Friday, March 25, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 7 new records this week (7 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288061500045
*Order Full Text [ ]

Title:
Frictionless Sliding of Single-Stranded DNA in a Carbon Nanotube Pore Observed by Single Molecule Force Spectroscopy

Authors:
Lulevich, V; Kim, S; Grigoropoulos, CP; Noy, A

Author Full Names:
Lulevich, Valentin; Kim, Sangil; Grigoropoulos, Costas P.; Noy, Aleksandr

Source:
NANO LETTERS 11 (3): 1171-1176 MAR 2011

Language:
English

Document Type:
Article

Author Keywords:
Single molecule force spectroscopy; DNA; carbon nanotubes; CNT membrane; nanofluidics; molecular friction

KeyWords Plus:
MICROSCOPY; TRANSPORT; INSERTION; HYBRIDS

Abstract:
Smooth inner pores of carbon nanotubes (CNT) provide a fascinating model for studying biological transport. We used an atomic force microscope to pull a single-stranded DNA oligomer from a carbon nanotube pore. DNA extraction from CNT pores occurs at a nearly constant force, which is drastically different from the elastic profile commonly observed during polymer stretching with atomic force microscopy. We show that a combination of the frictionless nanotube pore walls and an unfavorable DNA solvation energy produces this constant force profiles.

Reprint Address:
Noy, A, UC Merced, Sch Nat Sci, Merced, CA 95343 USA.

Research Institution addresses:
[Noy, Aleksandr] UC Merced, Sch Nat Sci, Merced, CA 95343 USA; [Lulevich, Valentin; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA; [Kim, Sangil] Porifera Inc, Hayward, CA USA; [Lulevich, Valentin; Kim, Sangil; Noy, Aleksandr] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA

E-mail Address:
anoy@ucmerced.edu

Cited References:
CHOU SG, 2004, CHEM PHYS LETT, V397, P296, DOI 10.1016/j.cplett.2004.08.117.
CLAUSENSCHAUMANN H, 2000, CURR OPIN CHEM BIOL, V4, P524.
FRIEDSAM C, 2004, J PHYS-CONDENS MAT, V16, S2369, DOI 10.1088/0953-8984/16/26/010.
FRISBIE CD, 1994, SCIENCE, V265, P2071.
GAO HJ, 2003, NANO LETT, V3, P471, DOI 10.1021/nl025967a.
GAO HJ, 2004, ANNU REV MATER RES, V34, P123, DOI 10.1146/annurev.matsci.34.040203.120402.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HU JT, 1999, ACCOUNTS CHEM RES, V32, P435.
HUMMER G, 2001, NATURE, V414, P188.
JOHNSON RR, 2008, NANO LETT, V8, P69, DOI 10.1021/nl071909j.
LI Z, 2010, BIOMECH MODEL MECHAN, V7, P1617.
LIU HT, 2010, SCIENCE, V327, P64, DOI 10.1126/science.1181799.
MANOHAR S, 2008, NANO LETT, V8, P4365, DOI 10.1021/nl8022143.
NOY A, 1995, J AM CHEM SOC, V117, P7943.
NOY A, 2007, HDB MOL FORCE SPECTR, P97.
NOY A, 2007, NANO TODAY, V2, P22.
NOY A, 2009, MATER TODAY, V12, P22.
OKADA T, 2006, CHEM PHYS LETT, V417, P288, DOI 10.1016/j.cplett.2005.10.030.
PATOLSKY F, 2006, SCIENCE, V313, P1100, DOI 10.1126/science.1128640.
SCHERER A, 2005, MACROMOLECULES, V38, P9821, DOI 10.1021/ma051415d.
SHODA M, 2009, J PHYS CHEM C, V113, P6033, DOI 10.1021/jp8109572.
TIAN BZ, 2010, SCIENCE, V329, P830, DOI 10.1126/science.1192033.
TINLAND B, 1997, MACROMOLECULES, V30, P5763.
YAROTSKI DA, 2009, NANO LETT, V9, P12, DOI 10.1021/nl801455t.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
ZHANG SG, 2003, NAT BIOTECHNOL, V21, P1171, DOI 10.1038/nbt874.
ZHENG M, 2003, NAT MATER, V2, P338, DOI 10.1038/nmat877.
ZHENG M, 2003, SCIENCE, V302, P1545.

Cited Reference Count:
28

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1530-6984

DOI:
10.1021/nl104116s

IDS Number:
730UY

========================================================================

*Record 2 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288218300057
*Order Full Text [ ]

Title:
Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes

Authors:
Tripathi, S; Sonkar, SK; Sarkar, S

Author Full Names:
Tripathi, Shweta; Sonkar, Sumit Kumar; Sarkar, Sabyasachi

Source:
NANOSCALE 3 (3): 1176-1181 2011

Language:
English

Document Type:
Article

KeyWords Plus:
CELL-MEMBRANES; TRANSLOCATION; TRANSPORTERS; ROOTS; MICE

Abstract:
Water soluble carbon nanotubes (wsCNTs) show enhancement of the growth rate of common gram (Cicer arietinum) plants. Treating plants with up to 6.0 mu g mL(-1) of wsCNT shows an increased growth rate in every part of the plant including the roots, shoots and also in branching. The noticeable difference between the wsCNT treated and controlled gram is the water uptake; in the former it is dramatically enhanced, suggesting better water absorption and retention related to enhanced growth. This work shows that unlike CNTs, wsCNTs are non-toxic to plant cells that conserve water transport in plants.

Reprint Address:
Sarkar, S, Indian Inst Technol, Dept Chem, Kanpur 208016, Uttar Pradesh, India.

Research Institution addresses:
[Tripathi, Shweta; Sonkar, Sumit Kumar; Sarkar, Sabyasachi] Indian Inst Technol, Dept Chem, Kanpur 208016, Uttar Pradesh, India

E-mail Address:
abya@iitk.ac.in

Cited References:
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
CRAFTS AS, 1938, AM J BOT, V25, P529.
CRAFTS AS, 1938, PLANT PHYSIOL, V13, P791.
DALTON FN, 1975, AGRON J, V67, P334.
DEANGELI A, 2007, FEBS LETT, V581, P2367, DOI 10.1016/j.febslet.2007.04.003.
DEROSA MC, 2010, NAT NANOTECHNOL, V5, P91, DOI 10.1038/nnano.2010.2.
DILLON AC, 1997, NATURE, V386, P377.
DRESSELHAUS MS, 1996, SCI FULLERENES CARBO.
DUBEY P, 2005, PRAMANA-J PHYS, V65, P681.
ENDO M, 1988, CHEMTECH, V18, P568.
FIORITO S, 2009, CARBON, V47, P2789, DOI 10.1016/j.carbon.2009.06.023.
HELVEG S, 2004, NATURE, V427, P426, DOI 10.1038/nature02278.
HU H, 2001, CHEM PHYS LETT, V345, P25.
HUANG WJ, 2003, NANO LETT, V3, P565, DOI 10.1021/nl0340834.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KANG S, 2008, LANGMUIR, V24, P6409, DOI 10.1021/la800951v.
KHODAKOVSKAYA M, 2009, ACS NANO, V3, P3221, DOI 10.1021/nn900887m.
KLUMPP C, 2006, BIOCH BIOPHYS ACTA B, V1758, P402.
LIU QL, 2009, NANO LETT, V9, P1007, DOI 10.1021/nl803083u.
PANTAROTTO D, 2004, CHEM COMMUN 0107, P16, DOI 10.1039/b311254c.
QU GB, 2009, CARBON, V47, P2060, DOI 10.1016/j.carbon.2009.03.056.
ROY S, 1994, J CHEM SOC CHEM 0207, P275.
WANG J, 2009, CARBON, V47, P1752, DOI 10.1016/j.carbon.2009.03.003.
YANG WR, 2007, NANOTECHNOLOGY, V18, ARTN 412001.
ZAVALETA C, 2008, NANO LETT, V8, P2800, DOI 10.1021/nl801362a.

Cited Reference Count:
28

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied

ISSN:
2040-3364

DOI:
10.1039/c0nr00722f

IDS Number:
732VR

========================================================================

*Record 3 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288254600019
*Order Full Text [ ]

Title:
Design of a one-way nanovalve based on carbon nanotube junction and C-60

Authors:
Chen, HY; Liu, ZF; Gong, XG; Sun, DY

Author Full Names:
Chen, H. Y.; Liu, Z. F.; Gong, X. G.; Sun, D. Y.

Source:
MICROFLUIDICS AND NANOFLUIDICS 10 (4): 927-933 APR 2011

Language:
English

Document Type:
Article

Author Keywords:
Molecular dynamics simulation; Nanofluid devices; Carbon nanotube junctions

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; WATER CHANNEL; FLUID-FLOW; MOTOR; PUMP

Abstract:
We report the conceptual construction of a one-way nanovalve based on a carbon nanotube intramolecular junction and a C-60. Using molecular dynamics simulations, we demonstrate the flow behavior of helium through the nanovalve as controlled by the pressure balance around C-60. The van der Waals interaction between C-60 and carbon nanotube keeps C-60 close to the junction, while the pressure balance around C-60 can juggle it between two adsorption sites, which in turn closes or opens the nanovalve.

Reprint Address:
Sun, DY, E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China.

Research Institution addresses:
[Chen, H. Y.; Sun, D. Y.] E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China; [Liu, Z. F.] Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China; [Liu, Z. F.] Chinese Univ Hong Kong, Ctr Sci Modeling & Computat, Shatin, Hong Kong, Peoples R China; [Gong, X. G.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China

E-mail Address:
dysun@phy.ecnu.edu.cn

Cited References:
ARORA G, 2007, NANO LETT, V7, P565, DOI 10.1021/nl062201s.
BRENNER DW, 1990, PHYS REV B, V42, P9458.
CANNON J, 2010, MICROFLUID NANOFLUID, V8, P21, DOI 10.1007/s10404-009-0446-1.
CHEN JY, 2005, SCIENCE, V310, P1480, DOI 10.1126/science.1120385.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HENRARD L, 1999, PHYS REV B, V60, R8521.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
INSEPOV Z, 2006, NANO LETT, V6, P1893, DOI 10.1021/nl060932m.
JEONG GH, 2002, CARBON, V40, P2247.
JIN CH, 2008, NAT NANOTECHNOL, V3, P17, DOI 10.1038/nnano.2007.406.
KANG JW, 2004, NANOTECHNOLOGY, V15, P1633, DOI 10.1088/0957-4484/15/11/045.
KRAL P, 1999, PHYS REV LETT, V82, P5373.
KRAL P, 2002, PHYS REV B, V65, ARTN 161401.
KWON YK, 1999, PHYS REV LETT, V82, P1470.
LEGOAS SB, 2003, PHYS REV LETT, V90, ARTN 055504.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LI YB, 2003, CARBON, V41, P380.
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
LU YJ, 2008, NANOTECHNOLOGY, V19, ARTN 215707.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MONTHIOUX M, 2002, CARBON, V40, P1809.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
ROCHEFORT A, 2002, NANO LETTERS, V2, P253.
RODRIGUEZMANZO JA, 2009, SMALL, V5, P2710, DOI 10.1002/smll.200900590.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SMITH BW, 1998, NATURE, V396, P323.
SOLARES SD, 2004, NANOTECHNOLOGY, V15, P1405, DOI 10.1088/0957-4484/15/11/004.
SOMADA H, 2009, NANO LETT, V9, P62, DOI 10.1021/nl802323n.
SUN DY, 2009, PHYS REV B, V79, ARTN 033403.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
TUZUN RE, 1997, NANOTECHNOLOGY, V8, P112.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG QY, 1999, PHYS REV LETT, V82, P956.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WON CY, 2006, J CHEM PHYS, V125, ARTN 114701.
WU G, 2007, PHYS REV B, V76, ARTN 085424.

Cited Reference Count:
39

Times Cited:
0

Publisher:
SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY

Subject Category:
Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas

ISSN:
1613-4982

DOI:
10.1007/s10404-010-0719-8

IDS Number:
733HU

========================================================================

*Record 4 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288160500016
*Order Full Text [ ]

Title:
Functional Relationships between Agonist Binding Sites and Coupling Regions of Homomeric Cys-Loop Receptors

Authors:
Andersen, N; Corradi, J; Bartos, M; Sine, SM; Bouzat, C

Author Full Names:
Andersen, Natalia; Corradi, Jeremias; Bartos, Mariana; Sine, Steven M.; Bouzat, Cecilia

Source:
JOURNAL OF NEUROSCIENCE 31 (10): 3662-3669 MAR 9 2011

Language:
English

Document Type:
Article

KeyWords Plus:
NICOTINIC ACETYLCHOLINE-RECEPTOR; GABA(A) RECEPTOR; LIGAND-BINDING; ION-CHANNEL; M2 DOMAIN; RESOLUTION; RESIDUES; DYNAMICS; PRE-M1; WATER

Abstract:
Each subunit in a homopentameric Cys-loop receptor contains a specialized coupling region positioned between the agonist binding domain and the ion conductive channel. To determine the contribution of each coupling region to the stability of the open channel, we constructed a receptor subunit (alpha 7-5-HT3A) with both a disabled coupling region and a reporter mutation that alters unitary conductance, and coexpressed normal and mutant subunits. The resulting receptors show single-channel current amplitudes that are quantized according to the number of reporter mutations per receptor, allowing correlation of the number of intact coupling regions with mean open time. We find that each coupling region contributes an equal increment to the stability of the open channel. However, by altering the numbers and locations of active coupling regions and binding sites, we find that a coupling region in a subunit flanked by inactive binding sites can still stabilize the open channel. We a
lso determine minimal requirements for channel opening regardless of stability and find that channel opening can occur in a receptor with one active coupling region flanked by functional binding sites or with one active binding site flanked by functional coupling regions. The overall findings show that, whereas the agonist binding sites contribute interdependently and asymmetrically to open-channel stability, the coupling regions contribute independently and symmetrically.

Reprint Address:
Sine, SM, Mayo Clin, Coll Med, Receptor Biol Lab, Dept Physiol, Rochester, MN 55905 USA.

Research Institution addresses:
[Sine, Steven M.] Mayo Clin, Coll Med, Receptor Biol Lab, Dept Physiol, Rochester, MN 55905 USA; [Sine, Steven M.] Mayo Clin, Coll Med, Receptor Biol Lab, Dept Biomed Engn, Rochester, MN 55905 USA; [Sine, Steven M.] Mayo Clin, Coll Med, Receptor Biol Lab, Dept Neurol, Rochester, MN 55905 USA; [Andersen, Natalia; Corradi, Jeremias; Bartos, Mariana; Bouzat, Cecilia] Univ Nacl Sur, Inst Invest Bioquim, Consejo Nacl Invest Cient & Tecn, RA-8000 Bahia Blanca, Buenos Aires, Argentina

E-mail Address:
sine@mayo.edu; inbouzat@criba.edu.ar

Cited References:
BARTOS M, 2009, MOL NEUROBIOL, V40, P236, DOI 10.1007/s12035-009-8084-x.
BECKSTEIN O, 2004, PHYS BIOL, V1, P42, DOI 10.1088/1478-3967/1/1/005.
BECKSTEIN O, 2006, PHYS BIOL, V3, P147, DOI 10.1088/1478-3975/3/2/007.
BOUZAT C, 1994, NEURON, V13, P1395.
BOUZAT C, 2002, BIOPHYS J, V82, P1920.
BOUZAT C, 2004, NATURE, V430, P896, DOI 10.1038/nature02753.
BOUZAT C, 2008, J NEUROSCI, V28, P7808, DOI 10.1523/JNEUROSCI.0448-08.2008.
CHAKRAPANI S, 2004, J GEN PHYSIOL, V123, P341, DOI 10.1085/jgp.200309004.
CORRY B, 2006, BIOPHYS J, V90, P799, DOI 10.1529/biophysj.105.067868.
EISELE JL, 1993, NATURE, V366, P479.
FILATOV GN, 1995, MOL PHARMACOL, V48, P379.
GRUTTER T, 2005, P NATL ACAD SCI USA, V102, P18207, DOI 10.1073/pnas.0509024102.
HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85.
HUMMER G, 2001, NATURE, V414, P188.
KASH TL, 2003, NATURE, V421, P272, DOI 10.1038/nature01280.
KELLEY SP, 2003, NATURE, V424, P321, DOI 10.1038/nature01788.
LABARCA C, 1995, NATURE, V376, P514.
LEE WY, 2005, NATURE, V438, P243, DOI 10.1038/nature04156.
LEE WY, 2009, J NEUROSCI, V29, P3189, DOI 10.1523/JNEUROSCI.6185-08.2009.
LIU Y, 1991, BIOPHYS J, V60, P424.
MERCADO J, 2006, J NEUROSCI, V26, P2031, DOI 10.1523/JNEUROSCI.4555-05.2006.
RAYES D, 2005, MOL PHARMACOL, V68, P1475, DOI 10.1124/mol.105.015438.
RAYES D, 2009, J NEUROSCI, V29, P6022, DOI 10.1523/JNEUROSCI.0627-09.2009.
SINE SM, 1995, NEURON, V15, P205.
SINE SM, 2002, J NEUROBIOL, V53, P431, DOI 10.1002/neu.10139.
SINE SM, 2006, NATURE, V440, P448, DOI 10.1038/nature04708.
THOMPSON AJ, 2010, Q REV BIOPHYS, V43, P449, DOI 10.1017/S0033583510000168.
UNWIN N, 2005, J MOL BIOL, V346, P967, DOI 10.1016/j.jmb.2004.12.031.
WANG HL, 2008, PLOS COMPUT BIOL, V4, ARTN e41.
XIU XN, 2005, J BIOL CHEM, V280, P41655, DOI 10.1074/jbc.M508635200.

Cited Reference Count:
30

Times Cited:
0

Publisher:
SOC NEUROSCIENCE; 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA

Subject Category:
Neurosciences

ISSN:
0270-6474

DOI:
10.1523/JNEUROSCI.5940-10.2011

IDS Number:
732CJ

========================================================================

*Record 5 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288060500013
*Order Full Text [ ]

Title:
C-60-polysulfone nanocomposite membranes: Entropic and enthalpic determinants of C-60 aggregation and its effects on membrane properties

Authors:
Taurozzi, JS; Crock, CA; Tarabara, VV

Author Full Names:
Taurozzi, Julian S.; Crock, Christopher A.; Tarabara, Volodymyr V.

