, THEORY HOMOGENEOUS T.
BAYER M, 2007, PHYS REV E 1, V76, ARTN 011508.
BEATUS T, 2006, NAT PHYS, V2, P743, DOI 10.1038/nphys432.
BETZ HD, 2008, LIGHTNING PRINCIPLES.
BLUM J, 2000, PHYS REV LETT, V85, P2426.
BORN M, 1937, PHYSICA, V4, P1034.
BOUCHOULE A, 1999, DUSTY PLASMAS PHYS C.
BOUFENDI L, 1994, PLASMA SOURCES SCI T, V3, P262.
BRANDT PC, 2009, J CHEM PHYS, V130, ARTN 204513.
CARLSON JD, 1990, ELECTRORHEOLOGICAL F.
CASTALDO C, 2007, NUCL FUSION, V47, L5, DOI 10.1088/0029-5515/47/7/L02.
CHAKRABARTI J, 2004, PHYS REV E 1, V70, ARTN 012401.
CHAN CL, 2004, PHYS REV LETT, V93, ARTN 220602.
CHANDRASEKHAR S, 1961, HYDRODYNAMIC HYDROMA.
CHEN TJ, 1992, PHYS REV LETT, V68, P2555.
CHU JH, 1994, PHYS REV LETT, V72, P4009.
CHUI ST, 1982, PHYS REV LETT, V48, P933.
CHUI ST, 1983, PHYS REV B, V28, P178.
CHUNG PM, 1975, ELECT PROBES STATION.
COX RG, 1971, ANNU REV FLUID MECH, V3, P291.
CROSS MC, 1993, REV MOD PHYS, V65, P851.
CUI C, 1994, IEEE T PLASMA SCI, V22, P151.
DASSANAYAKE U, 2000, J CHEM PHYS, V112, P3851.
DEGENNES PG, 1979, J PHYS-PARIS, V40, P783.
DEMELLO AJ, 2006, NATURE, V442, P394, DOI 10.1038/nature05062.
DONKO Z, 2006, PHYS REV LETT, V96, ARTN 145003.
DREWSEN M, 1998, PHYS REV LETT, V81, P2878.
DUBIN DHE, 2000, PHYS PLASMAS, V7, P3895.
EPSTEIN PS, 1924, PHYS REV, V23, P710.
ERNST MH, 1970, PHYS REV LETT, V25, P1254.
ERNST MH, 1986, FRACTALS PHYSICS, P289.
EVANS DJ, 1990, STAT MECH NONEQUILIB.
FAROUKI RT, 1994, J CHEM PHYS, V101, P9885.
FEDERICI G, 2001, NUCL FUSION, V41, P1967.
FINK MA, 2005, AIP C P, V799.
FISCHER EW, 1993, PHYSICA A, V201, P183.
FLORY PJ, 1953, PRINCIPLES POLYM CHE.
FORTOV V, 2007, PHYS STRONGLY COUPLE.
FORTOV VE, 1996, PHYS REV E, V54, P2236.
FORTOV VE, 1998, J EXP THEOR PHYS+, V87, P1087.
FORTOV VE, 2000, PHYS PLASMAS 1, V7, P1374.
FORTOV VE, 2003, PHYS PLASMAS 1, V10, P1199, DOI 10.1063/1.1563667.
FORTOV VE, 2005, PHYS REP, V421, P1, DOI 10.1016/j.physrep.2005.08.007.
FORTOV VE, 2007, PHYS REV E 2, V75, ARTN 026403.
FRANK FC, 1952, P ROY SOC LOND A MAT, V215, P43.
FRENKEL D, 1999, PHYSICA A, V263, P26.
FRENKEL J, 1955, KINETIC THEORY LIQUI.
FRIDMAN G, 2008, PLASMA PROCESS POLYM, V5, P503, DOI 10.1002/ppap.200700154.
FUCHS M, 2005, COLLOID SURFACE A, V270, P232, DOI 10.1016/j.colsurfa.2005.06.017.
GASSER U, 2001, SCIENCE, V292, P258.
GAVRIKOV A, 2005, PHYS LETT A, V336, P378, DOI 10.1016/j.physleta.2004.12.075.
GINZBURG VL, 1996, PHYS-USP, V39, P973.
GLEITER H, 1989, PROG MATER SCI, V33, P223.
GLEITER H, 2000, ACTA MATER, V48, P1.
GOLDSMITH HL, 1967, RHEOLOGY THEORY APPL, V4, P87.
