Friday, July 15, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000292290100035
*Order Full Text [ ]

Title:
Mucoadhesive Nanoparticles May Disrupt the Protective Human Mucus Barrier by Altering Its Microstructure

Authors:
Wang, YY; Lai, SK; So, C; Schneider, C; Cone, R; Hanes, J

Author Full Names:
Wang, Ying-Ying; Lai, Samuel K.; So, Conan; Schneider, Craig; Cone, Richard; Hanes, Justin

Source:
PLOS ONE 6 (6): Art. No. e21547 JUN 29 2011

Language:
English

Document Type:
Article

KeyWords Plus:
HUMAN CERVICAL-MUCUS; PARTICLE TRACKING MEASUREMENTS; DIFFUSION; NETWORKS; MUCIN; HYDROGELS; SPUTUM; MUC5B; LAYER; RAT

Abstract:
Mucus secretions typically protect exposed surfaces of the eyes and respiratory, gastrointestinal and female reproductive tracts from foreign entities, including pathogens and environmental ultrafine particles. We hypothesized that excess exposure to some foreign particles, however, may cause disruption of the mucus barrier. Many synthetic nanoparticles are likely to be mucoadhesive due to hydrophobic, electrostatic or hydrogen bonding interactions. We therefore sought to determine whether mucoadhesive particles (MAP) could alter the mucus microstructure, thereby allowing other foreign particles to more easily penetrate mucus. We engineered muco-inert probe particles 1 mm in diameter, whose diffusion in mucus is limited only by steric obstruction from the mucus mesh, and used them to measure possible MAP-induced changes to the microstructure of fresh human cervicovaginal mucus. We found that a 0.24% w/v concentration of 200 nm MAP in mucus induced a similar to 10-fold increase in the average effective diffusivity of the probe particles, and a 2- to 3-fold increase in the fraction capable of penetrating physiologically thick mucus layers. The same concentration of muco-inert particles, and a low concentration (0.0006% w/v) of MAP, had no detectable effect on probe particle penetration rates. Using an obstruction-scaling model, we determined that the higher MAP dose increased the average mesh spacing ("pore'' size) of mucus from 380 nm to 470 nm. The bulk viscoelasticity of mucus was unaffected by MAP exposure, suggesting MAP may not directly impair mucus clearance or its function as a lubricant, both of which depend critically on the bulk rheological properties of mucus. Our findings suggest mucoadhesive nanoparticles can substantially alter the microstructure of mucus, highlighting the potential of mucoadhesive environmental or engineered nanoparticles to disrupt mucus barriers and cause greater exposure to foreign particles, including pathogens and other potentially toxic nanomaterials.

Reprint Address:
Wang, YY, Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA.

Research Institution addresses:
[Wang, Ying-Ying; So, Conan; Hanes, Justin] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA; [Lai, Samuel K.; Schneider, Craig; Hanes, Justin] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD USA; [Cone, Richard] Johns Hopkins Univ, Dept Biophys, Baltimore, MD USA; [Hanes, Justin] Johns Hopkins Univ, Sch Med, Wilmer Eye Inst, Dept Ophthalmol, Baltimore, MD 21205 USA; [Hanes, Justin] Johns Hopkins Sch Publ Hlth, Dept Environm Hlth Sci, Baltimore, MD USA; [Hanes, Justin] Johns Hopkins Univ, Inst NanoBioTechnol, Ctr Canc Nanotechnol Excellence, Baltimore, MD USA; [Hanes, Justin] Johns Hopkins Univ, Sch Med, Ctr Nanomed, Baltimore, MD USA

