Friday, April 29, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289569600019
*Order Full Text [ ]

Title:
Why are slip lengths so large in carbon nanotubes?

Authors:
Myers, TG

Author Full Names:
Myers, Tim G.

Source:
MICROFLUIDICS AND NANOFLUIDICS 10 (5): 1141-1145 MAY 2011

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotube; Slip length; Navier slip

KeyWords Plus:
FAST MASS-TRANSPORT; BOUNDARY-CONDITION; WATER; FLOW; HYDRODYNAMICS; LIQUIDS; NANOFLUIDICS; DYNAMICS; SURFACES

Abstract:
A possible explanation for the enhanced flow in carbon nanotubes is given using a mathematical model that includes a depletion layer with reduced viscosity near the wall. In the limit of large tubes the model predicts no noticeable enhancement. For smaller tubes the model predicts enhancement that increases as the radius decreases. An analogy between the reduced viscosity and slip-length models shows that the term slip-length is misleading and that on surfaces which are smooth at the nanoscale it may be thought of as a length-scale associated with the size of the depletion region and viscosity ratio. The model therefore provides a physical interpretation of the classical Navier slip condition and explains why 'slip-lengths' may be greater than the tube radius.

Reprint Address:
Myers, TG, Ctr Recerca Matemat, Campus Bellaterra,Edifici C, Barcelona 08193, Spain.

Research Institution addresses:
Ctr Recerca Matemat, Barcelona 08193, Spain

E-mail Address:
tmyers@crm.cat

Cited References:
ALEXEYEV AA, 1996, COLLOID SURFACE A, V108, P173.
BARRAT JL, 1999, FARADAY DISCUSS, V112, P119.
BHUSHAN B, 2008, SPRINGER HDB NANOTEC.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
COTTINBIZONNE C, 2005, PHYS REV LETT, V94, ARTN 056102.
DEGENNES PG, 2002, LANGMUIR, V18, P3413.
DENN MM, 2001, ANNU REV FLUID MECH, V33, P265.
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI 10.1007/s10404-004-0012-9.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MATTHEWS MT, 2008, INT J NANOTECHNOL, V5, P218.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
MYERS TG, 1998, SIAM REV, V40, P441.
MYERS TG, 2002, WATER RESOUR RES, V38, ARTN 1230.
MYERS TG, 2005, PHYS REV E 2, V72, ARTN 066302.
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05.
NOYA A, 2007, NANO TODAY, V2, P22.
ODONOVAN EJ, 1984, J NON-NEWTON FLUID, V15, P75.
ORIKASA H, 2006, CHEM MATER, V18, P1036, DOI 10.1021/cm0521368.
POYNOR A, 2006, PHYS REV LETT, V97, ARTN 266101.
POZHAR LA, 2000, PHYS REV E, V61, P1432.
QIAN TZ, 2004, PHYS REV LETT, V93, ARTN 094501.
RUCKENSTEIN E, 1983, J COLLOID INTERF SCI, V96, P488.
THOMAS JA, 2008, J CHEM PHYS, V128, ARTN 084715.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
TRAVIS KP, 1997, PHYS REV E, V55, P4288.
TRETHEWAY DC, 2002, PHYS FLUIDS, V14, L9.
VERDAGUER A, 2006, CHEM REV, V106, P1478, DOI 10.1021/cr040376l.
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368.
VINOGRADOVA OI, 1995, J COLLOID INTERF SCI, V169, P306.
VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
WHITE FM, 1991, VISCOUS FLUID FLOW.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.

Cited Reference Count:
37

Times Cited:
0

Publisher:
SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY

Subject Category:
Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas

ISSN:
1613-4982

DOI:
10.1007/s10404-010-0752-7

IDS Number:
750SZ

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289256100031
*Order Full Text [ ]

Title:
Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: Insight from molecular simulation

Authors:
Hu, ZQ; Chen, YF; Jiang, JW

Author Full Names:
Hu, Zhongqiao; Chen, Yifei; Jiang, Jianwen

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (13): Art. No. 134705 APR 7 2011

Language:
English

Document Type:
Article

KeyWords Plus:
METAL-ORGANIC FRAMEWORK; HYDROGEN-BOND KINETICS; DYNAMICS SIMULATIONS; CARBON NANOTUBE; LIQUID WATER; LIGHT GASES; FORCE-FIELD; TRANSPORT; SELECTIVITY; ADSORPTION

Abstract:
A molecular simulation study is reported for water desalination in zeolitic imidazolate framework-8 (ZIF-8) membrane. The simulation demonstrates that water desalination occurs under external pressure, and Na+ and Cl- ions cannot transport across the membrane due to the sieving effect of small apertures in ZIF-8. The flux of water permeating the membrane scales linearly with the external pressure, and exhibits an Arrhenius-type relation with temperature (activation energy of 24.4 kJ/mol). Compared with bulk phase, water molecules in ZIF-8 membrane are less hydrogen-bonded and the lifetime of hydrogen-bonding is considerably longer, as attributed to the surface interactions and geometrical confinement. This simulation study suggests that ZIF-8 might be potentially used as a reverse osmosis membrane for water purification. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3573902]

Reprint Address:
Hu, ZQ, Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore.

Research Institution addresses:
[Hu, Zhongqiao; Chen, Yifei; Jiang, Jianwen] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore

E-mail Address:
chejj@nus.edu.sg

Cited References:
BABARAO R, 2008, LANGMUIR, V24, P6270, DOI 10.1021/la800369s.
BUSSI G, 2007, J CHEM PHYS, V126, ARTN 014101.
BUX H, 2009, J AM CHEM SOC, V131, P16000, DOI 10.1021/ja907359t.
CHAPMAN KW, 2009, J AM CHEM SOC, V131, P17546, DOI 10.1021/ja908415z.
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DUBBELDAM D, 2007, FLUID PHASE EQUILIBR, V261, P152, DOI 10.1016/j.fluid.2007.07.042.
ELDESSOUKY HT, 2002, FUNDAMENTALS SALT WA.
FEREY G, 2008, CHEM SOC REV, V37, P191, DOI 10.1039/b618320b.
FRISCH MJ, 2004, GAUSSIAN 03 REVISION.
GARBEROGLIO G, 2005, J PHYS CHEM B, V109, P13094, DOI 10.1021/jp050948l.
GREENLEE LF, 2009, WATER RES, V43, P2317, DOI 10.1016/j.watres.2009.03.010.
GUO HL, 2009, J AM CHEM SOC, V131, P1646, DOI 10.1021/ja8074874.
HILDER TA, 2009, SMALL, V5, P2183, DOI 10.1002/smll.200900349.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KHAWAJI AD, 2008, DESALINATION, V221, P47, DOI 10.1016/j.desal.2007.01.067.
KUMAR M, 2007, P NATL ACAD SCI USA, V104, P20719, DOI 10.1073/pnas.0708762104.
LI D, 2010, J MATER CHEM, V20, P4551, DOI 10.1039/b924553g.
LI YS, 2010, ANGEW CHEM INT EDIT, V49, P548, DOI 10.1002/anie.200905645.
LIU B, 2008, J PHYS CHEM C, V112, P9854, DOI 10.1021/jp802343n.
LONG JR, 2009, CHEM SOC REV, V38, P1213, DOI 10.1039/b903811f.
LUZAR A, 1996, NATURE, V379, P55.
MEHDIZADEH H, 1989, IND ENG CHEM RES, V28, P814.
MIYAMOTO S, 1992, J COMPUT CHEM, V13, P952.
PARK KS, 2006, P NATL ACAD SCI USA, V103, P10186, DOI 10.1073/pnas.0602439103.
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SKOULIDAS AI, 2005, J PHYS CHEM B, V109, P15760, DOI 10.1021/jp051771y.
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120.
SUK ME, 2010, J PHYS CHEM LETT, V1, P1590, DOI 10.1021/jz100240r.
TAN JC, 2010, P NATL ACAD SCI USA, V107, P9938, DOI 10.1073/pnas.1003205107.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
VENNA SR, 2010, J AM CHEM SOC, V132, P76, DOI 10.1021/ja909263x.
XU HF, 2001, J PHYS CHEM B, V105, P11929.

Cited Reference Count:
36

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3573902

IDS Number:
746OH

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283583800048
*Order Full Text [ ]

Title:
Water sorption in hydrophobic porous materials: isotherm shapes and their meanings for the mesoporous MCM-41 and the microporous AlPO4-5

Authors:
Floquet, N; Coulomb, JP; Andre, G; Kahn, R

Author Full Names:
Floquet, N.; Coulomb, J. P.; Andre, G.; Kahn, R.

Source:
CHARACTERIZATION OF POROUS SOLIDS VII - PROCEEDINGS OF THE 7TH INTERNATIONAL SYMPOSIUM ON THE CHARACTERIZATION OF POROUS SOLIDS (COPS-VII), AIX-EN-PROVENCE, FRANCE, 26-28 MAY 2005 160: 375-382 2006

Language:
English

Document Type:
Proceedings Paper

KeyWords Plus:
X-RAY-DIFFRACTION; NEUTRON-DIFFRACTION; CARBON NANOTUBES; MOLECULAR-SIEVES; CONFINED PHASES; TRIPLE-HELIX; DYNAMICS; ZEOLITE; VPI-5; HYDROGEN

Abstract:
We report on extensive neutron diffraction and incoherent quasi-elastic neutron scattering analyses for the water sorption in two hydrophobic porous materials: the mesoporous material MCM-41 and the microporous zeolite AlPO4-5. Water sorption isotherms have, in the both porous materials, the characteristics of type V isotherms: vertical step at p/p(0) > 0.3 and H1 hysteresis loop. Whatever the pore diameter (either mesoporous 20 angstrom < empty set < 40 angstrom or microporous empty set = 7.3 angstrom), whatever the pore wall structure (either amorphous SiO2, or crystalline AlPO4), water sorption phenomenon looks like the so-called capillary condensation phase transition. Our neutron scattering results clearly validate such an expected behaviour in the mesoporous confinement range (20 angstrom < empty set(MCM-41) < 40 angstrom). Concerning water confinement in the microporous range (empty set(AlPO4-5) = 7.3 angstrom), our results are more surprising. Type V sorption isotherm
is the signature of a crystallization phenomenon at room temperature (T = 300 K). The confined water crystallizes in two helices that are commensurate with the AlPO4-5 micropore structure. The confined ice has a density of 1.2 g.cm(-3).

Reprint Address:
Floquet, N, CNRS, Ctr Rech Mat Condensee & Nanosci, Campus Luminy,Case 901, F-13288 Marseille 9, France.

Research Institution addresses:
[Floquet, N.; Coulomb, J. P.] CNRS, Ctr Rech Mat Condensee & Nanosci, F-13288 Marseille 9, France

Cited References:
COULOMB JP, 2000, STUD SURF SCI CATAL, V128, P235.
COULOMB JP, 2003, EUR PHYS J E, V12, P25.
DAVIS ME, 1989, J AM CHEM SOC, V111, P3919.
DORE J, 2002, PHYSICA A, V314, P501.
FLOQUET N, 1999, P 12 INT ZEOL C MAT, P659.
FLOQUET N, 2004, J PHYS CHEM B, V108, P13107, DOI 10.1021/jp048687n.
FLOQUET N, 2004, MICROPOR MESOPOR MAT, V72, P143, DOI 10.1016/j.micromeso.2004.04.014.
FOIS E, 2001, J PHYS CHEM B, V105, P3012.
FOIS E, 2002, J PHYS CHEM B, V106, P4806.
HUMMER G, 2001, NATURE, V414, P188.
IIYAMA T, 1997, CHEM PHYS LETT, V274, P152.
IZMAILOVA SG, 1996, COLLOID INTERFACE SC, V179, P374.
KIMURA T, 2004, J PHYS CHEM B, V108, P14043, DOI 10.1021/jp048934n.
KNOPSGERRITS PP, 2000, J PHYS CHEM A, V104, P2410.
KOGA K, 2002, PHYSICA A, V314, P462.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LINE CMB, 2000, CHEM PHYS, V112, P9058.
LLEWELLYN PL, 1995, LANGMUIR, V11, P574.
MALLA PB, 1995, ZEOLITES, V15, P324.
MANIWA Y, 2002, PHYS SOC JPN, V71, P2863.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MARTIN C, 1996, EUROPHYS LETT, V36, P503.
MARTIN C, 1998, LANGMUIR, V14, P1774.
MCCUSKER LB, 1991, ZEOLITES, V11, P308.
MORISHIGE K, 1997, J CHEM PHYS, V107, P6965.
MORISHIGE K, 1999, CHEM PHYS, V110, P4867.
MORISHIGE K, 2003, LANGMUIR, V19, P2809.
NEWALKAR BL, 1998, MICROPOR MESOPOR MAT, V20, P129.
OH JS, 2003, J CHEM ENG DATA, V48, P1458, DOI 10.1021/je0301390.
PIRES J, 2003, ADSORPTION, V9, P303.
TAKAHARA S, 1999, J PHYS CHEM B, V103, P5814.
TSUTSUMI K, 1999, COLLOID POLYM SCI, V277, P83.

