Saturday, February 26, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285750100030
*Order Full Text [ ]

Title:
Ferroelectric mobile water

Authors:
Nakamura, Y; Ohno, T

Author Full Names:
Nakamura, Yoshimichi; Ohno, Takahisa

Source:
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 13 (3): 1064-1069 2011

Language:
English

Document Type:
Article

KeyWords Plus:
PHASE-TRANSITION; CARBON NANOTUBES; ICE NANOTUBES; HEXAGONAL ICE; EWALD SUMS; IH

Abstract:
In molecular dynamics simulations single-domain ferroelectric water is produced under ordinary ambient conditions utilizing carbon nanotubes open to a water reservoir. This ferroelectric water diffuses while keeping its proton-ordered network intact. The mobile/immobile water transitions and the step-wise changes in net polarization of water are observed to occur spontaneously. The immobile water becomes mobile by transforming into the single-domain ferroelectric water. Our general notion of relating a more highly ordered structure with a lower temperature has so far restricted researchers' attention to very low temperatures when experimenting on proton-ordered phases of water. The present study improves our general understanding of water, considering that the term 'ferroelectric water' has so far practically stood for 'ferroelectric ice,' and that single-domain ferroelectric water has not been reported even for the ice nanotubes.

Reprint Address:
Nakamura, Y, Natl Inst Mat Sci, Computat Mat Sci Ctr, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan.

Research Institution addresses:
[Nakamura, Yoshimichi; Ohno, Takahisa] Natl Inst Mat Sci, Computat Mat Sci Ctr, Tsukuba, Ibaraki 3050047, Japan; [Nakamura, Yoshimichi; Ohno, Takahisa] JST, CREST, Chiyoda Ku, Tokyo 1020075, Japan

E-mail Address:
NAKAMURA.Yoshimichi@nims.go.jp

Cited References:
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BERNAL JD, 1933, J CHEM PHYS, V1, P515.
BRAMWELL ST, 1999, NATURE, V397, P212.
CASE DA, 2006, AMBER 9.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
FELLER W, 1968, INTRO PROBABILITY TH, CH3.
FUKAZAWA H, 2006, ASTROPHYS J 2, V652, L57.
HUMMER G, 2001, NATURE, V414, P188.
IEDEMA MJ, 1998, J PHYS CHEM B, V102, P9203.
JACKSON SM, 1995, J CHEM PHYS, V103, P7647.
JACKSON SM, 1997, J PHYS CHEM B, V101, P6142.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KAWADA S, 1972, J PHYS SOC JPN, V32, P1442.
KAWADA S, 1989, J PHYS CHEM SOLIDS, V50, P1177.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOFINGER J, 2009, PHYS REV LETT, V103, ARTN 080601.
KOGA K, 2001, NATURE, V412, P802.
LUO CF, 2008, NANO LETT, V8, P2607, DOI 10.1021/nl072642r.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MATSUO T, 1986, J PHYS CHEM SOLIDS, V47, P165.
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
PAULING L, 1935, J AM CHEM SOC, V57, P2680.
RICK SW, 2004, J CHEM PHYS, V120, P6085, DOI 10.1063/1.1652434.
SLATER JC, 1941, J CHEM PHYS, V9, P16.
SU XC, 1998, PHYS REV LETT, V80, P1533.
TAJIMA Y, 1982, NATURE, V299, P810.
TAJIMA Y, 1984, J PHYS CHEM SOLIDS, V45, P1135.
TUA Y, 2009, P NATL ACAD SCI USA, V106, P18120.
WAN RZ, 2009, PHYS CHEM CHEM PHYS, V11, P9898, DOI 10.1039/b907926m.

Cited Reference Count:
32

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1463-9076

DOI:
10.1039/c0cp01428a

IDS Number:
700NJ

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286615600014
*Order Full Text [ ]

Title:
Prediction of the viscosity of water confined in carbon nanotubes

Authors:
Zhang, HW; Ye, HF; Zheng, YG; Zhang, ZQ

Author Full Names:
Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang

Source:
MICROFLUIDICS AND NANOFLUIDICS 10 (2): 403-414 FEB 2011

Language:
English

Document Type:
Article

Author Keywords:
Viscosity; Carbon nanotube; Confined water; Eyring theory; Molecular dynamics

KeyWords Plus:
ABSOLUTE REACTION-RATES; MOLECULAR-DYNAMICS; VISCOUS-FLOW; ICE NANOTUBES; TRANSPORT; DIFFUSION; LIQUID; NANOSCALE; MODEL; HYDRODYNAMICS

Abstract:
In this paper, the viscosity of water confined in single-walled carbon nanotubes (SWCNTs) with the diameter ranging from 8 to 54 is evaluated, which is crucial for the research on the nanoflow but difficult to be obtained. An "Eyring-MD" (molecular dynamics) method combining the Eyring theory of viscosity with the MD simulations is proposed to tackle the particular problems. For the critical energy which is a parameter in the "Eyring-MD" method, the numerical experiment is adopted to explore its dependence on the temperature and the potential energy. To demonstrate the feasibility of the proposed method, the viscosity of water at high pressure is computed and the results are in reasonable agreement with the experimental results. The computational results indicate that the viscosity of water inside SWCNTs increases nonlinearly with enlarging diameter of SWCNTs, which can reflect the size effect on the transports capability of the SWCNTs. The trend of the viscosity is well expl
ained by the variation of the hydrogen bond of the water inside SWCNTs. A fitting equation of the viscosity of the confined water is given, which should be significant for recognizing and studying the transport behavior of fluid through the nanochannels.

Reprint Address:
Zhang, HW, Dalian Univ Technol, Dept Engn Mech, Fac Vehicle Engn & Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China.

Research Institution addresses:
[Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang] Dalian Univ Technol, Dept Engn Mech, Fac Vehicle Engn & Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China

E-mail Address:
zhanghw@dlut.edu.cn

Cited References:
ALBERTO S, 2006, NANO LETT, V6, P633, DOI 10.1021/NL052254U.
ALENKA L, 1996, NATURE, V379, P55, DOI 10.1038/379055A0.
ALEXIADIS A, 2008, CHEM ENG SCI, V63, P2047, DOI 10.1016/j.ces.2007.12.035.
ALFE D, 1998, PHYS REV LETT, V81, P5161.
ANGELL CA, 1993, J PHYS CHEM-US, V97, P6339.
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BALASUBRAMANIAN S, 1996, J CHEM PHYS, V105, P11190.
BERTOLINI D, 1995, PHYS REV E, V52, P1699.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
BOSSE D, 2005, IND ENG CHEM RES, V44, P8428, DOI 10.1021/ie048797g.
BRYC W, 2002, APPL MATH COMPUT, V127, P365.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
DAVID RL, 2003, CRC HDB CHEM PHYS.
EYRING H, 1936, J CHEM PHYS, V4, P283.
GIOVAMBATTISTA N, 2009, PHYS REV LETT, V102, ARTN 050603.
GUO GJ, 2001, MOL PHYS, V99, P283.
HALLETT J, 1963, P PHYS SOC LOND, V82, P1046.
HAN AJ, 2008, J APPL PHYS, V104, ARTN 124908.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708.
HANS WH, 2004, J CHEM PHYS, V120, P9665.
HENKELMAN G, 2000, J CHEM PHYS, V113, P9978.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLT JK, 2008, MICROFLUID NANOFLUID, V5, P425, DOI 10.1007/s10404-008-0301-9.
HORNE RA, 1965, J PHYS CHEM-US, V69, P3988, DOI 10.1021/J100895A057.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KAUZMANN W, 1940, J AM CHEM SOC, V62, P3113.
KINCAID JF, 1941, CHEM REV, V28, P301.
KOGA K, 2001, NATURE, V412, P802.
LEE MJ, 1999, IND ENG CHEM RES, V38, P2867.
LEI QF, 1997, FLUID PHASE EQUILIBR, V140, P221.
LI YX, 2010, MICROFLUID NANOFLUID, V9, P1011, DOI 10.1007/s10404-010-0612-5.
LIU YC, 2005, J CHEM PHYS, V123, ARTN 234701.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MALLAMACE F, 2010, J PHYS CHEM B, V114, P1870, DOI 10.1021/jp910038j.
MARTI J, 1999, J CHEM PHYS, V110, P6876.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
POLING BE, 2001, PROPERTIES GASES LIQ.
POWELL RE, 1941, IND ENG CHEM, V33, P430.
STEVE P, 1995, J COMPUT PHYS, V117, P1, DOI 10.1006/JCPH.1995.1039.
SUN YL, 2007, COMP MATER SCI, V38, P737, DOI 10.1016/j.commatsci.2006.05.007.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
TOLMAN RC, 1920, J AM CHEM SOC, V42, P2506.
VELIKOV V, 2001, SCIENCE, V294, P2335.
WALTER J, 1938, J CHEM PHYS, V6, P391, DOI 10.1063/1.1750274.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
WONHAM J, 1967, NATURE, V215, P1053.
ZHU FQ, 2004, PHYS REV LETT, V93, ARTN 224501.