E-mail Address:
hanes@jhu.edu

Cited References:
*EPA, 1997, EXP FACT HDB.
*OSHA, OSHA OCC SAF HLTH GU.
ALI MS, 2007, LARYNGOSCOPE, V117, P932, DOI 10.1097/MLG.0b013e3180383651.
AMSDEN B, 1998, MACROMOLECULES, V31, P8382.
AMSDEN B, 1999, MACROMOLECULES, V32, P874.
APGAR J, 2000, BIOPHYS J, V79, P1095.
BOSKEY ER, 2003, SEX TRANSM DIS, V30, P107.
CERIC F, 2005, J ELECTRON MICROSC, V54, P479, DOI 10.1093/jmicro/dfh106.
DONALDSON K, 2001, OCCUP ENVIRON MED, V58, P211.
FAHY JV, 2010, NEW ENGL J MED, V363, P2233.
GARDEL ML, 2004, SCIENCE, V304, P1301.
GIPSON IK, 2001, J CLIN ENDOCR METAB, V86, P594.
GREAVES JL, 1993, ADV DRUG DELIVER REV, V11, P349.
HUMMER G, 2001, NATURE, V414, P188.
ICRP, 1994, ANN ICRP, V24, P36.
JORDAN N, 1998, CLIN SCI, V95, P97.
KIM WD, 1997, EUR RESPIR J, V10, P1914.
KING M, 2006, PAEDIATR RESPIR R S1, V7, S212, DOI 10.1016/j.prrv.2006.04.199.
KING MV, 1991, CELL BIOPHYS, V18, P31.
LAI SK, 2007, P NATL ACAD SCI USA, V104, P1482, DOI 10.1073/pnas.0608611104.
LAI SK, 2009, ADV DRUG DELIVER REV, V61, P158, DOI 10.1016/j.addr.2008.11.002.
LAI SK, 2009, ADV DRUG DELIVER REV, V61, P86, DOI 10.1016/j.addr.2008.09.012.
LAI SK, 2009, PLOS ONE, V4, ARTN e4294.
LAI SK, 2010, P NATL ACAD SCI USA, V107, P598, DOI 10.1073/pnas.0911748107.
LI BK, 2004, COLLOID SURFACE B, V36, P81, DOI 10.1016/j.colsurfb.2004.05.006.
MACKINTOSH FC, 1995, PHYS REV LETT, V75, P4425.
MATSUO K, 1997, GUT, V40, P782.
MERCER RR, 1994, AM J RESP CELL MOL, V10, P613.
MOLLENHAUER HH, 1993, MICROSC RES TECHNIQ, V26, P496.
NEL A, 2005, SCIENCE, V308, P804, DOI 10.1126/science.1108752.
NEL A, 2006, SCIENCE, V311, P622, DOI 10.1126/science.1114397.
ODEBLAD E, 1968, ACTA OBSTET GYNEC S1, V47, P57.
OLMSTED SS, 2001, BIOPHYS J, V81, P1930.
PALMER A, 1999, BIOPHYS J, V76, P1063.
PUCHELLE E, 2002, PAEDIATR RESPIR REV, V3, P115.
SHEN H, 2006, BIOPHYS J, V91, P639, DOI 10.1529/biophysj.105.077404.
SINGH EJ, 1975, AM J OBSTET GYNECOL, V123, P128.
SUK JS, 2009, BIOMATERIALS, V30, P2591, DOI 10.1016/j.biomaterials.2008.12.076.
VALENTINE MT, 2004, BIOPHYS J, V86, P4004, DOI 10.1529/biophysj.103.037812.
VANHECKE D, 2008, METHOD CELL BIOL, V88, P151, DOI 10.1016/S0091-679X(08)00409-3.
VERKMAN AS, 2003, AM J PHYSIOL-CELL PH, V284, C2, DOI 10.1152/ajpcell.00417.2002.
VOYNOW JA, 2009, CHEST, V135, P505, DOI 10.1378/chest.08-0412.
WANG YY, 2008, ANGEW CHEM INT EDIT, V47, P9726, DOI 10.1002/anie.200803526.
WICKSTROM C, 1998, BIOCHEM J 3, V334, P685.
YANG M, 2011, ANGEW CHEM INT EDIT, V50, P2597, DOI 10.1002/anie.201006849.