Cited Reference Count:
32

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Chemistry, Physical

ISSN:
0167-2991

IDS Number:
BRS88

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289532700001
*Order Full Text [ ]

Title:
The Chemical Engineering of Low-Dimensional Materials

Authors:
Paulus, GLC; Shimizu, S; Abrahamson, JT; Zhang, JQ; Hilmer, AJ; Strano, MS

Author Full Names:
Paulus, Geraldine L. C.; Shimizu, Steven; Abrahamson, Joel T.; Zhang, Jingqing; Hilmer, Andrew J.; Strano, Michael S.

Source:
AICHE JOURNAL 57 (5): 1104-1118 MAY 2011

Language:
English

Document Type:
Article

Author Keywords:
low-dimensional materials; single-walled carbon nanotubes; graphene; thermopower waves; excitons; single-molecule detection; ion transport; electron transfer chemistry

KeyWords Plus:
WALLED CARBON NANOTUBES; GUIDED THERMOPOWER WAVES; SOLID-STATE NANOPORES; PHOTOVOLTAIC DEVICES; CONJUGATED POLYMERS; THERMAL-CONDUCTIVITY; SILICON NANOWIRES; EXCITON DIFFUSION; THIN-FILMS; BAND-GAP

Reprint Address:
Strano, MS, MIT, Dept Chem Engn, Cambridge, MA 02139 USA.

Research Institution addresses:
[Paulus, Geraldine L. C.; Shimizu, Steven; Abrahamson, Joel T.; Zhang, Jingqing; Hilmer, Andrew J.; Strano, Michael S.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA

E-mail Address:
strano@mit.edu

Cited References:
ABRAHAMSON JT, 2010, J PHYS CHEM LETT, V1, P3514, DOI 10.1021/jz101381m.
ABRAHAMSON JT, 2011, ACS NANO, V5, P367, DOI 10.1021/nn101618y.
AGO H, 1999, ADV MATER, V11, P1281.
ARNOLD MS, 2006, NAT NANOTECHNOL, V1, P60, DOI 10.1038/nnano.2006.52.
BANERJEE S, 2004, J AM CHEM SOC, V126, P2073, DOI 10.1021/ja038111w.
BARD AJ, 2001, ELECTROCHEMICAL METH, CH6.
BERBER S, 2000, PHYS REV LETT, V4, P4613.
BJORKLUND TG, 2001, J PHYS CHEM B, V105, P11970.
BREWER ML, 2001, BIOPHYS J, V80, P1691.
CAHAY MLJ, 2001, ELECTROCHEM SOC, P1.
CHEN Q, 2008, NANO LETT, V8, P1902, DOI 10.1021/nl080569e.
CHOI W, 2010, MATER TODAY, V13, P22.
CHOI W, 2010, NAT MATER, V9, P423, DOI 10.1038/nmat2714.
CHOI W, 2011, J AM CHEM SOC, V133, P203, DOI 10.1021/ja108011g.
COGNET L, 2007, SCIENCE, V316, P1465, DOI 10.1126/science.1141316.
CROCHET J, 2007, J AM CHEM SOC, V129, P8058, DOI 10.1021/ja071553d.
DAVIES JH, 2006, PHYS LOW DIMENSIONAL, P1.
DEKKER C, 2007, NAT NANOTECHNOL, V2, P209, DOI 10.1038/nnano.2007.27.
DEVI LS, 2008, PHYS REV B, V78, ARTN 045210.
FORNASIERO F, 2010, LANGMUIR, V26, P14848, DOI 10.1021/la101943h.
FORSTER T, 1948, ANN PHYSIK, V2, P55.
FRENKEL J, 1931, PHYS REV, V37, P17.
GALITSKI VM, 2007, PHYS REV B, V76, ARTN 245405.
GEIM AK, 2007, NAT MATER, V6, P183.
GHOSH S, 2010, NAT NANOTECHNOL, V5, P443, DOI 10.1038/NNANO.2010.68.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GRAUPNER R, 2006, J AM CHEM SOC, V128, P6683, DOI 10.1021/ja0607281.
HAM MH, 2010, ACS NANO, V4, P6251, DOI 10.1021/nn1019384.
HAN JH, 2010, NAT MATER, V9, P833, DOI 10.1038/nmat2832.
HELLER DA, 2005, ADV MATER, V17, P2793.
HILMER AJ, 2010, NANOTECHNOLOGY, V21, ARTN 495703.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HWANG EH, 2007, PHYS REV LETT, V98, ARTN 186806.
JIN H, 2008, NANO LETT, V8, P4299, DOI 10.1021/nl802010z.
KIM BJ, 2009, ADV FUNCT MATER, V19, P2273, DOI 10.1002/adfm.200900043.
KIM WJ, 2007, CHEM MATER, V19, P1571, DOI 10.1021/cm061862n.
KIM WJ, 2008, J PHYS CHEM C, V112, P7326, DOI 10.1021/jp710919b.
KOEHLER FM, 2010, SMALL, V9999.
KYMAKIS E, 2002, APPL PHYS LETT, V80, P112.
LANDAU LD, 1937, PHYS Z SOWJETUNION, V11, P26.
LEE CY, 2010, SCIENCE, V329, P1320, DOI 10.1126/science.1193383.
LEE K, 2010, J MATER CHEM, V20, P3791, DOI 10.1039/b921857b.
LI DY, 2003, APPL PHYS LETT, V83, P2934, DOI 10.1063/1.1616981.
LI J, 2001, NATURE, V412, P166.
LI LS, 2001, NANO LETTERS, V1, P349.
LIANG WY, 1970, PHYS EDUC, V5, P226.
LU X, 2002, EUR PHYS J B, V26, P375.
LUTICH AA, 2010, APPL PHYS LETT, V96, ARTN 083109.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MARTEL R, 1998, APPL PHYS LETT, V73, P2447.
MIKHNENKO OV, 2008, J PHYS CHEM B, V112, P11601, DOI 10.1021/jp8042363.
MILLER A, 1960, PHYS REV, V120, P745, DOI 10.1103/PHYSREV.120.745.
NAIR N, 2007, J AM CHEM SOC, V129, P3946, DOI 10.1021/ja068018i.
NAIR N, 2009, PHYS REV B, V80, ARTN 174301.
OHKITA H, 2006, J PHOTOCH PHOTOBIO A, V182, P225, DOI 10.1016/j.jphotochem.2006.04.026.
PARTOENS B, 2006, PHYS REV B, V74, ARTN 075404.
PASQUIER AD, 2005, APPL PHYS LETT, V87, ARTN 203511.
PAULUS GLC, 2011, ACS NANO IN PRESS.
PEIERLS RE, 1935, ANN I H POINCARE, V5, P177.
PETTERSSON LAA, 1999, J APPL PHYS, V86, P487.
POP E, 2005, PHYS REV LETT, V95, ARTN 155505.
PUREWAL MS, 2007, PHYS REV LETT, V98, ARTN 186808.
QIAN HH, 2008, PHYS STATUS SOLIDI B, V245, P2243, DOI 10.1002/pssb.200879598.
SARAN N, 2004, J AM CHEM SOC, V126, P4462, DOI 10.1021/ja037273p.
SCHEIDLER M, 1996, PHYS REV B, V54, P5536.
SHARMA R, 2009, J PHYS CHEM C, V113, P14771, DOI 10.1021/jp904814h.
SHARMA R, 2010, NANO LETT, V10, P398, DOI 10.1021/nl902741x.
SHAW PE, 2008, ADV MATER, V20, P3516, DOI 10.1002/adma.200800982.
SHKLOVSKII BI, 2007, PHYS REV B, V76, ARTN 233411.
SIITONEN AJ, 2010, J PHYS CHEM LETT, V1, P2189, DOI 10.1021/jz100749c.
SIITONEN AJ, 2010, NANO LETT, V10, P1595, DOI 10.1021/nl9039845.
SKOTHEIM TA, 2007, HDB CONDUCTING POLYM, P1.
SLONCZEWSKI JC, 1958, PHYS REV, V109, P272.
SOLOVIEV VN, 2000, J AM CHEM SOC, V122, P2673.
STORM AJ, 2003, NAT MATER, V2, P537, DOI 10.1038/nmat941.
STRANO MS, 2003, SCIENCE, V301, P1519.
USREY ML, 2005, J AM CHEM SOC, V127, P16129, DOI 10.1021/ja0537530.
WALLACE PR, 1947, PHYS REV, V71, P622.
WANG HM, 2009, CHEM PHYS LETT, V477, P176, DOI 10.1016/j.cplett.2009.06.076.
WEISMAN RB, 2003, NANO LETT, V3, P1235, DOI 10.1021/nl034428i.
WU JB, 2008, APPL PHYS LETT, V92, ARTN 263302.
XU B, 1994, THIN SOLID FILMS, V243, P638.
YU H, 2003, J AM CHEM SOC, V125, P16168, DOI 10.1021/ja037971.
ZHANG JQ, 2011, J AM CHEM SOC, V133, P567, DOI 10.1021/ja1084942.
ZHOU X, 2006, APPL PHYS LETT, V89, ARTN 053113.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
88

Times Cited:
0

Publisher:
WILEY-BLACKWELL; COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA

Subject Category:
Engineering, Chemical

ISSN:
0001-1541

DOI:
10.1002/aic.12628

IDS Number:
750GC

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, April 22, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289151400010
*Order Full Text [ ]

Title:
Thermodynamics of water entry in hydrophobic channels of carbon nanotubes

Authors:
Kumar, H; Mukherjee, B; Lin, ST; Dasgupta, C; Sood, AK; Maiti, PK

Author Full Names:
Kumar, Hemant; Mukherjee, Biswaroop; Lin, Shiang-Tai; Dasgupta, Chandan; Sood, A. K.; Maiti, Prabal K.

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (12): Art. No. 124105 MAR 28 2011

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; MODEL; REORIENTATION; LIQUIDS; DNA

Abstract:
Experiments and computer simulations demonstrate that water spontaneously fills the hydrophobic cavity of a carbon nanotube. To gain a quantitative thermodynamic understanding of this phenomenon, we use the recently developed two phase thermodynamics method to compute translational and rotational entropies of confined water molecules inside single-walled carbon nanotubes and show that the increase in energy of a water molecule inside the nanotube is compensated by the gain in its rotational entropy. The confined water is in equilibrium with the bulk water and the Helmholtz free energy per water molecule of confined water is the same as that in the bulk within the accuracy of the simulation results. A comparison of translational and rotational spectra of water molecules confined in carbon nanotubes with that of bulk water shows significant shifts in the positions of the spectral peaks that are directly related to the tube radius. (C) 2011 American Institute of Physics. [doi:10
.1063/1.3571007]

Reprint Address:
Maiti, PK, Indian Inst Sci, Dept Phys, Ctr Condensed Matter Theory, Bangalore 560012, Karnataka, India.