Source:
DESALINATION 269 (1-3): 111-119 MAR 15 2011

Language:
English

Document Type:
Article

Author Keywords:
Polymer nanocomposite; C-60 fullerene; Phase inversion; Polysulfone; Enthalpic and entropic interactions

KeyWords Plus:
AEROSIL COMPOSITE MEMBRANES; CELLULOSE-ACETATE MEMBRANES; CARBON NANOTUBES; PHASE-INVERSION; ESTROGENIC COMPOUNDS; POLYMER COMPOSITES; FUEL-CELLS; SEPARATION; WATER; NANOPARTICLES

Abstract:
The study focuses on the effects of C-60 filler on the phase inversion process and related changes in the morphology and separation properties of cast C-60-polysulfone nanocomposite membranes. The effects of C-60 on the rejection and permeability of the cast membranes are correlated to rheological and demixing properties of the corresponding casting mixtures. The observed differences between C-60-free and nanocomposite membranes are interpreted as resulting from enthalpic and entropic C-60-polysulfone interactions that drive and are mediated by the aggregation of C-60. Only 30 nm and smaller C-60 aggregates are observed in membranes with the smallest (1% C-60/polysulfone by mass) C-60 loading. In contrast, only aggregates larger than 30 nm are found in composites with 5% and 10% C-60 loadings. A correlation between the demixing rate and permeability and a counter-correlation between permeability and rejection are observed for nanocomposite membranes for the entire C-60 loadin
gs range studied. The observed accumulation of the filler at the surface of internal membrane pores is attributed to the expulsion of C60 aggregates to the free surface for an entropic gain. The findings have implications for the design of polymer nanocomposite membranes as well as for the lifecycle analysis of nanomaterial-enabled products. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Tarabara, VV, Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA.

Research Institution addresses:
[Taurozzi, Julian S.; Crock, Christopher A.; Tarabara, Volodymyr V.] Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA

E-mail Address:
tarabara@msu.edu

Cited References:
AERTS P, 2000, J MEMBRANE SCI, V176, P63.
AERTS P, 2000, J MEMBRANE SCI, V178, P1.
ALPATOVA AL, 2010, WATER RES.
BALAZS AC, 2006, SCIENCE, V314, P1107, DOI 10.1126/science.1130557.
BARNES KA, 2000, MACROMOLECULES, V33, P4177.
BOOM RM, 1992, J MEMBRANE SCI, V73, P277.
BRUNET L, 2008, ENVIRON ENG SCI, V25, P565, DOI 10.1089/ees.2007.0076.
CHAKRABARTY B, 2008, J MEMBRANE SCI, V315, P36, DOI 10.1016/j.memsci.2008.02.027.
CHOI JH, 2006, J MEMBRANE SCI, V284, P406, DOI 10.1016/j.memsei.2006.08.013.
CHOU WL, 2005, POLYM ADVAN TECHNOL, V16, P600, DOI 10.1002/pat.630.
EBERT K, 2004, J MEMBRANE SCI, V233, P71, DOI 10.1016/j.memsci.2003.12.012.
FLORY PJ, 1953, PRINCIPLES POLYM CHE, CH13.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GUPTA S, 2006, NAT MATER, V5, P229, DOI 10.1038/nmat1582.
HASAN T, 2008, J PHYS CHEM C, V112, P20227, DOI 10.1021/jp807036w.
HIGUCHI A, 2000, J APPL POLYM SCI, V77, P529.
HIGUCHI A, 2000, J POLYM SCI POL PHYS, V38, P1749.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOOPER JB, 2006, MACROMOLECULES, V39, P5133, DOI 10.1021/ma060577m.
HUMMER G, 2001, NATURE, V414, P188.
IDRIS A, 2006, J MEMBRANE SCI, V280, P920, DOI 10.1016/j.memsci.2006.03.010.
JIN X, 2007, DESALINATION, V214, P83, DOI 10.1016/j.desal.2006.10.019.
KIM JH, 1998, J MEMBRANE SCI, V138, P153.
KIM SR, 1996, J MEMBRANE SCI, V119, P59.
KRISHNAN RS, 2007, NANO LETT, V7, P484, DOI 10.1021/nl062866u.
LABILLE J, 2009, LANGMUIR, V25, P11232, DOI 10.1021/la9022807.
LEE J, 2008, ENVIRON SCI TECHNOL, V42, P1552, DOI 10.1021/es702552a.
LI JB, 2006, J APPL POLYM SCI, V103, P3623.
MACKAY ME, 2006, SCIENCE, V311, P1740, DOI 10.1126/science.1122225.
MENUT P, 2008, J MEMBRANE SCI, V310, P278, DOI 10.1016/j.memsci.2007.11.016.
MEYER DE, 2007, J PHYS CHEM B, V111, P7142, DOI 10.1021/jp070972u.
MOORE VC, 2003, NANO LETT, V3, P1379.
MULDER M, 2003, BASIC PRINCIPLES MEM.
NUNES SP, 1999, J MEMBRANE SCI, V157, P219.
ONG SL, 2006, FULLER NANOTUB CAR N, V14, P463, DOI 10.1080/15363830600666159.
PARK HC, 1999, J MEMBRANE SCI, V156, P169.
POLOTSKAYA GA, 2006, DESALINATION, V200, P400, DOI 10.1016/j.desal.2006.03.347.
PRYAMITSYN V, 2006, J RHEOL, V50, P655, DOI 10.1122/1.2234483.
SAITO R, 1998, PHYS PROPERTIES CARB, CH4.
SON WK, 2004, MACROMOL RAPID COMM, V25, P1632, DOI 10.1002/marc.200400323.
STARR FW, 2003, J CHEM PHYS, V119, P1777, DOI 10.1063/1.1580099.
STERESCU DM, 2004, MACROMOL RAPID COMM, V25, P1674.
TASAKI K, 2006, J MEMBRANE SCI, V281, P570, DOI 10.1016/j.memsci.2006.04.052.
TAUROZZI JS, 2008, J MEMBRANE SCI, V325, P58, DOI 10.1016/j.memsci.2008.07.010.
VANDEWITTE P, 1996, J MEMBRANE SCI, V117, P1.
WANG HB, 2007, J MEMBRANE SCI, V289, P277, DOI 10.1016/j.memsci.2006.12.008.
WANG SR, 2009, LANGMUIR, V25, P11078, DOI 10.1021/la901402f.
WARA NM, 1995, J MEMBRANE SCI, V104, P43.
WHITE JL, 1974, J APPL POLYM SCI, V18, P1013.
YAN L, 2006, J MEMBRANE SCI, V276, P162, DOI 10.1016/j.memsci.2005.09.044.
YANG YN, 2007, J MEMBRANE SCI, V288, P231, DOI 10.1016/j.memsci.2006.11.019.
YANG YN, 2008, J MEMBRANE SCI, V311, P200.
ZHENG QZ, 2006, J MEMBRANE SCI, V279, P230, DOI 10.1016/j.memsci.2005.12.009.

Cited Reference Count:
54

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Engineering, Chemical; Water Resources

ISSN:
0011-9164

DOI:
10.1016/j.desal.2010.10.049

IDS Number:
730UO

========================================================================

*Record 6 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288120900039
*Order Full Text [ ]

Title:
Wetting of Liquid Iron in Carbon Nanotubes and on Graphene Sheets: A Molecular Dynamics Study

Authors:
Gao, YF; Yang, Y; Sun, DY

Author Full Names:
Gao Yu-Feng; Yang Yang; Sun De-Yan

Source:
CHINESE PHYSICS LETTERS 28 (3): Art. No. 036102 MAR 2011

Language:
English

Document Type:
Article

KeyWords Plus:
CONTACT-ANGLE; LINE TENSION; VAPOR INTERFACE; ENERGY; CAPILLARITY; SIMULATION; POTENTIALS; DEPENDENCE; NANOWIRES; SURFACES

Abstract:
Using molecular dynamics simulations, we study the wetting of liquid iron in a carbon nanotube and on a graphene sheet. It is found that the contact angle of a droplet in a carbon nanotube increases linearly with the increase of wall curvature but is independent of the length of the filled liquid. The contact angle for a droplet on a graphene sheet decreases with the increasing droplet size. The line tension of a droplet on a graphene sheet is also obtained. Detailed studies show that liquid iron near the carbon walls exhibits the ordering tendencies in both the normal and tangential directions.

Reprint Address:
Gao, YF, E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China.

Research Institution addresses:
[Gao Yu-Feng; Yang Yang; Sun De-Yan] E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China

E-mail Address:
dysun@phy.ecnu.edu.cn

Cited References:
AJAYAN PM, 1993, NATURE, V361, P333.
AMIRFAZLI A, 2004, ADV COLLOID INTERFAC, V110, P121, DOI 10.1016/j.cis.2004.05.001.
BONN D, 2009, REV MOD PHYS, V81, P739, DOI 10.1103/RevModPhys.81.739.
BORAWIAKPALEN E, 2006, CHEM PHYS LETT, V421, P129.
BORUVKA L, 1977, J CHEM PHYS, V66, P5464.
BRENNER DW, 2002, J PHYS-CONDENS MAT, V14, P783.
BRESME F, 1998, PHYS REV LETT, V80, P3791.
BROUGHTON JQ, 1983, ACTA METALL, V31, P845.
CHECCO A, 2003, PHYS REV LETT, V91, ARTN 186101.
DAVIDCHACK RL, 2003, J CHEM PHYS, V118, P7651, DOI 10.1063/1.1563248.
DEGENNES PG, 1985, REV MOD PHYS, V57, P827, DOI 10.1103/REVMODPHYS.57.827.
DUJARDIN E, 1994, SCIENCE, V265, P1850.
DURGUN E, 2003, PHYS REV B, V67, ARTN 201401.
GETTA T, 1998, PHYS REV E, V57, P655.
GUO HK, 2005, CHINESE PHYS LETT, V22, P787.
GUO YF, 2006, NANOTECHNOLOGY, V17, P4726, DOI 10.1088/0957-4484/17/18/033.
HARKINS WD, 1937, J CHEM PHYS, V5, P135.
HORSCH M, 2010, LANGMUIR, V26, P10913, DOI 10.1021/la1008363.
HUMMER G, 2001, NATURE, V414, P188.
ISKHAKOV RS, 2003, JETP LETT+, V78, P236.
KUTANA A, 2007, PHYS REV B, V76, ARTN 195444.
LEONHARDT A, 2003, DIAM RELAT MATER, V12, P790.
MARMUR A, 2002, LANGMUIR, V18, P8919, DOI 10.1021/la026167i.
MENDELEV MI, 2003, PHILOS MAG, V83, P3977, DOI 10.1080/14786430310001613264.
MENDEZVILAS A, 2009, SMALL, V5, P1366, DOI 10.1002/smll.200800819.
MILLS KC, 2006, INT MATER REV, V51, P329, DOI 10.1179/174328006X102510.
NIJMEIJER MJP, 1988, J CHEM PHYS, V89, P3789.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
SHI B, 2009, J CHEM PHYS, V130, ARTN 034705.
TSANG SC, 1994, NATURE, V372, P159.
UGARTE D, 1996, SCIENCE, V274, P1897.
VORONOV RS, 2006, J CHEM PHYS, V124, ARTN 204701.
WEI DC, 2007, ADV MATER, V19, P386, DOI 10.1002/adma.200600885.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WILLE G, 2002, INT J THERMOPHYS, V23, P1197.
YANG Y, 2010, PHYS REV B, V81, ARTN 241407.
YUAN QZ, 2010, PHYS REV LETT, V104, ARTN 246101.

Cited Reference Count:
39

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Multidisciplinary

ISSN:
0256-307X

DOI:
10.1088/0256-307X/28/3/036102

IDS Number:
731PF

========================================================================

*Record 7 of 7.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288173400019
*Order Full Text [ ]

Title:
Separation and Diameter-Sorting of Empty (End-Capped) and Water-Filled (Open) Carbon Nanotubes by Density Gradient Ultracentrifugation

Authors:
Cambre, S; Wenseleers, W

Author Full Names:
Cambre, Sofie; Wenseleers, Wim

Source:
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 50 (12): 2764-2768 2011

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; chirality; luminescence; surfactants; ultracentrifugation

KeyWords Plus:
DIFFERENTIATION; SPECTROSCOPY; SURFACTANTS

Reprint Address:
Wenseleers, W, Univ Antwerp, Dept Phys, Univ Pl 1, B-2610 Antwerp, Belgium.

Research Institution addresses:
[Cambre, Sofie; Wenseleers, Wim] Univ Antwerp, Dept Phys, B-2610 Antwerp, Belgium

E-mail Address:
wim.wenseleers@ua.ac.be

Cited References:
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ARNOLD MS, 2005, NANO LETT, V5, P713, DOI 10.1021/nl050133o.
ARNOLD MS, 2006, NAT NANOTECHNOL, V1, P60, DOI 10.1038/nnano.2006.52.
ARNOLD MS, 2008, ACS NANO, V2, P2291, DOI 10.1021/nn800512t.
BACHILO SM, 2002, SCIENCE, V298, P2361, DOI 10.1126/science.1078727.
BONACCORSO F, 2010, J PHYS CHEM C, V114, P17267, DOI 10.1021/jp1030174.
CAMBRE S, 2010, PHYS REV LETT, V104, ARTN 207401.
CARVALHO EJF, 2010, ACS NANO, V4, P765, DOI 10.1021/nn901350s.
CROCHET J, 2007, J AM CHEM SOC, V129, P8058, DOI 10.1021/ja071553d.
FAGAN JA, 2008, ADV MATER, V20, P1609, DOI 10.1002/adma.200702353.
FLEURIER R, 2009, ADV FUNCT MATER, V19, P2219, DOI 10.1002/adfm.200801778.
GHOSH S, 2010, NAT NANOTECHNOL, V5, P443, DOI 10.1038/NNANO.2010.68.
GREEN AA, 2009, NANO RES, V2, P69, DOI 10.1007/s12274-009-9006-y.
HERSAM MC, 2008, NAT NANOTECHNOL, V3, P387, DOI 10.1038/nnano.2008.135.
HOLT JK, 2008, MICROFLUID NANOFLUID, V5, P425, DOI 10.1007/s10404-008-0301-9.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1993, NATURE, V363, P603.
KATO Y, 2009, ANGEW CHEM INT EDIT, V48, P5435, DOI 10.1002/anie.200900651.
KATO Y, 2009, ANGEW CHEM, V121, P5543.
KOGA K, 2001, NATURE, V412, P802.
LIU J, 2010, MRS BULL, V35, P315.
NAIR N, 2008, LANGMUIR, V24, P1790, DOI 10.1021/la702516u.
NIYOGI S, 2009, J AM CHEM SOC, V131, P1144, DOI 10.1021/ja807785e.
PICKETT GT, 2000, PHYS REV LETT, V85, P3652.
PRICE CA, 1982, CENTRIFUGATION DENSI.
QUINTILLA A, 2010, PHYS CHEM CHEM PHYS, V12, P902, DOI 10.1039/b912847f.
REICH S, 2004, CARBON NANOTUBES BAS.
RICKWOOD D, 1982, ANAL BIOCHEM, V123, P23.
RINZLER AG, 2006, NAT NANOTECHNOL, V1, P17, DOI 10.1038/nnano.2006.76.
WENSELEERS W, 2004, ADV FUNCT MATER, V14, P1105, DOI 10.1002/adfm.200400130.
WENSELEERS W, 2007, ADV MATER, V19, P2274, DOI 10.1002/adma.200700773.

Cited Reference Count:
31

Times Cited:
0

Publisher:
WILEY-BLACKWELL; COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
1433-7851

DOI:
10.1002/anie.201007324

IDS Number:
732GQ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, March 18, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287953500004
*Order Full Text [ ]

Title:
Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory

Authors:
Simsek, M

Author Full Names:
Simsek, Mesut

Source:
STEEL AND COMPOSITE STRUCTURES 11 (1): 59-76 FEB 2011

Language:
English

Document Type:
Article

Author Keywords:
vibration; nonlocal Timoshenko beam theory; carbon nanotubes; moving loads

KeyWords Plus:
SHEAR DEFORMATION-THEORY; PRESTRESSED DAMPED BEAM; SMALL LENGTH SCALE; HARMONIC LOAD; WAVE-PROPAGATION; CONTINUUM-MECHANICS; DYNAMIC-ANALYSIS; ELASTICITY THEORY; MICROTUBULES; MODELS

Abstract:
Dynamic analysis of an embedded single-walled carbon nanotube (SWCNT) traversed by a moving nanoparticle, which is modeled as a moving load, is investigated in this study based on the nonlocal Timoshenko beam theory, including transverse shear deformation and rotary inertia. The governing equations and boundary conditions are derived by using the principle of virtual displacement. The Galerkin method and the direct integration method of Newmark are employed to find the dynamic response of the SWCNT. A detailed parametric study is conducted to study the influences of the nonlocal parameter, aspect ratio of the SWCNT, elastic medium constant and the moving load velocity on the dynamic responses of SWCNT. For comparison purpose, free vibration frequencies of the SWCNT are obtained and compared with a previously published study. Good agreement is observed. The results show that the above mentioned effects play an important role on the dynamic behaviour of the SWCNT.

Reprint Address:
Simsek, M, Yildiz Tech Univ, Dept Civil Engn, Davutpasa Campus, TR-34210 Esenler, Turkey.