Cited Reference Count:
45

Times Cited:
0

Publisher:
PUBLIC LIBRARY SCIENCE; 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA

Subject Category:
Biology

ISSN:
1932-6203

DOI:
10.1371/journal.pone.0021547

IDS Number:
786FZ

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000292327300002
*Order Full Text [ ]

Title:
Adsorption and diffusion of water on graphene from first principles

Authors:
Ma, J; Michaelides, A; Alfe, D; Schimka, L; Kresse, G; Wang, EG

Author Full Names:
Ma, Jie; Michaelides, Angelos; Alfe, Dario; Schimka, Laurids; Kresse, Georg; Wang, Enge

Source:
PHYSICAL REVIEW B 84 (3): Art. No. 033402 JUL 1 2011

Language:
English

Document Type:
Article

KeyWords Plus:
GENERALIZED GRADIENT APPROXIMATION; GRAPHITE INTERACTION; CARBON NANOTUBE; DENSITY; MOLECULE; SURFACE; ENERGY; COMPLEXES; CLUSTERS; EXCHANGE

Abstract:
Water monomer adsorption on graphene is examined with state-of-the- art electronic structure approaches. The adsorption energy determinations on this system from quantum Monte Carlo and the random-phase approximation yield small values of <100 meV. These benchmarks provide a deeper understanding of the reactivity of graphene that may underpin the development of improved more approximate methods enabling the accurate treatment of more complex processes at wet-carbon interfaces. As an example, we show how dispersion-corrected density functional theory, which we show gives a satisfactory description of this adsorption system, predicts that water undergoes ultra-fast diffusion on graphene at low temperatures.

Reprint Address:
Ma, J, Chinese Acad Sci, Inst Phys, Box 603, Beijing 100190, Peoples R China.

Research Institution addresses:
[Ma, Jie; Wang, Enge] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China; [Michaelides, Angelos] UCL, London Ctr Nanotechnol, London WC1H 0AJ, England; [Michaelides, Angelos] UCL, Dept Chem, London WC1H 0AJ, England; [Alfe, Dario] Dept Earth Sci, London, England; [Alfe, Dario] Univ London Univ Coll, Dept Phys & Astron, London WC1E 6BT, England; [Schimka, Laurids; Kresse, Georg] Univ Vienna, Fac Phys, Vienna, Austria; [Schimka, Laurids; Kresse, Georg] Ctr Computat Mat Sci, Vienna, Austria; [Wang, Enge] Peking Univ, Sch Phys, Beijing 100871, Peoples R China

E-mail Address:
angelos.michaelides@ucl.ac.uk

Cited References:
ADAMO C, 1999, J CHEM PHYS, V110, P6158.
BECKE AD, 1988, PHYS REV A, V38, P3098.
BECKE AD, 1993, J CHEM PHYS, V98, P5648.
BOCQUET L, 2010, CHEM SOC REV, V39, P1073, DOI 10.1039/b909366b.
DION M, 2004, PHYS REV LETT, V92, ARTN 246401.
FALK K, 2010, NANO LETT, V10, P4067, DOI 10.1021/nl1021046.
FELLER D, 2000, J PHYS CHEM A, V104, P9971, DOI 10.1021/jp0017660.
GRIMME S, 2004, J COMPUT CHEM, V25, P1463, DOI 10.1002/jcc.20078.
HARL J, 2009, PHYS REV LETT, V103, ARTN 056401.
HUMMER G, 2001, NATURE, V414, P188.
JENNESS GR, 2009, J PHYS CHEM C, V113, P10242, DOI 10.1021/jp9015307.
JENNESS GR, 2010, PHYS CHEM CHEM PHYS, V12, P6375, DOI 10.1039/c000988a.
KLIMES J, 2010, J PHYS-CONDENS MAT, V22, P46401, ARTN 246401.
KLIMES J, 2011, PHYS REV B, V83, ARTN 195131.
LEBEGUE S, 2010, PHYS REV LETT, V105, ARTN 196401.
LEE C, 1988, PHYS REV B, V37, P785, DOI 10.1103/PHYSREVB.37.785.
LIN CS, 2005, J PHYS CHEM B, V109, P14183, DOI 10.1021/jp0504591.
MA J, 2009, J CHEM PHYS, V130, P54303, ARTN 154303.
NEEDS RJ, 2010, J PHYS-CONDENS MAT, V22, P23201, ARTN 023201.
PERDEW JP, 1996, PHYS REV LETT, V77, P3865.
RUBES M, 2009, J PHYS CHEM C, V113, P8412, DOI 10.1021/jp901410m.
RUUSKA H, 2003, CARBON, V41, P699, DOI 10.1016/S0008-6223(02)00381-0.
SCHIMKA L, 2010, NAT MATER, V9, P741, DOI 10.1038/NMAT2806.
STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623.
SUDIARTA IW, 2006, J PHYS CHEM A, V110, P10501, DOI 10.1021/jp060554+.
TROULLIER N, 1991, PHYS REV B, V43, P1993.
VOSKO SH, 1980, CAN J PHYS, V58, P1200.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
XU S, 2005, J PHYS CHEM A, V109, P9563, DOI 10.1021/jp05324j.
ZHANG YK, 1998, PHYS REV LETT, V80, P890.