GOREE J, 1994, PLASMA SOURCES SCI T, V3, P400.
GOREE J, 1999, PHYS REV E, V59, P7055.
GOTZE W, 1992, REP PROG PHYS, V55, P241.
GOTZE W, 1999, J PHYS-CONDENS MAT, V11, A1.
GREENBERG R, 1984, PLANETARY RINGS.
GULLEY GL, 1997, PHYS REV E, V56, P4328.
GUMBSCH P, 1999, SCIENCE, V283, P965.
HACHISU S, 1973, J COLLOID INTERF SCI, V42, P342.
HAHN HS, 1971, PHYS FLUIDS, V14, P278.
HALPERIN BI, 1978, PHYS REV LETT, V41, P121.
HAMAGUCHI S, 1997, PHYS REV E, V56, P4671.
HANSEN JP, 1969, PHYS REV, V184, P151.
HANSEN JP, 1973, MOL PHYS, V25, P1281.
HANSEN JP, 1986, THEORY SIMPLE LIQUID.
HASEGAWA A, 1985, ADV PHYS, V34, P1.
HAVNES O, 1987, J GEOPHYS RES, V92, P2281.
HAVNES O, 1995, J GEOPHYS RES, V100, P1731.
HAVNES O, 1996, J VAC SCI TECHNOL A, V14, P525.
HAWA T, 2006, J AEROSOL SCI, V37, P1, DOI 10.1016/j.jaerosci.2005.02.007.
HAYASHI Y, 1994, JPN J APPL PHYS 2, V33, L804.
HELBING D, 2000, PHYS REV LETT, V84, P1240.
HELLER DA, 2006, SCIENCE, V311, P508, DOI 10.1126/science.1120792.
HEWINS R, 1996, CHONDRULES PROTOPLAN.
HOLMES CB, 2005, J RHEOL, V49, P237, DOI 10.1122/1.1814114.
HOLTZ JH, 1997, NATURE, V389, P829.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HOU LJ, 2003, PHYS REV E 2, V68, ARTN 016410.
HUANG YH, 2007, PHYS REV E 2, V76, ARTN 016403.
HUMMER G, 2001, NATURE, V414, P188.
HUTCHINSON IH, 2007, PHYS PLASMAS, V14, ARTN 013505.
HYNNINEN AP, 2005, PHYS REV LETT, V94, ARTN 138303.
ICHIMARU S, 1987, PHYS REP, V149, P91.
ISHIHARA O, 1997, PHYS PLASMAS, V4, P69.
IVLEV AV, 2000, PHYS REV E B, V62, P2739.
IVLEV AV, 2001, PHYS REV E 2, V63, ARTN 026412.
IVLEV AV, 2002, PHYS REV LETT, V89, ARTN 195502.
IVLEV AV, 2003, PHYS REV E 2, V68, ARTN 026405.
IVLEV AV, 2004, PHYS REV E 2, V70, ARTN 066401.
IVLEV AV, 2005, PHYS PLASMAS, V12, ARTN 092104.
IVLEV AV, 2005, PHYS REV E 2, V71, ARTN 016405.
IVLEV AV, 2007, PHYS REV LETT, V98, ARTN 145003.
IVLEV AV, 2007, PHYS REV LETT, V99, ARTN 135004.
IVLEV AV, 2008, PHYS REV LETT, V100, ARTN 095003.
IVLEV AV, 2009, EPL-EUROPHYS LETT, V85, ARTN 45001.
JACKLE J, 1986, REP PROG PHYS, V49, P171.
JANIAUD E, 2006, PHYS REV LETT, V97, ARTN 038302.
JUAN WT, 2001, PHYS REV E 2, V64, ARTN 016402.
JULLIEN R, 1987, AGGREGATION FRACTAL.
KADAU K, 2004, P NATL ACAD SCI USA, V101, P5851, DOI 10.1073/pnas.0401228101.
KAHN B, 1938, PHYSICA, V5, P399.
KALMAN G, 1990, PHYS REV A, V41, P5516.
KALMAN G, 2000, PHYS REV LETT, V84, P6030.
KARPMAN VI, 1975, NONLINEAR WAVES DISP.
KAW PK, 1998, PHYS PLASMAS, V5, P3552.
KAW PK, 2001, PHYS PLASMAS 2, V8, P1870.
KEGEL WK, 2000, SCIENCE, V287, P290.