Research Institution addresses:
Yildiz Tech Univ, Dept Civil Engn, TR-34210 Esenler, Turkey

E-mail Address:
mesutsimsek@gmail.com

Cited References:
ABUHILAL M, 2000, J SOUND VIB, V232, P703.
ADALI S, 2008, PHYS LETT A, V372, P5701, DOI 10.1016/j.physleta.2008.07.003.
AYDOGDU M, 2007, TURK J ENG ENV SCI, V31, P305.
AYDOGDU M, 2008, INT J MECH SCI, V50, P837, DOI 10.1016/j.ijmecsci.2007.10.003.
AYDOGDU M, 2009, COMPOS STRUCT, V89, P94, DOI 10.1016/j.compstruct.2008.07.008.
AYDOGDU M, 2009, PHYSICA E, V41, P1651, DOI 10.1016/j.physe.2009.05.014.
AYDOGDU M, 2009, PHYSICA E, V41, P861, DOI 10.1016/j.physe.2009.01.007.
CHOPRA AK, 2001, DYNAMICS STRUCTURES.
CIVALEK O, 2009, INT J ENG APPL SCI, V2, P47.
CIVALEK O, 2010, MATH COMPUT APPL, V15, P289.
CIVALEK O, 2010, SCI IRAN TRANS B, V17, P367.
COWPER GR, 1966, ASME, V33, P335.
DEDKOV GV, 2007, TECH PHYS LETT+, V33, P51, DOI 10.1134/S1063785007010142.
DEMIR C, 2010, MATH COMPUT APPL, V15, P57.
ECE MC, 2007, ACTA MECH, V190, P185, DOI 10.1007/s00707-006-0417-5.
ERINGEN AC, 1972, INT J ENG SCI, V10, P1.
ERINGEN AC, 1972, INT J ENGNG SCI, V10, P233.
ERINGEN AC, 1983, J APPL PHYS, V54, P4703.
FRYBA L, 1972, VIBRATION SOLIDS STR.
GARINEI A, 2006, INT J ENG SCI, V44, P778, DOI 10.1016/j.ijengsci.2006.04.013.
HEIRECHE H, 2008, PHYSICA E, V40, P2791, DOI 10.1016/j.physe.2007.12.021.
HU YG, 2009, J APPL PHYS, V106, ARTN 044301.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
KE LL, 2009, COMP MATER SCI, V47, P409, DOI 10.1016/j.commatsci.2009.09.002.
KIANI K, 2010, J SOUND VIB, V329, P2241, DOI 10.1016/j.jsv.2009.12.017.
KLASZTORNY M, 2001, STRUCT ENG MECH, V12, P267.
KOCATURK T, 2006, COMPUT STRUCT, V84, P2113, DOI 10.1016/j.compstruc.2006.08.062.
KOCATURK T, 2006, J SOUND VIB, V291, P302, DOI 10.1016/j.jsv.2005.06.024.
KUMAR D, 2008, J APPL PHYS, V103, ARTN 073521.
LEE HL, 2009, PHYSICA E, V41, P529, DOI 10.1016/j.physe.2008.10.002.
LEE HP, 1994, J SOUND VIB, V171, P361.
LI XF, 2009, APPL PHYS LETT, V94, ARTN 101903.
LIM CW, 2007, J APPL PHYS, V101, ARTN 054312.
LIM CW, 2009, INTERACTION MULTISCA, V2, P223.
LU P, 2006, J APPL PHYS, V99, ARTN 073510.
LU P, 2007, INT J SOLIDS STRUCT, V44, P5289, DOI 10.1016/j.ijsolstr.2006.12.034.
LU P, 2007, J APPL PHYS, V101, ARTN 073504.
MIR M, 2008, COMP MATER SCI, V43, P540, DOI 10.1016/j.commatsci.2007.12.024.
MURMU T, 2009, COMP MATER SCI, V46, P854, DOI 10.1016/j.commatsci.2009.04.019.
MURMU T, 2009, PHYSICA E, V41, P1232, DOI 10.1016/j.physe.2009.02.004.
MURMU T, 2009, PHYSICA E, V41, P1451, DOI 10.1016/j.physe.2009.04.015.
MURMU T, 2010, COMP MATER SCI, V47, P721, DOI 10.1016/j.commatsci.2009.10.015.
NARENDAR S, 2009, COMP MATER SCI, V47, P526, DOI 10.1016/j.commatsci.2009.09.021.
NEWMARK NM, 1959, ASCE J ENG MECH DIVI, V85, P67.
PEDDIESON J, 2003, INT J ENG SCI, V41, P305.
PRADHAN SC, 2009, STRUCT ENG MECH, V32, P811.
PRADHAN SC, 2009, STRUCT ENG MECH, V33, P193.
REDDY JN, 2007, INT J ENG SCI, V45, P288, DOI 10.1016/j.ijengsci.2007.04.004.
REDDY JN, 2008, J APPL PHYS, V103, ARTN 023511.
SATO M, 2009, INTERACT MULTI MECH, V2, P209.
SEARS A, 2004, PHYS REV B, V69, ARTN 235406.
SIMSEK M, 2007, J STRUCT ENG-ASCE, V133, P1733, DOI 10.1061/(ASCE)0733-9445(2007)133:12(1733).
SIMSEK M, 2009, COMPOS STRUCT, V90, P465, DOI 10.1016/j.compstruct.2009.04.024.
SIMSEK M, 2009, J SOUND VIB, V320, P235, DOI 10.1016/j.jsv.2008.07.012.
SIMSEK M, 2010, COMPOS STRUCT, V92, P2532, DOI 10.1016/j.compstruct.2010.02.008.
SIMSEK M, 2010, PHYSICA E, V43, P182, DOI 10.1016/j.physe.2010.07.003.
SIMSEK, 2010, COMPOS STRUCT, V92, P904.
SNIADY P, 2008, J APPL MECH-T ASME, V75, ARTN 024503.
SUDAK LJ, 2003, J APPL PHYS, V94, P7281, DOI 10.1063/1.1625437.
TIMOSHENKO S, 1955, VIBRATION PROBLEMS E.
TOUNSI A, 2008, J APPL PHYS, V104, ARTN 104301.
WANG CM, 2006, J SOUND VIB, V294, P1060, DOI 10.1016/j.jsv.2006.01.005.
WANG L, 2009, COMP MATER SCI, V45, P584, DOI 10.1016/j.commatsci.2008.12.006.
WANG L, 2009, PHYSICA E, V41, P1835, DOI 10.1016/j.physe.2009.07.011.
WANG LF, 2005, PHYS REV B, V71, ARTN 195412.
WANG Q, 2005, J APPL PHYS, V98, ARTN 124301.
WANG Q, 2006, PHYS LETT A, V357, P130, DOI 10.1016/j.physleta.2006.04.026.
WANG Q, 2007, PHYS LETT A, V363, P236, DOI 10.1016/j.physleta.2006.10.093.
WANG RT, 1997, J SOUND VIB, V207, P731.
WANG RT, 1998, STRUCT ENG MECH, V6, P229.
WANG RT, 1999, STRUCT ENG MECH, V7, P361.
XIAODONG Y, 2009, SCI CHINA SER E, V52, P617.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2004, COMPOS PART B-ENG, V35, P87, DOI 10.1016/j.compositesb.2003.09.002.
YU L, 2008, STRUCT ENG MECH, V29, P155.
ZHANG YQ, 2004, PHYS REV B, V70, ARTN 205430.
ZHANG YQ, 2005, PHYS LETT A, V340, P258, DOI 10.1016/j.physleta.2005.03.064.
ZHANG YQ, 2005, PHYS REV B, V71, ARTN 195404.
ZHANG YQ, 2006, PHYS LETT A, V349, P370, DOI 10.1016/j.physleta.2005.09.036.
ZHENG DY, 1998, J SOUND VIB, V212, P455.
ZHU XQ, 1999, J SOUND VIB, V228, P377.

Cited Reference Count:
82

Times Cited:
0

Publisher:
TECHNO-PRESS; PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA

Subject Category:
Construction & Building Technology; Engineering, Civil; Materials Science, Composites

ISSN:
1229-9367

IDS Number:
729MH

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287844400012
*Order Full Text [ ]

Title:
Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture

Authors:
Zhao, HX; Kong, XJ; Li, H; Jin, YC; Long, LS; Zeng, XC; Huang, RB; Zheng, LS

Author Full Names:
Zhao, Hai-Xia; Kong, Xiang-Jian; Li, Hui; Jin, Yi-Chang; Long, La-Sheng; Zeng, Xiao Cheng; Huang, Rong-Bin; Zheng, Lan-Sun

Source:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 108 (9): 3481-3486 MAR 1 2011

Language:
English

Document Type:
Article

Author Keywords:
ab initio molecular dynamics; phase transition; supramolecular nanochannel

KeyWords Plus:
WALLED CARBON NANOTUBES; NEUTRON-DIFFRACTION; PHASE-TRANSITION; DENSITY; DYNAMICS; CRYSTAL; NANOSCALE; EXISTENCE

Abstract:
Ferroelectric materials are characterized by spontaneous electric polarization that can be reversed by inverting an external electric field. Owing to their unique properties, ferroelectric materials have found broad applications in microelectronics, computers, and transducers. Water molecules are dipolar and thus ferroelectric alignment of water molecules is conceivable when water freezes into special forms of ice. Although the ferroelectric ice XI has been proposed to exist on Uranus, Neptune, or Pluto, evidence of a fully proton-ordered ferroelectric ice is still elusive. To date, existence of ferroelectric ice with partial ferroelectric alignment has been demonstrated only in thin films of ice grown on platinum surfaces or within microdomains of alkali-hydroxide doped ice I. Here we report a unique structure of quasi-one-dimensional (H2O)(12n) wire confined to a 3D supramolecular architecture of [(Cu2CuII)-Cu-I(CDTA)(4,4'-bpy)(2)](n) H(4)CDTA, trans-1,2-diaminocyclohexane-
N,N,N',N'-tetraacetic acid; 4,4'-bpy, 4,4'-bipyridine). In stark contrast to the bulk, this 1D water wire not only exhibits enormous dielectric anomalies at approximately 175 and 277 K, respectively, but also undergoes a spontaneous transition between "1D liquid" and "1D ferroelectric ice" at approximately 277 K. Hitherto unrevealed properties of the 1D water wire will be valuable to the understanding of anomalous properties of water and synthesis of novel ferroelectric materials.

Reprint Address:
Long, LS, Xiamen Univ, State Key Lab Phys Chem Solid Surface, Xiamen 361005, Peoples R China.

Research Institution addresses:
[Zhao, Hai-Xia; Kong, Xiang-Jian; Jin, Yi-Chang; Long, La-Sheng; Huang, Rong-Bin; Zheng, Lan-Sun] Xiamen Univ, State Key Lab Phys Chem Solid Surface, Xiamen 361005, Peoples R China; [Zhao, Hai-Xia; Kong, Xiang-Jian; Jin, Yi-Chang; Long, La-Sheng; Huang, Rong-Bin; Zheng, Lan-Sun] Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China; [Li, Hui; Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA

E-mail Address:
lslong@xmu.edu.cn; xzeng1@unl.edu

Cited References:
*ACC, MAT STUD.
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BECKE AD, 1988, PHYS REV A, V38, P3098.
BISHOP CL, 2009, FARADAY DISCUSS, V141, P277, DOI 10.1039/b807377p.
BRAMWELL ST, 1999, NATURE, V397, P212.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CHERUZEL LE, 2003, ANGEW CHEM INT EDIT, V42, P5452, DOI 10.1002/anie.200352157.
CROSS LE, 1987, FERROELECTRICS, V76, P241.
CUI H, 2008, ANGEW CHEM INT EDIT, V47, P3376, DOI 10.1002/anie.200705846.
DAUBEROSGUTHORP.P, 1998, PROTEIN-STRUCT FUNCT, V4, P31.
FEBLES M, 2006, J AM CHEM SOC, V128, ARTN JA063223J.
FUKAZAWA H, 2006, ASTROPHYS J 2, V652, L57.
FUKAZAWA H, 2009, NUCL INSTRUM METH A, V600, P279, DOI 10.1016/j.nima.2008.11.044.
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9.
GRIMME S, 2004, J COMPUT CHEM, V25, P1463, DOI 10.1002/jcc.20078.
GRIMME S, 2006, J COMPUT CHEM, V27, P1787, DOI 10.1002/jcc.20495.
HARTWIGSEN C, 1998, PHYS REV B, V58, P3641.
HORIUCHI S, 2008, J AM CHEM SOC, V130, P13382, DOI 10.1021/ja8032235.
HUMMER G, 2001, NATURE, V414, P188.
IEDEMA MJ, 1998, J PHYS CHEM B, V102, P9203.
JACKSON SM, 1997, J PHYS CHEM B, V101, P6177.
JANIAK C, 2002, J AM CHEM SOC, V124, P14010, DOI 10.1021/ja0274608.
KAO KC, 2004, DIELECTRIC PHENOMENA.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LEBARD DN, 2010, J PHYS CHEM B, V114, P9246, DOI 10.1021/jp1006999.
LEE C, 1988, PHYS REV B, V37, P785, DOI 10.1103/PHYSREVB.37.785.
LEVINGER NE, 2002, SCIENCE, V298, P1722.
LINES ME, 1977, PRINCIPLES APPL FERR.
LIPPERT G, 1997, MOL PHYS, V92, P477.
LONG LS, 2004, INORG CHEM, V43, P3798, DOI 10.1021/ic0494354.
LUO CF, 2008, NANO LETT, V8, P2607, DOI 10.1021/nl072642r.
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t.
MURRELL JN, 1994, PROPERTIES LIQUIDS S.
PETRENKO VF, 1999, PHYS ICE.
PRATT LR, 2002, CHEM REV, V102, P2625, DOI 10.1021/cr000705j.
RAPPE AK, 1991, J PHYS CHEM-US, V95, P3358.
RUN CY, 2004, SCIENCE, V304, P80.
SAMARA GA, 2003, J PHYS-CONDENS MAT, V15, R367.
SANSOM MSP, 2001, NATURE, V414, P156.
SINGER SJ, 2005, PHYS REV LETT, V94, ARTN 135701.
SPEK AL, 2003, J APPL CRYSTALLOGR 1, V36, P7, DOI 10.1107/S0021889802022112.
SU XC, 1998, PHYS REV LETT, V80, P1533.
VANDEVONDELE J, 2005, COMPUT PHYS COMMUN, V167, P103, DOI 10.1016/j.cpc.2004.12.014.
ZUBAVICUS Y, 2004, SCIENCE, V304, P974.

Cited Reference Count:
47

Times Cited:
0

Publisher:
NATL ACAD SCIENCES; 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA

Subject Category:
Multidisciplinary Sciences

ISSN:
0027-8424

DOI:
10.1073/pnas.1010310108

IDS Number:
728AD

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287974300006
*Order Full Text [ ]

Title:
Vibrating carbon nanotubes as water pumps

Authors:
Qiu, H; Shen, R; Guo, WL

Author Full Names:
Qiu, Hu; Shen, Rong; Guo, Wanlin

Source:
NANO RESEARCH 4 (3): 284-289 MAR 2011

Language:
English

Document Type:
Article

Author Keywords:
Nanopump; carbon nanotube; nanofluidics; centrifugal forces; water dynamics

KeyWords Plus:
MOLECULAR-DYNAMICS; TRANSPORT; PERMEATION; DESALINATION; MEMBRANES; CHANNEL

Abstract:
Nanopumps conducting fluids directionally through nanopores and nanochannels have attracted considerable interest for their potential applications in nanofiltration, water purification, and hydroelectric power generation. Here, we demonstrate by molecular dynamics simulations that an excited vibrating carbon nanotube (CNT) cantilever can act as an efficient and simple nanopump. Water molecules inside the vibrating cantilever are driven by centrifugal forces and can undergo a continuous flow from the fixed to free ends of the CNT. Further extensive simulations show that the pumping function holds good not only for a single-file water chain in a narrow (6,6) CNT, but also for bulk-like water columns inside wider CNTs, and that the water flux increases monotonically with increasing diameter of the nanotube.

Reprint Address:
Guo, WL, Nanjing Univ Aeronaut & Astronaut, Inst Nano Sci, Nanjing 210016, Peoples R China.

Research Institution addresses:
[Qiu, Hu; Shen, Rong; Guo, Wanlin] Nanjing Univ Aeronaut & Astronaut, Inst Nano Sci, Nanjing 210016, Peoples R China

E-mail Address:
wlguo@nuaa.edu.cn

Cited References:
BABIC B, 2003, NANO LETT, V3, P1577, DOI 10.1021/nl0344716.
CHANG T, 2008, PHYS REV LETT, V101, ARTN 175501.
CHEN M, 2009, NANO RES, V2, P938, DOI 10.1007/s12274-009-9096-6.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DAI YT, 2008, NANO RES, V1, P176, DOI 10.1007/s12274-008-8014-7.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DUAN WH, 2010, ACS NANO, V4, P2338, DOI 10.1021/nn1001694.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
GARCIASANCHEZ D, 2007, PHYS REV LETT, V99, ARTN 085501.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLT JK, 2009, ADV MATER, V21, P3542, DOI 10.1002/adma.200900867.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JENSEN K, 2007, NANO LETT, V7, P3508, DOI 10.1021/nl0721113.
JENSEN K, 2008, NAT NANOTECHNOL, V3, P533, DOI 10.1038/nnano.2008.200.
JENSEN MO, 2003, BIOPHYS J, V85, P2884.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALE L, 1999, J COMPUT PHYS, V151, P283.
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
PONCHARAL P, 1999, SCIENCE, V283, P1513.
QIU H, 2010, BBA-BIOMEMBRANES, V1798, P318, DOI 10.1016/j.bbamem.2009.11.015.
SAZONOVA V, 2004, NATURE, V431, P284, DOI 10.1038/nature02905.
SERVICE RF, 2006, SCIENCE, V313, P1088.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
TREACY MMJ, 1996, NATURE, V381, P678.
WANG Q, 2009, NANO LETT, V9, P245, DOI 10.1021/nl802829z.
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372.
ZAMBRANO HA, 2009, NANO LETT, V9, P66, DOI 10.1021/nl802429s.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w.

Cited Reference Count:
34

Times Cited:
0

Publisher:
TSINGHUA UNIV PRESS; TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied

ISSN:
1998-0124

DOI:
10.1007/s12274-010-0080-y

IDS Number:
729TR

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287523900063
*Order Full Text [ ]

Title:
Density Functional Theory Study on the Water Clusters on Graphene Chip

Authors:
Abe, S; Nagoya, Y; Watari, F; Tachikawa, H

Author Full Names:
Abe, Shigeaki; Nagoya, Yoshinori; Watari, Fumio; Tachikawa, Hiroto

Source:
JAPANESE JOURNAL OF APPLIED PHYSICS 50 (1): Art. No. 01BJ02 Part 3 Sp. Iss. SI JAN 2011

Language:
English

Document Type:
Article

KeyWords Plus:
INITIO MOLECULAR-DYNAMICS; CARBON NANOTUBES; DIFFUSION DYNAMICS; AMORPHOUS-CARBON; THYMINE DIMER; SIMULATION; SURFACE; ION; MD

Abstract:
The structures and electronic states of graphene-water interaction systems have been investigated by means of density functional theory (DFT) method to elucidate the effects of water clusters on the electronic states of graphene chip. Solvation caused by five to eight water molecules (n = 5-8) was examined as the interaction systems. A graphene chip composed of 14 benzene rings was used as a model of finite-sized graphene (C42H16). The water clusters interact with the graphene chip with hydrogen bonds. The band gap of graphene was slightly red-shifted by the solvation and the first excitation energy was saturated around n = 5. The electronic states of graphene-water systems were discussed on the basis of theoretical results. (c) 2011 The Japan Society of Applied Physics

Reprint Address:
Abe, S, Hokkaido Univ, Grad Sch Dent Med, Dept Biomed Dent Med & Engn, Sapporo, Hokkaido 0608586, Japan.