Research Institution addresses:
[Kumar, Hemant; Mukherjee, Biswaroop; Dasgupta, Chandan; Maiti, Prabal K.] Indian Inst Sci, Dept Phys, Ctr Condensed Matter Theory, Bangalore 560012, Karnataka, India; [Lin, Shiang-Tai] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan; [Sood, A. K.] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India

E-mail Address:
maiti@physics.iisc.ernet.in

Cited References:
*NIST, 2005, 69 NIST.
ALLEN R, 2003, J CHEM PHYS, V119, P3905, DOI 10.1063/1.1590956.
BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI 10.1073/pnas.0408098102.
DEBNATH A, 2010, J CHEM PHYS, V133, ARTN 174704.
EYRING H, 1961, P NATL ACAD SCI USA, V47, P526.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JANA B, 2006, J PHYS CHEM B, V110, P19611, DOI 10.1021/jp061588k.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LAAGE D, 2006, SCIENCE, V311, P832, DOI 10.1126/science.1122154.
LIM KT, 1997, J COMPUT CHEM, V18, P501.
LIN ST, 2003, J CHEM PHYS, V119, P11792, DOI 10.1063/1.1624057.
LIN ST, 2004, J PHYS CHEM B, V108, P10041, DOI 10.1021/jp037947i.
LIN ST, 2005, J PHYS CHEM B, V109, P8663, DOI 10.1021/jp0471958.
LIN ST, 2010, J PHYS CHEM B, V114, P8191, DOI 10.1021/jp103120q.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MAITI PK, 2006, NANO LETT, V6, P2478, DOI 10.1021/nl061609m.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MCQUARRIE AA, 1976, STAT MECH.
MUKHERJEE B, 2007, J CHEM PHYS, V126, ARTN 124704.
MUKHERJEE B, 2008, ACS NANO, V2, P1189, DOI 10.1021/nn800182v.
MUKHERJEE B, 2009, J PHYS CHEM B, V113, P10322, DOI 10.1021/jp904099f.
PADRO JA, 2003, J CHEM PHYS, V118, P452, DOI 10.1063/1.1524619.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
WANG J, 2010, AMBER 10.
ZHOU X, 2004, J CHEM PHYS, V121, P7996, DOI 10.1063/1.1799971.

Cited Reference Count:
28

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3571007

IDS Number:
745FN

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, April 15, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288784200026
*Order Full Text [ ]

Title:
Combined 3D-QSAR, Molecular Docking and Molecular Dynamics Study on Derivatives of Peptide Epoxyketone and Tyropeptin-Boronic Acid as Inhibitors Against the beta 5 Subunit of Human 20S Proteasome

Authors:
Liu, JL; Zhang, H; Xiao, ZT; Wang, FF; Wang, X; Wang, YH

Author Full Names:
Liu, Jianling; Zhang, Hong; Xiao, Zhengtao; Wang, Fangfang; Wang, Xia; Wang, Yonghua

Source:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 12 (3): 1807-1835 MAR 2011

Language:
English

Document Type:
Article

Author Keywords:
ubiquitin-proteasome; 3D-QSAR; CoMFA; CoMSIA; homology modeling; molecular docking; molecular dynamics

KeyWords Plus:
CRYSTAL-STRUCTURE; SWISS-MODEL; ANGSTROM RESOLUTION; MULTIPLE-MYELOMA; COMSIA METHODS; CORE PARTICLE; SYSTEM; BORTEZOMIB; BINDING; DESIGN

Abstract:
An abnormal ubiquitin-proteasome is found in many human diseases, especially in cancer, and has received extensive attention as a promising therapeutic target in recent years. In this work, several in silico models have been built with two classes of proteasome inhibitors (PIs) by using 3D-QSAR, homology modeling, molecular docking and molecular dynamics (MD) simulations. The study resulted in two types of satisfactory 3D-QSAR models, i.e., the CoMFA model (Q(2) = 0.462, R-pred(2) = 0.820) for epoxyketone inhibitors (EPK) and the CoMSIA model (Q(2) = 0.622, R-pred(2) = 0.821) for tyropeptin-boronic acid derivatives (TBA). From the contour maps, some key structural factors responsible for the activity of these two series of PIs are revealed. For EPK inhibitors, the N-cap part should have higher electropositivity; a large substituent such as a benzene ring is favored at the C6-position. In terms of TBA inhibitors, hydrophobic substituents with a larger size anisole group are pr
eferential at the C8-position; higher electropositive substituents like a naphthalene group at the C3-position can enhance the activity of the drug by providing hydrogen bond interaction with the protein target. Molecular docking disclosed that residues Thr60, Thr80, Gly106 and Ser189 play a pivotal role in maintaining the drug-target interactions, which are consistent with the contour maps. MD simulations further indicated that the binding modes of each conformation derived from docking is stable and in accord with the corresponding structure extracted from MD simulation overall. These results can offer useful theoretical references for designing more potent PIs.

Reprint Address:
Wang, YH, NW A&F Univ, Ctr Bioinformat, Yangling 712100, Shaanxi, Peoples R China.

Research Institution addresses:
[Xiao, Zhengtao; Wang, Yonghua] NW A&F Univ, Ctr Bioinformat, Yangling 712100, Shaanxi, Peoples R China; [Liu, Jianling; Zhang, Hong; Wang, Fangfang] NW Univ Xian, Coll Life Sci, Xian 710069, Shaanxi, Peoples R China; [Wang, Xia] Dalian Univ Technol, Sch Chem Engn, Dalian 116012, Peoples R China

E-mail Address:
yh_wang@nwsuaf.edu.cn

Cited References:
ADAMS J, 2002, TRENDS MOL MED S, V8, S49.
ADAMS J, 2004, CANCER INVEST, V22, P304, DOI 10.1081/CNV-120030218.
ARNOLD K, 2006, BIOINFORMATICS, V22, P195, DOI 10.1093/bioinformatics/bti770.
BAUMEISTER W, 1998, CELL, V92, P367.
CASE DA, 2008, AMBER, P10.
CAVASOTTO CN, 2009, DRUG DISCOV TODAY, V14, P676, DOI 10.1016/j.drudis.2009.04.006.
CHEN P, 1996, CELL, V86, P961.
CRAMER RD, 1988, J AM CHEM SOC, V110, P5959.
DEBETTIGNIES G, 2010, BIOCHIMIE, V92, P1.
DING QX, 2001, FREE RADICAL BIO MED, V31, P574.
ELOFSSON M, 1999, CHEM BIOL, V6, P811.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
GOLAB J, 2004, CLIN CHIM ACTA, V340, P27, DOI 10.1016/j.cccn.2003.10.025.
GRIFFIN TA, 1998, J EXP MED, V187, P97.
GROLL M, 1997, NATURE, V386, P463.
GROLL M, 2000, J AM CHEM SOC, V122, P1237.
GROLL M, 2000, NAT STRUCT BIOL, V7, P1062.
GROLL M, 2006, STRUCTURE, V14, P451, DOI 10.1016/j.str.2005.11.019.
GUEX N, 1997, ELECTROPHORESIS, V18, P2714.
HAMMER MC, 1999, VIB SPECTROSC, V19, P151.
HANADA M, 1992, J ANTIBIOT, V45, P1746.
HIDESHIMA T, 2002, J BIOL CHEM, V277, P16639.
HUMMER G, 2001, NATURE, V414, P188.
JAGER S, 1999, J MOL BIOL, V291, P997.
JAIN AN, 2003, J MED CHEM, V46, P499, DOI 10.1021/jm.020406h.
JAKALIAN A, 2002, J COMPUT CHEM, V23, P1623, DOI 10.1002/jcc.10128.
JOHNSAMUEL J, 2003, J ORGANOMET CHEM, V680, P223, DOI 10.1016/S0022-328X(03)00389-9.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JUNG T, 2009, MOL ASPECTS MED, V30, P191, DOI 10.1016/j.mam.2009.04.001.
KISSELEV AF, 1999, MOL CELL, V4, P395.
KISSELEV AF, 2001, CHEM BIOL, V8, P739.
LAM YA, 2000, P NATL ACAD SCI USA, V97, P9902.
LAVECCHIA A, 2007, J MOL GRAPH MODEL, V25, P773, DOI 10.1016/j.jmgm.2006.07.001.
LI Y, 2009, QSAR COMB SCI, V28, P396, DOI 10.1002/qsar.200810100.
LIAO SY, 2008, QSAR COMB SCI, V27, P280, DOI 10.1002/qsar.200730028.
LOPES UG, 1997, J BIOL CHEM, V272, P12893.
LOWE J, 1995, SCIENCE, V268, P533.
MARFELLA R, 2006, DIABETES, V55, P622.
MENG LH, 1999, P NATL ACAD SCI USA, V96, P10403.
MOMOSE I, 2001, J ANTIBIOT, V54, P997.
PLEBAN E, 2001, FOLIA HISTOCHEM CYTO, V39, P133.
RICHARDSON PG, 2006, J CLIN ONCOL, V24, P3113, DOI 10.1200/JCO.2005.04.7779.
RIVETT AJ, 1989, J BIOL CHEM, V264, P12215.
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327, DOI 10.1016/0021-9991(77)90098-5.
SCHAFFERHANS A, 2001, J MOL BIOL, V307, P407.
SCHWEDE T, 2003, NUCLEIC ACIDS RES, V31, P3381, DOI 10.1093/nar/gkg520.
SUGAWARA K, 1990, J ANTIBIOT, V43, P8.
TETKO IV, 2001, J CHEM INF COMP SCI, V41, P1407.
THOMPSON JD, 1994, NUCLEIC ACIDS RES, V22, P4673.
TODESCHINI R, 2000, HDB MOL DESCRIPTORS.
UNNO M, 2002, J BIOCHEM, V131, P171.
WANG JM, 2004, J COMPUT CHEM, V25, P1157.
WANG X, 2010, CURR MED CHEM, V17, P2788.
WANG YH, 2005, BIOORG MED CHEM LETT, V15, P4076, DOI 10.1016/j.bmcl.2005.06.015.
WANG YH, 2005, J CHEM INF MODEL, V45, P750, DOI 10.1021/ci050041k.
WANG YH, 2005, J COMPUT AID MOL DES, V19, P137, DOI 10.1007/s10822-005-3321-5.
WATANABE T, 2010, BIOORG MED CHEM LETT, V20, P5839, DOI 10.1016/j.bmcl.2010.07.122.
WEHENKEL M, 2009, MODULATION PROTEIN S, P99.
WEI SP, 2010, J MOL MODEL, DOI 10.1007/S00894-010-0765-X..
WOJCIK C, 2004, STROKE, V35, P1506, DOI 10.1161/01.STR.0000126891.93919.4e.
WU WKK, 2010, CANCER LETT, V293, P15, DOI 10.1016/j.canlet.2009.12.002.
XU J, 2007, CIRCULATION, V116, P944, DOI 10.1161/CIRCULATIONAHA.106.684795.
ZHANG BD, 2010, INT J MOL SCI, V11, P4326, DOI 10.3390/ijms11114326.
ZHOU HJ, 2009, J MED CHEM, V52, P3028, DOI 10.1021/jm801329v.
ZHU YQ, 2006, BIOORGAN MED CHEM, V14, P1483, DOI 10.1016/j.bmc.2005.10.003.
ZHU YQ, 2009, EUR J MED CHEM, V44, P1486, DOI 10.1016/j.ejmech.2008.07.019.

Cited Reference Count:
66

Times Cited:
0

Publisher:
MDPI AG; KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND

Subject Category:
Chemistry, Multidisciplinary

ISSN:
1422-0067

DOI:
10.3390/ijms12031807

IDS Number:
740HZ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, April 8, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288744700019
*Order Full Text [ ]

Title:
Bottom-up realization of a porous metal-organic nanotubular assembly

Authors:
Otsubo, K; Wakabayashi, Y; Ohara, J; Yamamoto, S; Matsuzaki, H; Okamoto, H; Nitta, K; Uruga, T; Kitagawa, H

Author Full Names:
Otsubo, Kazuya; Wakabayashi, Yusuke; Ohara, Jun; Yamamoto, Shoji; Matsuzaki, Hiroyuki; Okamoto, Hiroshi; Nitta, Kiyofumi; Uruga, Tomoya; Kitagawa, Hiroshi

Source:
NATURE MATERIALS 10 (4): 291-295 APR 2011

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; LADDER COMPOUNDS; DENSITY-WAVE; VALENCE; COMPLEXES; STATE; PD

Abstract:
Nanotubes are generally prepared from their constituent elements at high temperatures, and thus it is difficult to control their size, shape and electronic states. One useful approach for synthesizing well-defined nanostructures involves the use of building blocks such as metal ions and organic molecules. Here, we show the successful creation of an assembly of infinite square prism-shaped metal-organic nanotubes obtained from the simple polymerization of a square-shaped metal-organic frame. The constituent nanotube has a one-dimensional (1D) channel with a window size of 5.9 x 5.9 angstrom(2), and can adsorb water (H2O) and alcohol vapours, whereas N-2 and CO2 do not adhere. It consists of four 1D covalent chains that constitute a unique electronic structure of 'charge-density wave (CDW) quartets' on crystallization. Moreover, exchanging structural components and guest molecules enables us to control its semiconductive bandgap. These findings demonstrate the possibility of bo
ttom-up construction of new porous nanotubes, where their degrees of freedom in both pore space and framework can be used.