Cited Reference Count:
30

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Condensed Matter

ISSN:
1098-0121

DOI:
10.1103/PhysRevB.84.033402

IDS Number:
786SD

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000292331900035
*Order Full Text [ ]

Title:
Confined water inside single-walled carbon nanotubes: Global phase diagram and effect of finite length

Authors:
Kyakuno, H; Matsuda, K; Yahiro, H; Inami, Y; Fukuoka, T; Miyata, Y; Yanagi, K; Maniwa, Y; Kataura, H; Saito, T; Yumura, M; Iijima, S

Author Full Names:
Kyakuno, Haruka; Matsuda, Kazuyuki; Yahiro, Hitomi; Inami, Yu; Fukuoka, Tomoko; Miyata, Yasumitsu; Yanagi, Kazuhiro; Maniwa, Yutaka; Kataura, Hiromichi; Saito, Takeshi; Yumura, Motoo; Iijima, Sumio

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (24): Art. No. 244501 JUN 28 2011

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; electrical resistivity; ice; molecular dynamics method; nuclear magnetic resonance; phase diagrams; water; X-ray diffraction

KeyWords Plus:
ICE-NANOTUBES; MOLECULAR-DYNAMICS; LIQUID WATER; TRANSPORT; ADSORPTION; NANOSCALE; BEHAVIOR; DIFFRACTION; TRANSITION; MEMBRANES

Abstract:
Studies on confined water are important not only from the viewpoint of scientific interest but also for the development of new nanoscale devices. In this work, we aimed to clarify the properties of confined water in the cylindrical pores of single-walled carbon nanotubes (SWCNTs) that had diameters in the range of 1.46 to 2.40 nm. A combination of x-ray diffraction (XRD), nuclear magnetic resonance, and electrical resistance measurements revealed that water inside SWCNTs with diameters between 1.68 and 2.40 nm undergoes a wet-dry type transition with the lowering of temperature; below the transition temperature T-wd, water was ejected from the SWCNTs. T-wd increased with increasing SWCNT diameter D. For the SWCNTs with D = 1.68, 2.00, 2.18, and 2.40 nm, T-wd obtained by the XRD measurements were 218, 225, 236, and 237 K, respectively. We performed a systematic study on finite length SWCNT systems using classical molecular dynamics calculations to clarify the effect of open ends of the SWCNTs and water content on the water structure. It was found that ice structures that were formed at low temperatures were strongly affected by the bore diameter, a = D - sigma(OC), where sigma(OC) is gap distance between the SWCNT and oxygen atom in water, and the number of water molecules in the system. In small pores (a < 1.02 nm), tubule ices or the so-called ice nanotubes (ice NTs) were formed irrespective of the water content. On the other hand, in larger pores (a > 1.10 nm) with small water content, filled water clusters were formed leaving some empty space in the SWCNT pore, which grew to fill the pore with increasing water content. For pores with sizes in between these two regimes (1.02 < a < 1.10 nm), tubule ice also appeared with small water content and grew with increasing water content. However, once the tubule ice filled the entire SWCNT pore, further increase in the water content resulted in encapsulation of the additional water molecules inside the tubule ice. Corresponding XRD measurements on SWCNTs with a!
mean di
ameter of 1.46 nm strongly suggested the presence of such a filled structure. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3593064]

Reprint Address:
Kyakuno, H, Tokyo Metropolitan Univ, Fac Sci, Dept Phys, 1-1 Minami Osawa, Tokyo 1920397, Japan.