Research Institution addresses:
[Abe, Shigeaki; Watari, Fumio] Hokkaido Univ, Grad Sch Dent Med, Dept Biomed Dent Med & Engn, Sapporo, Hokkaido 0608586, Japan; [Nagoya, Yoshinori; Tachikawa, Hiroto] Hokkaido Univ, Grad Sch Engn, Div Mat Chem, Sapporo, Hokkaido 0608628, Japan

E-mail Address:
sabe@den.hokudai.ac.jp

Cited References:
*GAUSS INC, 2003, AB IN MO CALC PROGR.
ABE S, 2010, JPN J APPL PHYS, V49, ARTN 01AH07.
C V, 2002, Nano Lett, V2, P2, DOI 10.1021/NL025689F.
ELLISON MD, 2005, J PHYS CHEM B, V109, P10640, DOI 10.1021/jp0444417.
HUMMER G, 2001, NATURE, V414, P188.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
RANA M, 2007, J CHEM SCI, V119, P367.
TACHIKAWA H, 2005, J PHYS CHEM B, V109, P13255, DOI 10.1021/jp051418s.
TACHIKAWA H, 2006, J CHEM PHYS, V125, ARTN 144307.
TACHIKAWA H, 2006, J PHYS CHEM A, V110, P153, DOI 10.1021/jp0550659.
TACHIKAWA H, 2006, J PHYS CHEM B, V110, P20445, DOI 10.1021/jp0616031.
TACHIKAWA H, 2007, J CHEM PHYS, V126, ARTN 194310.
TACHIKAWA H, 2008, CHEM PHYS LETT, V462, P321, DOI 10.1016/j.cplett.2008.07.107.
TACHIKAWA H, 2008, J PHYS CHEM B, V112, P7315, DOI 10.1021/jp801564t.
TACHIKAWA H, 2008, J PHYS CHEM C, V112, P10193, DOI 10.1021/jp800398y.
TACHIKAWA H, 2009, THIN SOLID FILMS, V518, P877, DOI 10.1016/j.tsf.2009.07.108.
TACHIKAWA H, 2010, JPN J APPL PHYS, V49.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.

Cited Reference Count:
19

Times Cited:
0

Publisher:
JAPAN SOC APPLIED PHYSICS; KUDAN-KITA BUILDING 5TH FLOOR, 1-12-3 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN

Subject Category:
Physics, Applied

ISSN:
0021-4922

DOI:
10.1143/JJAP.50.01BJ02

IDS Number:
723RG

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287924700016
*Order Full Text [ ]

Title:
Water and ion transport through functionalised carbon nanotubes: implications for desalination technology

Authors:
Corry, B

Author Full Names:
Corry, Ben

Source:
ENERGY & ENVIRONMENTAL SCIENCE 4 (3): 751-759 MAR 2011

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; MECHANOSENSITIVE CHANNEL; ACETYLCHOLINE-RECEPTOR; MEMBRANES; PERMEATION; PORES; AQUAPORIN-1; SELECTIVITY; CONDUCTION; NANOPORES

Abstract:
The use of semipermeable membranes containing carbon nanotubes (CNTs) that form continuous pores has been suggested as a way to reduce the cost of desalination via reverse osmosis. Example membranes containing aligned CNTs have been fabricated, but obtaining only the very narrow pores that are able to block the passage of ions while allowing a rapid flow of water remains a challenge and previous computational studies have focused on idealised tubes. Here molecular dynamics simulations are used to examine water and ion transport through functionalised CNTs with the aim of investigating whether such chemical modification allows the performance of CNT based membranes to be improved, or for larger diameter pores to be used. A range of different charged and polar functional groups were added to a 1.1 nm diameter (8,8) CNT that was previously found to be only moderately effective at rejecting ions. These CNTs were incorporated into membranes and simulations were conducted with a hy
drostatic pressure difference to determine the ion rejection and flux of water passing through each as well as the energy barriers presented to ions and water molecules. The results show that the addition of charges at the entrance of the pore can help to prevent the passage of ions, however, any functionalisation also reduces the flow of water through the membrane due to increased electrostatic interactions between the water molecules and the CNT. Assuming pore densities that have previously been achieved, the performance of these membranes in the simulations is still many times better than existing technology and thus the inclusion of functionalised CNTs in desalination membranes may prove to be useful in achieving salt rejection and rapid water flow.

Reprint Address:
Corry, B, Univ Western Australia, Sch Biomed Biomol & Chem Sci, Perth, WA 6009, Australia.

Research Institution addresses:
Univ Western Australia, Sch Biomed Biomol & Chem Sci, Perth, WA 6009, Australia

E-mail Address:
ben.corry@uwa.edu.au

Cited References:
*UNESCO, 2009, 3 UNESCO.
*WORLD BANK, 2010, WORLD DEV REP 2010 D.
ALLEN R, 2003, J CHEM PHYS, V119, P3905, DOI 10.1063/1.1590956.
ANISHKIN A, 2004, BIOPHYS J, V86, P2883.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BECKSTEIN O, 2004, PHYS BIOL, V1, P42, DOI 10.1088/1478-3967/1/1/005.
BECKSTEIN O, 2006, PHYS BIOL, V3, P147, DOI 10.1088/1478-3975/3/2/007.
CORRY B, 2006, BIOPHYS J, V90, P799, DOI 10.1529/biophysj.105.067868.
CORRY B, 2006, CELL MOL LIFE SCI, V63, P301, DOI 10.1007/s00018-005-5405-8.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GROSSFIELD A, IMPLEMENTATION WHAM.
HILDER TA, 2009, SMALL, V5, P2183, DOI 10.1002/smll.200900349.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KUMAR S, 1992, J COMPUT CHEM, V13, P1011.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAMONOV AB, 2007, J GEN PHYSIOL, V130, P111, DOI 10.1085/jgp.200709810.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289.
ROUX B, 1995, COMPUT PHYS COMMUN, V91, P275.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHIKLOMANOV IA, 2003, WATER RESOURCES BEGI.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SONG C, 2009, J PHYS CHEM B, V113, P7642, DOI 10.1021/jp810102u.
SOTOMAYOR M, 2004, BIOPHYS J, V87, P3050, DOI 10.1529/biophysj.104.046045.
TORRIE GM, 1974, CHEM PHYS LETT, V28, P578.
ZHU FQ, 2002, BIOPHYS J, V83, P154.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.

Cited Reference Count:
35

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences

ISSN:
1754-5692

DOI:
10.1039/c0ee00481b

IDS Number:
729CE

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285781600033
*Order Full Text [ ]

Title:
Behavior of Carbon Nanotube Membranes as Channels of Salt and Water in Forward Osmosis Process

Authors:
Jia, YX; Li, Y; Hu, YD

Author Full Names:
Jia Yu-Xiang; Li Yan; Hu Yang-Dong

Source:
ACTA PHYSICO-CHIMICA SINICA 27 (1): 228-232 JAN 2011

Language:
Chinese

Document Type:
Article

Author Keywords:
Forward osmosis; Membrane separation; Desalination; Carbon nanotube; Molecular dynamics simulation

KeyWords Plus:
HOLLOW-FIBER MEMBRANES; MOLECULAR-DYNAMICS; TRANSPORT; DESALINATION; CONDUCTION; MODELS

Abstract:
We investigated the influence of carbon nanotube (CNT) size using CNTs including CNT(6,6), CNT(7,7), CNT(8,8), CNT(9,9), CNT(10,10), and CNT(11,11), and the influence of draw solution concentrations, such as 2.5, 3.75, and 5.0 mol . L-1, on the permeation behaviors of salt and water molecules through the biomimetically manufactured forward osmosis (FO) membranes. Nanosecond-scale molecular dynamic simulations were carried out to obtain the relevant information, including the distributions of the water molecules, water flux, and salt permeation within the different CNT membranes. Simulation results show that the FO membrane incorporating CNT(8,8) can achieve the highest water flux and also the lowest salt permeation.

Reprint Address:
Jia, YX, Ocean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong Prov, Peoples R China.

Research Institution addresses:
[Jia Yu-Xiang; Li Yan; Hu Yang-Dong] Ocean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong Prov, Peoples R China

E-mail Address:
jiayx76@yahoo.com.cn

Cited References:
ALEXIADIS A, 2008, MOL SIMULAT, V34, P671, DOI 10.1080/08927020802073057.
BECKSTEIN O, 2004, PHYS BIOL, V1, P42, DOI 10.1088/1478-3967/1/1/005.
CATH TY, 2005, J MEMBRANE SCI, V257, P85, DOI 10.1016/j.memsci.2004.08.039.
CATH TY, 2006, J MEMBRANE SCI, V281, P70, DOI 10.1016/j.memsci.2006.05.048.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
ELIMELECH M, 2007, MEMBR TECHNOL, V1, P7.
FU SQ, 2006, ENV SCI MANAG, V31, P96.
GAO CJ, 2008, TECHNOLOGY WATER TRE, V34, P1.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JIN KY, 2000, B SCI TECHNOL, V16, P125.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
MCCUTCHEON JR, 2006, J MEMBRANE SCI, V278, P114, DOI 10.1016/j.memsci.2005.10.048.
MI B, 2008, J MEMBRANE SCI, V320, P292, DOI 10.1016/j.memsci.2008.04.036.
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946.
SHAO Q, 2009, NANO LETT, V9, P989, DOI 10.1021/nl803044k.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
VANDERBRUGGEN B, 2003, ENVIRON SCI TECHNOL, V37, P3733, DOI 10.1021/es0201754.
WANG J, 2003, ACTA CHIM SINICA, V61, P1891.
WANG KY, 2007, J MEMBRANE SCI, V300, P6, DOI 10.1016/j.memsci.2007.05.035.
WANG KY, 2009, CHEM ENG SCI, V64, P1577, DOI 10.1016/j.ces.2008.12.032.
WANG R, 2010, J MEMBRANE SCI, V355, P158, DOI 10.1016/j.memsci.2010.03.017.
YANG Q, 2009, SEP PURIF TECHNOL, V69, P269, DOI 10.1016/j.seppur.2009.08.002.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
25

Times Cited:
0

Publisher:
PEKING UNIV PRESS; PEKING UNIV, CHEMISTRY BUILDING, BEIJING 100871, PEOPLES R CHINA

Subject Category:
Chemistry, Physical

ISSN:
1000-6818

IDS Number:
700YN

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, March 11, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 11 new records this week (11 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287411700047
*Order Full Text [ ]

Title:
Carbon nanotubes in benzene: internal and external solvation

Authors:
Shim, Y; Jung, Y; Kim, HJ

Author Full Names:
Shim, Youngseon; Jung, YounJoon; Kim, Hyung J.

Source:
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 13 (9): 3969-3978 2011

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATION; IONIC LIQUID; ROTATIONAL DIFFUSION; COMPUTER-SIMULATION; WATER; RELAXATION; TRANSITION; TRANSPORT; PRESSURE

Abstract:
The structure and dynamics of benzene inside and outside of single-walled carbon nanotubes (SWNTs) in the (n,n) armchair configuration are studied via molecular dynamics computer simulations. Irrespective of the nanotube diameter, benzene molecules form cylindrical solvation shell structures on the outside of the nanotubes. Their molecular planes near the SWNTs in the first external solvation shell are oriented parallel to the nanotube surface, forming a pi-stacked structure between the two. By contrast, the benzene distributions in the interior of the SWNTs are found to vary markedly with the nanotube diameter. In the case of the (7,7) and (8,8) nanotubes, internal benzene forms a single-file distribution, either in a vertex-to-vertex (n = 7) or face-to-face (n = 8) orientation between two neighboring molecules. Inside a slightly wider (9,9) nanotube channel, however, a cylindrical single-shell distribution of benzene arises. A secondary solvation structure, which begins to
appear inside (10,10), develops into a full structure separate from the first internal solvation shell in (12,12). The ring orientation of internal benzene is generally parallel to the nanotube wall for n = 9-12, while it becomes either slanted with respect to (n = 7), or perpendicular to (n = 8), the nanotube axis. The confinement inside the small nanotube pores exerts a strong influence on the dynamics of benzene. Both translational and rotational dynamics inside SWNTs are slower and more anisotropic than in liquid benzene. It is also found that reorientational dynamics of internal benzene deviate dramatically from the rotational diffusion regime and change substantially with the nanotube diameter.

Reprint Address:
Jung, Y, Seoul Natl Univ, Dept Chem, Seoul 151747, South Korea.

Research Institution addresses:
[Shim, Youngseon; Jung, YounJoon] Seoul Natl Univ, Dept Chem, Seoul 151747, South Korea; [Shim, Youngseon; Kim, Hyung J.] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA; [Kim, Hyung J.] Korea Inst Adv Study, Sch Computat Sci, Seoul 130722, South Korea

E-mail Address:
yjjung@snu.ac.kr; hjkim@cmu.edu

Cited References:
BARROS EB, 2006, PHYS REP, V431, P261, DOI 10.1016/j.physrep.2006.05.007.
BHIDE SY, 2000, J PHYS CHEM B, V104, P11977.
CHEN RJ, 2001, J AM CHEM SOC, V123, P3838, DOI 10.1021/ja010172b.
CHEN SM, 2007, J AM CHEM SOC, V129, P2416, DOI 10.1021/ja067972c.
DRAKE JM, 1999, DYNAMICS SMALL CONFI, V543, P372.
FORESTER TR, 2001, DL POLY 2 13 USER MA.
GAO HJ, 2004, ANNU REV MATER RES, V34, P123, DOI 10.1146/annurev.matsci.34.040203.120402.
GORDON RG, 1966, J CHEM PHYS, V44, P1830.
HAN SH, 2010, NAT PHYS, V6, P685, DOI 10.1038/NPHYS1708.
HANKE CG, 2003, CHEM PHYS LETT, V374, P85, DOI 10.1016/S0009-2614(03)00703-6.
HARRIS TE, 1965, J APPL PROBAB, V2, P323.
HEYES DM, 1981, J CHEM PHYS, V74, P1924.
HUMMER G, 2001, NATURE, V414, P188.
KARGER J, 1992, PHYS REV A, V45, P4173.
KOGA K, 2001, NATURE, V412, P802.
KOLLMANN M, 2003, PHYS REV LETT, V90, ARTN 180602.
KUMAR PV, 1995, J CHEM PHYS, V103, P3038.
LEE KH, 2004, J PHYS CHEM B, V108, P9861, DOI 10.1021/jp036791j.
LEVITT DG, 1973, PHYS REV A, V8, P3050.
LINSE P, 1985, CHEM PHYS LETT, V115, P95.
LIU YC, 2005, J CHEM PHYS, V123, ARTN 234701.
LIU YC, 2005, PHYS REV B, V72, ARTN 085420.
LU DY, 2005, J PHYS CHEM B, V109, P11461, DOI 10.1021/jp050420g.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
MAOLIN S, 2008, J CHEM PHYS, V128, UNSP 134504.
MCCOOL MA, 1972, J CHEM SOC FARAD T 1, V68, P1489.
MUKHERJEE B, 2007, J CHEM PHYS, V126, ARTN 124704.
ODOM TW, 1998, NATURE, V391, P62.
PENZA M, 2004, SENSOR ACTUAT B-CHEM, V100, P47, DOI 10.1016/j.snb.2003.12.019.
PIERRE AG, 1969, PHYS REV, V184, P172.
PINILLA C, 2005, J PHYS CHEM B, V109, P17922, DOI 10.1021/jp052999o.
PRANATA J, 1991, J AM CHEM SOC, V113, P2810.
SCHWARTZ M, 2005, J PHYS CHEM A, V109, P8637, DOI 10.1021/jp0530799.
SHIM Y, 2005, J CHEM PHYS, V122, ARTN 044510.
SHIM Y, 2006, J CHEM PHYS, V125, ARTN 061102.
SHIM Y, 2009, ACS NANO, V3, P1693, DOI 10.1021/nn900195b.
SHIM Y, 2010, ACS NANO, V4, P2345, DOI 10.1021/nn901916m.
SNOW ES, 2005, SCIENCE, V307, P1942, DOI 10.1126/science.1109128.
STEELE WA, 1976, ADV CHEM PHYS, V34, P1.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
WATANABE A, 1999, CHEM PHYS LETT, V305, P71.
WEI C, 2007, ENVIRON SCI TECHNOL, V41, P8295.
WINKLER RG, 1993, J CHEM PHYS, V99, P5405.
WITT R, 2000, J PHYS CHEM A, V104, P5716.
WOODS LM, 2007, PHYS REV B, V75, ARTN 155415.
XIA YD, 2006, J PHYS CHEM B, V110, P19735, DOI 10.1021/jp063393i.
YI J, 1996, J PHYS CHEM-US, V100, P16789.
ZHU X, 2005, J PHYS CHEM B, V109, P12724, DOI 10.1021/jp051384o.

Cited Reference Count:
48

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1463-9076

DOI:
10.1039/c0cp01845g

IDS Number:
722DP

========================================================================

*Record 2 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285485600035
*Order Full Text [ ]

Title:
Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory

Authors:
Simsek, M

Author Full Names:
Simsek, Mesut

Source:
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES 43 (1): 182-191 NOV 2010

Language:
English

Document Type:
Article

Author Keywords:
Vibration; Nonlocal elasticity theory; Carbon nanotubes; Moving loads

KeyWords Plus:
FUNCTIONALLY GRADED BEAM; SHEAR DEFORMATION-THEORY; PRESTRESSED DAMPED BEAM; TIMOSHENKO-BEAM; DYNAMIC-ANALYSIS; CONTINUUM-MECHANICS; MODELS; FORCE; TUBES

Abstract:
In the present study, forced vibration of a simply supported single-walled carbon nanotube (SWCNT) subjected to a moving harmonic load is investigated by using nonlocal Euler-Bernoulli beam theory. The time-domain responses are obtained by using both the modal analysis method and the direct integration method. The effects of nonlocal parameter, aspect ratio, velocity and the excitation frequency of the moving load on the dynamic responses of SWCNT is discussed. For comparison purposes, free vibration frequencies and static deflections of the SWCNT subjected to a point load at the midpoint are obtained and compared with previously published studies. Good agreement is observed. The results show that dynamic deflections of the SWCNT increase with increase in the nonlocal parameter, which means that dynamic deflections based on the local beam theory are underestimated, and the effect of nonlocal parameter is dependent on the aspect ratio. Furthermore, load velocity and the excita
tion frequency play an important role on the dynamic behavior of the SWCNT. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Simsek, M, Yildiz Tech Univ, Dept Civil Engn, Davutpasa Campus, TR-34210 Esenler, Turkey.