Cited Reference Count:
50

Times Cited:
0

Publisher:
SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY

Subject Category:
Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas

ISSN:
1613-4982

DOI:
10.1007/s10404-010-0678-0

IDS Number:
711TZ

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286700900008
*Order Full Text [ ]

Title:
Potential of nanoparticles in sample preparation

Authors:
Lucena, R; Simonet, BM; Cardenas, S; Valcarcel, M

Author Full Names:
Lucena, R.; Simonet, B. M.; Cardenas, S.; Valcarcel, M.

Source:
JOURNAL OF CHROMATOGRAPHY A 1218 (4): 620-637 Sp. Iss. SI JAN 28 2011

Language:
English

Document Type:
Review

Author Keywords:
Sample treatment; Nanoparticles; Solid phase extraction; Liquid-liquid extraction

KeyWords Plus:
SOLID-PHASE EXTRACTION; MULTIWALLED CARBON NANOTUBES; ATOMIC-ABSORPTION-SPECTROMETRY; MOLECULARLY IMPRINTED POLYMER; ENVIRONMENTAL WATER SAMPLES; PERFORMANCE LIQUID-CHROMATOGRAPHY; MODIFIED TIO2 NANOPARTICLES; PLASMA-MASS SPECTROMETRY; SIZE TITANIUM-DIOXIDE; RARE-EARTH-ELEMENTS

Abstract:
The paper presents a general overview of the use of nanoparticles to perform sample preparation. In this way the main uses of nanoparticles to carry out solid phase extraction, solid phase microextraction, liquid-liquid extraction and filtration techniques are described for a wide range of nanoparticles including carbon nanoparticles, metallic, silica and molecular imprinted polymer nanoparticles. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Valcarcel, M, Univ Cordoba, Dept Analyt Chem, E-14071 Cordoba, Spain.

Research Institution addresses:
[Lucena, R.; Simonet, B. M.; Cardenas, S.; Valcarcel, M.] Univ Cordoba, Dept Analyt Chem, E-14071 Cordoba, Spain