Reprint Address:
Otsubo, K, Kyoto Univ, Grad Sch Sci, Div Chem, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan.

Research Institution addresses:
[Otsubo, Kazuya; Kitagawa, Hiroshi] Kyoto Univ, Grad Sch Sci, Div Chem, Sakyo Ku, Kyoto 6068502, Japan; [Otsubo, Kazuya; Kitagawa, Hiroshi] Kyushu Univ, Fac Sci, Dept Chem, Higashi Ku, Fukuoka 8128581, Japan; [Otsubo, Kazuya; Okamoto, Hiroshi; Kitagawa, Hiroshi] Japan Sci & Technol Agcy JST, Core Res Evolut Sci & Technol CREST, Chiyoda Ku, Tokyo 1020075, Japan; [Wakabayashi, Yusuke] Osaka Univ, Grad Sch Engn Sci, Div Mat Phys, Toyonaka, Osaka 5608531, Japan; [Ohara, Jun; Yamamoto, Shoji] Hokkaido Univ, Fac Sci, Div Phys, Kita Ku, Sapporo, Hokkaido 0600810, Japan; [Matsuzaki, Hiroyuki; Okamoto, Hiroshi] Univ Tokyo, Grad Sch Frontier Sci, Dept Adv Mat Sci, Chiba 2778561, Japan; [Nitta, Kiyofumi; Uruga, Tomoya] Japan Synchrotron Radiat Res Inst JASRI, Sayo, Hyogo 6795198, Japan; [Kitagawa, Hiroshi] Kyoto Univ, Inst Integrated Cell Mat Sci iCeMS, Sakyo Ku, Kyoto 6068501, Japan; [Kitagawa, Hiroshi] Kyushu Univ, INAMORI Frontier Res Ctr, Nishi Ku, Fukuoka 8193095, Japan

E-mail Address:
kazuya@kuchem.kyoto-u.ac.jp; kitagawa@kuchem.kyoto-u.ac.jp

Cited References:
AZUMA M, 1994, PHYS REV LETT, V73, P3463.
BLUMBERG G, 2002, SCIENCE, V297, P584.
CHOPRA NG, 1995, SCIENCE, V269, P966.
FEREY G, 2008, CHEM SOC REV, V37, P191, DOI 10.1039/b618320b.
FUJITA M, 1991, CHEM LETT, P1031.
FUJITA M, 2005, ACCOUNTS CHEM RES, V38, P371.
HACOHEN YR, 1998, NATURE, V395, P336.
HIROI Z, 1995, NATURE, V377, P41.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
ISHII H, 2003, NATURE, V426, P540, DOI 10.1038/nature02074.
KAWAKAMI D, 2006, ANGEW CHEM INT EDIT, V45, P7214, DOI 10.1002/anie.200602987.
KELLER HJ, 1982, EXTENDED LINEAR CHAI, V1, P357.
KIMIZUKA N, 2000, ANGEW CHEM INT EDIT, V39, P389.
KISHIDA K, 2000, NATURE, V405, P929.
KITAGAWA S, 2004, ANGEW CHEM INT EDIT, V43, P2334, DOI 10.1002/anie.200300610.
KOBAYASHI A, 2006, J AM CHEM SOC, V128, P12066, DOI 10.1021/ja064082o.
LI JR, 2009, CHEM SOC REV, V38, P1477, DOI 10.1039/b802426j.
ODOM TW, 1998, NATURE, V391, P62.
OHARA J, 2009, EPL-EUROPHYS LETT, V87, ARTN 17006.
OZAKI M, 1985, J MATH PHYS, V26, P1514.
REMSKAR M, 2001, SCIENCE, V292, P479.
TAKAISHI S, 2008, J AM CHEM SOC, V130, P12080, DOI 10.1021/ja8032026.
TANG CC, 2005, ANGEW CHEM INT EDIT, V44, P576, DOI 10.1002/anie.200461171.
TENNE R, 1992, NATURE, V360, P444.
WAKABAYASHI Y, 1999, J PHYS SOC JPN, V68, P3948.
WAKABAYASHI Y, 2006, J AM CHEM SOC, V128, P6676, DOI 10.1021/ja060111j.
WILDOER JWG, 1998, NATURE, V391, P59.
YAGHI OM, 2003, NATURE, V423, P705, DOI 10.1038/nature01650.
YAMAMOTO S, 2007, PHYS REV B, V76, ARTN 235116.

Cited Reference Count:
30

Times Cited:
0

Publisher:
NATURE PUBLISHING GROUP; MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND

Subject Category:
Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1476-1122

DOI:
10.1038/NMAT2963

IDS Number:
739UU

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288644700036
*Order Full Text [ ]

Title:
Urea-Induced Drying of Hydrophobic Nanotubes: Comparison of Different Urea Models

Authors:
Xiu, P; Yang, ZX; Zhou, B; Das, P; Fang, HP; Zhou, RH

Author Full Names:
Xiu, Peng; Yang, Zaixing; Zhou, Bo; Das, Payel; Fang, Haiping; Zhou, Ruhong

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 115 (12): 2988-2994 MAR 31 2011

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; PROTEIN DENATURATION; CHEMICAL DENATURATION; COMPUTER-SIMULATION; POTENTIAL FUNCTIONS; CARBON NANOTUBES; WATER MIXTURES; DIPOLE-MOMENT; FORCE-FIELD; GUANIDINIUM

Abstract:
In a previous study, we performed the molecular dynamics (MD) simulations of various carbon nanotubes solvated in 8 M urea and observed a striking phenomenon of urea-induced drying of hydrophobic nanotubes, which resulted from the stronger dispersion interaction of urea than water with nanotube (Das, P.; Zhou, R. H. J. Phys. Chem. B 2010, 114, 5427-5430). In this paper, we have compared five different urea models to investigate if the above phenomenon is sensitive to the urea models used. We demonstrate through MD simulations that the drying phenomenon and its physical mechanism are qualitatively independent of the urea models. Consistent with our previous study, our current analyses with both interaction potential energy and association free energy indicate that there is a "dry state" inside the carbon nanotubes, which is caused by the urea's preferential binding to nanotubes through stronger dispersion interactions. These results also have implications for understanding the
urea-induced protein denaturation by providing further evidence of the potential existence of a "dry globule"-like transient state during protein unfolding and the "direct interaction mechanism" (whereby urea attacks protein directly, rather than disrupts water structure as a "water breaker"). In addition, our study highlights the crucial role of dispersion interaction in the selective absorption of molecules in hydrophobic nanopores and may have significance for nanoscience and nanotechnology.

Reprint Address:
Zhou, RH, IBM Corp, Thomas J Watson Res Ctr, Computat Biol Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA.

Research Institution addresses:
[Das, Payel; Zhou, Ruhong] IBM Corp, Thomas J Watson Res Ctr, Computat Biol Ctr, Yorktown Hts, NY 10598 USA; [Xiu, Peng; Yang, Zaixing] Zhejiang Univ, Dept Phys, Bio X Lab, Hangzhou 310027, Zhejiang, Peoples R China; [Zhou, Bo; Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Zhou, Bo] Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China

E-mail Address:
ruhongz@us.ibm.com

Cited References:
AUTON M, 2007, P NATL ACAD SCI USA, V104, P15317, DOI 10.1073/pnas.0706251104.
BENNION BJ, 2003, P NATL ACAD SCI USA, V100, P5142, DOI 10.1073/pnas.0930122100.
BROWN RD, 1975, J MOL SPECTROSC, V58, P445.
BUSSI G, 2007, J CHEM PHYS, V126, ARTN 014101.
CABALLEROHERRERA A, 2005, BIOPHYS J, V89, P842, DOI 10.1529/biophysj.105.061978.
CABALLEROHERRERA A, 2006, J MOL STRUC-THEOCHEM, V758, P139, DOI 10.1016/j.theochem.2005.10.018.
CAFLISCH A, 1999, STRUCT FOLD DES, V7, P477.
CANCHI DR, 2010, J AM CHEM SOC, V132, P2338, DOI 10.1021/ja909348c.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DAS A, 2009, J PHYS CHEM B, V113, P12816, DOI 10.1021/jp906350s.
DAS P, 2010, J PHYS CHEM B, V114, P5427, DOI 10.1021/jp911444q.
DUFFY EM, 1993, ISR J CHEM, V33, P323.
ENGLAND JL, 2008, J AM CHEM SOC, V130, P11854, DOI 10.1021/ja803972g.
FRANK HS, 1968, J CHEM PHYS, V48, P4746.
GILKERSON WR, 1960, J PHYS CHEM-US, V64, P1485.
HAMMES GG, 1967, J AM CHEM SOC, V89, P442.
HESS B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q.
HUA L, 2008, P NATL ACAD SCI USA, V105, P16928, DOI 10.1073/pnas.0808427105.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KANG M, 2007, FLUID PHASE EQUILIBR, V256, P14, DOI 10.1016/j.fluid.2006.11.003.
KJELLANDER R, 1998, J ELECTROANAL CHEM, V450, P233.
KLIMOV DK, 2004, P NATL ACAD SCI USA, V101, P14760, DOI 10.1073/pnas.0404570101.
KOKUBO H, 2007, BIOPHYS J, V93, P3392, DOI 10.1529/biophysj.107.114181.
KOKUBO H, 2007, J PHYS CHEM B, V111, P5233, DOI 10.1021/jp067659x.
KUMLER WD, 1942, J AM CHEM SOC, V64, P1944.
LEE J, 2010, APPL PHYS LETT, V96, ARTN 133108.
LEE ME, 2006, J AM CHEM SOC, V128, P4948, DOI 10.1021/ja058600r.
LEFEBVRE J, 1973, SOLID STATE COMMUN, V13, P1873.
LI X, 2006, J AM CHEM SOC, V128, P12439, DOI 10.1021/ja057944e.
LIM WK, 2009, P NATL ACAD SCI USA, V106, P2595, DOI 10.1073/pnas.0812588106.
LIU Y, 2010, J NANOSCI NANOTECHNO, V10, P3834, DOI 10.1166/jnn.2010.1999.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
OBRIEN EP, 2007, J AM CHEM SOC, V129, P7346, DOI 10.1021/ja069232+.
PACE CN, 1986, METHOD ENZYMOL, V131, P266.
PARRINELLO M, 1981, J APPL PHYS, V52, P7182.
ROBINSON DR, 1965, J AM CHEM SOC, V87, P2462.
SAGLE LB, 2009, J AM CHEM SOC, V131, P9304, DOI 10.1021/ja9016057.
SMITH LJ, 2004, J PHYS CHEM B, V108, P1065, DOI 10.1021/jp030534x.
SOKOLIC F, 2002, J CHEM PHYS, V116, P1636.
SORIN EJ, 2005, BIOPHYS J, V88, P2472.
STUMPE MC, 2007, J PHYS CHEM B, V111, P6220, DOI 10.1021/jp066474n.
STUMPE MC, 2008, PLOS COMPUT BIOL, V4, ARTN e1000221.
STUMPE MC, 2009, BIOPHYS J, V96, P3744, DOI 10.1016/j.bpj.2009.01.051.
TSAI J, 1996, J CHEM PHYS, V104, P9417.
WEERASINGHE S, 2003, J PHYS CHEM B, V107, P3891, DOI 10.1021/jp022049s.
WEI HY, 2010, J PHYS CHEM B, V114, P11820, DOI 10.1021/jp103770y.
WEI HY, 2010, J PHYS CHEM B, V114, P557, DOI 10.1021/jp9084926.
WETLAUFER DB, 1964, J AM CHEM SOC, V86, P508.
XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w.
YANG LJ, 2010, J AM CHEM SOC, V132, P842, DOI 10.1021/ja9091825.
ZANGI R, 2009, J AM CHEM SOC, V131, P1535, DOI 10.1021/ja807887g.
ZHOU RH, 2004, SCIENCE, V305, P1605.
ZHOU RH, 2007, P NATL ACAD SCI USA, V104, P5824, DOI 10.1073/pnas.0701249104.
ZOU Q, 2002, J AM CHEM SOC, V124, P1192.