Research Institution addresses:
Yildiz Tech Univ, Dept Civil Engn, TR-34210 Esenler, Turkey

E-mail Address:
msimsek@yildiz.edu.tr

Cited References:
ADALI S, 2008, PHYS LETT A, V372, P5701, DOI 10.1016/j.physleta.2008.07.003.
AYDOGDU M, 2007, TURK J ENG ENV SCI, V31, P305.
AYDOGDU M, 2008, INT J MECH SCI, V50, P837, DOI 10.1016/j.ijmecsci.2007.10.003.
AYDOGDU M, 2009, PHYSICA E, V41, P1651, DOI 10.1016/j.physe.2009.05.014.
AYDOGDU M, 2009, PHYSICA E, V41, P861, DOI 10.1016/j.physe.2009.01.007.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BERBER S, 2000, PHYS REV LETT, V84, P4613.
CHOPRA AK, 2001, DYNAMICS STRUCTURES.
CIVALEK O, 2009, INT J ENG APPL SCI, V2, P47.
DEDKOV GV, 2007, TECH PHYS LETT+, V33, P51, DOI 10.1134/S1063785007010142.
DRESSELHAUS MS, 2004, PHILOS T R SOC A, V362, P2065, DOI 10.1098/rsta.2004.1430.
ECE MC, 2007, ACTA MECH, V190, P185, DOI 10.1007/s00707-006-0417-5.
ERINGEN AC, 1983, J APPL PHYS, V54, P4703.
FRYBA L, 1972, VIBRATION SOLIDS STR.
GUPTA SS, 2010, COMP MATER SCI, V47, P1049, DOI 10.1016/j.commatsci.2009.12.007.
HEIRECHE H, 2008, PHYSICA E, V40, P27911.
HONG S, 2007, NAT NANOTECHNOL, V2, P207, DOI 10.1038/nnano.2007.89.
HU YG, 2009, J APPL PHYS, V106, ARTN 044301.
HUMMER G, 2001, NATURE, V414, P188.
KE LL, 2009, COMP MATER SCI, V47, P409, DOI 10.1016/j.commatsci.2009.09.002.
KE LL, 2010, COMPOS STRUCT, V92, P676, DOI 10.1016/j.compstruct.2009.09.024.
KEMPA K, 2007, ADV MATER, V19, P421, DOI 10.1002/adma.20061187.
KOCATURK T, 2006, COMPUT STRUCT, V84, P2113, DOI 10.1016/j.compstruc.2006.08.062.
KOCATURK T, 2006, J SOUND VIB, V291, P302, DOI 10.1016/j.jsv.2005.06.024.
KUMAR D, 2008, J APPL PHYS, V103, ARTN 073521.
LAU KT, 2002, COMPOS PART B-ENG, V33, P263.
LEE HL, 2009, PHYSICA E, V41, P529, DOI 10.1016/j.physe.2008.10.002.
LEVINSON M, 1981, J SOUND VIB, V74, P81.
LI X, 2009, APPL PHYS LETT, V94, ARTN 063111.
LIJIMA S, 1991, NATURE, V354, P56.
LIM CW, 2007, J APPL PHYS, V101, ARTN 054312.
LU P, 2006, J APPL PHYS, V99, ARTN 073510.
LU P, 2007, INT J SOLIDS STRUCT, V44, P5289, DOI 10.1016/j.ijsolstr.2006.12.034.
LU P, 2007, J APPL PHYS, V101, ARTN 073504.
LU X, 2005, CHEM REV, V105, P3643, DOI 10.1021/cr030093d.
MA RZ, 1998, J MATER SCI, V33, P5243.
MEYYAPPAN M, 2005, CARBON NANOTUBES SCI.
MIR M, 2008, COMP MATER SCI, V43, P540, DOI 10.1016/j.commatsci.2007.12.024.
MURMU T, 2009, COMP MATER SCI, V46, P854, DOI 10.1016/j.commatsci.2009.04.019.
MURMU T, 2009, PHYSICA E, V41, P1232, DOI 10.1016/j.physe.2009.02.004.
MURMU T, 2009, PHYSICA E, V41, P1451, DOI 10.1016/j.physe.2009.04.015.
MURMU T, 2010, COMP MATER SCI, V47, P721, DOI 10.1016/j.commatsci.2009.10.015.
NEWMARK NM, 1959, ASCE J ENG MECH DIVI, V85, P67.
PEDDIESON J, 2003, INT J ENG SCI, V41, P305.
REDDY JN, 1984, J APPL MECH-T ASME, V51, P745.
REDDY JN, 2007, ENG SCI, V45, P288.
REDDY JN, 2008, J APPL PHYS, V103, ARTN 023511.
SEARS A, 2004, PHYS REV B, V69, ARTN 235406.
SIMSEK M, 2007, J STRUCT ENG-ASCE, V133, P1733, DOI 10.1061/(ASCE)0733-9445(2007)133:12(1733).
SIMSEK M, 2009, COMPOS STRUCT, V90, P465, DOI 10.1016/j.compstruct.2009.04.024.
SIMSEK M, 2009, J SOUND VIB, V320, P235, DOI 10.1016/j.jsv.2008.07.012.
SIMSEK M, 2010, COMPOS STRUCT, V92, P2532, DOI 10.1016/j.compstruct.2010.02.008.
SIMSEK M, 2010, COMPOS STRUCT, V92, P904, DOI 10.1016/j.compstruct.2009.09.030.
SUDAK LJ, 2003, J APPL PHYS, V94, P7281, DOI 10.1063/1.1625437.
TOUNSI A, 2008, J APPL PHYS, V104, ARTN 104301.
TSUKAGOSHI K, 2002, PHYSICA B, V323, P107.
WANG CM, 2006, J SOUND VIB, V294, P1060, DOI 10.1016/j.jsv.2006.01.005.
WANG CY, 2007, J NANOSCI NANOTECHNO, V7, P4221, DOI 10.1166/jnn.2007.924.
WANG CY, 2008, NANOTECHNOLOGY, V19, ARTN 075705.
WANG L, 2009, COMP MATER SCI, V45, P584, DOI 10.1016/j.commatsci.2008.12.006.
WANG L, 2009, PHYSICA E, V41, P1835, DOI 10.1016/j.physe.2009.07.011.
WANG LF, 2005, PHYS REV B, V71, ARTN 195412.
WANG Q, 2005, J APPL PHYS, V98, ARTN 124301.
WANG Q, 2007, PHYS LETT A, V363, P236, DOI 10.1016/j.physleta.2006.10.093.
XIAODONG Y, 2009, SCI CHINA SER E, V52, P617.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2004, COMPOS PART B-ENG, V35, P87, DOI 10.1016/j.compositesb.2003.09.002.
ZHANG YQ, 2005, PHYS LETT A, V340, P258, DOI 10.1016/j.physleta.2005.03.064.
ZHANG YQ, 2005, PHYS REV B, V71, ARTN 195404.

Cited Reference Count:
69

Times Cited:
2

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Nanoscience & Nanotechnology; Physics, Condensed Matter

ISSN:
1386-9477

DOI:
10.1016/j.physe.2010.07.003

IDS Number:
697AS

========================================================================

*Record 3 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286461400006
*Order Full Text [ ]

Title:
Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration

Authors:
Cunha, C; Panseri, S; Antonini, S

Author Full Names:
Cunha, Carla; Panseri, Silvia; Antonini, Stefania

Source:
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 7 (1): 50-59 FEB 2011

Language:
English

Document Type:
Review

Author Keywords:
Nervous regeneration; Nanobiomaterials; Nanofibers; Neural stem cells; Drug delivery

KeyWords Plus:
ELECTROSPUN NANOFIBROUS SCAFFOLDS; BOMBYX-MORI SILK; EXTRACELLULAR-MATRIX; CARBON NANOTUBE; BIOMEDICAL APPLICATIONS; MECHANICAL-PROPERTIES; POLY(ETHYLENE OXIDE); CONTROLLED-RELEASE; AXONAL GROWTH; SPINAL-CORD

Abstract:
Effective nerve regeneration and functional recovery subsequent to peripheral nerve injury is still a clinical challenge. Autologous nerve graft transplantation is a feasible treatment in several clinical cases, but it is limited by donor site morbidity and insufficient donor tissue, impairing complete functional recovery. Tissue engineering has introduced innovative approaches to promote and guide peripheral nerve regeneration by using biomimetic conduits creating favorable microenvironments for nervous ingrowth, but despite the development of a plethora of nerve prostheses, few approaches have as yet entered the clinic. Promising strategies using nanotechnology have recently been proposed, such as the use of scaffolds with functionalized cell-binding domains, the use of guidance channels with cell-scale internally oriented fibers, and the possibility of sustained release of neurotrophic factors. This review addresses the fabrication, advantages, drawbacks, and results achie
ved by the most recent nanotechnology approaches in view of future solutions for peripheral nerve repair.
From the Clinical Editor: Peripheral nerve repair strategies are very limited despite numerous advances on the field of neurosciences and regenerative medicine. This review discusses nanotechnology based strategies including scaffolds with functionalized cell binding domains, the use of guidance channels, and the potential use of sustained release neurotropic factors. (C) 2011 Elsevier Inc. All rights reserved.

Reprint Address:
Panseri, S, Univ Bologna, Biomech Lab, Rizzoli Orthopaed Inst, Dept Human Anat & Physiopathol Locomotor Apparat, Via Barbiano 1-10, I-40136 Bologna, Italy.

Research Institution addresses:
[Cunha, Carla] Univ Milano Bicocca, Dept Biotechnol & Biosci, Milan, Italy; [Panseri, Silvia] Rizzoli Orthopaed Inst, Lab Biomech & Technol Innovat, Bologna, Italy; [Panseri, Silvia] Univ Bologna, Biomech Lab, Rizzoli Orthopaed Inst, Dept Human Anat & Physiopathol Locomotor Apparat, I-40136 Bologna, Italy; [Antonini, Stefania] Ist Sci San Raffaele, Div Regenerat Med, I-20132 Milan, Italy

E-mail Address:
panseri@biomec.ior.it

Cited References:
BAWA P, 2009, BIOMED MATER, V4, ARTN 022001.
BERTHIAUME F, 1996, FASEB J, V10, P1471.
BHATTARAI N, 2005, BIOMATERIALS, V26, P6176, DOI 10.1016/j.biomaterials.2005.03.027.
BRANCO MC, 2009, BIOMATERIALS, V30, P1339, DOI 10.1016/j.biomaterials.2008.11.019.
CAI J, 2005, J BIOMED MATER RES A, V75, P374, DOI 10.1002/jbm.a.30432.
CELLOT G, 2009, NAT NANOTECHNOL, V4, P126, DOI 10.1038/NNANO.2008.374.
CHAMBERLAIN LJ, 1998, EXP NEUROL, V154, P315.
CHAUHAN NB, 1999, INT J DEV NEUROSCI, V17, P255.
CHEW SY, 2005, BIOMACROMOLECULES, V6, P2017, DOI 10.1021/bm0501149.
CHEW SY, 2008, BIOMATERIALS, V29, P653, DOI 10.1016/j.biomaterials.2007.10.025.
COREY JM, 2007, J BIOMED MATER RES A, V83, P636, DOI 10.1002/jbm.a.31285.
DAVIS ME, 2005, CIRCULATION, V111, P442, DOI 10.1161/01.CIR.0000153847.47301.80.
DAWSON E, 2008, ADV DRUG DELIVER REV, V60, P215, DOI 10.1016/j.addr.2007.08.037.
DESAI TA, 2000, MED ENG PHYS, V22, P595.
ELBERT DL, 2001, J CONTROL RELEASE, V76, P11.
ELIAS KL, 2002, BIOMATERIALS, V23, P3279.
ELLISBEHNKE RG, 2006, NANOMED-NANOTECHNOL, V2, P207, DOI 10.1016/j.nano.2006.08.001.
ELLISBEHNKE RG, 2006, P NATL ACAD SCI USA, V103, P5054, DOI 10.1073/pnas.0600559103.
EVANS GRD, 2000, J BIOMAT SCI-POLYM E, V11, P869.
FAIRMAN R, 2005, CURR OPIN STRUC BIOL, V15, P453, DOI 10.1016/j.sbi.2005.07.005.
FLEMMING RG, 1999, BIOMATERIALS, V20, P573.
GALVANGARCIA P, 2007, J BIOMAT SCI-POLYM E, V18, P1245.
GELAIN F, 2006, PLOS ONE, V119, P1.
GENG XY, 2005, BIOMATERIALS, V26, P5427, DOI 10.1016/j.biomaterials.2005.01.066.
GERSBACH CA, 2004, BIOTECHNOL BIOENG, V88, P369.
GHASEMIMOBARAKEH L, 2008, BIOMATERIALS, V29, P4532, DOI 10.1016/j.biomaterials.2008.08.007.
HADLOCK T, 1998, ARCH OTOLARYNGOL, V124, P1081.
HUA FJ, 2002, J BIOMED MATER RES, V63, P161.
HUANG ZM, 2004, POLYMER, V45, P5361, DOI 10.1016/j.polymer.2004.04.005.
HUMMER G, 2001, NATURE, V414, P188.
HWANG NS, 2008, ADV DRUG DELIVER REV, V60, P199, DOI 10.1016/j.addr.2007.08.036.
JIN HJ, 2002, BIOMACROMOLECULES, V3, P1233, DOI 10.1021/bm025581u.
JIN HJ, 2004, BIOMACROMOLECULES, V5, P711, DOI 10.1021/bm0343287.
JIN HJ, 2004, BIOMATERIALS, V25, P1039, DOI 10.1016/S0142-9612(03)00609-4.
KEELEY RD, 1991, J RECONSTR MICROSURG, V7, P93.
KHAN T, 1991, BRAIN RES, V541, P139.
KIM K, 2004, J CONTROL RELEASE, V98, P47, DOI 10.1016/j.jconrel.2004.04.009.
KLEINMAN HK, 1986, BIOCHEMISTRY-US, V25, P312.
KOH HS, 2008, BIOMATERIALS, V29, P3574, DOI 10.1016/j.biomaterials.2008.05.014.
KOKKOLI E, 2006, SOFT MATTER, V2, P1015, DOI 10.1039/b608929a.
KOUTSOPOULOS S, 2009, P NATL ACAD SCI USA, V106, P4623, DOI 10.1073/pnas.0807506106.
KYLE S, 2009, TRENDS BIOTECHNOL, V27, P423, DOI 10.1016/j.tibtech.2009.04.002.
LEE CH, 2001, INT J PHARM, V221, P1.
LI CM, 2006, BIOMATERIALS, V27, P3115, DOI 10.1016/j.biomaterials.2006.01.022.
LIANG D, 2007, ADV DRUG DELIVER REV, V59, P1392, DOI 10.1016/j.addr.2007.04.021.
LIU W, 2007, BIOMATERIALS, V28, P5078, DOI 10.1016/j.biomaterials.2007.07.028.
LIU XH, 2004, ANN BIOMED ENG, V32, P477.
LIU Y, 2008, TRENDS BIOTECHNOL, V26, P201, DOI 10.1016/j.tibtech.2008.01.003.
LOVAT V, 2005, NANO LETT, V5, P1107, DOI 10.1021/nl050637m.
LUIS AL, 2008, TISSUE ENG PT A, V14, P979, DOI 10.1089/ten.tea.2007.0273.
LUU YK, 2003, J CONTROL RELEASE, V89, P341, DOI 10.1016/S0168-3659(03)00097-X.
LYONS J, 2004, POLYMER, V45, P7597, DOI 10.1016/j.polymer.2004.08.071.
MA PX, 1999, J BIOMED MATER RES, V46, P60.
MA PX, 2001, J BIOMED MATER RES, V56, P469.
MADAGHIELE M, 2008, J BIOMED MATER RES A, V85, P757, DOI 10.1002/jbm.a.31517.
MADURANTAKAM PA, 2009, NANOMEDICINE-UK, V4, P193, DOI 10.2217/17435889.4.2.193.
MANN BK, 2001, BIOMATERIALS, V22, P3045.
MATTHEWS JA, 2002, BIOMACROMOLECULES, V3, P232.
MAZZATENTA A, 2007, J NEUROSCI, V27, P6931, DOI 10.1523/JNEUROSCI.1051-07.2007.
MCKENZIE JL, 2004, BIOMATERIALS, V25, P1309, DOI 10.1016/j.biomaterials.2003.08.006.
NAGAI Y, 2006, J CONTROL RELEASE, V115, P18, DOI 10.1016/j.jconrel.2006.06.031.
NEAL RA, 2009, TISSUE ENG PT C-METH, V15, P11, DOI 10.1089/ten.tec.2007.0366.
OHKAWA K, 2004, MACROMOL RAPID COMM, V25, P1600, DOI 10.1002/marc.200400253.
PANSERI S, 2008, BMC BIOTECHNOL, V8, ARTN 39.
PATEL S, 2007, NANO LETT, V7, P2122, DOI 10.1021/nl071182z.
PESAKOVA V, 2000, J MATER SCI-MATER M, V11, P793.
SACHLOS E, 2003, EUR CELLS MATER, V5, P29.
SCHENSE JC, 2000, NAT BIOTECHNOL, V18, P415.
SCHNELL E, 2007, BIOMATERIALS, V28, P3012, DOI 10.1016/j.biomaterials.2007.03.009.
SHIELDS KJ, 2004, TISSUE ENG, V10, P1510.
SPILKER MH, 2001, RESTOR NEUROL NEUROS, V18, P23.
SUN ZC, 2003, ADV MATER, V15, P1929, DOI 10.1002/adma.200305136.
TAIPALE J, 1997, FASEB J, V11, P51.
TAN SH, 2005, POLYMER, V46, P6128, DOI 10.1016/j.polymer.2005.05.068.
TARABALLI F, 2009, SOFT MATTER, V5, P660, DOI 10.1039/b809236b.
TARABALLI F, 2010, FRONT NEUROENGINEERI, V3, P1.
UM IC, 2004, BIOMACROMOLECULES, V5, P1428.
VLEGGEERTLANKAMP CLAM, 2007, J BIOMED MATER RES A, V80, P965, DOI 10.1002/jbm.a.30941.
VLEGGEERTLANKAMP CLAM, 2008, J NEUROSURG, V109, P294, DOI 10.3171/JNS/2008/109/8/0294.
WANG W, 2008, J BIOMED MATER RES A, V84, P557, DOI 10.1002/jbm.a.31536.
WANG W, 2008, J BIOMED MATER RES A, V85, P919, DOI 10.1002/jbm.a.31522.
XIE JW, 2009, BIOMATERIALS, V30, P354, DOI 10.1016/j.biomaterials.2008.09.046.
YANG F, 2004, BIOMATERIALS, V25, P1891, DOI 10.1016/j.biomaterials.2003.08.062.
YANG F, 2005, BIOMATERIALS, V26, P2603, DOI 10.1016/j.biomaterials.2004.06.051.
YANNAS IV, 2001, TISSUE ORGAN REGENER, V10.
ZHANG S, 1995, BIOMATERIALS, V16, P1385.
ZHANG YZ, 2004, CHEM MATER, V16, P3406, DOI 10.1021/cm049580f.