KEMPF S, 1999, ICARUS, V141, P388.
KENNEDY RV, 2003, J PLASMA PHYS 6, V69, P485.
KHODATAEV YK, 1998, PHYS REV E, V57, P7086.
KHRAPAK S, 2003, PHYS PLASMAS, V10, P1, DOI 10.1063/1.1525283.
KHRAPAK SA, 1999, PHYS REV E B, V59, P6017.
KHRAPAK SA, 2001, PHYS PLASMAS, V8, P2629.
KHRAPAK SA, 2002, PHYS REV E 2, V66, ARTN 046414.
KHRAPAK SA, 2003, PHYS REV LETT, V90, ARTN 225002.
KHRAPAK SA, 2004, PHYS REV E 2, V70, ARTN 056405.
KHRAPAK SA, 2005, PHYS REV E 2, V72, ARTN 016406.
KHRAPAK SA, 2006, PHYS REV LETT, V96, ARTN 015001.
KHRAPAK SA, 2008, PHYS REV LETT, V100, ARTN 225003.
KIRCHNER HOK, 2002, PHYS REV E 2, V66, ARTN 027103.
KITTEL C, 1961, INTRO SOLID STATE PH.
KNAPEK CA, 2007, PHYS REV LETT, V98, ARTN 015001.
KNAPEK CA, 2007, PHYS REV LETT, V98, ARTN 015004.
KOCH DL, 2001, ANNU REV FLUID MECH, V33, P619.
KOMPANEETS R, 2005, PHYS PLASMAS, V12, ARTN 062107.
KOMPANEETS R, 2007, PHYS PLASMAS, V14, ARTN 052108.
KOMPANEETS R, 2007, THESIS L MAXIMILIANS.
KOMPANEETS R, 2009, PHYS PLASMAS, V16, ARTN 043705.
KONOPKA U, 2005, NEW J PHYS, V7, ARTN 227.
KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181.
KREMER K, 1986, PHYS REV LETT, V57, P2694.
LAI YJ, 2002, PHYS REV LETT, V89, ARTN 155002.
LAMPE M, 2000, PHYS PLASMAS, V7, P3851.
LAMPE M, 2001, PHYS REV LETT, V86, P5278.
LAMPE M, 2001, PHYS SCRIPTA T, V89, P106.
LANDAU LD, 1976, MECHANICS.
LANDAU LD, 1978, STAT PHYS 1.
LANDAU LD, 1986, THEORY ELASTICITY.
LANDAU LD, 1987, FLUID MECH.
LAPENTA G, 2000, PHYS REV E B, V62, P1175.
LAPENTA G, 2002, PHYS REV E 2, V66, ARTN 026409.
LAROUSSI M, 2005, APPL PHYS LETT, V87, ARTN 113902.
LEE MH, 2000, ICARUS, V143, P74.
LEMONS DS, 2000, PHYS PLASMAS, V7, P2306.
LEUNISSEN ME, 2005, NATURE, V437, P235, DOI 10.1038/nature03946.
LIFSHITZ EM, 1981, PHYS KINETICS.
LINDEMANN FA, 1910, Z PHYS, V11, P609.
LISSAUER JJ, 1993, ANNU REV ASTRON ASTR, V31, P129.
LIU B, 2003, PHYS PLASMAS, V10, P9, DOI 10.1063/1.1526701.
LIU B, 2007, PHYS REV E 2, V75, ARTN 016405.
LIU B, 2008, PHYS REV LETT, V100, ARTN 055003.
LOWEN H, 1993, PHYS REV LETT, V70, P1557.
LOWEN H, 1996, PHYS REV E A, V53, R29.
LUCAS RA, 1985, BIRTH INFANCY STARS.
MARCH N, 2002, INTRO LIQUID STATE P.
MARCUS AH, 1997, PHYS REV E B, V55, P637.
MATSOUKAS T, 1997, PHYS REV E B, V55, P991.
MAYER JE, 1937, J CHEM PHYS, V5, P67.
MEAKIN P, 1991, REV GEOPHYS, V29, P317.
MEIJER EJ, 1991, J CHEM PHYS, V94, P2269.
MEIJER EJ, 1994, J CHEM PHYS, V100, P6873.
MELANDSO F, 1995, PHYS REV E B, V52, P5312.
MELZER A, 1996, PHYS REV E, V53, P2757.
MELZER A, 1996, PHYS REV E, V54, R46.