Cited Reference Count:
56

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp108303q

IDS Number:
738MU

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, April 1, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288355400001
*Order Full Text [ ]

Title:
A review of reverse osmosis membrane materials for desalination-Development to date and future potential

Authors:
Lee, KP; Arnot, TC; Mattia, D

Author Full Names:
Lee, Kali Peng; Arnot, Tom C.; Mattia, Davide

Source:
JOURNAL OF MEMBRANE SCIENCE 370 (1-2): 1-22 MAR 15 2011

Language:
English

Document Type:
Review

Author Keywords:
Desalination; Reverse osmosis (RO); Membrane material; Membrane performance; Nano-materials

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; FILM COMPOSITE MEMBRANE; POLYAMIDE MOLECULAR-STRUCTURE; ATOMIC-FORCE MICROSCOPY; CARBIDE-DERIVED CARBON; RIGID STAR AMPHIPHILES; NANOFILTRATION MEMBRANES; SEAWATER DESALINATION; INTERFACIAL POLYMERIZATION; ZEOLITE MEMBRANES

Abstract:
Reverse osmosis (RO) is currently the most important desalination technology and it is experiencing significant growth. The objective of this paper is to review the historical and current development of RO membrane materials which are the key determinants of separation performance and water productivity, and hence to define performance targets for those who are developing new RO membrane materials. The chemistry, synthesis mechanism(s) and desalination performance of various RO membranes are discussed from the point of view of membrane materials science. The review starts with the first generation of asymmetric polymeric membranes and finishes with current proposals for nano-structured membrane materials. The paper provides an overview of RO performance in relation to membrane materials and methods of synthesis.
To date polymeric membranes have dominated the RO desalination industry. From the late 1950s to the 1980s the research effort focussed on the search for optimum polymeric membrane materials. In subsequent decades the performance of RO membranes has been optimised via control of membrane formation reactions, and the use of poly-condensation catalysts and additives. The performance of state-of-the-art RO membranes has been highlighted. Nevertheless, the advances in membrane permselectivity in the past decade has been relatively slow, and membrane fouling remains a severe problem.
The emergence of nano-technology in membrane materials science could offer an attractive alternative to polymeric materials. Hence nano-structured membranes are discussed in this review including zeolite membranes, thin film nano-composite membranes, carbon nano-tube membranes, and biomimetic membranes. It is proposed that these novel materials represent the most likely opportunities for enhanced RO desalination performance in the future, but that a number of challenges remain with regard to their practical implementation. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Mattia, D, Univ Bath, Dept Chem Engn, Bath BA2 7AY, Avon, England.

Research Institution addresses:
[Lee, Kali Peng; Arnot, Tom C.; Mattia, Davide] Univ Bath, Dept Chem Engn, Bath BA2 7AY, Avon, England

E-mail Address:
D.Mattia@bath.ac.uk

Cited References:
1975, 3926798, APPL.
2004, WATER EXECUTIVE, P9.
2005, MEMBRANE TECHNOLOGY, P3.
2006, IDA NEWSLETTER, P9.
2006, INT DESALINATION WAT, V16, P10.
2007, GLOBAL WATER INTELLI, V8.
2008, PROGR DRINKING WATER.
2009, DESALINATION NATL PE.
2009, GLOBAL WATER INTELLI, V10.
*DOW CHEM CO, FILMT MEMBR FILMT SW.
*HLTH ENV SUST DEV, 1997, 5 YEARS EARTH SUMM, P54.
*HYDR CORP, MEMBR EL SWC4.
*TOR IND, TOR SEA WAT RO EL TM.
*WAT DES, 2009, 45 WAT DES.
*WORLD MET ORG, 1997, COMPR ASS FRESHW RES, P9.
AGRE P, 2005, BIOL CELL, V97, P355, DOI 10.1042/BC20050027.
ANTRIM B, 2005, DESALINATION, V178, P313, DOI 10.1016/j.desal.2004.11.042.
ARTHUR SD, 1991, 5019264, APPL.
BAERLOCHER C, 2007, ATLAS ZEOLITE FRAMEW.
BARTELS C, 2008, DESALINATION, V221, P207, DOI 10.1016/j.desal.2007.01.077.
BARTELS CR, 1989, J MEMBRANE SCI, V45, P225.
BEASLEY JK, 1977, DESALINATION, V22, P181.
BROUSSE C, 1976, DESALINATION, V18, P137.
BUCK KR, 1970, MEMBRANES, V2, P238.
CADOTTE JE, 1977, 4039440, APPL.
CADOTTE JE, 1980, DESALINATION, V32, P25.
CADOTTE JE, 1981, 4259183, APPL.
CADOTTE JE, 1981, 4277344, APPL.
CADOTTE JE, 1985, MAT SCI SYNTHETIC ME, P273.
CAHILL DG, 2008, MRS BULL, V33, P27.
CANNON CR, 1971, 3585126, APPL.
CHAU MM, 1991, 4983291, APPL.
CONGJIE G, 2003, CHIN J OCEANOL LIMN, V21, P40.
CORONELL O, 2008, ENVIRON SCI TECHNOL, V42, P5260, DOI 10.1021/es8002712.
CORONELL O, 2010, ENVIRON SCI TECHNOL, V44, P6808, DOI 10.1021/es100891r.
CORRY B, 2007, J PHYS CHEM B, V112, P1427.
CREDALI L, 1971, POLYMER, V12, P717.
CREDALI L, 1974, DESALINATION, V14, P137.
CREDALI L, 1978, 4129559, APPL.
CROWDUS F, 1984, ULTRAPURE WATER, V1, P29.
DHUMAL SS, 2008, J MEMBRANE SCI, V325, P758, DOI 10.1016/j.memsci.2008.09.002.
DUKE MC, 2007, WATER RES, V41, P3998, DOI 10.1016/j.watres.2007.05.028.
DUKE MC, 2009, SEP PURIF TECHNOL, V68, P343, DOI 10.1016/j.seppur.2009.06.003.
EDGAR KJ, 2001, PROG POLYM SCI, V26, P1605.
ERIKSSON P, 1988, J MEMBRANE SCI, V36, P297.
FORNASIEROA HGP, 2008, P NATL ACAD SCI USA, V105, P17250.
FRANCIS FS, 1966, FABRICATION EVALUATI.
FRY LM, 2008, ENVIRON SCI TECHNOL, V42, P4298, DOI 10.1021/es7025856.
GAZAGNES L, 2007, DESALINATION, V217, P260, DOI 10.1016/j.desal.2007.01.017.
GERARD R, 1998, DESALINATION, V119, P47.
GHOSH AK, 2008, J MEMBRANE SCI, V311, P34, DOI 10.1016/j.memsci.2007.11.038.
GHOSH AK, 2009, J MEMBRANE SCI, V336, P140, DOI 10.1016/j.memsci.2009.03.024.
GILMAN AB, 2003, HIGH ENERG CHEM+, V37, P17.
GLATER J, 1983, DESALINATION, V48, P1.
GLATER J, 1994, DESALINATION, V95, P325.
GLEICK PH, WORLDS WATER 2008 20.
GOGOTSI Y, 2003, NAT MATER, V2, P591, DOI 10.1038/nmat957.
GONZALEZPEREZ A, 2009, LANGMUIR, V25, P10447, DOI 10.1021/la902417m.
GUIVER MD, 1990, 4894159, APPL.
HACHISUKA H, 2001, 6177011, APPL.
HARA S, 1977, DESALINATION, V21, P183.
HASSLER GL, 1949, SEA SOURCE FRESH WAT.
HICKMAN CE, 1979, DESALINATION, V30, P259.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HIROSE M, 1996, 5576057, APPL.
HIROSE M, 1996, J MEMBRANE SCI, V121, P209.
HIROSE MS, 1997, 5614099, APPL.
HOEHN HH, 1980, 30351, RE, APPL.
HOEHN HH, 1985, MAT SCI SYNTHETIC ME, P81.
HOEKSTRA AY, 2008, GLOBALIZATION WATER.
HOFFMAN EN, 2008, MATER CHEM PHYS, V112, P587, DOI 10.1016/j.matchemphys.2008.06.006.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLT JK, 2009, ADV MATER, V21, P3542, DOI 10.1002/adma.200900867.
HSU ST, 2002, DESALINATION, V143, P279.
HUMMER G, 2001, NATURE, V414, P188.
ISMAIL AF, SEP PURIF T IN PRESS.
JAREMAN F, 2003, SEP PURIF TECHNOL, V32, P159, DOI 10.1016/S1383-5866(03)00029-7.
JENKINS M, 1998, DESALINATION, V119, P243.
JENSEN PH, 2010, 1885477, EP, APPL.
JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI 10.1016/j.memsci.2007.02.025.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KAMIYAMA Y, 1984, DESALINATION, V51, P79.
KANG GD, 2007, J MEMBRANE SCI, V300, P165, DOI 10.1016/j.memsci.2007.05.025.
KARODE SK, 1998, CHEM ENG SCI, V53, P2649.
KAUFMAN Y, 2010, LANGMUIR, V26, P7388, DOI 10.1021/la904411b.
KAWAGUCHI T, 1982, 4360434.
KIM CK, 2000, J MEMBRANE SCI, V165, P189.
KIM SH, 2003, J MEMBRANE SCI, V211, P157.
KIM SH, 2005, ENVIRON SCI TECHNOL, V39, P1764, DOI 10.1021/es049453k.
KING WM, 1970, MEMBRANES CELLULOSE.
KIRSH YE, 1988, NEW TRENDS DEV POLYM, V57.
KOO JY, 1986, AN CAL M ACS AN CA U, P391.
KOO JY, 2000, 6015495, APPL.
KOO JY, 2000, 6063278, APPL.
KOTSALIS EM, 2004, INT J MULTIPHAS FLOW, V30, P995, DOI 10.1016/j.imultiphaseflow.2004.03.009.
KUEHNE MA, 2001, ENVIRON PROG, V20, P23.
KUJAWSKI W, 2007, DESALINATION, V205, P75, DOI 10.1016/j.desal.2006.04.042.
KULKARNI A, 1996, J MEMBRANE SCI, V114, P39.
KULPRATHIPANJA S, 1988, 4740219, APPL.
KUMANO A, 2008, ADV MEMBRANE TECHNOL, P21.
KUMANO A, 2008, ADV MEMBRANE TECHNOL, P39.
KUMAR M, 2007, P NATL ACAD SCI USA, V104, P20719, DOI 10.1073/pnas.0708762104.
KURIHARA M, 1980, DESALINATION, V32, P13.
KURIHARA M, 1991, POLYM J, V23, P513.
KURIHARA M, 1991, POLYM J, V23, P513.
KWAK SY, 1999, J MEMBRANE SCI, V158, P143.
KWAK SY, 1999, J POLYM SCI POL PHYS, V37, P1429.
KWAK SY, 2001, ENVIRON SCI TECHNOL, V35, P2388.
KWAK SY, 2001, ENVIRON SCI TECHNOL, V35, P4334.
LAI JY, 1990, J APPL POLYM SCI, V39, P2293.
LAINE JM, 2009, DESIGN OPERATION CON.
LARSON RE, 1981, DESALINATION, V38, P473.
LI D, 2010, J MATER CHEM, V20, P4551, DOI 10.1039/b924553g.
LI L, 2007, J MEMBRANE SCI, V289, P258, DOI 10.1016/j.memsci.2006.12.007.
LI L, 2008, J MEMBRANE SCI, V315, P20, DOI 10.1016/j.memsci.2008.02.022.
LI LX, 2004, J MEMBRANE SCI, V243, P401, DOI 10.1016/j.memsci.2004.06.045.
LI LX, 2007, IND ENG CHEM RES, V46, P1584, DOI 10.1021/ie0612818.
LIA L, 2004, DESALINATION, V170, P309.
LIGHT WG, 1987, DESALINATION, V64, P411.
LIGHT WG, 1988, DESALINATION, V70, P47.
LIN J, 2001, MOL PHYS, V99, P1175.
LIN NH, 2010, J MATER CHEM, V20, P4642, DOI 10.1039/b926918e.
LIND ML, 2009, LANGMUIR, V25, P10139, DOI 10.1021/la900938x.
LIU N, 2008, J MEMBRANE SCI, V325, P357, DOI 10.1016/j.memsci.2008.07.056.
LOEB S, 1963, SALINE WATER CONVERS, V2, P117.
LOEB S, 1981, SYNTHETIC MEMBRANES, P1.
LOUIE JS, 2006, J MEMBRANE SCI, V280, P762, DOI 10.1016/j.memsci.2006.02.041.
LU J, SEP PURIF T IN PRESS.
LU YY, 2007, CHEM MATER, V19, P3194, DOI 10.1021/cm070200a.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k.
MALTHUS TR, 1798, ESSAY PRINCIPLE POPU.
MATSUURA T, 2001, DESALINATION, V134, P47.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
MAUTER MS, 2008, ENVIRON SCI TECHNOL, V42, P5843, DOI 10.1021/es8006904.
MCGINNIS RL, 2007, DESALINATION, V207, P370, DOI 10.1016/j.desal.2006.08.012.
MI BX, 2006, J MEMBRANE SCI, V282, P71, DOI 10.1016/j.memsci.2006.05.015.
MICKOLS WE, 1998, 5755964, APPL.
MICKOLS WE, 2002, 6337018, APPL.
MICKOLS WE, 2005, 6878278, APPL.
MONTGOMERY MA, 2007, ENVIRON SCI TECHNOL, V41, P17.
MOON EJ, 2004, J MEMBRANE SCI, V243, P311, DOI 10.1016/j.memsci.2004.07.002.
MUKHERJEE D, 1994, J MEMBRANE SCI, V97, P231.
MUKHERJEE D, 1996, DESALINATION, V104, P239.
MURAKAMI H, 1981, IND ENG CHEM PROD RD, V20, P501.
MYSELS KJ, 1991, LANGMUIR, V7, P3052.
NAAKTGEBOREN AJ, 1988, DESALINATION, V68, P223.
NG HY, 2008, DESALINATION, V225, P274, DOI 10.1016/j.desal.2007.02.097.
NOY A, 2007, NANO TODAY, V2, P22.
OKUMUS E, 1994, SEP SCI TECHNOL, V29, P2451.
OREN Y, 2008, DESALINATION, V228, P10, DOI 10.1016/j.desal.2007.08.005.
PABBY AK, 2009, HDB MEMBRANE SEPARAT.
PARRINI P, 1983, DESALINATION, V48, P67.
PEARCE G, 2007, FILTR SEPARAT, V44, P31.
PERIC D, 1976, AM CHEM SOC POLYM PR, V17, P534.
PETERSEN RJ, 1990, HDB IND MEMBRANE TEC.
PETERSEN RJ, 1993, J MEMBRANE SCI, V83, P81.
PINNAU I, 1999, ACS SYM SER, V744, P1.
POLASEK V, 2003, DESALINATION, V156, P239.
RATTO TV, 2010, 20100025330, APPL.
REID CE, 1959, J APPL POLYM SCI, V1, P133.
RILEY RL, 1971, J APPL POLYM SCI, V15, P1267.
RILEY RL, 1976, DESALINATION, V19, P113.
RILEY RL, 1977, DESALINATION, V23, P331.
ROH IJ, 1998, J POLYM SCI POL PHYS, V36, P1821.
ROZELLE LT, 1968, FINAL REPORT DEV NEW.
SADRZADEH M, 2008, DESALINATION, V221, P440, DOI 10.1016/j.desal.2007.01.103.
SARKAR A, 2010, J MEMBRANE SCI, V349, P421, DOI 10.1016/j.memsci.2009.12.005.
SCHIFFER DK, 1979, DEV COMPOSITE HOLLOW.
SEKIGUCHI H, 1978, 4067804, APPL.
SENOO M, 1976, 3951920, APPL.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHEIKHOLESLAMI R, 2009, DESALINATION, V248, P218, DOI 10.1016/j.desal.2008.05.058.
SHIMOKAWA A, 2009, DESALINATION PLANT U.
SISKENS CAM, 1996, MEMBRANE SCI TECHNOL, P619.
SONG YJ, 2005, J MEMBRANE SCI, V251, P67, DOI 10.1016/j.memsci.2004.10.042.
STOVER RL, 2008, CLEAN TECHNOLOGY 200.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUDAK RG, 1990, HDB IND MEMBRANE TEC.
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120.
SUNADA K, 1998, ENVIRON SCI TECHNOL, V32, P726.
SUNDET SA, 1985, 4529646, APPL.
SUNDET SA, 1987, DESALINATION, V64, P259.
SUZUKI T, 2007, ENVIRON SCI TECHNOL, V41, P6246, DOI 10.1021/es070157s.
TANG CYY, 2007, J MEMBRANE SCI, V287, P146, DOI 10.1016/j.memsci.2006.10.038.
TANG CYY, 2009, DESALINATION, V242, P149, DOI 10.1016/j.desal.2008.04.003.
TANG CYY, 2009, DESALINATION, V242, P168, DOI 10.1016/j.desal.2008.04.004.
TARBOUSH BJA, 2008, J MEMBRANE SCI, V325, P166.
TAUBERT A, 2007, P NATL ACAD SCI USA, V104, P20643, DOI 10.1073/pnas.0710864105.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
TOMASCHKE JE, 1990, 4948507, APPL.
TRAN CN, 1993, 5234598, APPL.
TRAN DT, 2008, THIN SOLID FILMS, V516, P4384, DOI 10.1016/j.tsf.2007.10.069.
UEMURA T, 1988, 4761234, APPL.
UEMURA T, 2008, ADV MEMBRANE TECHNOL, P3.
UEMURA TK, 1988, 4761234, APPL.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
WILF M, 2000, DESALINATION, V132, P11.
WRASIDLO WJ, 1977, 4005012, APPL.
WU SY, 1997, J APPL POLYM SCI, V64, P1923.
YASUDA H, 1973, APPL POLYM S, P241.
YASUDA H, 1975, J APPL POLYM SCI, V19, P2981.
YASUDA H, 1975, REACTIONS NITROGEN A, V16, P142.
YASUDA H, 1976, J POLYM SCI POL CHEM, V14, P195.
YUN TI, 2006, DESALINATION, V189, P141, DOI 10.1016/j.desal.2005.06-022.
ZHANG XJ, 2007, APPL PHYS LETT, V91, ARTN 181904.
ZHU AH, 2009, J MEMBRANE SCI, V344, P1, DOI 10.1016/j.memsci.2009.08.006.