Cited Reference Count:
87

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Nanoscience & Nanotechnology; Medicine, Research & Experimental

ISSN:
1549-9634

DOI:
10.1016/j.nano.2010.07.004

IDS Number:
709SJ

========================================================================

*Record 4 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286471900070
*Order Full Text [ ]

Title:
Water clusters on Cu(110): Chain versus cyclic structures

Authors:
Kumagai, T; Okuyama, H; Hatta, S; Aruga, T; Hamada, I

Author Full Names:
Kumagai, T.; Okuyama, H.; Hatta, S.; Aruga, T.; Hamada, I.

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (2): Art. No. 024703 JAN 14 2011

Language:
English

Document Type:
Article

KeyWords Plus:
SCANNING TUNNELING MICROSCOPE; METAL-SURFACES; ADSORPTION; PSEUDOPOTENTIALS; FLAT

Abstract:
Water clusters are assembled and imaged on Cu(110) by using a scanning tunneling microscope. Water molecules are arranged along the Cu row to form "ferroelectric" zigzag chains of trimer to hexamer. The trimer prefers the chain form to a cyclic one in spite of the reduced number of hydrogen bonds, highlighting the crucial role of the water-substrate interaction in the clustering of adsorbed water molecules. On the other hand, the cyclic form with maximal hydrogen bonds becomes more favorable for the tetramer, indicating the crossover from chain to cyclic configurations as the constituent number increases. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3525645]

Reprint Address:
Okuyama, H, Kyoto Univ, Grad Sch Sci, Dept Chem, Kyoto 6068502, Japan.

Research Institution addresses:
[Kumagai, T.; Okuyama, H.; Hatta, S.; Aruga, T.] Kyoto Univ, Grad Sch Sci, Dept Chem, Kyoto 6068502, Japan; [Hatta, S.; Aruga, T.] JST CREST, Kawaguchi, Saitama 3320012, Japan; [Hamada, I.] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan

E-mail Address:
hokuyama@kuchem.kyoto-u.ac.jp

Cited References:
BARTELS L, 1997, PHYS REV LETT, V79, P697.
CARRASCO J, 2009, NAT MATER, V8, P427, DOI 10.1038/NMAT2403.
CRUZAN JD, 1996, SCIENCE, V271, P59.
DION M, 2004, PHYS REV LETT, V92, ARTN 246401.
GRECEA ML, 2004, J PHYS CHEM B, V108, P12575, DOI 10.1021/jp049392c.
HAMADA I, 2009, PHYS REV B, V80, ARTN 165411.
HAMADA I, 2010, PHYS REV B, V81, ARTN 115452.
HENDERSON MA, 2002, SURF SCI REP, V46, P1.
HODGSON A, 2009, SURF SCI REP, V64, P381, DOI 10.1016/j.surfrep.2009.07.001.
HOHENBERG P, 1964, PHYS REV, V136, B684, DOI 10.1103/PHYSREV.136.B864.
HUMMER G, 2001, NATURE, V414, P188.
KOHN W, 1965, PHYS REV, V140, P1133.
KUMAGAI T, 2008, E J SURF SCI NANOTEC, V6, P296.
KUMAGAI T, 2008, PHYS REV LETT, V100, ARTN 166101.
KUMAGAI T, 2009, PHYS REV B, V79, ARTN 035423.
KUMAGAI T, 2010, PHYS REV B, V81, ARTN 045402.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MENG S, 2004, PHYS REV B, V69, ARTN 195404.
MICHAELIDES A, 2007, FARADAY DISCUSS, V136, P287, DOI 10.1039/b616689j.
MICHAELIDES A, 2007, NAT MATER, V6, P597, DOI 10.1038/nmat1940.
MITSUI T, 2002, SCIENCE, V297, P1850.
MONKHORST HJ, 1976, PHYS REV B, V13, P5188.
MORGENSTERN K, 2002, J CHEM PHYS, V116, P5746.
MORGENSTERN K, 2002, PHYS REV LETT, V88, ARTN 066102.
MORGENSTERN M, 1996, PHYS REV LETT, V77, P703.
MORIKAWA Y, 2004, PHYS REV B, V69, ARTN 041403.
NAKAMURA M, 2009, J PHYS CHEM C, V113, P4538, DOI 10.1021/jp808336k.
OTANI M, 2006, PHYS REV B, V73, ARTN 115407.
PERDEW JP, 1996, PHYS REV LETT, V77, P3865.
PUGLIANO N, 1992, SCIENCE, V257, P1937.
RANEA VA, 2004, PHYS REV LETT, V92, ARTN 136104.
REN J, 2008, PHYS REV B, V77, ARTN 054110.
SEBASTIANI D, 2005, J CHEM THEORY COMPUT, V1, P78, DOI 10.1021/ct049955o.
STOWELL MHB, 1997, SCIENCE, V276, P812.
TANG QL, 2007, J CHEM PHYS, V127, ARTN 104707.
TANG QL, 2007, SURF SCI, V601, P954, DOI 10.1016/j.susc.2006.11.036.
THIEL PA, 1987, SURF SCI REP, V7, P211.
TROULLIER N, 1991, PHYS REV B, V43, P1993.
VANDERBILT D, 1990, PHYS REV B, V41, P7892.
VERDAGUER A, 2006, CHEM REV, V106, P1478, DOI 10.1021/cr040376l.
YAMADA T, 2006, PHYS REV LETT, V96, ARTN 036105.

Cited Reference Count:
41

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3525645

IDS Number:
709WK

========================================================================

*Record 5 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286897600124
*Order Full Text [ ]

Title:
Multicomponent ballistic transport in narrow single wall carbon nanotubes: Analytic model and molecular dynamics simulations

Authors:
Mutat, T; Adler, J; Sheintuch, M

Author Full Names:
Mutat, T.; Adler, J.; Sheintuch, M.

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (4): Art. No. 044908 JAN 28 2011

Language:
English

Document Type:
Article

KeyWords Plus:
DIFFUSION; ADSORPTION; MEMBRANES; ZEOLITES; FLUIDS

Abstract:
The transport of gas mixtures through molecular-sieve membranes such as narrow nanotubes has many potential applications, but there remain open questions and a paucity of quantitative predictions. Our model, based on extensive molecular dynamics simulations, proposes that ballistic motion, hindered by counter diffusion, is the dominant mechanism. Our simulations of transport of mixtures of molecules between control volumes at both ends of nanotubes give quantitative support to the model's predictions. The combination of simulation and model enable extrapolation to longer tubes and pore networks. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3532083]

Reprint Address:
Mutat, T, Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.

Research Institution addresses:
[Mutat, T.; Adler, J.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel; [Sheintuch, M.] Technion Israel Inst Technol, Dept Chem Engn, IL-32000 Haifa, Israel

E-mail Address:
phr76ja@tx.technion.ac.il

Cited References:
ADLER J, 2002, COMPUT PHYS COMMUN, V147, P665.
BHATIA SK, 2006, ADSORPT SCI TECHNOL, V24, P101.
BRENNER DW, 1990, PHYS REV B, V42, P9458.
CLERC MG, 2006, PHYS REV LETT, V97, ARTN 176102.
DILLON AC, 1997, NATURE, V386, P377.
DUREN T, 2002, MOL PHYS, V100, P3741, DOI 10.1080/0026897021000028429.
EBBESEN TW, 1996, J PHYS CHEM SOLIDS, V57, P951.
ESWARAMOORTHY M, 1999, CHEM PHYS LETT, V304, P207.
GAVALAS GR, 2008, IND ENG CHEM RES, V47, P5797, DOI 10.1021/ie800420z.
GAVALDA S, 2002, LANGMUIR, V18, P2141.
GRUENER S, 2008, PHYS REV LETT, V100, ARTN 064502.
HEFFELFINGER GS, 1994, J CHEM PHYS, V100, P7548.
HEINKE L, 2007, PHYS REV LETT, V99, ARTN 228301.
HUMMER G, 2001, NATURE, V414, P188.
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, ARTN 044501.
KAGANOV IV, 2003, PHYS REV E, V68, P46701.
KEIL FJ, 2000, REV CHEM ENG, V16, P71.
MUTAT T, 2007, THESIS TECHNION.
POWER TD, 2002, J AM CHEM SOC, V124, P1858.
REN ZF, 1998, SCIENCE, V282, P1105.
SHEINTUCH M, 2004, CHEM ENG SCI, V59, P4739, DOI 10.1016/j.ces.2004.09.016.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SZNEJER GA, 2004, AICHE J, V50, P596, DOI 10.1002/aic.10054.
UGARTE D, 1996, SCIENCE, V274, P1897.
VIEIRALINHARES AM, 2003, CHEM ENG SCI, V58, P4129, DOI 10.1016/S0009-2509(03)00304-X.
WANG QY, 1999, PHYS REV LETT, V82, P956.

Cited Reference Count:
26

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3532083

IDS Number:
715PY

========================================================================

*Record 6 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287095500046
*Order Full Text [ ]

Title:
Hydrogen bond and halogen bond inside the carbon nanotube

Authors:
Wang, WZ; Wang, DL; Zhang, Y; Ji, BM; Tian, AM

Author Full Names:
Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (5): Art. No. 054317 FEB 7 2011

Language:
English

Document Type:
Article

KeyWords Plus:
DENSITY FUNCTIONALS; S(N)2 REACTION; LENGTH CHANGE; WATER CHAINS; CHEMISTRY; COMPLEXES; TRANSPORT; CHANNEL; CL

Abstract:
The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electronrich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-den
sity transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated. (C) 2011 American Institute of Physics. [doi:10.1063/1.3549572]

Reprint Address:
Wang, WZ, Luoyang Normal Univ, Coll Chem & Chem Engn, Luoyang 471022, Peoples R China.

Research Institution addresses:
[Wang, Weizhou; Zhang, Yu; Ji, Baoming] Luoyang Normal Univ, Coll Chem & Chem Engn, Luoyang 471022, Peoples R China; [Wang, Donglai] Anshan Normal Univ, Dept Chem, Anshan 114005, Peoples R China; [Tian, Anmin] Sichuan Univ, Fac Chem, Chengdu 610014, Peoples R China

E-mail Address:
wzwanglab@yahoo.com

Cited References:
BERLIN T, 1951, J CHEM PHYS, V19, P208.
BOYS SF, 1970, MOL PHYS, V19, P553, DOI 10.1080/00268977000101561.
DESIRAJU GR, 1999, WEAK HYDROGEN BOND.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FRISCH MJ, 2010, GAUSSIAN 09 REVISION.
FU DX, 2000, SCIENCE, V290, P481.
HALLS MD, 2002, J PHYS CHEM B, V106, P1921.
HALLS MD, 2005, NANO LETT, V5, P1861, DOI 10.1021/nl050722u.
HOBZA P, 1998, J PHYS CHEM A, V102, P2501.
HOBZA P, 2000, CHEM REV, V100, P4253.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JEFFREY GA, 1997, INTRO HYDROGEN BONDI.
JOUNG SK, 2010, PHYS CHEM CHEM PHYS, V12, P8118, DOI 10.1039/c000102c.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2001, NATURE, V412, P802.
LEGON AC, 2010, PHYS CHEM CHEM PHYS, V12, P7736, DOI 10.1039/c002129f.
MCDOWELL SAC, 2005, J AM CHEM SOC, V127, P15515.
METRANGOLO P, 2008, HALOGEN BONDING FUND.
NATARAJAN R, 2010, ANGEW CHEM INT EDIT, V49, P5125, DOI 10.1002/anie.201002418.
NISHIO M, 1998, CH PI INTERACTION EV.
NOY A, 2007, NANO TODAY, V2, P22.
POLITZER P, 1981, CHEM APPL ATOMIC MOL.
POLITZER P, 2010, PHYS CHEM CHEM PHYS, V12, P7748, DOI 10.1039/c004189k.
REED AE, 1988, CHEM REV, V88, P899.
SCHEINER S, 1997, HYDROGEN BONDING.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TASIS D, 2006, CHEM REV, V106, P1105, DOI 10.1021/cr050569o.
TOMASI J, 1998, ENCY COMPUTATIONAL C, P2547.
WANG DL, 2006, J ATOM MOL PHYS, V23, P821.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
WANG L, 2009, J PHYS CHEM C, V113, P5368, DOI 10.1021/jp808873r.
WANG WZ, 2004, J PHYS CHEM A, V108, P1799, DOI 10.1021/jp036769q.
WANG WZ, 2008, COLLECT CZECH CHEM C, V73, P862, DOI 10.1135/cccc20080862.
WANG WZ, 2008, J PHYS CHEM A, V112, P4114, DOI 10.1021/jp710992h.
WANG WZ, 2010, J PHYS CHEM A, V114, P7257, DOI 10.1021/jp103457u.
WANG ZY, 2010, CHEM-ASIAN J, V5, P1030, DOI 10.1002/asia.200900557.
XIAO B, 2009, SCI CHINA SER B, V52, P1969, DOI 10.1007/s11426-009-0282-x.
ZHAO Y, 2008, ACCOUNTS CHEM RES, V41, P157, DOI 10.1021/ar700111a.
ZHAO Y, 2008, THEOR CHEM ACC, V120, P215, DOI 10.1007/s00214-007-0310-x.
ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702.

Cited Reference Count:
42

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3549572

IDS Number:
718BT

========================================================================

*Record 7 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287327400054
*Order Full Text [ ]

Title:
Structural studies of water in hydrophilic and hydrophobic mesoporous silicas: An x-ray and neutron diffraction study at 297 K

Authors:
Jelassi, J; Grosz, T; Bako, I; Bellissent-Funel, MC; Dore, JC; Castricum, HL; Sridi-Dorbez, R

Author Full Names:
Jelassi, J.; Grosz, T.; Bako, I.; Bellissent-Funel, M. -C.; Dore, J. C.; Castricum, H. L.; Sridi-Dorbez, R.

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (6): Art. No. 064509 FEB 14 2011

Language:
English

Document Type:
Article

KeyWords Plus:
SUPERCOOLED CONFINED WATER; LIQUID WATER; VYCOR GLASS; CYLINDRICAL PORES; CARBON NANOTUBES; POROUS-GLASS; SCATTERING; DYNAMICS; MOLECULES; MCM-41

Abstract:
Water confined in a sol-gel network has been characterized by x-ray and neutron diffraction for two samples of mesoporous silica: one with a hydrophilic character (a nonmodified one) and another with a hydrophobic character (a modified one with a methylated internal pore surface). The pore size has been previously characterized [J. Jelassi et al., Phys. Chem. Chem. Phys. 134, 1039 (2010)] to have a mean pore diameter of approximately 55 angstrom. The diffraction measurements presented in this paper have been made at room temperature [293 K] for a filling factor of 0.45, giving a mean thickness of 8-9 angstrom for the water layer. The results show that the local order of the confined water molecules in the intermediate region of 3-6 angstrom is significantly different from that of the bulk water and also for the two different environments. For the hydrophilic sample, the siloxyl groups at the surface modify the water structure through the effects of interfacial hydrogen-bondin
g, which influences the orientational configuration of local water molecules and creates a modified spatial arrangement in the pore. In the case of the hydrophobic sample, there is no specific interaction with the pore wall, which is primarily van der Waals type, and the water molecules at the interface are differently oriented to create a hydrogen-bonded network linked more directly to the rest of the water volume. In the present circumstances, the thickness of the water layer has a relatively small dimension so that the interpretation of the measured diffraction pattern is not as straightforward as for the bulk liquids, and it is necessary to consider the effects of diffraction-broadening from a distributed sample volume and also the contribution from cross-terms that remain after conducting a "wet-minus-dry" analysis procedure. These analytic difficulties are discussed in the context of the present measurements and compared with the work of other groups engaged in the stu
dy of water confined in different environments. The present !
results,
again, emphasize the complexity influencing the properties of water in a confined geometry and the strong influence of surface interactions on its behavior. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3530584]

Reprint Address:
Bellissent-Funel, MC, CEA Saclay, Lab Leon Brillouin, CEA, CNRS, F-91191 Gif Sur Yvette, France.