E-mail Address:
qa1meobj@uco.es

Cited References:
ALEXANDER C, 2003, TETRAHEDRON, V59, P2025, DOI 10.1016/S0040-4020(03)00152-2.
ALEXANDER C, 2006, J MOL RECOGNIT, V19, P106, DOI 10.1002/jmr.760.
ALTELAAR AFM, 2006, ANAL CHEM, V78, P734, DOI 10.1021/ac0513111.
ANDREWS R, 1999, CHEM PHYS LETT, V303, P467.
ARSHADY R, 1981, MAKROMOL CHEM, V182, P687.
ARTHUR CL, 1990, ANAL CHEM, V62, P2145.
AZENHA MA, 2006, ANAL CHEM, V78, P2071, DOI 10.1021/ac0521246.
BAENA JR, 2000, ANAL CHEM, V72, P1510.
BAKER MJ, 2006, APPL SURF SCI, V252, P6731, DOI 10.1016/j.apsusc.2006.02.161.
BALLESTEROS E, 2000, J CHROMATOGR A, V869, P101.
BALLESTEROSGOMEZ A, 2009, ANAL CHEM, V81, P9012, DOI 10.1021/ac9016264.
BARBOSA AF, 2007, TALANTA, V71, P1512, DOI 10.1016/j.talanta.2006.07.026.
BASHEER C, 2006, ANAL CHEM, V78, P2853, DOI 10.1021/ac060240i.
BURGUERA JL, 2009, SPECTROCHIM ACTA B, V64, P451, DOI 10.1016/j.sab.2009.01.004.
CAI YQ, 2003, ANAL CHEM, V75, P2517, DOI 10.1021/ac0263566.
CALVARESI M, 2009, SMALL, V19, P2191.
CAO AY, 2005, SCIENCE, V310, P1307, DOI 10.1126/science.1118957.
CARRILLOCARRION C, 2007, ANALYST, V132, P551, DOI 10.1039/b701019b.
CARRILLOCARRION C, 2007, J CHROMATOGR A, V1171, P1.
CHAPUIS F, 2003, J CHROMATOGR A, V999, P23, DOI 10.1016/S0021-9673(03)00552-1.
CHE G, 1998, NATURE, V393, P393.
CHEN CT, 2005, ANAL CHEM, V77, P5912, DOI 10.1021/ac050831t.
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI 10.1016/j.memsci.2005.06.030.
CHEN WF, 2009, J CHROMATOGR A, V1216, P9143, DOI 10.1016/j.chroma.2009.07.025.
CHEN WH, 2006, ANAL CHEM, V78, P4228, DOI 10.1021/ac052085y.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DADFARNIA S, 2002, B KOR CHEM SOC, V23, P545.
DELCALZO AB, 2006, ANGEW CHEM INT EDIT, V45, P5924.
DELIYANNI EA, 2003, CHEMOSPHERE, V50, P155.
DEMARCO MJ, 2003, WATER RES, V37, P164.
DEMONDT R, 2008, RAPID COMMUN MASS SP, V22, P1481, DOI 10.1002/rcm.3533.
DU W, 2009, J CHROMATOGR A, V1216, P3751, DOI 10.1016/j.chroma.2009.03.013.
FALVIN K, 2009, ANAL BIOANAL CHEM, V393, P437.
FAN GZ, 2006, J CHROMATOGR A, V1127, P12.
FARAJI M, 2010, TALANTA, V81, P831, DOI 10.1016/j.talanta.2010.01.023.
FLETCHER JS, 2006, SURF INTERFACE ANAL, V38, P1393, DOI 10.1002/sia.2461.
FLETCHER JS, 2008, ANAL CHEM, V80, P9058, DOI 10.1021/ac8015278.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GALLEGO M, 1994, ANAL CHEM, V66, P4074.
GAO DM, 2007, J AM CHEM SOC, V129, P7859, DOI 10.1021/ja070975k.
GOKTURK G, 2000, SPECTROCHIM ACTA B, V55, P1063.
GONZALEZ MM, 1999, J ANAL ATOM SPECTROM, V14, P711.
HANG YP, 2003, J SEP SCI, V26, P957, DOI 10.1002/jssc.200301270.
HILL R, 2004, APPL SURF SCI, V231, P936, DOI 10.1016/j.apsusc.2004.03.177.
HOWARD AG, 2005, ANALYST, V130, P1432, DOI 10.1039/b506242j.
HUANG CZ, 2008, SPECTROCHIM ACTA B, V63, P437, DOI 10.1016/j.sab.2007.12.010.
HUMMER G, 2001, NATURE, V414, P188.
ITO D, 2004, IEEE T APPL SUPERCON, V14, P1551, DOI 10.1109/TASC.2004.830704.
JAL PK, 2004, TALANTA, V62, P1005, DOI 10.1016/j.talanta.2003.10.028.
JANOTTA M, 2001, INT J ENVIRON AN CH, V80, P75.
JIANG RF, 2009, J CHROMATOGR A, V1216, P4641, DOI 10.1016/j.chroma.2009.03.076.
JIANG XM, 2007, ANAL BIOANAL CHEM, V389, P355, DOI 10.1007/s00216-007-1336-6.
JIMENEZSOTO JM, 2009, J CHROMATOGR A, V1216, P5626, DOI 10.1016/j.chroma.2009.05.070.
JIMENEZSOTO JM, 2010, J CHROMATOGR A, V1217, P3341, DOI 10.1016/j.chroma.2010.03.016.
JURADOSANCHEZ B, 2009, J CHROMATOGR A, V1216, P1200, DOI 10.1016/j.chroma.2008.12.033.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KAUR A, 2008, E-J CHEM, V5, P930.
KAUR A, 2009, EURASIAN J ANAL CHEM, V4, P175.
KAUR A, 2009, EURASIAN J ANAL CHEM, V4, P234.
KAUR A, 2009, J MATER CHEM, V19, P8279, DOI 10.1039/b901933b.
KAUR A, 2010, AOAC, V93, P1302.
KHAN A, 2003, J SOL-GEL SCI TECHN, V27, P221.
KONG XL, 2005, ANAL CHEM, V77, P259, DOI 10.1021/ac048971a.
KOTTER F, 1998, APPL SURF SCI, V133, P47.
KROTO HW, 1985, NATURE, V318, P162.
KUMAR A, 2008, ANAL CHIM ACTA, V610, P1, DOI 10.1016/j.aca.2008.01.028.
LAZARIDIS NK, 2005, CHEMOSPHERE, V58, P65, DOI 10.1016/j.chemosphere.2004.09.007.
LEE CY, 2008, J AM CHEM SOC, V130, P1766, DOI 10.1021/ja0776069.
LEENDERT AK, 2010, ANAL CHEM, V82, P801.
LEOPOLD K, 2009, ANAL CHEM, V81, P3421, DOI 10.1021/ac802685s.
LEOPOLD N, 2003, ANAL CHEM, V75, P2166, DOI 10.1021/ac026308l.
LI JD, 2008, J CHROMATOGR A, V1180, P24, DOI 10.1016/j.chroma.2007.12.028.
LI L, 2009, ANAL CHIM ACTA, V631, P182, DOI 10.1016/j.aca.2008.10.043.
LI QL, 2009, J CHROMATOGR A, V1216, P1305, DOI 10.1016/j.chroma.2008.12.082.
LI T, 2009, J CHROMATOGR A, V1216, P2989, DOI 10.1016/j.chroma.2009.01.076.
LI WH, 1989, POLYMER, V30, P1513.
LI XS, 2007, SMALL, V3, P595, DOI 10.1002/smll.200600652.
LI Y, 2006, ANAL CHEM, V78, P317, DOI 10.1021/ac050802i.
LIAN N, 2005, MICROCHIM ACTA, V151, P81, DOI 10.1007/s00604-005-0381-0.
LIANG P, 2000, FRESEN J ANAL CHEM, V368, P638.
LIANG P, 2001, ANAL CHIM ACTA, V440, P207.
LIANG P, 2001, J ANAL ATOM SPECTROM, V16, P863.
LIANG P, 2003, ANAL SCI, V19, P1167.
LIANG P, 2004, J ANAL ATOM SPECTROM, V19, P1489, DOI 10.1039/b409619c.
LIANG P, 2005, J SEP SCI, V28, P2339, DOI 10.1002/jssc.200500154.
LIANG P, 2005, SPECTROCHIM ACTA B, V60, P125, DOI 10.1016/j.sab.2004.11.010.
LIU SH, 2005, TALANTA, V67, P456, DOI 10.1016/j.talanta.2005.06.020.
LIU XY, 2007, J CHROMATOGR A, V1165, P10, DOI 10.1016/j.chroma.2007.07.057.
LIU XY, 2008, J CHROMATOGR A, V1212, P10, DOI 10.1016/j.chroma.2008.10.034.
LOPEZFERIA S, 2009, ANAL BIOANAL CHEM, V395, P737, DOI 10.1007/s00216-009-3066-4.
LOPEZFERIA S, 2009, J CHROMATOGR A, V1216, P7346, DOI 10.1016/j.chroma.2009.02.060.
LU JX, 2007, J SEP SCI, V30, P2138, DOI 10.1002/jssc.200700083.
LU ZD, 2010, ANAL CHEM, V82, P7249, DOI 10.1021/ac1011206.
MAIER NM, 2007, ANAL BIOANAL CHEM, V389, P377, DOI 10.1007/s00216-007-1427-4.
MCDONNELL LA, 2007, MASS SPECTROM REV, V26, P606, DOI 10.1002/mas.20124.
MEHDINIA A, 2006, J CHROMATOGR A, V1134, P24, DOI 10.1016/j.chroma.2006.08.087.
MI W, 2007, MEMBR SCI, V304, P304.
MILLER SA, 2002, J ELECTROANAL CHEM, V522, P66.
MILLER SA, 2004, J AM CHEM SOC, V126, P6226, DOI 10.1021/ja0496322.
MORALESCID G, 2010, ANAL CHEM, V82, P2743, DOI 10.1021/ac902631h.
MUNOZ J, 2002, J ANAL ATOM SPECTROM, V17, P716.
MUNOZ J, 2005, ANAL CHIM ACTA, V548, P66, DOI 10.1016/j.aca.2005.05.062.
NIU HY, 2007, J CHROMATOGR A, V1172, P113, DOI 10.1016/j.chroma.2007.10.014.
PATEK M, 2008, CURR OPIN CHEM BIOL, V12, P332, DOI 10.1016/j.cbpa.2008.04.602.
PIEHOWSKI PD, 2008, ANAL CHEM, V80, P8662, DOI 10.1021/ac801591r.
PU XL, 2005, ANALYST, V130, P1175, DOI 10.1039/b502548f.
QUINSON JF, 1996, J MATER SCI, V31, P5179.
REN ZF, 1998, SCIENCE, V282, P1105.
SADEGHI SM, 2009, NANOTECHNOLOGY, V20, ARTN 225401.
SAEKHOW O, 2009, J CHROMATOGR A, V1216, P2270, DOI 10.1016/j.chroma.2009.01.037.
SARIDARA C, 2005, ANAL CHEM, V77, P1183, DOI 10.1021/ac0487101.
SCHRLAU MG, 2008, NANOTECHNOLOGY, V19, ARTN 015101.
SEE HH, 2010, J CHROMATOGR A, V1217, P1767, DOI 10.1016/j.chroma.2010.01.053.
SELLERGREN B, 1993, J CHROMATOGR, V635, P31.
SERRANO A, 2006, J SEP SCI, V29, P33, DOI 10.1002/jssc.200500200.
SHASTRI L, 2010, TALANTA, V81, P1176, DOI 10.1016/j.talanta.2010.01.065.
SHIMODA H, 2002, PHYSICA B, V323, P135.
SHRIVAS K, 2008, ANAL CHEM, V80, P2583, DOI 10.1021/ac702309w.
SHUNXIN L, 1999, J ANAL CHEM+, V365, P469.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
SUAREZ B, 2007, J CHROMATOGR A, V1159, P203, DOI 10.1016/j.chroma.2007.01.092.
SUAREZ B, 2007, J CHROMATOGR A, V1175, P127.
SUDHIR PR, 2005, ANAL CHEM, V77, P7380, DOI 10.1021/ac051162m.
SULEIMAN JS, 2007, MICROCHIM ACTA, V159, P379, DOI 10.1007/s00604-007-0742-y.
SUN L, 2009, ANAL CHIM ACTA, V638, P162, DOI 10.1016/j.aca.2009.02.039.
SUN Y, 2001, J AM CHEM SOC, V123, P5348.
THABANO JRE, 2009, J CHROMATOGR A, V1216, P4933, DOI 10.1016/j.chroma.2009.04.012.
TIEN P, 1999, CHEM MATER, V11, P2141.
TOKONAMI S, 2009, ANAL CHIM ACTA, V641, P7, DOI 10.1016/j.aca.2009.03.035.
TOUBOUL D, 2004, ANAL CHEM, V76, P1550, DOI 10.1021/ac035243z.
VAISMAN L, 2006, ADV COLLOID INTERFAC, V128, P161.
VALCARCEL M, 2007, ANAL CHEM, V79, P4788, DOI 10.1021/ac070196m.
VALCARCEL M, 2008, Anal Bioanal Chem, V391, P13.
VALCARCEL M, 2008, TRAC-TREND ANAL CHEM, V27, P34, DOI 10.1016/j.trac.2007.10.012.
VASILEVA SY, 2009, J ANAL CHEM+, V64, P1214, DOI 10.1134/S106193480912003X.
VELEZ K, 2000, J SOL-GEL SCI TECHN, V19, P469.
VERMISOGIOU EC, 2008, MICROPOR MESOPOR MAT, V110, P25, DOI 10.1016/j.micromeso.2007.08.001.
VICKERMAN JC, 2001, TOF SIMS SURFACE ANA.
WANG JF, 2003, ANGEW CHEM INT EDIT, V42, P5336, DOI 10.1002/anie.200352298.
WANG JX, 2006, J CHROMATOGR A, V1137, P8, DOI 10.1016/j.chroma.2006.10.003.
WANG Q, 2009, CARBON, V47, P2752.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.
WAYCHUNAS GA, 2005, J NANOPART RES, V7, P409, DOI 10.1007/s11051-005-6931-x.
WEI S, 2007, J SEP SCI, V30, P1794, DOI 10.1002/jssc.200700166.
WEIBEL D, 2003, ANAL CHEM, V75, P1754, DOI 10.1021/ac026338o.
WEIS S, 2006, BIOSENS BIOELECTRON, V21, P1943.
WENG TH, 2009, INT J HYDROGEN ENERG, V34, P8707, DOI 10.1016/j.ijhydene.2009.08.027.
WULFF G, 1972, ANGEW CHEM INT EDIT, V11, P341.
XIAO CH, 2001, J CHROMATOGR A, V927, P121.
XIE CG, 2006, ANAL CHEM, V78, P8339, DOI 10.1021/ac0615044.
YAN M, 2001, ANAL CHIM ACTA, V435, P163.
YE L, 2004, ANAL BIOANAL CHEM, V378, P1887, DOI 10.1007/s00216-003-2450-8.
YIN J, 2005, ANAL CHIM ACTA, V540, P333, DOI 10.1016/j.aca.2005.03.045.
YOSHIMATSU K, 2008, BIOSENS BIOELECTRON, V23, P1208, DOI 10.1016/j.bios.2007.12.002.
YU JCC, 2007, FOOD CHEM, V105, P301, DOI 10.1016/j.foodchem.2006.11.049.
YU JX, 2002, J CHROMATOGR A, V978, P37.
ZHAI YH, 2006, MICROCHIM ACTA, V154, P253, DOI 10.1007/s00604-006-0488-y.
ZHANG HQ, 2006, J MOL RECOGNIT, V19, P248, DOI 10.1002/jmr.793.
ZHAO XL, 2008, J CHROMATOGR A, V1188, P140, DOI 10.1016/j.chroma.2008.02.069.
ZHENG H, 2006, INT J ENVIRON AN CH, V86, P431, DOI 10.1080/03067310500248429.
ZHU L, 2010, TALANTA, V80, P1873, DOI 10.1016/j.talanta.2009.10.037.
ZHU XB, 2008, MICROCHIM ACTA, V161, P115, DOI 10.1007/s00604-007-0790-3.