MELZER A, 1999, PHYS REV LETT, V83, P3194.
MELZER A, 2000, PHYS REV E B, V62, P4162.
MELZER A, 2003, PHYS REV E 2, V67, ARTN 016411.
MELZER A, 2007, PHYS J, V6, P31.
MERLINO RL, 1998, PHYS PLASMAS 2, V5, P1607.
MEYERS MA, 1998, MECH BEHAV MAT.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
MISAWA T, 2001, PHYS REV LETT, V86, P1219.
MONTGOMERY D, 1968, PLASMA PHYS, V10, P681.
MORFILL GE, 1987, PHYS PROCESSES INTER.
MORFILL GE, 1999, PHYS REV LETT, V83, P1598.
MORFILL GE, 2004, PHYS REV LETT, V92, ARTN 175004.
MORFILL GE, 2004, PHYS SCRIPTA T, V107, P59.
MORFILL GE, 2006, NEW J PHYS, V8, ARTN 7.
MURAYAMA M, 2002, SCIENCE, V295, P2433.
MURILLO MS, 1998, PHYS PLASMAS, V5, P3116.
MURILLO MS, 2000, PHYS PLASMAS, V7, P33.
MURRAY CA, 1987, PHYS REV LETT, V58, P1200.
NAMBU M, 1995, PHYS LETT A, V203, P40.
NEFEDOV AP, 1997, PHYS-USP, V40, P1163.
NEFEDOV AP, 1999, J EXP THEOR PHYS+, V88, P460.
NEFEDOV AP, 2003, NEW J PHYS, V5, ARTN 33.
NELSON DR, 1979, PHYS REV B, V19, P2457.
NELSON DR, 2002, DEFECTS GEOMETRY CON.
NOSENKO V, 2002, PHYS REV LETT, V88, ARTN 135001.
NOSENKO V, 2002, PHYS REV LETT, V88, ARTN 215002.
NOSENKO V, 2003, PHYS REV E 2, V68, ARTN 056409.
NOSENKO V, 2004, PHYS REV LETT, V93, ARTN 155004.
NOSENKO V, 2007, PHYS REV LETT, V99, ARTN 025002.
NOSENKO V, 2008, PHYS REV LETT, V100, ARTN 025003.
NOSENKO V, 2009, PHYS REV LETT, V103, ARTN 015001.
NOZIERES P, 1986, EUROPHYS LETT, V2, P129.
NUNOMURA S, 1999, PHYS REV LETT, V83, P1970.
NUNOMURA S, 2000, PHYS REV LETT, V84, P5141.
NUNOMURA S, 2002, PHYS REV E, V65, UNSP 066402.
NUNOMURA S, 2006, PHYS REV LETT, V96, ARTN 015003.
OHTA H, 2000, PHYS PLASMAS, V7, P4506.
OHTA H, 2000, PHYS REV LETT, V84, P6026.
PAPOULAR M, 1987, J PHYS A, V20, L649.
PEETERS FM, 1987, PHYS REV A, V35, P3109.
PERERA DN, 1999, PHYS REV E B, V59, P5721.
PHAM KN, 2002, SCIENCE, V296, P104.
PHILLPOT SR, 1990, J AM CERAM SOC, V73, P933.
PIEL A, 2006, PHYS REV LETT, V97, ARTN 205009.
PRAMANIK J, 2002, PHYS REV LETT, V88, ARTN 175001.
PRIGOGINE I, 1980, BEING BECOMING.
PUSEY PN, 1986, NATURE, V320, P340.
PUSEY PN, 2005, SCIENCE, V309, P1198, DOI 10.1126/science.1116597.
PUSTYLNIK MY, 2006, PHYS REV E 2, V74, ARTN 046402.
QIAN TZ, 2006, J FLUID MECH, V564, P333, DOI 10.1017/S0022112006001935.
QUINN RA, 1996, PHYS REV E, V53, R2049.
RAO NN, 1990, PLANET SPACE SCI, V38, P543.
RATH C, 2002, MON NOT R ASTRON SOC, V337, P413.
RATYNSKAIA S, 2006, PHYS REV LETT, V96, ARTN 105010.
RAVECHE HJ, 1974, J CHEM PHYS, V61, P1970.
REICHERT H, 2000, NATURE, V408, P839.