Cited Reference Count:
209

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Engineering, Chemical; Polymer Science

ISSN:
0376-7388

DOI:
10.1016/j.memsci.2010.12.036

IDS Number:
734RV

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288401200004
*Order Full Text [ ]

Title:
Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap

Authors:
Dalosto, SD; Tinte, S

Author Full Names:
Dalosto, Sergio D.; Tinte, Silvia

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 115 (11): 4381-4386 MAR 24 2011

Language:
English

Document Type:
Article

KeyWords Plus:
NANORIBBONS; NANOTUBES; OXIDE

Abstract:
We investigate how a box of water molecules affects the HOMO LUMO gap of a rectangular graphene nanodot (GND) with two zigzag and two armchair edges, using a combination of first principles and molecular mechanics, and also classical molecular dynamics. A GND is solvated in a periodic box of water molecules, and the HOMO LUMO gap is computed for some snapshots taken from a molecular dynamics simulation. Although an isolated GND has a semiconductor state with degenerate alpha and beta gaps, we find that, in a solvated GND, that degeneracy broken and the gaps of both spins flavors oscillate following the time fluctuations in strength and direction of the electric field generated by the solvent at the edges. The average electric field generated by the water molecules causes an effect equivalent to applying a uniform electric field of 0.16 V/angstrom computed at the PBE level of theory. In particular, this field is not strong enough to change the GND semiconductor ground state to
a half-metallic one in nanodots with dimensions smaller than 2.5 nm, as those studied here. These results can be useful in the design of sensors based on graphene, indicating that important fluctuations in the energy gap can occur if water molecules are present.

Reprint Address:
Dalosto, SD, INTEC CONICET, Guemes 3450, RA-3000 Santa Fe, Argentina.

Research Institution addresses:
[Dalosto, Sergio D.] INTEC CONICET, RA-3000 Santa Fe, Argentina; Univ Nacl Litoral, RA-3000 Santa Fe, Argentina

E-mail Address:
dalosto@intec.unl.edu.ar

Cited References:
BALANDIN AA, 2008, NANO LETT, V8, P902, DOI 10.1021/nl0731872.
BARONE V, 2006, NANO LETT, V6, P2748, DOI 10.1021/nl0617033.
BESLER BH, 1990, J COMPUT CHEM, V11, P431.
BHANDARKAR M, 2009, NAMD VERSION 2 7.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
DALOSTO SD, 2008, J PHYS CHEM C, V112, P8196, DOI 10.1021/jp711524y.
DIKIN DA, 2007, NATURE, V448, P457, DOI 10.1038/nature06016.
EZAWA M, 2006, PHYS REV B, V73, ARTN 045432.
FRISCH MJ, 2004, GAUSSIAN03.
GORDILLO MC, 2008, PHYS REV B, V78, ARTN 075432.
GORDILLO MC, 2010, J PHYS-CONDENS MAT, V22, ARTN 284111.
HEYD J, 2003, J CHEM PHYS, V118, P8207, DOI 10.1063/1.1564060.
HEYD J, 2006, J CHEM PHYS, V124, ARTN 219906.
HOD O, 2007, NANO LETT, V7, P2295, DOI 10.1021/nl0708922.
HOD O, 2008, PHYS REV B, V77, ARTN 035411.
HOD O, 2009, NANO LETT, V9, P2619, DOI 10.1021/nl900913c.
HUMMER G, 2001, NATURE, V414, P188.
IZMAYLOV AF, 2006, J CHEM PHYS, V125, ARTN 104103.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALE L, 1999, J COMPUT PHYS, V151, P283.
LEE C, 2008, SCIENCE, V321, P385, DOI 10.1126/science.1157996.
LEENAERTS O, 2008, PHYS REV B, V77, ARTN 125416.
LEENAERTS O, 2009, MICROELECTRON J, V40, P860, DOI 10.1016/j.mejo.2008.11.022.
LU J, 2008, ACS NANO, V2, P1825, DOI 10.1021/nn800244k.
MASERAS M, 1995, J COMPUT CHEM, V16, P1170.
NOVOSELOV KS, 2004, SCIENCE, V306, P666, DOI 10.1126/science.1102896.
NOVOSELOV KS, 2007, SCIENCE, V315, P1379, DOI 10.1126/science.1137201.
PARK S, 2008, ACS NANO, V2, P572, DOI 10.1021/nn700349a.
PATRA N, 2009, NANO LETT, V9, P3766, DOI 10.1021/nl9019616.
PERDEW JP, 1996, PHYS REV LETT, V77, P3865.
PERDEW JP, 1997, PHYS REV LETT, V78, P1396.
PERES NMR, 2005, PHYS REV B, V72, P1.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
ROMERO HE, 2009, NANOTECHNOLOGY, V20, ARTN 245501.
SCHEDIN F, 2007, NAT MATER, V6, P652, DOI 10.1038/nmat1967.
SENN HM, 2009, ANGEW CHEM, V49, P1149.
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f.
SON YW, 2006, NATURE, V444, P347, DOI 10.1038/nature05180.
SON YW, 2006, PHYS REV LETT, V97, ARTN 216803.
STANKOVICH S, 2006, NATURE, V442, P282, DOI 10.1038/nature04969.
SUN XM, 2008, NANO RES, V1, P203, DOI 10.1007/s12274-008-8021-8.
VREVEN T, 2000, J CHEM PHYS, V113, P2969.
YU DC, 2008, NANO RES, V1, P497, DOI 10.1007/s12274-008-8053-0.