Cited Reference Count:
162

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Biochemical Research Methods; Chemistry, Analytical

ISSN:
0021-9673

DOI:
10.1016/j.chroma.2010.10.069

IDS Number:
712XZ

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286144200005
*Order Full Text [ ]

Title:
DYNAMICAL BEHAVIORS OF FLUID-FILLED MULTI-WALLED CARBON NANOTUBES

Authors:
Yan, Y; Wang, WQ; Zhang, LX

Author Full Names:
Yan, Y.; Wang, W. Q.; Zhang, L. X.

Source:
INTERNATIONAL JOURNAL OF MODERN PHYSICS B 24 (24): 4727-4739 SEP 30 2010

Language:
English

Document Type:
Article

Author Keywords:
Fluid-filled multi-walled carbon nanotubes; natural resonant frequency; intertube resonant frequency; amplitude ratio; noncoaxial vibration

KeyWords Plus:
CYLINDRICAL-SHELLS; VIBRATION; FLOW; INSTABILITY; PREDICTION

Abstract:
This paper is concerned with the free vibration of the fluid-filled multi-walled carbon nanotubes (MWCNTs) with simply supported ends. Based on Donnell's cylindrical shell model and potential flow theory, the effects of internal fluid and the different radii on the coupling vibration of the MWCNT-fluid system are discussed in detail. The results show that the fluid has only a little influence on the natural resonant frequency (frequency of the innermost tube) and the associated amplitude ratio in MWCNTs, while it plays a significant role in the intertube resonant frequency and the associated amplitude ratio. For the natural resonant frequency, the vibrational mode is almost coaxial, i.e., the MWCNTs vibrate like a single-layer shell, however, for the intertube resonant frequency, the system shows complex noncoaxial vibration, which plays a critical role in electronic and transport properties of carbon nanotubes (CNTs). Simultaneously, the effect of the innermost radius on the
frequencies of MWCNTs is also examined and the conclusions accord well with those of another paper.

Reprint Address:
Yan, Y, Kunming Univ Sci & Technol, Dept Engn Mech, Kunming 650051, Yunnan, Peoples R China.