REICHERT H, 2002, PHYS J, V1, P83.
REICHMAN DR, 2005, J PHYS CHEM B, V109, P14654, DOI 10.1021/jp044559n.
ROBBINS MO, 1988, J CHEM PHYS, V88, P3286.
ROCA P, 2002, THIN SOLID FILMS, V403, P39.
ROSAKIS AJ, 1999, SCIENCE, V284, P1337.
ROSENBERG M, 1997, PHYS REV E, V56, P7166.
ROSEPETRUCK C, 1999, NATURE, V398, P310.
ROTHERMEL H, 2002, PHYS REV LETT, V89, ARTN 175001.
RUBINZUZIC M, 2006, NAT PHYS, V2, P181, DOI 10.1038/nphys242.
SAGDEEV RZ, 1966, REV PLASMA PHYSICS, V4, P23.
SAIGO T, 2002, PHYS PLASMAS, V9, P1210.
SAIJA F, 2006, J CHEM PHYS, V124, ARTN 244504.
SALIN G, 2002, PHYS REV LETT, V88, ARTN 065002.
SALIN G, 2003, PHYS PLASMAS 1, V10, P1220, DOI 10.1063/1.1566749.
SALMON JB, 2003, PHYS REV LETT, V90, ARTN 228303.
SALTZMAN EJ, 2006, J CHEM PHYS, V125, ARTN 044509.
SAMARYAN AA, 2000, J EXP THEOR PHYS+, V90, P817.
SAMSONOV D, 1999, PHYS REV E B, V59, P1047.
SAMSONOV D, 1999, PHYS REV LETT, V83, P3649.
SAMSONOV D, 2000, PHYS REV E B, V61, P5557.
SAMSONOV D, 2002, PHYS REV LETT, V88, ARTN 095004.
SAMSONOV D, 2004, PHYS REV LETT, V92, ARTN 255004.
SAMSONOV D, 2005, PHYS REV E 2, V71, ARTN 026410.
SANTEN L, 2000, NATURE, V405, P550.
SCHALL P, 2004, SCIENCE, V305, P1944.
SCHATZ T, 2001, NATURE, V412, P717.
SCHIRMACHER W, 1998, PHYS REV LETT, V81, P136.
SCHWABE M, 2007, PHYS REV LETT, V99, ARTN 095002.
SCHWEIGERT VA, 2001, PLASMA PHYS REP+, V27, P997.
SHIMADA T, 2000, J PHYS SOC JPN, V69, P3150.
SHINTANI H, 2006, NAT PHYS, V2, P200, DOI 10.1038/nphys235.
SHUKLA PK, 2001, INTRO DUSTY PLASMA P.
SHUKLA PK, 2003, PHYS PLASMAS 2, V10, P1619, DOI 10.1063/1.1557071.
SHUKLA PK, 2009, REV MOD PHYS, V81, P25.
SICKAFOOSE AA, 2000, PHYS REV LETT, V84, P6034.
SILLESCU H, 1999, J NON-CRYST SOLIDS, V243, P81.
SLATTERY WL, 1980, PHYS REV A, V21, P2087.
SMIRNOV RD, 2007, PLASMA PHYS CONTR F, V49, P347, DOI 10.1088/0741-3335/49/4/001.
SMIRNOV RD, 2008, AIP CONF PROC, V1041, P59.
SMOLUCHOWSKI M, 1917, Z PHYS CHEM, V92, P129.
STANGROOM JE, 1983, PHYS TECHNOL, V14, P290.
STEINBERG V, 2008, PHYS REV LETT, V100, ARTN 254502.
STEVENS MJ, 1993, J CHEM PHYS, V98, P2319.
STILLINGER FH, 1995, SCIENCE, V267, P1935.
STOFFELS E, 2002, PLASMA SOURCES SCI T, V11, P383.
STRANDBURG KJ, 1988, REV MOD PHYS, V60, P161.
SUTTERLIN KR, 2009, PHYS REV LETT, V102, ARTN 085003.
TAKAGIWA H, 2006, SCI TECHNOL ADV MAT, V7, P22, DOI 10.1016/j.stam.2005.11.015.
TAO R, 1993, PHYS REV E, V47, P423.
TENG LW, 2003, PHYS REV LETT, V90, ARTN 245004.
TENNEKES H, 1972, 1 COURSE TURBULENCE.
THOMAS E, 2007, PHYS PLASMAS, V14, ARTN 123701.
THOMAS H, 1994, PHYS REV LETT, V73, P652.