Research Institution addresses:
[Kyakuno, Haruka; Matsuda, Kazuyuki; Yahiro, Hitomi; Inami, Yu; Fukuoka, Tomoko; Yanagi, Kazuhiro; Maniwa, Yutaka] Tokyo Metropolitan Univ, Fac Sci, Dept Phys, Tokyo 1920397, Japan; [Miyata, Yasumitsu] Nagoya Univ, Dept Chem, Nagoya, Aichi 4648602, Japan; [Miyata, Yasumitsu] Nagoya Univ, Inst Adv Res, Nagoya, Aichi 4648602, Japan; [Maniwa, Yutaka; Kataura, Hiromichi] CREST, JST, Kawaguchi, Saitama 3320012, Japan; [Kataura, Hiromichi] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058562, Japan; [Saito, Takeshi; Yumura, Motoo; Iijima, Sumio] Natl Inst Adv Ind Sci & Technol, Nanotube Res Ctr, Tsukuba, Ibaraki 3058565, Japan

E-mail Address:
maniwa@phys.se.tmu.ac.jp

Cited References:
ABRAGAM A, 1982, PRINCIPLES NUCL MAGN.
AGRAWAL BK, 2007, PHYS REV B, V75, ARTN 195420.
ALCOUTLABI M, 2005, J PHYS-CONDENS MAT, V17, R461.
BAI J, 2003, J CHEM PHYS, V118, P3913, DOI 10.1063/1.1555091.
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BARTKOWIAK MS, 2001, J CHEM PHYS, V114, P950.
BARTKOWIAK MS, 2001, PHYS CHEM CHEM PHYS, V3, P1179.
BARTKOWIAK MS, 2008, PHYS CHEM CHEM PHYS, V10, P4909.
BETHUNE DS, 1993, NATURE, V363, P605.
BUCH V, 2003, WATER CONFINING GEOM.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CALBI MM, 2001, REV MOD PHYS, V73, P857.
CAMBRE S, 2010, PHYS REV LETT, V104, ARTN 207401.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DAS A, 2010, ACS NANO, V4, P1687, DOI 10.1021/nn901554h.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708.
HARANO Y, 2005, BIOPHYS J, V89, P2701, DOI 10.1529/biophysj.104.057604.
HENSEN EJM, 2002, J PHYS CHEM B, V106, P12664, DOI 10.1021/jp0264883.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
IIJIMA S, 1993, NATURE, V363, P603.
JACKSON KA, 1958, J APPL PHYS, V29, P1178.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KADOWAKI H, 2005, J PHYS SOC JPN, V74, P2990, DOI 10.1143/JPSJ.74.2990.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KALRA A, 2004, J PHYS CHEM B, V108, P544, DOI 10.1021/jp035828x.
KITTEL C, 1996, INTRO SOLID STATE PH.
KOGA K, 2000, J CHEM PHYS, V113, P5037.
KOGA K, 2001, NATURE, V412, P802.
KOGA K, 2006, J CHEM PHYS, V124, ARTN 131103.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KRAL P, 2001, PHYS REV LETT, V86, P131.
KURITA T, 2007, PHYS REV B, V75, ARTN 205424.
KYAKUNO H, 2010, J PHYS SOC JPN, V79, ARTN 083802.
LENG YS, 2005, PHYS REV LETT, V94, ARTN 026101.
LEVINGER NE, 2002, SCIENCE, V298, P1722.
LIU ZH, 2003, PHYS REV E 1, V67, ARTN 061602.
LUO CF, 2008, NANO LETT, V8, P2607, DOI 10.1021/nl072642r.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANIWA Y, 1999, JPN J APPL PHYS 2, V38, L668.
MANIWA Y, 2000, MOL CRYST LIQ CRYST, V340, P671.
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MARTI J, 2001, PHYS REV E, V64, UNSP 021504.
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t.
MORISHIGE K, 1999, J CHEM PHYS, V110, P4867.
MURATA K, 2000, NATURE, V407, P599.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NGUYEN TD, 2005, P NATL ACAD SCI USA, V102, P10029, DOI 10.1073/pnas.0504109102.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
NOY A, 2007, NANO TODAY, V2, P22.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
PATI R, 2002, APPL PHYS LETT, V81, P2638, DOI 10.1063/1.1510969.
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946.
ROLS S, 2008, PHYS REV LETT, V101, ARTN 065507.
SAITO T, 2006, J PHYS CHEM B, V110, P5849, DOI 10.1021/jp057513i.
SAITO T, 2008, J NANOSCI NANOTECHNO, V8, P6153, DOI 10.1166/jnn.2008.SW23.
SANSOM MSP, 2001, NATURE, V414, P156.
SCHMIDT R, 1995, J AM CHEM SOC, V117, P4049.
SEKHANEH W, 2006, CHEM PHYS LETT, V428, P143, DOI 10.1016/j.cplett.2006.06.105.
SHIOMI J, 2007, J PHYS CHEM C, V111, P12188, DOI 10.1021/jp071508s.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
STRIOLO A, 2005, J CHEM PHYS, V122, ARTN 234712.
STRIOLO A, 2006, J CHEM PHYS, V124, ARTN 074710.
SUI HX, 2001, NATURE, V414, P872.
TADOKORO M, CHEM COMMUN, V2006, P1274.
TADOKORO M, 2010, J PHYS CHEM B, V114, P2091, DOI 10.1021/jp9069465.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TANAKA M, 2010, J BIOMAT SCI-POLYM E, V21, P1849, DOI 10.1163/092050610X517220.
THESS A, 1996, SCIENCE, V273, P483.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
YANAGI K, 2008, APPL PHYS EXPRESS, V1, ARTN 034003.
YANAGI K, 2010, ACS NANO, V4, P4027, DOI 10.1021/nn101177n.
YOKOI H, AIP C P IN PRESS.
YUI H, 2005, LANGMUIR, V21, P721, DOI 10.1021/la040109a.
ZAHAB A, 2000, PHYS REV B, V62, P10000.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.