Research Institution addresses:
[Yan, Y.; Wang, W. Q.; Zhang, L. X.] Kunming Univ Sci & Technol, Dept Engn Mech, Kunming 650051, Yunnan, Peoples R China

E-mail Address:
wwqquan@126.com

Cited References:
AMABILI M, 1998, J FLUID STRUCT, V12, P883.
DONG K, 2007, MODEL SIMUL MATER SC, V15, P427, DOI 10.1088/0965-0393/15/5/004.
FU YM, 2006, J SOUND VIB, V296, P746, DOI 10.1016/j.jsv.2006.02.024.
GADD GE, 1997, SCIENCE, V277, P933.
GIRIFALCO LA, 1956, J CHEM PHYS, V25, P693.
HE XQ, 2005, INT J SOLIDS STRUCT, V42, P6032, DOI 10.1016/j.ijsolstr.2005.03.045.
HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303, DOI 10.1016/j.jmps.2004.08.003.
HE XQ, 2006, J APPL PHYS, V100, ARTN 124317.
HU N, 2007, INT J SOLIDS STRUCT, V44, P6535, DOI 10.1016/j.ijsolstr.2007.02.043.
HUMMER G, 2001, NATURE, V414, P188.
LEE SM, 2001, J AM CHEM SOC, V123, P5059, DOI 10.1021/ja003751+.
LIEW KM, 2004, ACTA MATER, V52, P2521, DOI 10.1016/j.actamat.2004.01.043.
LIEW KM, 2006, ACTA MATER, V54, P225, DOI 10.1016/j.actamat.2005.09.002.
LIEW KM, 2006, J APPL PHYS, V99, ARTN 114312.
LIU J, 1998, SCIENCE, V280, P1253.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
NATSUKI T, 2007, J APPL PHYS, V101, ARTN 034319.
RU CQ, 2000, J APPL PHYS, V87, P7227.
RU CQ, 2000, PHYS REV B, V62, P9973.
SAITO R, 2001, CHEM PHYS LETT, V348, P187.
SHEN HS, 2004, INT J SOLIDS STRUCT, V41, P2643, DOI 10.1016/j.ijsolstr.2003.11.028.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SUN C, 2007, SOLID STATE COMMUN, V143, P202, DOI 10.1016/j.ssc.2007.05.027.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
WANG LF, 2005, PHYS REV LETT, V95, ARTN 105501.
WANG XY, 2007, J PHYS D APPL PHYS, V40, P2563, DOI 10.1088/0022-3727/40/8/022.
XU KY, 2006, J APPL PHYS, V99, ARTN 064303.
YAKOBSON BI, 1996, PHYS REV LETT, V76, P2511.
YAN Y, 2007, J APPL PHYS, V102, ARTN 044307.
YAN Y, 2009, APPL MATH MODEL, V33, P1430, DOI 10.1016/j.apm.2008.02.010.
YOON J, 2002, PHYS REV B, V66, ARTN 233402.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI 10.1016/j.compscitech.2004.12.002.
YOON J, 2006, INT J SOLIDS STRUCT, V43, P3337, DOI 10.1016/j.ijsolstr.2005.04.039.
ZHANG YY, 2006, J APPL PHYS, V100, ARTN 074304.

Cited Reference Count:
36

Times Cited:
0

Publisher:
WORLD SCIENTIFIC PUBL CO PTE LTD; 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE

Subject Category:
Physics, Applied; Physics, Condensed Matter; Physics, Mathematical

ISSN:
0217-9792

DOI:
10.1142/S0217979210054701

IDS Number:
705NW

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285992600017
*Order Full Text [ ]

Title:
A theoretical study on the catalytic effect of nanoparticle confined in carbon nanotube

Authors:
Qin, W; Li, X

Author Full Names:
Qin, Wu; Li, Xin

Source:
CHEMICAL PHYSICS LETTERS 502 (1-3): 96-100 JAN 18 2011

Language:
English

Document Type:
Article

KeyWords Plus:
TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; OZONE DECOMPOSITION; WATER; IRON; PARTICLES; OZONATION; DYNAMICS; SYSTEMS; METALS

Abstract:
We investigated the catalytic effect of CuO nanoparticles confined in carbon nanotubes using molecular dynamics simulations and density functional theory calculations. Ozone decomposition and hydroxyl radical generation were used as the probe reactions to investigate the catalytic behavior of catalyst. The effects of the confined environment of carbon nanotubes induced more reactants into the channel. Interface interactions between reactants and CuO nanoparticles in the channel and charge transfer accelerated the decomposition of ozone into oxygen molecule and atomic oxygen species. The atomic oxygen species then interacted to water molecule to generate hydroxyl radicals, which were truly identified by electron paramagnetic resonance (EPR) technique. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Li, X, Harbin Inst Technol, Dept Chem, Harbin 150090, Peoples R China.

Research Institution addresses:
[Qin, Wu; Li, Xin] Harbin Inst Technol, Dept Chem, Harbin 150090, Peoples R China

E-mail Address:
lixin@hit.edu.cn

Cited References:
AJAYAN PM, 1993, NATURE, V362, P522.
ANATRAM MP, 2000, PHYS REV B, V61, P14219.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BAZILEVSKY AV, 2007, LANGMUIR, V23, P7451, DOI 10.1021/1a070140n.
BELTRAN FJ, 2002, OZONE-SCI ENG, V24, P227.
CHE GL, 1999, LANGMUIR, V15, P750.
CHEN W, 2007, J AM CHEM SOC, V129, P7421, DOI 10.1021/ja0713072.
CHEN W, 2008, J AM CHEM SOC, V130, P9414, DOI 10.1021/ja8008192.
COOPER C, 1999, WATER RES, V33, P3695.
CORREADUARTE MA, 2006, J MATER CHEM, V16, P22, DOI 10.1039/b512090j.
COSTA PMFJ, 2008, NANO LETT, V8, P3120, DOI 10.1021/nl8012506.
EDER D, 2008, J MATER CHEM, V18, P2036, DOI 10.1039/b800499d.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FREITAG M, 2007, NANO LETT, V7, P2037, DOI 10.1021/nl070900e.
GOVIND N, 2003, COMP MATER SCI, V28, P250, DOI 10.1016/S0927-0256(03)00111-3.
HUMMER G, 2001, NATURE, V414, P188.
JAIN D, 2007, CARBON, V45, P602, DOI 10.1016/j.carbon.2006.10.012.
JANZEN EG, 1969, J AM CHEM SOC, V91, P4481.
KARI P, 2002, CHEMOSPHERE, V48, P1047.
KOGA K, 2001, NATURE, V412, P802.
KRESSE G, 1993, PHYS REV B, V47, P558.
KRESSE G, 1996, COMP MATER SCI, V6, P15.
KRESSE G, 1996, PHYS REV B, V54, P11169.
LI W, 1998, J AM CHEM SOC, V120, P9041.
MAITI A, 2004, CHEM PHYS LETT, V395, P7, DOI 10.1016/j.cplett.2004.07.024.
MARTYNA GJ, 1996, MOL PHYS, V87, P1117.
MUHL T, 2003, J APPL PHYS 3, V93, P7894, DOI 10.1063/1.1557824.
NEMEC N, 2006, PHYS REV LETT, V96, ARTN 076802.
PAN XL, 2007, NAT MATER, V6, P507, DOI 10.1038/nmat1916.
PERDEW JP, 1981, PHYS REV B, V23, P5048.
PERDEW JP, 1992, PHYS REV B, V45, P13244.
SERP P, 2010, CHEMCATCHEM, V2, P41, DOI 10.1002/cctc.200900283.
SHAN B, 2004, PHYS REV B, V70, ARTN 233405.
SLOAN J, 2002, J AM CHEM SOC, V124, P2116.
STASHANS A, 2007, INT J QUANTUM CHEM, V107, P1508, DOI 10.1002/qua.21273.
SU FB, 2006, CARBON, V44, P801, DOI 10.1016/j.carbon.2005.10.056.
TESSONNIER JP, 2005, APPL CATAL A-GEN, V288, P203, DOI 10.1016/j.apcata.2005.04.034.
TESSONNIER JP, 2009, ACS NANO, V3, P2081, DOI 10.1021/nn900647q.
UTSUMI H, 1994, WATER SCI TECHNOL, V30, P91.
VITALE V, 2008, J AM CHEM SOC, V130, P5848, DOI 10.1021/ja8002843.
ZHU WG, 2006, APPL PHYS LETT, V89, ARTN 243107.
ZHU WG, 2006, NANO LETT, V6, P1415, DOI 10.1021/nl0604311.