THOMAS HM, 1996, NATURE, V379, P806.
THOMPSON SM, 1984, J CHEM PHYS, V81, P530.
TOWNSEND RM, 1991, J CHEM PHYS, V94, P2207.
TSYTOVICH V, 2008, ELEMENTARY PHYS COMP.
TSYTOVICH VN, 1997, PHYS-USP, V40, P53.
TUCKERMAN ME, 2001, J CHEM PHYS, V115, P1678.
UGLOV AA, 1991, PLASMA CHEM PLASMA P, V11, P251.
UHLENBECK GE, 1930, PHYS REV, V36, P823.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VANKAMPEN NG, 1981, STOCHASTIC PROCESSES.
VANZANTEN JH, 2000, PHYS REV E B, V62, P5389.
VAULINA O, 2002, PHYS REV E 2, V66, ARTN 016404.
VAULINA OS, 1999, PHYS REV E B, V60, P5959.
VAULINA OS, 2000, J EXP THEOR PHYS+, V90, P287.
VAULINA OS, 2000, J EXP THEOR PHYS+, V91, P1147.
VAULINA OS, 2001, J EXP THEOR PHYS+, V92, P228.
VAULINA OS, 2007, PLASMA PHYS REP+, V33, P494, DOI 10.1134/S1063780X07060062.
VLADIMIROV SV, 2003, PHYS PLASMAS, V10, P3867, DOI 10.1063/1.1609988.
VLADIMIROV SV, 2005, PHYS APPL COMPLEX PL.
VLASOV YA, 2001, NATURE, V414, P289.
WALCH B, 1995, PHYS REV LETT, V75, P838.
WANG CL, 1981, J PLASMA PHYS, V25, P225.
WANG XG, 2001, PHYS REV LETT, V86, P2569.
WEAIRE D, 2000, PHYS FOAMS.
WETTE P, 2009, PHYS REV E 1, V79, ARTN 010501.
WHIPPLE EC, 1981, REPORTS PROGR PHYSIC, V44, P1197.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WIJNHOVEN JEGJ, 1998, SCIENCE, V281, P802.
WINSKE D, 1999, PHYS REV E B, V59, P2263.
WINSKE D, 2001, IEEE T PLASMA SCI 1, V29, P191.
WINTER J, 1998, PLASMA PHYS CONTR F, V40, P1201.
WOON WY, 2004, PHYS REV LETT, V92, ARTN 065003.
WYSOCKI A, 2004, J PHYS-CONDENS MAT, V16, P7209, DOI 10.1088/0953-8984/16/41/004.
XIA YN, 2000, ADV MATER, V12, P693.
XIE BS, 1999, PHYS LETT A, V253, P83.
XIE BS, 2000, PHYS REV E B, V62, P8501.
YAROSHENKO VV, 2005, PHYS REV E 2, V71, ARTN 046405.
YAZAKI A, 2002, JPN J APPL PHYS 1, V41, P1614.
YETHIRAJ A, 2003, NATURE, V421, P513, DOI 10.1038/nature01328.
YETHIRAJ A, 2004, ADV MATER, V16, P596, DOI 10.1002/adma.200306192.
YOKOYAMA S, 2005, J APPL PHYS, V98, ARTN 094106.
YOUNG AP, 1979, PHYS REV B, V19, P1855.
ZAHN K, 2000, PHYS REV LETT, V85, P3656.
ZHAKHOVSKII VV, 1997, JETP LETT+, V66, P419.
ZHDANOV S, 2003, NEW J PHYS, V5, ARTN 74.
ZHDANOV S, 2003, PHYS REV E 2, V68, ARTN 035401.
ZHDANOV SK, 2002, PHYS REV E 2, V66, ARTN 026411.
ZHDANOV SK, 2005, PHYS PLASMAS, V12, ARTN 072312.
ZHENG XH, 1998, EUROPHYS LETT, V41, P635.
ZHU X, 1987, PHYS REV B, V35, P9085.
ZOBNIN AV, 2000, J EXP THEOR PHYS+, V91, P483.
ZOBNIN AV, 2002, J EXP THEOR PHYS+, V95, P429.
ZORN R, 2003, J PHYS-CONDENS MAT, V15, R1025.
ZUZIC M, 2000, PHYS REV LETT, V85, P4064.