Cited Reference Count:
88

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3593064

IDS Number:
786TX

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000292331900047
*Order Full Text [ ]

Title:
Effect of nanotube-length on the transport properties of single-file water molecules: Transition from bidirectional to unidirectional

Authors:
Su, JY; Guo, HX

Author Full Names:
Su, Jiaye; Guo, Hongxia

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (24): Art. No. 244513 JUN 28 2011

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; electrohydrodynamics; flow simulation; molecular dynamics method; pipe flow; transport processes; water

KeyWords Plus:
NARROW CARBON NANOTUBES; ICE NANOTUBES; DRUG-DELIVERY; LIQUID WATER; FLUID-FLOW; CHANNEL; SIMULATION; MEMBRANES; AQUAPORIN-1; COMPOSITES

Abstract:
We use molecular dynamics (MD) simulations to study the transport of single-file water molecules through carbon nanotubes (CNTs) with various lengths in an electric field. Most importantly, we find that even the water dipoles inside the CNT are maintained along the field direction, a large amount of water molecules can still transport against the field direction for short CNTs, leading to a low unidirectional transport efficiency (eta). As the CNT length increases, the efficiency eta will increase remarkably, and achieves the maximum value of 1.0 at or exceeding a critical CNT length. Consequently, the transition from bidirectional to unidirectional transport is observed and is found to be relevant to thermal fluctuations of the two reservoirs, which is explored by the interaction between water molecules inside and outside the CNT. We also find that the water flow vs CNT length follows an exponential decay of f similar to exp(-L/L-0), and the average translocation time of individual water molecules yields to a power law of tau(trans) similar to L-nu, where L-0 and nu are constant and slightly depend on the field strength. We further compare our results with the continuous-time random-walk (CTRW) model and find that the water flow can also be described by a power law of f similar to L-mu modified from CTRW. Our results provide some new physical insights into the biased transport of single-file water molecules, which show the feasibility of using CNTs with any length to pump water in an electric field. The mechanism is important for designing efficient nanofluidic apparatuses. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3604531]