Cited Reference Count:
44

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp109297p

IDS Number:
735GK

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287923800026
*Order Full Text [ ]

Title:
Syntheses, structures, and photoluminescence of lanthanide coordination polymers with pyridine-2,3,5,6-tetracarboxylic acid

Authors:
Yang, AH; Gao, HL; Cui, JZ; Zhao, B

Author Full Names:
Yang, Ai-Hong; Gao, Hong-Ling; Cui, Jian-Zhong; Zhao, Bin

Source:
CRYSTENGCOMM 13 (6): 1870-1876 2011

Language:
English

Document Type:
Article

KeyWords Plus:
ORGANIC SUPRAMOLECULAR COMPLEX; CYCLIC WATER HEPTAMER; SOLID-STATE; PYRAZINE-2,3,5,6-TETRACARBOXYLIC ACID; CRYSTAL-STRUCTURE; (H2O)(10) CLUSTER; 1,2,4,5-BENZENETETRACARBOXYLIC ACID; MOLECULAR RECOGNITION; FRAMEWORK STRUCTURES; ICE

Abstract:
Six lanthanide(III) coordination polymers with the formulae {[Ln(Hpdtc)(H2O)(3)]center dot H2O}(n) [Ln = La (1), Ce (2), Pr (3)], {[Ln(Hpdtc)(H2O)(2)]center dot 2H(2)O}(n) [Ln = Eu (4), Tb (5)] and {SmK(pdtc)(H2O)(4)} n (6) (H(4)pdtc = pyridine-2,3,5,6-tetracarboxylic acid) have been synthesized by reacting the corresponding rare earth salts or oxides with H(4)pdtc under hydrothermal conditions. In the three kinds of structure, H(4)pdtc displays three different coordination modes. H(4)pdtc is an elegant ligand with rich coordination sites and low symmetry, but has seldom been used to synthesize complexes. 1-6 are the first examples from lanthanide ions and H(4)pdtc. Furthermore, the novel wave-like T3(2)4(2)6(2) water tape with (H2O)(4) as the substructure is present in complex 6. The two complexes of Eu(III) and Tb(III) exhibit the corresponding characteristic luminescence.

Reprint Address:
Cui, JZ, Tianjin Univ, Dept Chem, Tianjin 300072, Peoples R China.

Research Institution addresses:
[Yang, Ai-Hong; Gao, Hong-Ling; Cui, Jian-Zhong] Tianjin Univ, Dept Chem, Tianjin 300072, Peoples R China; [Zhao, Bin] Nankai Univ, Dept Chem, Tianjin 300071, Peoples R China

E-mail Address:
cuijianzhong@tju.edu.cn

Cited References:
ATWOOD JL, 2001, J AM CHEM SOC, V123, P7192.
BARBOUR LJ, 1998, NATURE, V393, P671.
BARBOUR LJ, 2000, CHEM COMMUN, P859.
BERGOUGNANT RD, 2005, CRYST GROWTH DES, V5, P1691, DOI 10.1021/cg050201k.
BLANTON WB, 1999, TETRAHEDRON-ASYMMETR, V121, P3551.
CALEFI PS, 2002, J ALLOY COMPD, V344, P285.
CAO R, 2002, INORG CHEM, V41, P2087.
CARBALLO R, 2005, CRYSTENGCOMM, V7, P294, DOI 10.1039/b504177e.
CHERUZEL LE, 2003, ANGEW CHEM INT EDIT, V42, P5452, DOI 10.1002/anie.200352157.
CUSTELCEAN R, 2000, ANGEW CHEM INT EDIT, V39, P3094.
FANG SR, 2008, J CHEM CRYSTALLOGR, V38, P393, DOI 10.1007/s10870-008-9328-8.
GAO HL, 2009, J MOL STRUCT, V918, P97, DOI 10.1016/j.molstruc.2008.07.027.
GHOSH SK, 2003, INORG CHEM, V42, P8250, DOI 10.1021/ic034976z.
GHOSH SK, 2004, CRYSTENGCOMM, V6, P250, DOI 10.1039/b407571d.
GHOSH SK, 2004, INORG CHEM, V43, P5180, DOI 10.1021/ic049839q.
GHOSH SK, 2004, INORG CHEM, V43, P6887, DOI 10.1021/ic049111f.
GHOSH SK, 2004, J CHEM SOC P2, V43, P3577.
GHOSH SK, 2005, CRYST GROWTH DES, V5, P623, DOI 10.1021/cg049838e.
GHOSH SK, 2005, INORG CHEM, V44, P5553, DOI 10.1021/ic050727u.
GHOSH SK, 2005, J INORG CHEM, P4880.
GHOSH SK, 2006, INORG CHIM ACTA, V359, P468, DOI 10.1016/j.ica.2005.07.040.
GHOSH SK, 2006, PROG INORG CHEM, V796, P119.
GUO CY, 2005, CHEM COMMUN, P2220, DOI 10.1039/b418869a.
HOU Y, 2004, INORG CHIM ACTA, V357, P3155, DOI 10.1016/j.ica.2004.03.019.
HUMMER G, 2001, NATURE, V414, P188.
INFANTES L, 2002, INORG CHEM, V4, P454.
INFANTES L, 2002, Z ANORG ALLG CHEM, V4, P454.
INFANTES L, 2003, CRYSTENGCOMM, V5, P480, DOI 10.1039/b312846f.
JUDE KM, 2002, BIOCHEMISTRY-US, V41, P2485.
KARABACH YY, 2006, CRYST GROWTH DES, V6, P2200, DOI 10.1021/cg060310e.
KOGA K, 2001, ANGEW CHEM, V412, P802.
KOVACS F, 1999, P NATL ACAD SCI USA, V96, P7910.
LAKSHMINARAYANAN PS, 2005, J AM CHEM SOC, V127, P13132, DOI 10.1021/ja054068w.
LAKSHMINARAYANAN PS, 2006, ANGEW CHEM INT EDIT, V45, P3807, DOI 10.1002/anie.200600254.
LEE YS, 2004, J AM CHEM SOC, V126, P2225, DOI 10.1021/ja036115v.
LEE YS, 2004, J MOL STRUCT, V700, P243, DOI 10.1016/j.molstruc.2004.02.004.
LI M, 1995, J AM CHEM SOC, V117, P8132.
LIAO YC, 2005, J AM CHEM SOC, V127, P12794, DOI 10.1021/ja054357k.
LUDWIG R, 2001, INORG CHEM, V40, P1808.
MA BQ, 2004, ANGEW CHEM INT EDIT, V43, P1374.
MA BQ, 2005, ORGANOMETALLICS, P2336.
MACGILLIVRAY LR, 1997, J AM CHEM SOC, V119, P2592.
MANIKUMARI S, 2002, INORG CHEM, V41, P6953, DOI 10.1021/ic025803x.
MARCHAL C, 2009, CHEM-EUR J, V15, P5273, DOI 10.1002/chem.200802589.
MARIONI PA, 1994, INORG CHIM ACTA, V219, P161.
MASCI B, 2008, Z ANORG ALLG CHEM, V8, P1689.
MIR MH, 2007, ANGEW CHEM INT EDIT, V46, P5925, DOI 10.1002/anie.200701779.
MIR MH, 2008, CRYST GROWTH DES, V8, P1478, DOI 10.1021/cg800244g.
MOORTHY JN, 2002, ANGEW CHEM INT EDIT, V41, P3417.
NI ZH, 2007, INORG CHEM, V46, P6029, DOI 10.1021/ic700528a.
PAL S, 2003, ANGEW CHEM INT EDIT, V42, P1741, DOI 10.1002/anie.200250444.
QUAN YP, 2009, CRYSTENGCOMM, V11, P1679, DOI 10.1039/b900618d.
RAGHURAMAN K, 2003, J AM CHEM SOC, V125, P6955, DOI 10.1021/ja034682c.
RAMASUBBU N, 2004, ARCH BIOCHEM BIOPHYS, V421, P115, DOI 10.1016/j.abb.2003.10.007.
RODRIGUEZCUAMAT.P, 2004, DALTON T, V43, P3041.
SHELDRICK GM, 1997, SHELXL 97 PROGRAM RE.
SHELDRICK GM, 1997, SHELXL 97 PROGRAM SO.
SUPRIYA S, 2003, ANGEW CHEM, V27, P218.
VANDERHORST MG, 2008, EUR J INORG CHEM MAY, P2170, DOI 10.1002/ejic.200800031.
VENKATARAMANAN B, 2004, J PHYS CHEM A, V3, P553.
WANG HS, 2007, CHEM-EUR J, V10, P856.
WU JY, 2006, CRYST GROWTH DES, V6, P467, DOI 10.1021/cg050393j.
YANG AH, 2008, CHINESE J INORG CHEM, V24, P487.
YANG AH, 2008, CRYST GROWTH DES, V8, P3354, DOI 10.1021/cg800291p.
YANG AH, 2009, CRYSTENGCOMM, V11, P2719, DOI 10.1039/b911939f.
YANG AH, 2009, J COORD CHEM, V62, P3306, DOI 10.1080/00958970903046593.
YANG AH, 2010, CRYST GROWTH DES, V10, P218, DOI 10.1021/cg9008575.
YAO JN, 2009, EUR J INORG CHEM, V12, P430.
YE BH, 2004, INORG CHEM, V43, P6866, DOI 10.1021/ic0492321.
YOSHIZAWA M, 2005, J AM CHEM SOC, V127, P2798, DOI 10.1021/ja043953w.
ZABEL V, 1986, J AM CHEM SOC, V108, P3664.
ZHAO B, 2004, J AM CHEM SOC, V126, P3012, DOI 10.1021/ja038784e.
ZHAO LH, 2009, CRYSTENGCOMM, V11, P1427, DOI 10.1039/b820663e.

Cited Reference Count:
73

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Multidisciplinary; Crystallography

ISSN:
1466-8033

DOI:
10.1039/c0ce00397b

IDS Number:
729BV

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286676600045
*Order Full Text [ ]

Title:
Raman spectroscopy of iodine molecules trapped in zeolite crystals

Authors:
Guo, WH; Wang, DD; Hu, JM; Tang, ZK; Du, SW

Author Full Names:
Guo, Wenhao; Wang, Dingdi; Hu, Juanmei; Tang, Z. K.; Du, Shengwang

Source:
APPLIED PHYSICS LETTERS 98 (4): Art. No. 043105 JAN 24 2011

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE; HYPERFINE INTERACTIONS; CHANNELS; STATE; NM

Abstract:
We study the Raman spectroscopy of neutral iodine molecules confined in the channels of zeolite AlPO4-5 (AFI) and AlPO4-11 (AEL) crystals, which shows that the molecular vibration states are significantly modified by the confinements from the nanosize channels. An iodine molecule trapped in the AEL crystal has an effective internuclear potential close to an ideal harmonic oscillator, while that in the AFI crystal behaves similarly to that in free space. The results are further confirmed by measuring the temperature dependence of Raman spectral width. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3549194]

Reprint Address:
Du, SW, Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China.

Research Institution addresses:
[Guo, Wenhao; Wang, Dingdi; Hu, Juanmei; Tang, Z. K.; Du, Shengwang] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China

E-mail Address:
phzktang@ust.hk; dusw@ust.hk

Cited References:
CHEN LS, 2004, J OPT SOC AM B, V21, P820.
CHEN LS, 2005, J OPT SOC AM B, V22, P951.
CHENG WY, 2002, OPT LETT, V27, P571.
GELB LD, 1999, REP PROG PHYS, V62, P1573.
HOSAKA K, 2010, PHYS REV LETT, V104, ARTN 180501.
HUMMER G, 2001, NATURE, V414, P188.
JIANG FY, 2005, J CRYST GROWTH, V283, P108, DOI 10.1016/j.jcrysgro.2005.05.069.
JIANG FY, 2007, J PHYS CHEM SOLIDS, V68, P1552, DOI 10.1016/j.jpcs.2007.03.035.
JUNGNER PA, 1995, IEEE T INSTRUM MEAS, V44, P151.
KIEFER W, 1972, J MOL SPECTROSC, V43, P366.
LORTZA R, 2009, P NATL ACAD SCI USA, V106, P7299, DOI 10.1073/pnas.0813162106.
MORSE PM, 1929, PHYS REV, V34, P57.
TANG ZK, 2001, SCIENCE, V292, P2462.
WANG N, 2000, NATURE, V408, P50.
XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w.
YE J, 2001, PHYS REV LETT, V87, ARTN 270801.
YE JT, 2006, APPL PHYS LETT, V88, ARTN 073114.
ZHAI JP, 2008, APPL PHYS LETT, V92, ARTN 043117.