Cited Reference Count:
42

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
0009-2614

DOI:
10.1016/j.cplett.2010.12.030

IDS Number:
703PY

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285502000046
*Order Full Text [ ]

Title:
Dynamic behavior of double-walled carbon nanotubes conveying viscous fluid based on nonlocal elastic theory

Authors:
Zhen, YX; Fang, B; Wang, LG

Author Full Names:
Zhen, Yaxin; Fang, Bo; Wang, Liguo

Source:
NANOSENSORS, BIOSENSORS, AND INFO-TECH SENSORS AND SYSTEMS 2010 7646: Art. No. 76461R 2010

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
carbon nanotubes; viscous fluid; nonlocal effect; critical flow velocity; instability

KeyWords Plus:
INSTABILITY; VIBRATION; SCALE; FLOW

Abstract:
In this paper, the dynamic behavior of a fixed-fixed double-walled carbon nanotube (DWCNT) conveying fluid is studied based on Euler-Bernoulli beam theory. The viscosity of the fluid and the nonlocal effect are incorporated in the formulation, and the Galerkin discretization method is used to solve the coupled equations of motions. The critical flow velocity of the fluid is obtained. Numerical simulations show that the van der Waals (vdW) interactions and the internal moving fluid play significant roles in the natural frequencies and the instability of DWCNTs. Also, the influences of the viscosity, nonlocal effect, aspect ratio and the surrounding elastic medium on the dynamic behavior of the double-walled carbon nanotube is studied in detail. It is found that a higher viscous-fluid-conveying DWCNT embedded in a stiff matrix with a larger aspect ratio make the induced instability vibration occur until a higher flow velocity.

Reprint Address:
Zhen, YX, Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China.

Research Institution addresses:
[Zhen, Yaxin; Fang, Bo] Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China

E-mail Address:
bfang@hit.edu.cn

Cited References:
CHE GL, 1998, NATURE, V393, P346.
ERINGEN AC, 1983, J APPL PHYS, V54, P4703.
GAO YH, 2002, NATURE, V415, P599.
GIRIFALCO LA, 1991, J PHYS CHEM-US, V95, P5370.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
LEE HL, 2008, J APPL PHYS, V103, ARTN 024302.
LEE HL, 2009, PHYSICA E, V41, P529, DOI 10.1016/j.physe.2008.10.002.
LIU J, 1998, SCIENCE, V280, P1253.
LU P, 2006, J APPL PHYS, V99, ARTN 073510.
PEDDIESON J, 2003, INT J ENG SCI, V41, P305.
REDDY CD, 2007, APPL PHYS LETT, V90, ARTN 133122.
RU CQ, 2000, PHYS REV B, V62, P16962.
SAITO R, 1998, PHYS PROPERTIES CARB, CH4.
SATIO R, 2001, CHEM PHYS LETT, V348, P187.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
WANG L, 2008, COMP MATER SCI, V44, P821, DOI 10.1016/j.commatsci.2008.06.001.
WANG L, 2009, COMP MATER SCI, V45, P584, DOI 10.1016/j.commatsci.2008.12.006.
YAN Y, 2009, J SOUND VIB, V319, P1003, DOI 10.1016/j.jsv.2008.07.001.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI 10.1016/j.compscitech.2004.12.002.
YOON J, 2006, INT J SOLIDS STRUCT, V43, P3337, DOI 10.1016/j.ijsolstr.2005.04.039.
YOUNG DF, 2003, BRIEF INTRO FLUID ME.
ZHANG YQ, 2005, PHYS REV B, V71, ARTN 195404.

Cited Reference Count:
24

Times Cited:
0

Publisher:
SPIE-INT SOC OPTICAL ENGINEERING; 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA

Subject Category:
Optics

ISSN:
0277-786X

DOI:
10.1117/12.847488

IDS Number:
BSQ85

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, February 18, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285521500045
*Order Full Text [ ]

Title:
Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires

Authors:
Reddy, G; Straub, JE; Thirumalai, D

Author Full Names:
Reddy, Govardhan; Straub, John E.; Thirumalai, D.

Source:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 107 (50): 21459-21464 DEC 14 2010

Language:
English

Document Type:
Article

Author Keywords:
amyloid fibrils; dewetting transition; electrostatic interactions; prion diseases

KeyWords Plus:
CROSS-BETA-SPINE; HYDROPHOBIC HYDRATION; PROTEIN AGGREGATION; NANOTUBES; DYNAMICS; KINETICS; COLLAPSE; MODELS; FORCES

Abstract:
Amyloid-like fibrils from a number of small peptides that are unrelated by sequence adopt a cross-beta-spine in which the two sheets fully interdigitate to create a dry interface. Formation of such a dry interface is usually associated with self-assembly of extended hydrophobic surfaces. Here we investigate how a dry interface is created in the process of protofilament formation in vastly different sequences using two amyloidogenic peptides, one a polar sequence from the N terminus of the yeast prion Sup35 and the other a predominantly hydrophobic sequence from the C terminus of A beta-peptide. Using molecular dynamics simulations with three force fields we show that spontaneous formation of two ordered one-dimensional water wires in the pore between the two sheets of the Sup35 protofilaments results in long-lived structures, which are stabilized by a network of hydrogen bonds between the water molecules in the wires and the polar side chains in the beta-sheet. Upon decreasin
g the stability of the metastable structures, water molecules are expelled resulting in a helically twisted protofilament in which side chains from a pair of beta-strands in each sheet pack perfectly resulting in a dry interface. Although drying in hydrophobically dominated interfaces is abrupt, resembling a liquid to vapor transition, we find that discrete transitions between the liquid to one-dimensional ordered water in the nanopore enclosed by the two beta-sheets to dry interface formation characterizes protofilament assembly in the yeast prions. Indeed, as the two sheets of the hydrophobic A beta-sequence approach each other, fibril formation and expulsion of water molecules occur rapidly and nearly simultaneously.

Reprint Address:
Thirumalai, D, Univ Maryland, Biophys Program, Inst Phys Sci & Technol, College Pk, MD 20742 USA.

Research Institution addresses:
[Reddy, Govardhan; Thirumalai, D.] Univ Maryland, Biophys Program, Inst Phys Sci & Technol, College Pk, MD 20742 USA; [Thirumalai, D.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA; [Straub, John E.] Boston Univ, Dept Chem, Boston, MA 02215 USA