Cited Reference Count:
345

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Multidisciplinary

ISSN:
0034-6861

DOI:
10.1103/RevModPhys.81.1353

IDS Number:
539BX

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273157800029
*Order Full Text [ ]

Title:
Fast-ion transport in peptide nanochannels

Authors:
Baumgaertner, A

Author Full Names:
Baumgaertner, A.

Source:
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS 165 (3): 261-265 Sp. Iss. SI DEC 15 2009

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Ion conduction; Rectification; Molecular dynamics simulation; Incommensurability; Ratchet; Potassium channel

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; K+ SELECTIVITY FILTER; SUPERIONIC CONDUCTORS; MASS-TRANSPORT; CHANNEL; HOLLANDITE; DYNAMICS; MODELS; ORDER

Abstract:
This review summarizes recent results of the ion transport in narrow peptide nanochannels (PNCs) conducting ions and water molecules at various densities. The molecular structure of the nanochannel is a periodic continuation of the short selectivity pore of a biological potassium channel. The ion conductivity of a PNC can reach ion velocities up to 50 m/s. This phenomena is based on a fine tuned interplay between the three constituents of the PNC: the ions, the water molecules, and the flexible carbonyl groups of the channel's backbone, which represents a one-dimensional fluctuating lattice potential for ions and water. The Unidirectional transport is based on hopping processes of bound ion-water pairs ('permons') mediated by the lattice potential. (c) 2009 Elsevier B.V. All rights reserved.