Research Institution addresses:
[Jelassi, J.; Bellissent-Funel, M. -C.] CEA Saclay, Lab Leon Brillouin, CEA, CNRS, F-91191 Gif Sur Yvette, France; [Jelassi, J.; Sridi-Dorbez, R.] Univ Monastir, Dept Phys, Tunis, Tunisia; [Grosz, T.; Bako, I.] Hungarian Acad Sci, Chem Res Ctr, H-1051 Budapest, Hungary; [Dore, J. C.] Univ Kent, Sch Phys Sci, Canterbury CT2 7NH, Kent, England; [Castricum, H. L.] Univ Amsterdam, Vant Hoff Inst Mol Sci, NL-1012 WX Amsterdam, Netherlands

E-mail Address:
marie-claire.bellissent-funel@cea.fr

Cited References:
BAKO I, UNPUB.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BELLISSENTFUNEL MC, 1991, J PHYS-CONDENS MAT, V3, P4065.
BELLISSENTFUNEL MC, 1993, J CHEM PHYS, V98, P4246.
BELLISSENTFUNEL MC, 1993, PHYSICA A, V201, P277.
BELLISSENTFUNEL MC, 1996, J CHEM PHYS, V104, P10023.
BELLISSENTFUNEL MC, 2005, CR GEOSCI, V337, P173, DOI 10.1016/j.crte.2004.10.011.
BERTAGNOLLI H, 1976, MOL PHYS, V32, P759.
BROVCHENKO I, 2000, J CHEM PHYS, V113, P5026.
BROVCHENKO I, 2005, HDB THEORETICAL COMP, V1, P1.
BROVCHENKO IV, 2001, FLUID PHASE EQUILIBR, V183, P331.
CASTRICUM HL, 2006, MICROPOR MESOPOR MAT, V88, P63, DOI 10.1016/j.micromeso.2005.08.033.
CHEN Q, 2008, NANO LETT, V8, P1902, DOI 10.1021/nl080569e.
CHEN SH, 1994, NATO ASI SER C-MATH, V337, P435.
DORE J, 2000, CHEM PHYS, V258, P327.
FOUZRI A, 2002, J CHEM PHYS, V116, P791.
GALLO P, 2000, PHYS REV LETT, V85, UNSP 174714.
GALLO P, 2002, J CHEM PHYS, V116, P342.
GALLO P, 2002, J CHEM PHYS, V117, P369.
GILIJAMSE JJ, 2005, P NATL ACAD SCI USA, V102, P3202, DOI 10.1073/pnas.0404916102.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
GORBATY YE, 1985, MOL PHYS, V55, P571.
GUEGAN R, 2005, CHEM PHYS, V317, P236, DOI 10.1016/j.chemphys.2005.04.034.
HAJDU F, 1972, J APPL CRYSTALLOGR, V5, P395.
HUMMER G, 2001, NATURE, V414, P188.
IIYAMA T, 1995, J PHYS CHEM-US, V99, P10075.
ILER RK, 1979, CHEM SILICA, CH6.
JELASSI J, 2010, PHYS CHEM CHEM PHYS, V10, P1039.
KOCHERBITOV V, 2007, J PHYS CHEM C, V111, P12906, DOI 10.1021/jp072474r.
LIYAMA T, 1997, CHEM PHYS LETT, V274, P152.
LIYAMA T, 2000, CHEM PHYS LETT, V331, P359.
MANCINELLI R, 2010, J PHYS CHEM LETT, V1, P1277, DOI 10.1021/jz100236j.
MORINEAU D, 2003, J CHEM PHYS, V118, P9389, DOI 10.1063/1.1568932.
MORINEAU D, 2004, J CHEM PHYS, V121, P1466, DOI 10.1063/1.1762872.
MORISHIGE K, 2005, J CHEM PHYS, V122, ARTN 044711.
NARTEN AH, 1971, J CHEM PHYS, V55, P2263.
OKHULKOV AV, 1994, J CHEM PHYS, V100, P1578.
PAALMAN HH, 1962, J APPL PHYS, V33, P2635.
SEYEDYAZDI J, 2008, J PHYS-CONDENS MAT, V20, ARTN 205107.
SLIWINSKABARTKOWIAK M, 2008, PHYS CHEM CHEM PHYS, V10, P4909, DOI 10.1039/b808246d.
SMIRNOV P, 2000, J PHYS CHEM B, V104, P5498.
SOPER A, 1999, PHYS REV LETT, V84, P2881.
SOPER AK, 1998, J CHEM PHYS, V109, P1486.
SRIDIDORBEZ R, 2002, J CHEM PHYS, V116, P7269.
STEYTLER DC, 1983, MOL PHYS, V48, P1031.
TAKAHARA S, 1999, J PHYS CHEM B, V103, P5814.
TAKAHARA S, 2005, ADSORPTION S1, V11, P479.
WEBBER JBW, 2007, J PHYS-CONDENS MAT, V19, ARTN 415117.
WOUTERSEN S, 1999, NATURE, V402, P507.
YOSHIDA K, 2008, J CHEM PHYS, V129, ARTN 054702.
ZANOTTI JM, 1999, PHYS REV E B, V59, P3084.
ZHANG Y, 2009, J PHYS CHEM B, V113, P15.

Cited Reference Count:
52

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3530584

IDS Number:
721BW

========================================================================

*Record 8 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286111300005
*Order Full Text [ ]

Title:
Syntheses, structures and properties of two unusual silver-organic coordination networks: 1D -> 1D tubular intertwinement and existence of an infinite winding water chain

Authors:
Li, B; Zang, SQ; Ji, C; Du, CX; Hou, HW; Mak, TCW

Author Full Names:
Li, Bo; Zang, Shuang-Quan; Ji, Can; Du, Chen-Xia; Hou, Hong-Wei; Mak, Thomas C. W.

Source:
DALTON TRANSACTIONS 40 (4): 788-792 2011

Language:
English

Document Type:
Article

KeyWords Plus:
CRYSTAL-STRUCTURES; MOLECULAR LADDERS; HYDROTHERMAL SYNTHESIS; 3-DIMENSIONAL NETWORK; BLUE FLUORESCENCE; METAL; POLYMERS; FRAMEWORKS; ARCHITECTURES; LIGANDS

Abstract:
Two unusual metal-organic frameworks {[Ag-2(Hbtc)(bpy)(2)]center dot(H2O)(2)}(n) (1), {[Ag-3(btc)(bpy)(3)(H2O)]center dot(H2O)(7)}(n) (2) (H(3)btc = 1,2,3-benzenetricarboxylic acid, bpy = 4,4'-bipyridine) have been synthesized and characterized by single crystal X-ray diffraction. Complex 1 features an infinite 1D -> 1D tubular intertwinement network, while complex 2 exhibits a double ladder structure which contains rare winding water chains. Both infinite 1D -> 1D tubular chains in complex 1 and double ladder in 2 are mutually interconnected by hydrogen bonding and pi ... pi stacking interactions into three-dimensional (3D) supramolecular networks. In addition, thermogravimetric analysis, powder X-ray diffraction (XRD), and photoluminescent behavior of the complexes have also been investigated.

Reprint Address:
Zang, SQ, Zhengzhou Univ, Dept Chem, Zhengzhou 450001, Peoples R China.

Research Institution addresses:
[Li, Bo; Zang, Shuang-Quan; Ji, Can; Du, Chen-Xia; Hou, Hong-Wei; Mak, Thomas C. W.] Zhengzhou Univ, Dept Chem, Zhengzhou 450001, Peoples R China; [Mak, Thomas C. W.] Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China

E-mail Address:
zangsqzg@zzu.edu.cn

Cited References:
*SIEM ANAL XRAY SY, 1996, AR DET CONTR INT SOF.
ALLENDORF MD, 2009, CHEM SOC REV, V38, P1330, DOI 10.1039/b802352m.
BARBOUR LJ, 1998, NATURE, V393, P671.
BARNETT SA, 2001, J CHEM SOC DALTON, P567.
BATTEN SR, 1998, ANGEW CHEM INT EDIT, V37, P1460.
BATTEN SR, 2001, CRYSTENGCOMM, V3, P76.
BIRADHA K, 2000, J CHEM SOC DALTON, P3837, DOI 10.1039/b003733h.
BLAKE AJ, 1997, CHEM COMMUN 1107, P2027.
BONDI A, 1964, J PHYS CHEM-US, V68, P441.
BRIZARD A, 2008, ANGEW CHEM INT EDIT, V47, P2063, DOI 10.1002/anie.200704609.
CARLUCCI L, 2000, CHEM COMMUN, P1319.
CARLUCCI L, 2003, COORDIN CHEM REV, V246, P247, DOI 10.1016/S0010-8545(03)00126-7.
CARLUCCI L, 2003, CRYSTENGCOMM, V5, P269, DOI 10.1039/b305246j.
CARLUCCI L, 2004, CHEM COMMUN 0221, P380, DOI 10.1039/b314322h.
CARLUCCI L, 2008, CRYST GROWTH DES, V8, P162, DOI 10.1021/cg700884q.
CHEN XD, 2008, CHEM COMMUN 0321, P1296, DOI 10.1039/b716461k.
CHEN XD, 2009, CHEM-EUR J, V15, P12974, DOI 10.1002/chem.200902306.
CHEON YE, 2008, CHEM-EUR J, V14, P3961, DOI 10.1002/chem.200701813.
CUKIERMAN S, 2000, BIOPHYS J, V78, P1825.
CUSTELCEAN R, 2000, ANGEW CHEM INT EDIT, V39, P3094.
DU M, 2005, CHEM COMMUN 1128, P5521, DOI 10.1039/b509875k.
DU M, 2007, INORG CHEM, V46, P3984, DOI 10.1021/ic062098+.
DU M, 2008, CRYSTENGCOMM, V10, P1855, DOI 10.1039/b810121c.
DU M, 2009, CRYST GROWTH DES, V9, P1655, DOI 10.1021/cg801393a.
DU M, 2010, CRYST GROWTH DES, V10, P3285, DOI 10.1021/cg100465u.
EVANS OR, 2001, CHEM MATER, V13, P2705, DOI 10.1021/cm010301n.
FEI Z, 2005, ANGEW CHEM INT EDIT, V44, P5720.
FRASER CSA, 2001, CHEM COMMUN, P1310.
FUJITA M, 1996, COORDIN CHEM REV, V148, P249.
GENUIS ED, 2008, INORG CHEM, V47, P6184, DOI 10.1021/ic800069f.
GUTSCHKE SOH, 2001, ANGEW CHEM INT EDIT, V40, P1920.
HABIB HA, 2008, DALTON T, P4877, DOI 10.1039/b803813a.
HARVEY PD, 1998, COORDIN CHEM REV, V171, P351.
HUMMER G, 2001, NATURE, V414, P188.
INFANTES L, 2002, CRYSTENGCOMM 0722, P454, DOI 10.1039/b204934a.
INFANTES L, 2003, CRYSTENGCOMM, V5, P480, DOI 10.1039/b312846f.
JANSEN M, 1987, ANGEW CHEM INT EDIT, V26, P1098.
JIN CM, 2006, CHEM COMMUN, P5039, DOI 10.1039/b612885h.
JUDE KM, 2002, BIOCHEMISTRY-US, V41, P2485.
LEE EY, 2005, J AM CHEM SOC, V127, P6374, DOI 10.1021/ja043756x.
LI SG, 2010, CRYSTENGCOMM, V12, P2001, DOI 10.1039/b922566h.
LI X, 2010, INORG CHEM, V49, P1865, DOI 10.1021/ic902241n.
LIU B, 2006, INORG CHEM COMMUN, V9, P364, DOI 10.1016/j.inoche.2006.01.004.
LIU JQ, 2009, CRYSTENGCOMM, V11, P1207, DOI 10.1039/b905427h.
LIU YY, 2008, J COORD CHEM, V61, P3450, DOI 10.1080/00958970802064895.
LUAN XJ, 2005, ANGEW CHEM INT EDIT, V44, P3864, DOI 10.1002/anie.200500744.
LUAN XJ, 2006, CHEM-EUR J, V12, P6281, DOI 10.1002/chem.200501559.
LUDWIG R, 2001, ANGEW CHEM INT EDIT, V40, P1808.
LUO F, 2007, CHEM COMMUN, P3744, DOI 10.1039/b706177c.
MAHMOUDI G, 2009, CRYSTENGCOMM, V11, P50, DOI 10.1039/b813701n.
MAK TCW, 2007, COORDIN CHEM REV, V251, P2311, DOI 10.1016/j.ccr.2006.11.001.
MASCAL M, 2006, ANGEW CHEM INT EDIT, V45, P32, DOI 10.1002/anie.200501839.
MIR MH, 2008, INORG CHEM, V47, P7728, DOI 10.1021/ic800766q.
MIR MH, 2009, CHEM COMMUN, P4539, DOI 10.1039/b906270j.
NG MT, 2004, CHEM-EUR J, V10, P5853, DOI 10.1002/chem.200400551.
NI Z, 2001, CRYST GROWTH DES, V1, P195.
NIU CY, 2007, DALTON T, P5710, DOI 10.1039/b709204k.
PAL S, 2003, ANGEW CHEM INT EDIT, V42, P1741, DOI 10.1002/anie.200250444.
PIGGE FC, 2009, CRYSTENGCOMM, V11, P1227, DOI 10.1039/b906196g.
PLATER MJ, 2000, J CHEM SOC DALTON, P1995.
PYYKKO P, 1997, CHEM REV, V97, P597.
ROUX B, 1999, SCIENCE, V285, P100.
SARKAR M, 2005, CHEM COMMUN, P2229, DOI 10.1039/b500666j.
SHELDRICK GM, SADABS 2 O5.
SHELDRICK GM, 1985, CRYSTALLOGRAPHIC COM, P1175.
SHELDRICK GM, 2008, FOUND CRYSTALLOGR, V64, P112.
SONG JL, 2004, INORG CHEM, V43, P5630, DOI 10.1021/ic049376u.
SREENIVASULU B, 2004, ANGEW CHEM INT EDIT, V43, P5769, DOI 10.1002/anie.200460516.
TAN HQ, 2007, J AM CHEM SOC, V129, P10066, DOI 10.1021/ja073153w.
TONG ML, 2000, INORG CHEM, V39, P2235.
WANG DX, 2010, CRYSTENGCOMM, V12, P1041, DOI 10.1039/b910988a.
WANG PS, 2005, CHEM COMMUN, P4405, DOI 10.1039/b505327g.
WANG XB, 2006, J MOL STRUCT, V796, P28, DOI 10.1016/j.molstruc.2006.03.090.
XU L, 2006, INORG CHEM COMMUN, V9, P220, DOI 10.1016/j.inoche.2005.10.032.
YAM VWW, 1998, COORDIN CHEM REV, V171, P17.
YANG CT, 2001, INORG CHEM, V40, P5934.
YANG EC, 2009, CRYST GROWTH DES, V9, P4933, DOI 10.1021/cg9007119.
YE BH, 2004, INORG CHEM, V43, P6866, DOI 10.1021/ic0492321.
ZANG SQ, 2006, CHEM COMMUN, P4997, DOI 10.1039/b611994h.
ZAWOROTKO MJ, 2001, CHEM COMMUN, P1.
ZHANG JP, 2008, J AM CHEM SOC, V130, P907, DOI 10.1021/ja075408b.
ZHANG ZJ, 2009, INORG CHEM COMMUN, V12, P223, DOI 10.1016/j.inoche.2008.12.017.
ZHENG YZ, 2004, NEW J CHEM, V28, P1412, DOI 10.1039/b409696g.
ZHENG YZ, 2009, DALTON T, P1396, DOI 10.1039/b815843f.
ZHU HF, 2002, CHEM LETT 0905, P898.

Cited Reference Count:
85

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Inorganic & Nuclear

ISSN:
1477-9226

DOI:
10.1039/c0dt00949k

IDS Number:
705EI

========================================================================

*Record 9 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286691100025
*Order Full Text [ ]

Title:
Emerging Applications of Carbon Nanotubes

Authors:
Schnorr, JM; Swager, TM

Author Full Names:
Schnorr, Jan M.; Swager, Timothy M.

Source:
CHEMISTRY OF MATERIALS 23 (3): 646-657 FEB 8 2011

Language:
English

Document Type:
Review

KeyWords Plus:
MEMBRANE FUEL-CELLS; FIELD-EFFECT TRANSISTORS; DOUBLE-LAYER CAPACITORS; LITHIUM-ION BATTERY; MODIFIED ELECTRODES; HIGH-PERFORMANCE; ELECTROCHEMICAL CHARACTERIZATION; SELECTIVE HYDROGENATION; COMPOSITE ELECTRODES; MOLECULAR SWITCH

Abstract:
On the basis of their unique electrical and mechanical properties, carbon nanotubes (CNTs) have attracted great attention in recent years. A diverse array of methods has been developed to modify CNTs and to assemble them into devices. On the basis of these innovations, many applications that include the use of CNTs have been demonstrated. Transparent electrodes for organic light-emitting diodes (OLEDs), lithium-ion batteries, supercapacitors, and CNT-based electronic components such as field-effect transistors (FETs) have been demonstrated. Furthermore, CNTs have been employed in catalysis and sensing as well as filters and mechanical and biomedical applications. This review highlights illustrative examples from these areas to give an overview of applications of CNTs.

Reprint Address:
Swager, TM, MIT, Dept Chem, 77 Massachusetts Ave, Cambridge, MA 02139 USA.