E-mail Address:
thirum@umd.edu

Cited References:
BALBIRNIE M, 2001, P NATL ACAD SCI USA, V98, P2375.
BELLESIA G, 2009, J CHEM PHYS, V131, ARTN 111102.
BENNETT MJ, 2006, STRUCTURE, V14, P811, DOI 10.1016/j.str.2006.03.011.
BERNE BJ, 2009, ANNU REV PHYS CHEM, V60, P85, DOI 10.1146/annurev.physchem.58.032806.104445.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHENG YK, 1998, NATURE, V392, P696.
CHITI F, 2003, NATURE, V424, P805, DOI 10.1038/nature01891.
CHITI F, 2009, NAT CHEM BIOL, V5, P15, DOI 10.1038/nchembio.131.
DILL KA, 1990, BIOCHEMISTRY-US, V29, P7133.
DILL KA, 2008, ANN REV BIOPHYS, V37, P289, DOI 10.1146/annurev.biophys.37.092707.153558.
DIMA RI, 2002, PROTEIN SCI, V11, P1036.
ESPOSITO L, 2006, P NATL ACAD SCI USA, V103, P11533, DOI 10.1073/pnas.0602345103.
HO JD, 2009, P NATL ACAD SCI USA, V106, P7437, DOI 10.1073/pnas.0902725106.
HUMMER G, 2001, NATURE, V414, P188.
KIM YS, 2009, P NATL ACAD SCI USA, V106, P17751, DOI 10.1073/pnas.0909888106.
KLIMOV DK, 2003, STRUCTURE, V11, P295.
KLIMOV DK, 2004, P NATL ACAD SCI USA, V101, P15335.
KRONE MG, 2008, J AM CHEM SOC, V130, P11066, DOI 10.1021/ja8017303.
LEVY Y, 2006, ANNU REV BIOPH BIOM, V35, P389, DOI 10.1146/annurev.biophys.35.040405.102134.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
NELSON R, 2005, NATURE, V435, P773, DOI 10.1038/nature03680.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
REDDY G, 2009, P NATL ACAD SCI USA, V106, P11948, DOI 10.1073/pnas.0902473106.
SAWAYA MR, 2007, NATURE, V447, P453, DOI 10.1038/nature05695.
THIRUMALAI D, 2003, CURR OPIN STRUC BIOL, V13, P146, DOI 10.1016/S0959-440X(03)00032-0.
TYCKO R, 2006, Q REV BIOPHYS, V39, P1, DOI 10.1017/S0033583506004173.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WALLQVIST A, 1995, J PHYS CHEM-US, V99, P2893.
ZHOU RH, 2004, SCIENCE, V305, P1605.

Cited Reference Count:
30

Times Cited:
0

Publisher:
NATL ACAD SCIENCES; 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA

Subject Category:
Multidisciplinary Sciences

ISSN:
0027-8424

DOI:
10.1073/pnas.1008616107

IDS Number:
697NY

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285657600049
*Order Full Text [ ]

Title:
Self-assembly of carbon nanotubes and boron nitride nanotubes into coaxial structures

Authors:
Kuang, YD; Shi, SQ; Chan, PKL; Chen, CY

Author Full Names:
Kuang, Y. D.; Shi, S. Q.; Chan, P. K. L.; Chen, C. Y.

Source:
COMPUTATIONAL MATERIALS SCIENCE 50 (2): 645-650 DEC 2010

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotubes and boron nitride nanotubes; Self-assembly; Molecular dynamics simulations; Polarization; Nanodevices

KeyWords Plus:
MOLECULAR-DYNAMICS; ELASTIC-MODULUS; WATER; DEFORMATION; SIMULATIONS; BEHAVIOR; SYSTEMS; LAYERS

Abstract:
Coaxial carbon nanotube/boron nitride nanotube (CNT/BNNT) multi-walled structures are ideal components in nanoelectronic systems. Our molecular dynamics simulations show that separate CNTs and BNNTs can self-assemble into stable coaxial structures in water under appropriate conditions. In case study three types of representative coaxial structures: (5, 5) CNT/(10, 10) BNNT, (5,5) BNNT/(10, 10) CNT and (5, 5) BNNT/(10, 10) BNNT are obtained. Simulation results also reveal that the self-assembly time between two separate BNNTs is increased remarkably due to the polarization of BNNTs in water. The mechanism of self-assembly among these tubes is demonstrated in detail. Further, coaxial (10, 10) BNNT/(10, 10) CNT/(15, 15) BNNT nanoheterojunctions are achieved for potential application in nanoelectronic systems. The present work shows the feasibility to fabricate the coaxial nanodevices such as insulating high-strength cables, high frequency oscillators and nanojunctions using self
-assembly approach. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Shi, SQ, Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China.

Research Institution addresses:
[Kuang, Y. D.; Shi, S. Q.; Chan, P. K. L.] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China; [Kuang, Y. D.; Chen, C. Y.] Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan 430074, Hubei, Peoples R China

E-mail Address:
mmsqshi@polyu.edu.hk

Cited References:
ALBE K, 1998, COMP MATER SCI, V10, P111.
BLASE X, 1994, EUROPHYS LETT, V28, P335.
BRENNER DW, 2002, J PHYS-CONDENS MAT, V14, P783.
CHOPRA NG, 1995, SCIENCE, V269, P966.
CHOPRA NG, 1998, SOLID STATE COMMUN, V105, P297.
CRAIGHEAD HG, 2000, SCIENCE, V290, P1532.
ENYASHIN AN, 2005, NANOTECHNOLOGY, V16, P1304, DOI 10.1088/0957-4484/16/8/054.
GOLDBERG D, 1999, CHEM PHYS LETT, V308, P337.
HILDER TA, 2009, SMALL, V5, P2183, DOI 10.1002/smll.200900349.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KANG JW, 2006, J COMPUT THEOR NANOS, V3, P880.
KUDIN KN, 2001, PHYS REV B, V64, ARTN 235406.
LAN ZH, 2004, ADV FUNCT MATER, V14, P233, DOI 10.1002/adfm.200304403.
LAO JY, 2002, NANO LETT, V2, P1287, DOI 10.1021/nl025753t.
LIAO L, 2007, J AM CHEM SOC, V129, P9562, DOI 10.1021/ja072861e.
LINDSEY JS, 1991, NEW J CHEM, V15, P153.
LOISEAU A, 1996, PHYS REV LETT, V76, P4737.
MICKELSON W, 2003, SCIENCE, V300, P467.
PADOVA PD, 2008, NANO LETT, V8, P2292.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
POLLOCK EL, 1996, COMPUT PHYS COMMUN, V95, P93.
SONG J, 2006, INT J MECH SCI, V48, P1197, DOI 10.1016/j.ijmecsci.2006.06.006.
SUENAGA K, 1997, SCIENCE, V278, P653.
SURYAVANSHI AP, 2004, APPL PHYS LETT, V84, P2527, DOI 10.1063/1.1691189.
WON CY, 2008, J PHYS CHEM C, V112, P1812, DOI 10.1021/jp076747u.
ZHANG P, 2002, J APPL MECH-T ASME, V69, P454, DOI 10.1115/1.1469002.
ZHANG Y, 1998, SCIENCE, V281, P973.
ZHANG ZH, 2007, APPL PHYS LETT, V90, ARTN 053114.
ZOU J, 2006, NANO LETT, V6, P430, DOI 10.1021/nl052289u.

Cited Reference Count:
30

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Materials Science, Multidisciplinary

ISSN:
0927-0256

DOI:
10.1016/j.commatsci.2010.09.029

IDS Number:
699IR

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286389500066
*Order Full Text [ ]

Title:
Time-resolved red luminescence from europium-catalyzed single walled carbon nanotubes

Authors:
Sitharaman, B; Rajamani, S; Avti, PK

Author Full Names:
Sitharaman, Balaji; Rajamani, Saathyaki; Avti, Pramod K.

Source:
CHEMICAL COMMUNICATIONS 47 (5): 1607-1609 2011

Language:
English

Document Type:
Article

KeyWords Plus:
LANTHANIDE COMPLEXES; ABSORPTION; PROTEINS; LIGANDS; PROBES; WATER; IONS; DNA

Abstract:
The photo-physical properties of Eu-SWCNTs indicate that intrinsic excitonic properties of SWCNTs sensitize the lanthanoid element europium (Eu) to emit time-resolved red luminescence.

Reprint Address:
Sitharaman, B, SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA.