Reprint Address:
Baumgaertner, A, Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany.

Research Institution addresses:
Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany

E-mail Address:
a.baumgaertner@fz-juelich.de

Cited References:
ADJARI A, 1992, CR HEBD ACAD SCI, V315, P1635.
ASTUMIAN RD, 1997, SCIENCE, V276, P917.
BAUMGAERTNER A, 2006, HDB THEORETICAL COMP, V6, P73.
BAUMGAERTNER A, 2008, J COMPUT THEOR NANOS, V5, P1.
BEYELER HU, 1976, PHYS REV LETT, V37, P1557.
BEYELER HU, 1980, PHYS REV B, V22, P2988.
CHOU T, 1999, PHYS REV LETT, V82, P3552.
DAIGUJI H, 2008, PHYS REV E 2, V78, P6301.
DOYLE DA, 1998, SCIENCE, V280, P69.
DUBBELDAM D, 2003, PHYS REV LETT, V90, P5901.
ELBER R, 1995, BIOPHYS J, V68, P906.
FEYNMAN R, 1963, FEYMAN LECT PHYS, V1.
FRENKEL J, 1939, J PHYS-USSR, V1, P137.
GABLER R, 1978, ELECT INTERACTIONS M.
GEISEL T, 1979, PHYS REV B, V20, P4294.
GHADIRI MR, 1994, NATURE, V369, P301.
GWAN JF, 2007, J CHEM PHYS, V127, P45103.
GWAN JF, 2007, J COMPUT THEOR NANOS, V4, P50, DOI 10.1166/jctn.2007.002.
HAAN M, 2008, MOL SIMUL, V34.
HILLE B, 2001, ION CHANNELS EXCITAB.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HODGKIN AL, 1955, J PHYSIOL-LONDON, V128, P61.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HWANG H, 2006, J PHYS CHEM B, V110, P26448, DOI 10.1021/jp0657888.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KUYUCAK S, 2001, REP PROG PHYS, V64, P1427.
LI J, 1999, APPL PHYS LETT, V75, P367.
LU HJ, 2008, PHYS REV B, V77, P4115.
MAGNASCO MO, 1993, PHYS REV LETT, V71, P1477.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MICHIUE Y, 1999, PHYS REV B, V59, P11298.
MORAISCABRAL JH, 2001, NATURE, V414, P37.
REIMANN P, 2002, APPL PHYS A-MATER, V75, P169.
ROUX B, 2004, Q REV BIOPHYS, V37, P15, DOI 10.1017/S00335835040039668.
SANCHEZOUESADA J, 2002, J AM CHEM SOC, V124, P10004, DOI 10.1021/ja025783+.
SOKOLOFF JB, 1978, PHYS REV B, V17, P4843.
VALE RD, 1990, ADV BIOPHYS, V26, P97.
WAND JC, 1976, J CHEM PHYS, V65, P5378.
WEISS M, 1996, PHYS REV B, V53, P7539.
XU Y, 2008, APPL PHYS LETT, V93, P43122.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
ZHOU YF, 2001, NATURE, V414, P43.
ZHOU YF, 2003, J MOL BIOL, V333, P965, DOI 10.1016/j.jmb.2003.09.022.

Cited Reference Count:
45

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Materials Science, Multidisciplinary; Physics, Condensed Matter

ISSN:
0921-5107

DOI:
10.1016/j.mseb.2009.04.021

IDS Number:
538BA

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================