Research Institution addresses:
[Swager, Timothy M.] MIT, Dept Chem, Cambridge, MA 02139 USA; MIT, Inst Soldier Nanotechnol, Cambridge, MA 02139 USA

E-mail Address:
tswager@mit.edu

Cited References:
AGUIRRE CM, 2009, NANO LETT, V9, P1457, DOI 10.1021/nl8033152.
AJAYAN PM, 1999, CHEM REV, V99, P1787.
AN KH, 2001, ADV MATER, V13, P497.
ASURI P, 2006, BIOTECHNOL BIOENG, V95, P804, DOI 10.1002/bit.21016.
BACKES C, 2009, J AM CHEM SOC, V131, P2172, DOI 10.1021/ja805660b.
BANKS CE, 2005, CHEM COMMUN, P829, DOI 10.1039/b413177k.
BANKS CE, 2006, ANGEW CHEM INT EDIT, V45, P2533, DOI 10.1002/anie.200600033.
BARAVIK I, 2009, LANGMUIR, V25, P13978, DOI 10.1021/la902074w.
BARISCI JN, 2003, SMART MATER STRUCT, V12, P549.
BAUGHMAN RH, 1999, SCIENCE, V284, P1340.
BERTONCELLO P, 2007, J AM CHEM SOC, V129, P10982, DOI 10.1021/ja073360w.
BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u.
BRADYESTEVEZ AS, 2008, SMALL, V4, P481, DOI 10.1002/smll.200700863.
BRADYESTEVEZ AS, 2010, WATER RES, V44, P3773, DOI 10.1016/j.watres.2010.04.023.
CAI H, 2003, ANAL BIOANAL CHEM, V375, P287, DOI 10.1007/s00216-002-1652-9.
CHEN HJ, 2007, BIOSENS BIOELECTRON, V22, P1811, DOI 10.1016/j.bios.2006.08.013.
CHEN J, 2007, CHEM MATER, V19, P3595, DOI 10.1021/cm070991g.
CHEN JH, 2002, CARBON, V40, P1193.
CHEN RJ, 2001, J AM CHEM SOC, V123, P3838, DOI 10.1021/ja010172b.
CHEN WX, 2003, CARBON, V41, P959, DOI 10.1016/S0008-6223(02)00425-6.
CHENG HM, 1998, APPL PHYS LETT, V72, P3282.
CHIANG IW, 2001, J PHYS CHEM B, V105, P8297.
CHIEN YM, 2010, NANOTECHNOLOGY, V21, ARTN 134020.
COLLIER CP, 2000, SCIENCE, V289, P1172.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DERVISHI E, 2009, J MATER CHEM, V19, P3004, DOI 10.1039/b822469b.
DOMINKO R, 2002, ADV MATER, V14, P1531.
DU CS, 2006, J POWER SOURCES, V160, P1487, DOI 10.1016/j.jpowsour.2006.02.092.
DULIC D, 2003, PHYS REV LETT, V91, P1.
DUMEE LF, 2010, J MEMBRANE SCI, V351, P36, DOI 10.1016/j.memsci.2010.01.025.
EBBESEN TW, 1992, NATURE, V358, P220.
FALVO MR, 1997, NATURE, V389, P582.
FANG HT, 2004, CHEM MATER, V16, P5744, DOI 10.1021/cm035263h.
FEAZELL RP, 2007, J AM CHEM SOC, V129, P8438, DOI 10.1021/ja073231f.
FENG YY, 2009, APPL PHYS LETT, V94, ARTN 123302.
FLAHAUT E, 2003, CHEM COMMUN, P1442, DOI 10.1039/b301514a.
FRANKLIN NR, 2002, APPL PHYS LETT, V81, P913.
FUTABA DN, 2006, NAT MATER, V5, P987, DOI 10.1038/nmat1782.
GEORGAKILAS V, 2002, CHEM COMMUN, P3050, DOI 10.1039/b209843a.
GHEITH MK, 2006, ADV MATER, V18, P2975, DOI 10.1002/adma.200600878.
GOLDONI A, 2010, J PHYS-CONDENS MAT, V22, ARTN 013001.
GOLIKAND AN, 2009, J APPL ELECTROCHEM, V39, P2421, DOI 10.1007/s10800-009-9930-2.
GU H, 2008, ADV MATER, V20, P4433, DOI 10.1002/adma.200801062.
GUAN TJ, 2010, J AEROSOL SCI, V41, P611, DOI 10.1016/j.jaerosci.2010.03.002.
HARUTYUNYAN AR, 2009, SCIENCE, V326, P116, DOI 10.1126/science.1177599.
HATA K, 2004, SCIENCE, V306, P1362.
HENDRICKS TR, 2010, NANOTECHNOLOGY, V21, ARTN 115301.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOEFER M, 2009, APPL PHYS LETT, V95, ARTN 183108.
HONG K, 2009, ORG ELECTRON, V10, P363, DOI 10.1016/j.orgel.2008.11.008.
HOU PX, 2008, CARBON, V46, P2003, DOI 10.1016/j.carbon.2008.09.009.
HU H, 2005, J PHYS CHEM B, V109, P11520, DOI 10.1021/jp050781w.
HU LB, 2010, NANOTECHNOLOGY, V21, ARTN 155202.
HUMMER G, 2001, NATURE, V414, P188.
HUTCHISON JL, 2001, CARBON, V39, P761.
JAVEY A, 2003, NATURE, V424, P654, DOI 10.1038/nature01797.
JENSEN K, 2007, NANO LETT, V7, P3508, DOI 10.1021/nl0721113.
JIANG LC, 2009, J MOL CATAL A-CHEM, V310, P144, DOI 10.1016/j.molcata.2009.06.009.
JIANG LC, 2010, BIOSENS BIOELECTRON, V25, P1402, DOI 10.1016/j.bios.2009.10.038.
KAM NWS, 2009, NANO LETT, V9, P273, DOI 10.1021/nl802859a.
KHOMENKO V, 2005, ELECTROCHIM ACTA, V50, P2499, DOI 10.1016/j.electacta.2004.10.078.
KIM MJ, 2009, CARBON, V47, P3461, DOI 10.1016/j.carbon.2009.08.013.
KONG J, 2000, SCIENCE, V287, P622.
KONG LT, 2010, ANALYST, V135, P368, DOI 10.1039/b920266h.
KREUPL F, 2002, MICROELECTRON ENG, V64, P399.
LAMBERT JM, 1994, CHEM PHYS LETT, V226, P364.
LANDI BJ, 2002, NANO LETT, V2, P1329, DOI 10.1021/nl025800h.
LEGOFF A, 2009, SCIENCE, V326, P1384, DOI 10.1126/science.1179773.
LI F, 2000, CARBON, V38, P2041.
LI HM, 2005, J AM CHEM SOC, V127, P14518, DOI 10.1021/ja054958b.
LI J, 2003, NANO LETT, V3, P597, DOI 10.1021/nl0340677.
LI J, 2003, NANO LETT, V3, P929, DOI 10.1021/nl034220x.
LI WZ, 2003, J PHYS CHEM B, V107, P6292, DOI 10.1021/jp022505c.
LI XF, 2009, APPL PHYS LETT, V95, ARTN 232118.
LI Y, 2004, NANOTECHNOLOGY, V15, P1645, DOI 10.1088/0957-4484/15/11/047.
LIJIMA S, 1991, NATURE, V354, P56.
LIJIMA S, 1993, NATURE, V363, P603.
LIN YH, 2004, NANO LETT, V4, P191, DOI 10.1021/nl0347233.
LIU J, 1998, SCIENCE, V280, P1253.
LIU Z, 2007, ANGEW CHEM INT EDIT, V46, P2023, DOI 10.1002/anie.200604295.
LOBEZ JM, 2010, ANGEW CHEM INT EDIT, V49, P95, DOI 10.1002/anie.200904936.
LOPEZ BP, 2009, ANALYST, V134, P60, DOI 10.1039/b808387h.
LOPEZLORENTE AI, 2010, ANAL CHEM, V82, P5399, DOI 10.1021/ac902629n.
LORDI V, 2001, CHEM MATER, V13, P733, DOI 10.1021/cm000210a.
LU W, 2009, J POWER SOURCES, V189, P1270, DOI 10.1016/j.jpowsour.2009.01.009.
LUO XJ, 2009, J BIOL INORG CHEM, V14, P1275, DOI 10.1007/s00775-009-0572-y.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MINTMIRE JW, 1992, PHYS REV LETT, V68, P631.
MIYATA Y, 2008, J PHYS CHEM C, V112, P3591, DOI 10.1021/jp077709d.
MORIGUCHI I, 2006, ADV MATER, V18, P69, DOI 10.1002/adma.200501366.
MORRIS RS, 2004, J POWER SOURCES, V138, P277, DOI 10.1016/j.jpowsour.2004.06.014.
NG SH, 2005, ELECTROCHIM ACTA, V51, P23, DOI 10.1016/j.electacta.2005.04.045.
NOVAK JP, 2003, APPL PHYS LETT, V83, P4026, DOI 10.1063/1.1626265.
PAWELEC B, 2006, CARBON, V44, P84, DOI 10.1016/j.carbon.2005.07.004.
PHAM XH, 2010, ANAL CHIM ACTA, V671, P36, DOI 10.1016/j.aca.2010.05.010.
POLAND CA, 2008, NAT NANOTECHNOL, V3, P423, DOI 10.1038/nnano.2008.111.
PRABHURAM J, 2006, J PHYS CHEM B, V110, P5245, DOI 10.1021/jp0567063.
PUMERA M, 2007, CARBON, P6453.
QI P, 2003, NANO LETT, V3, P347.
QI PF, 2004, J AM CHEM SOC, V126, P11774, DOI 10.1021/ja045900k.
RAKHI RB, 2009, J PHYS CHEM B, V113, P3190, DOI 10.1021/jp810235v.
REDDY ALM, 2009, NANO LETT, V9, P1002, DOI 10.1021/nl803081j.
ROBINSON JA, 2006, NANO LETT, V6, P1747, DOI 10.1021/nl0612289.
RUOFF RS, 1995, CARBON, V33, P925.
SAITO R, 1992, PHYS REV B, V46, P1804.
SALVETAT JP, 1999, APPL PHYS A-MATER, V69, P255.
SHELIMOV KB, 1998, CHEM PHYS LETT, V282, P429.
SIGNORELLI R, 2009, P IEEE, V97, P1837, DOI 10.1109/JPROC.2009.2030240.
SIVAKKUMAR SR, 2007, ELECTROCHIM ACTA, V52, P7377, DOI 10.1016/j.electacta.2007.06.023.
SLJUKIC B, 2006, NANO LETT, V6, P1556, DOI 10.1021/nl060366v.
SNOW ES, 2005, SCIENCE, V307, P1942, DOI 10.1126/science.1109128.
SOMANI SP, 2009, DIAM RELAT MATER, V18, P497, DOI 10.1016/j.diamond.2008.10.042.
SOUTHARD A, 2009, ORG ELECTRON, V10, P1556, DOI 10.1016/j.orgel.2009.09.001.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
STAII C, 2005, NANO LETT, V5, P1774, DOI 10.1021/nl051261f.
STAR A, 2002, ANGEW CHEM INT EDIT, V41, P2508.
SULLIVAN JA, 2009, CATAL TODAY, V145, P108, DOI 10.1016/j.cattod.2008.05.026.
SWAGER TM, 1998, ACCOUNTS CHEM RES, V31, P201.
TAN XS, 2009, CHEM COMMUN, P7179, DOI 10.1039/b917224f.
TANG H, 2004, CARBON, V42, P191, DOI 10.1016/j.carbon.2003.10.023.
TANG Z, 2010, J ELECTROCHEM SOC, V157, B245, DOI 10.1149/1.3266933.
TANS SJ, 1997, NATURE, V386, P474.
TANS SJ, 1998, NATURE, V393, P49.
TASIS D, 2003, CHEM-EUR J, V9, P4000.
THESS A, 1996, SCIENCE, V273, P483.
TIAN ZQ, 2006, J PHYS CHEM B, V110, P5343, DOI 10.1021/jp056401o.
TOUPIN M, 2004, CHEM MATER, V16, P3184, DOI 10.1021/cm049649j.
TUUKKANEN S, 2006, NANO LETT, V6, P1339, DOI 10.1021/nl060771m.
UDOMVECH A, 2005, CHEM PHYS LETT, V406, P161, DOI 10.1016/j.cplett.2005.02.084.
VASILYEVA SV, 2009, ACS APPL MATER INTER, V1, P2288, DOI 10.1021/am900435j.
VLANDAS A, 2010, ANAL CHEM, V82, P6090, DOI 10.1021/ac1007656.
WALTERS DA, 1999, APPL PHYS LETT, V74, P3803.
WANG C, 2004, NANO LETT, V4, P345, DOI 10.1021/nl034952p.
WANG F, 2008, ANGEW CHEM INT EDIT, V47, P8394, DOI 10.1002/anie.200802762.
WANG F, 2008, J AM CHEM SOC, V130, P5392, DOI 10.1021/ja710795k.
WANG J, 2005, LANGMUIR, V21, P9, DOI 10.1021/la0475977.
WEE G, 2010, J ELECTROCHEM SOC, V157, A179, DOI 10.1149/1.3267874.
WEI BQ, 2001, APPL PHYS LETT, V79, P1172.
WEN YL, 2009, ELECTROCHIM ACTA, V54, P7078, DOI 10.1016/j.electacta.2009.07.038.
WHITE CT, 1998, NATURE, V393, P240.
WIGGINSCAMACHO JD, 2009, J PHYS CHEM C, V113, P19082, DOI 10.1021/jp907160v.
XIE XF, 2007, CARBON, V45, P2365, DOI 10.1016/j.carbon.2007.07.014.
YAMADA Y, 2010, ENERG FUEL, V24, P3373, DOI 10.1021/ef9015203.
YANG JB, 2007, CARBON, V45, P2845, DOI 10.1016/j.carbon.2007.09.030.
YANG WR, 2007, NANOTECHNOLOGY, V18, ARTN 412001.
YOON B, 2009, J PHYS CHEM C, P1520.
YOON BJ, 2004, CHEM PHYS LETT, V388, P170, DOI 10.1016/j.cplett.2004.02.071.
YU MA, 2010, J AM CHEM SOC, V132, P8285, DOI 10.1021/ja9091769.
YUN YH, 2005, SMART MATER STRUCT, V14, P1526, DOI 10.1088/0964-1726/14/6/045.
YUN YS, 2010, SYNTHETIC MET, V160, P561, DOI 10.1016/j.synthmet.2009.12.003.
ZARE HR, 2010, SENSOR ACTUAT B-CHEM, V143, P666, DOI 10.1016/j.snb.2009.10.030.
ZHANG CH, 2010, ELECTROCHIM ACTA, V55, P2835, DOI 10.1016/j.electacta.2009.12.068.
ZHANG M, 2004, SCIENCE, V306, P1358.
ZHANG M, 2005, SCIENCE, V309, P1215, DOI 10.1126/science.1115311.
ZHANG MG, 2004, ANAL CHEM, V76, P5045, DOI 10.1021/ac049519u.
ZHANG W, 2009, CHEM MATER, V21, P3234, DOI 10.1021/cm900747t.
ZHANG WD, 2009, PURE APPL CHEM, V81, P2317, DOI 10.1351/PAC-CON-08-11-25.
ZHANG XZ, 2009, ANAL CHEM, V81, P6006, DOI 10.1021/ac802026j.
ZHAO HZ, 2010, CARBON, V48, P1508, DOI 10.1016/j.carbon.2009.12.046.
ZHAO J, 2000, PHYS REV LETT, V85, P1706.
ZHAO P, 2009, PHYSICA E, V41, P474, DOI 10.1016/j.physe.2008.09.008.
ZHAO P, 2009, SOLID STATE COMMUN, V149, P928, DOI 10.1016/j.ssc.2009.03.027.
ZHOU YK, 2004, ELECTROCHIM ACTA, V49, P257, DOI 10.1016/j.electacta.2003.08.007.
ZHU HW, 2002, SCIENCE, V296, P884.

Cited Reference Count:
164

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0897-4756

DOI:
10.1021/cm102406h

IDS Number:
712UG

========================================================================

*Record 10 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285572800112
*Order Full Text [ ]

Title:
Variational Principle of Carbon Nanotubes with Temperature Changes

Authors:
Fan, T

Author Full Names:
Fan, Tao

Source:
FOURTH INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS 7522: Art. No. 752236 2010

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
carbon nanotubes; temperature changes; variational principle; stationary value conditions; vibration characteristics; Galerkin method

Abstract:
In this paper, the CNS are considered as the Euler-Bernoulli beams which have been used in many references about the CNS. Taken the thermal-mechanical coupling into account, the variational principle for the CNS is presented by the variational integral method. With the derivation of the varitional principle, the stationary value conditions are obtained. At last, the vibration governing equation is illustrated, which will be benefit for the numerical simulation with finite element method in further investigations. From the stationary value conditions deduced by the variational principle, it can be observed that the vibration characteristics of the CNS can be influenced by the temperature changes. It is expected to be useful for the design and application of the nano scale devices.

Reprint Address:
Fan, T, Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin 150001, Peoples R China.

Research Institution addresses:
Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin 150001, Peoples R China

E-mail Address:
fantaoheu@gmail.com

Cited References:
HUMMER G, 2001, NATURE, V414, P188.
LU P, 2006, J APPL PHYS, V99, ARTN 073510.
LZHANG YQ, 2004, PHYS REV B, V70, UNSP 205430.
SHEN HS, 2006, PHYS REV B, V74, ARTN 035410.
WANG Q, 2005, J APPL PHYS, V98, ARTN 124301.
ZHANG YQ, 2008, PHYS LETT A, V372, P1676, DOI 10.1016/j.physleta.2007.10.033.

Cited Reference Count:
6

Times Cited:
0

Publisher:
SPIE-INT SOC OPTICAL ENGINEERING; 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA

Subject Category:
Optics

ISSN:
0277-786X

DOI:
10.1117/12.851464

IDS Number:
BSR97

========================================================================

*Record 11 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287421700197
*Order Full Text [ ]

Title:
Variational Principle of Carbon Nanotubes with Temperature Changes Based on Nonlocal Euler-Bernoulli Beam Model

Authors:
Fan, T

Author Full Names:
Fan, Tao

Source:
ADVANCES IN FRACTURE AND DAMAGE MECHANICS IX 452-453: 785-788 2011

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
carbon nanotubes; temperature changes; variational principle; nonlocal Euler-Bernoulli Beam Model; critical buckling load

Abstract:
In this paper, the CNTS are considered as the Euler-Bernoulli beams which have been used in many references about the CNTS. Taken the thermal-mechanical coupling and small scale effect into account, the variational principle for the CNTS is presented by the variational integral method. With the derivation of the varitional principle, the vibration governing equation is illustrated, which will be benefit for the numerical simulation with finite element method in further investigations. From the stationary value conditions deduced by the variational principle, the influences of the temperature changes and the thermal expansion coefficients based on nonlocal Euler-Bernoulli beam model are presented.

Reprint Address:
Fan, T, Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin 150001, Peoples R China.

Research Institution addresses:
Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin 150001, Peoples R China

E-mail Address:
fantao19812005@yahoo.com.cn

Cited References:
HUMMER G, 2001, NATURE, V414, P188.
LU P, 2006, J APPL PHYS, V99, ARTN 073510.
SHEN HS, 2006, PHYS REV B, V74, ARTN 035410.
WANG Q, 2005, J APPL PHYS, V98, ARTN 124301.
ZHANG YQ, 2004, PHYS REV B, V70, ARTN 205430.
ZHANG YQ, 2008, PHYS LETT A, V372, P1676, DOI 10.1016/j.physleta.2007.10.033.

Cited Reference Count:
6

Times Cited:
0

Publisher:
TRANS TECH PUBLICATIONS LTD; LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND

ISSN:
1013-9826

DOI:
10.4028/www.scientific.net/KEM.452-453.785

IDS Number:
BTN77

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================