Cited Reference Count:
18

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0003-6951

DOI:
10.1063/1.3549194

IDS Number:
712OR

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286487300045
*Order Full Text [ ]

Title:
Control of Unidirectional Transport of Single-File Water Molecules through Carbon Nanotubes in an Electric Field

Authors:
Su, JY; Guo, HX

Author Full Names:
Su, Jiaye; Guo, Hongxia

Source:
ACS NANO 5 (1): 351-359 JAN 2010

Language:
English

Document Type:
Article

Author Keywords:
water molecule; transport; carbon nanotube; electric field; molecular dynamics simulation

KeyWords Plus:
NONPOLAR CAVITIES; DRUG-DELIVERY; ICE NANOTUBES; CHANNEL; MEMBRANES; COMPOSITES; MECHANISM; CLUSTERS; PROTEIN; DESALINATION

Abstract:
The transport of water molecules through nanopores is not only crucial to biological activities but also useful for designing novel nanofluidic devices. Despite considerable effort and progress that has been made, a controllable and unidirectional water flow is still difficult to achieve and the underlying mechanism is far from being understood. In this paper, using molecular dynamics simulations, we systematically investigate the effects of an external electric field on the transport of single-file water molecules through a carbon nanotube (CNT). We find that the orientation of water molecules inside the CNT can be well-tuned by the electric field and is strongly coupled to the water flux. This orientation induced water flux is energetically due to the asymmetrical water water interaction along the CNT ills. The wavelike water density profiles are disturbed under strong field strengths. The frequency of flipping for the water dipoles will decrease as the field strength is in
creased, and the flipping events vanish completely for the relatively large field strengths. Most importantly, a critical field strength E, related to the water flux is found. The water flux is increased as E is increased for E <= E-o while it is almost unchanged for E > E-c. Thus, the electric field offers a level of governing for unidirectional water flow, which may have some biological applications and provides a route for designing efficient nanopumps.

Reprint Address:
Guo, HX, Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Joint Lab Polymer Sci & Mat,State Key Lab Polymer, Beijing 100190, Peoples R China.

Research Institution addresses:
[Su, Jiaye; Guo, Hongxia] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Joint Lab Polymer Sci & Mat,State Key Lab Polymer, Beijing 100190, Peoples R China

E-mail Address:
hxguo@iccas.ac.cn

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BALL P, 2008, BIOL CHEM, V108, P74.
BHIRDE AA, 2009, ACS NANO, V3, P307, DOI 10.1021/nn800551s.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
BRATKO D, 2007, J AM CHEM SOC, V129, P2504, DOI 10.1021/ja0659370.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
COLLINS MD, 2005, P NATL ACAD SCI USA, V102, P16668, DOI 10.1073/pnas.0508224102.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
DUAN WH, 2010, ACS NANO, V4, P2338, DOI 10.1021/nn1001694.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
GIOVAMBATTISTA N, 2007, J PHYS CHEM B, V111, P9581, DOI 10.1021/jp071957s.
GIOVAMBATTISTA N, 2009, PHYS REV LETT, V102, ARTN 050603.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GONG XJ, 2010, J AM CHEM SOC, V132, P1873, DOI 10.1021/ja905753p.
HEYMANN JB, 1999, NEWS PHYSIOL SCI, V14, P187.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784.
IWAMATSU S, 2004, J AM CHEM SOC, V126, P2668, DOI 10.1021/ja038537a.
JAVEY A, 2008, ACS NANO, V2, P1329, DOI 10.1021/nn8003982.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOGA K, 2001, NATURE, V412, P802.
KREUER KD, 2004, CHEM REV, V104, P4637, DOI 10.1021/cr020715f.
LEUNG K, 2003, PHYS REV LETT, V90, ARTN 065502.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU HT, 2010, SCIENCE, V327, P64, DOI 10.1126/science.1181799.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
MAMEDOV AA, 2002, NAT MATER, V1, P190, DOI 10.1038/nmat747.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t.
MIYAZAWA A, 2003, NATURE, V423, P949, DOI 10.1038/nature01748.
MUKHERJEE B, 2010, ACS NANO, V4, P985, DOI 10.1021/nn900858a.
MURATA K, 2000, NATURE, V407, P599.
PARK JH, 2008, APPL PHYS LETT, V93, ARTN 253104.
PRESTON GM, 1991, P NATL ACAD SCI USA, V88, P11110.
RAGHUNATHAN AV, 2006, PHYS REV LETT, V97, ARTN 024501.
RAMACHANDRAN CN, 2005, CHEM PHYS LETT, V410, P348, DOI 10.1016/j.cplett.2005.04.113.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
SERVICE RF, 2006, SCIENCE, V313, P1088.
SHIM BS, 2007, CHEM MATER, V19, P5467, DOI 10.1021/cm070442a.
SHIM BS, 2009, ACS NANO, V3, P1711, DOI 10.1021/nn9002743.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
SUI HX, 2001, NATURE, V414, P872.
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120.
SUK ME, 2009, PHYS CHEM CHEM PHYS, V11, P8614, DOI 10.1039/b903541a.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
TU YS, 2009, P NATL ACAD SCI USA, V106, P18120, DOI 10.1073/pnas.0902676106.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI 10.1073/pnas.0407968101.
VAITHEESWARAN S, 2005, J PHYS CHEM B, V109, P6629, DOI 10.1021/jp045591k.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WALZ T, 1994, J BIOL CHEM, V269, P1583.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WAN RZ, 2009, PHYS CHEM CHEM PHYS, V11, P9898, DOI 10.1039/b907926m.
WANG CL, 2009, PHYS REV LETT, V103, ARTN 137801.
WON CY, 2006, J CHEM PHYS, V125, ARTN 114701.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12171.
YIN H, 2007, J AM CHEM SOC, V129, P7369, DOI 10.1021/ja070456h.
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372.
ZHANG YB, 2009, NATURE, V459, P820, DOI 10.1038/nature08105.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2002, BIOPHYS J, V83, P154.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w.

Cited Reference Count:
75

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn1014616

IDS Number:
710CA

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288570600069
*Order Full Text [ ]

Title:
Helical Encapsulation of Graphene Nanoribbon into Carbon Nanotube

Authors:
Jiang, YY; Li, H; Li, YF; Yu, HQ; Liew, KM; He, YZ; Liu, XF

Author Full Names:
Jiang, Yanyan; Li, Hui; Li, Yunfang; Yu, Haiqing; Liew, Kim M.; He, Yezeng; Liu, Xiangfa

Source:
ACS NANO 5 (3): 2126-2133 MAR 2011

Language:
English

Document Type:
Article

Author Keywords:
molecular dynamics simulation; graphene nanoribbon; carbon nanotube; helical configuration; the pi-pi stacking interaction; nanoscale carriers

KeyWords Plus:
FORCE-FIELD; WATER; DYNAMICS; OXIDE; TRANSPORTATION; ENERGETICS; BEHAVIOR; CHANNEL; COMPASS; ESTERS

Abstract:
Molecular dynamics (MD) simulations were performed to study interaction between the graphene nanoribbon (GNR) and single-wall carbon nanotube (SWCNT). The GNR enters the SWCNT spontaneously to display a helical configuration which is quite similar to the chloroplast in the spirogyra cell. This unique phenomenon results from the combined action of the van der Waals potential well and the pi-pi stacking interaction. The size of SWCNT and GNR should satisfy some certain conditions in the helical encapsulation process. A DNA-like double helix would be formed inside the SWCNT with the encapsulation of two GNRs. A water cluster enclosed in the SWCNT has great effect on the formation of the GNR helix in the tube. Furthermore, we also studied the possibility that the spontaneous encapsulation of GNR is used for substance delivery. The expected outcome of these properties is to provide novel strategies to design nanoscale carriers and reaction devices.

Reprint Address:
Li, H, Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China.

Research Institution addresses:
[Jiang, Yanyan; Li, Hui; Li, Yunfang; Yu, Haiqing; He, Yezeng; Liu, Xiangfa] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China; [Liew, Kim M.] City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China

E-mail Address:
lihuilmy@hotmail.com

Cited References:
AJAYAN PM, 1994, PHYS REV LETT, V72, P1722.
AJAYAN PM, 1995, NATURE, V375, P564.
ARGYRIS D, 2010, ACS NANO, V4, P2035, DOI 10.1021/nn100251g.
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BETS KV, 2009, NANO RES, V2, P161, DOI 10.1007/s12274-009-9015-x.
BUNTE SW, 2000, J PHYS CHEM B, V104, P2477.
CHOI WY, 2003, PHYS REV B, V68, ARTN 193405.
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
DUTTA S, 2009, PHYS REV LETT, V102, ARTN 096601.
EZAWA M, 2006, PHYS REV B, V73, ARTN 045432.
FASOLINO A, 2007, NAT MATER, V6, P858.
FENG G, 2010, ACS NANO, V4, P2382, DOI 10.1021/nn100126w.
FRANK O, 2010, ACS NANO, V4, P3131, DOI 10.1021/nn100454w.
GAO HJ, 2003, NANO LETT, V3, P471, DOI 10.1021/nl025967a.
GILL EL, 1998, J WILDLIFE MANAGE, V72, P872.
GLOBWKA ML, 1999, J MOL STRUCT, V474, P81.
GUNLYCKE D, 2007, APPL PHYS LETT, V91, ARTN 112108.
HOD O, 2007, NANO LETT, V7, P2295, DOI 10.1021/nl0708922.
HUANG JY, 2006, NATURE, V439, P281, DOI 10.1038/439281a.
HUMMER G, 2001, NATURE, V414, P188.
JIANG XF, 2000, ANTI-CANCER DRUG, V11, P49.
LEE C, 2008, SCIENCE, V321, P385, DOI 10.1126/science.1157996.
LIU Z, 2008, J AM CHEM SOC, V130, P10876, DOI 10.1021/ja803688x.
MATTHEW YS, 2004, SCIENCE, V306, P1540.
MOFFET RB, 1964, J MED CHEM, V7, P319.
OHIWA T, 1976, J PLANT RES, V89, P259.
OKADA S, 2001, PHYS REV LETT, V86, P3835.
SEOL JH, 2010, SCIENCE, V328, P213, DOI 10.1126/science.1184014.
SETLUR AA, 1996, APPL PHYS LETT, V69, P345.
SHAO JL, 2010, J PHYS CHEM C, V114, P2896, DOI 10.1021/jp910289c.
SNIR Y, 2005, SCIENCE, V307, P1067, DOI 10.1126/science.1106243.
SON YW, 2006, NATURE, V444, P347, DOI 10.1038/nature05180.
SON YW, 2006, PHYS REV LETT, V97, ARTN 216803.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUN H, 1998, J PHYS CHEM B, V102, P7338.
TSANG SC, 1994, NATURE, V372, P159.
VIDOSSICH P, 2004, PROTEINS, V55, P924.
VILLANI FJ, 1954, J AM CHEM SOC, V76, P87.
WANG L, 2007, APPL PHYS LETT, V91, ARTN 051122.
WANG Q, 2009, CARBON, V47, P1870, DOI 10.1016/j.carbon.2009.03.030.
WANG Q, 2009, NANO LETT, V9, P245, DOI 10.1021/nl802829z.
WANG ZY, 2010, J AM CHEM SOC, V132, P13840, DOI 10.1021/ja1058026.
WARNER JH, 2010, ACS NANO, V4, P4011, DOI 10.1021/nn101111b.
WU CF, 2010, POLYMER, V51, P4452, DOI 10.1016/j.polymer.2010.07.019.
XU ZP, 2010, ACS NANO, V4, P3869, DOI 10.1021/nn100575k.
YANG XY, 2008, J PHYS CHEM C, V112, P17554, DOI 10.1021/jp806751k.
ZOU JA, 2010, INT J NUMER METH ENG, V83, P968, DOI 10.1002/nme.2819.

Cited Reference Count:
47

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn103317u

IDS Number:
737LP

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================