Research Institution addresses:
[Sitharaman, Balaji; Rajamani, Saathyaki; Avti, Pramod K.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA

E-mail Address:
Balaji.Sitharaman@stonybrook.edu

Cited References:
ACCORSI G, 2007, ADV FUNCT MATER, V17, P2975, DOI 10.1002/adfm.200600696.
BAZZI R, 2003, J LUMIN, V102, P445, DOI 10.1016/S0022-2313(02)00588-4.
BUNZLI JCG, 2005, CHEM SOC REV, V34, P1048, DOI 10.1039/b406082m.
CHEN Q, 2008, NANO LETT, V8, P1902, DOI 10.1021/nl080569e.
GALAUP C, 2001, EUR J ORG CHEM JUN, P2165.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HORROCKS WD, 1997, J AM CHEM SOC, V119, P5972.
HUGHES ME, 2007, NANO LETT, V7, P1191, DOI 10.1021/nl062906u.
HUMMER G, 2001, NATURE, V414, P188.
KADJANE P, 2008, J FLUORESC, V18, P119, DOI 10.1007/s10895-007-0250-9.
KAM NWS, 2006, ANGEW CHEM INT EDIT, V45, P577, DOI 10.1002/anie.200503389.
LIU YQ, 2007, J PHYS CHEM C, V111, P1223, DOI 10.1021/jp066018z.
MEECH SR, 1983, J PHOTOCHEM, V23, P193.
MOHITE AD, 2009, NAT NANOTECHNOL, V4, P425, DOI 10.1038/NNANO.2009.122.
MURAKAMI Y, 2005, PHYS REV LETT, V94, ARTN 087402.
PARKER D, 1996, J CHEM SOC DALT 0921, P3613.
RICHARDSON FS, 1982, CHEM REV, V82, P541.
SABBATINI N, 1995, PURE APPL CHEM, V67, P135.
SHARMA PK, 1999, J LUMIN, V82, P187.
SITHARAMAN B, 2007, J BIOMED NANOTECHNOL, V3, P342, DOI 10.1166/jbn2007.043.
SWIERCZEWSKA M, 2009, CARBON, V47, P3139, DOI 10.1016/j.carbon.2009.07.021.
TRETIAK S, 2007, NANO LETT, V7, P2201, DOI 10.1021/nl070355h.
WERTS MHV, 2002, PHYS CHEM CHEM PHYS, V4, P1542.
YANG C, 2004, ANGEW CHEM INT EDIT, V43, P5009.

Cited Reference Count:
24

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Multidisciplinary

ISSN:
1359-7345

DOI:
10.1039/c0cc03014g

IDS Number:
708UJ

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286362300014
*Order Full Text [ ]

Title:
Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle. Part I: theoretical formulations

Authors:
Kiani, K

Author Full Names:
Kiani, Keivan

Source:
ACTA MECHANICA 216 (1-4): 165-195 2011

Language:
English

Document Type:
Article

KeyWords Plus:
DER-WAALS FORCES; CONTINUUM-MECHANICS; FLUID-FLOW; MASS; INSTABILITY; COMPOSITES; ELASTICITY; VIBRATIONS; TRACKS; WATER

Abstract:
The current work suggests mathematical models for the vibration of double-walled carbon nanotubes (DWCNTs) subjected to a moving nanoparticle by using nonlocal classical and shear deformable beam theories. The van der Waals interaction forces between atoms of the innermost and outermost tubes are modeled by an elastic layer. The equations of motion are derived for the nonlocal double body Euler-Bernoulli, Timoshenko and higher-order beams connected by a flexible layer under excitation of a moving nanoparticle. Analytical solutions of the problem are provided for the aforementioned nonlocal beam models with simply supported boundary conditions. The dynamical deflections and nonlocal bending moments of the innermost and outermost tubes are then obtained during the courses of excitation and free vibration. Finally, the critical velocities of the moving nanoparticle associated with the nonlocal beam theories are expressed in terms of small-scale effect parameter, geometry, and ma
terial properties of DWCNTs.

Reprint Address:
Kiani, K, Sharif Univ Technol, Dept Civil Engn, POB 11365-9313, Tehran, Iran.

Research Institution addresses:
Sharif Univ Technol, Dept Civil Engn, Tehran, Iran

E-mail Address:
k_kiani@civil.sharif.edu

Cited References:
ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS F.
BABU S, 2005, MICROFLUID NANOFLUID, V1, P284, DOI 10.1007/s10404-005-0037-8.
COLEMAN JN, 2006, CARBON, V44, P1624, DOI 10.1016/j.carbon.2006.02.038.
ECE MC, 2007, ACTA MECH, V190, P185, DOI 10.1007/s00707-006-0417-5.
ERINGEN AC, 1972, INT J ENG SCI, V10, P1.
ERINGEN AC, 1983, J APPL PHYS, V54, P4703.
ERINGEN AC, 2002, NONLOCAL CONTINUUM F.
FRYBA L, 1999, VIBRATION SOLIDS STR.
GIBSON RF, 2007, COMPOS SCI TECHNOL, V67, P1, DOI 10.1016/j.compscitech.2006.03.031.
GIRIFALCO LA, 1956, J CHEM PHYS, V25, P693.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GUPTA SS, 2008, COMP MATER SCI, V43, P715, DOI 10.1016/j.commatsci.2008.01.032.
HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303, DOI 10.1016/j.jmps.2004.08.003.
HUMMER G, 2001, NATURE, V414, P188.
KIANI K, 2009, J SOUND VIB, V320, P632, DOI 10.1016/j.jsv.2008.08.010.
KIANI K, 2010, J SOUND VIB, V329, P2241, DOI 10.1016/j.jsv.2009.12.017.
LENNARDJONES JE, 1924, P ROY SOC LOND A MAT, V106, P441.
LI CY, 2003, COMPOS SCI TECHNOL, V63, P1517, DOI 10.1016/S0266-3538(03)00072-1.
MAJUMDER M, 2005, NATURE, V438, P444.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
PEDDIESON J, 2003, INT J ENG SCI, V41, P305.
REDDY JN, 1997, MECH LAMINATED COMPO.
REGAN BC, 2003, AIP CONF PROC, V685, P612.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
RU CQ, 2000, J APPL PHYS, V87, P7227.
RU CQ, 2001, J MECH PHYS SOLIDS, V49, P1265.
SAITO R, 1998, PHYS PROPERTIES CARB, CH4.
SCHOEN PAE, 2006, NANO LETT, V6, P1910, DOI 10.1021/nl060982r.
SCHOEN PAE, 2007, APPL PHYS LETT, V90, ARTN 253116.
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878.
SUDAK LJ, 2003, J APPL PHYS, V94, P7281, DOI 10.1063/1.1625437.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
TIMOSHENKO S, 1955, VIBRATION PROBLEMS E.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
WAGHE A, 2002, J CHEM PHYS, V117, P10790.
WANG Q, 2007, PHYS LETT A, V363, P236, DOI 10.1016/j.physleta.2006.10.093.
XU CL, 2007, COMPOS STRUCT, V80, P73, DOI 10.1016/j.compstruct.2006.02.033.
YANA Y, 2009, J SOUND VIB, V319, P1003.
YOON J, 2004, COMPOS PART B-ENG, V35, P87, DOI 10.1016/j.compositesb.2003.09.002.
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI 10.1016/j.compscitech.2004.12.002.
YOON J, 2006, INT J SOLIDS STRUCT, V43, P3337, DOI 10.1016/j.ijsolstr.2005.04.039.

Cited Reference Count:
41

Times Cited:
3

Publisher:
SPRINGER WIEN; SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA

Subject Category:
Mechanics

ISSN:
0001-5970

DOI:
10.1007/s00707-010-0362-1

IDS Number:
708LC

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================