Reprint Address:
Guo, HX, Chinese Acad Sci, Beijing Natl Lab Mol Sci, Joint Lab Polymer Sci & Mat, State Key Lab Polymer Phys & Chem,Inst Chem, Beijing 100190, Peoples R China.

Research Institution addresses:
[Su, Jiaye; Guo, Hongxia] Chinese Acad Sci, Beijing Natl Lab Mol Sci, Joint Lab Polymer Sci & Mat, State Key Lab Polymer Phys & Chem,Inst Chem, Beijing 100190, Peoples R China

E-mail Address:
hxguo@iccas.ac.cn

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503.
BHIRDE AA, 2009, ACS NANO, V3, P307, DOI 10.1021/nn800551s.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
BONTHUIS DJ, 2010, PHYS REV LETT, V105, ARTN 209401.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
GONG XJ, 2010, J AM CHEM SOC, V132, P1873, DOI 10.1021/ja905753p.
HEYMANN JB, 1999, NEWS PHYSIOL SCI, V14, P187.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HU JT, 1999, NATURE, V399, P48.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784.
JAVEY A, 2008, ACS NANO, V2, P1329, DOI 10.1021/nn8003982.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2001, NATURE, V412, P802.
KREUER KD, 2004, CHEM REV, V104, P4637, DOI 10.1021/cr020715f.
KUMAR H, 2011, J CHEM PHYS, V134, ARTN 124105.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LI N, 2010, ACS NANO, V4, P1759, DOI 10.1021/nn901812t.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU Z, 2007, ACS NANO, V1, P50, DOI 10.1021/nn700040t.
LUO CF, 2008, NANO LETT, V8, P2607, DOI 10.1021/nl072642r.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAMEDOV AA, 2002, NAT MATER, V1, P190, DOI 10.1038/nmat747.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MIYAZAWA A, 2003, NATURE, V423, P949, DOI 10.1038/nature01748.
MUKHERJEE B, 2007, J CHEM PHYS, V126, ARTN 124704.
MUKHERJEE B, 2008, ACS NANO, V2, P1189, DOI 10.1021/nn800182v.
MUKHERJEE B, 2009, J PHYS CHEM B, V113, P10322, DOI 10.1021/jp904099f.
MUKHERJEE B, 2010, ACS NANO, V4, P985, DOI 10.1021/nn900858a.
MURATA K, 2000, NATURE, V407, P599.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
RAGHUNATHAN AV, 2006, PHYS REV LETT, V97, ARTN 024501.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
SERVICE RF, 2006, SCIENCE, V313, P1088.
SHIM BS, 2007, CHEM MATER, V19, P5467, DOI 10.1021/cm070442a.
SHIM BS, 2009, ACS NANO, V3, P1711, DOI 10.1021/nn9002743.
SHIM BS, 2010, ACS NANO, V4, P3725, DOI 10.1021/nn100026n.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SU JY, 2011, ACS NANO, V5, P351, DOI 10.1021/nn1014616.
SUI HX, 2001, NATURE, V414, P872.
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120.
SUK ME, 2010, PHYS REV LETT, V105, ARTN 209402.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
THOMAS JA, 2010, PHYS REV B, V81, ARTN 045413.
TU YS, 2009, P NATL ACAD SCI USA, V106, P18120, DOI 10.1073/pnas.0902676106.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WALZ T, 1994, J BIOL CHEM, V269, P1583.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WAN RZ, 2009, PHYS CHEM CHEM PHYS, V11, P9898, DOI 10.1039/b907926m.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WU KF, 2010, J CHEM PHYS, V133, ARTN 204702.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12171.
YONETANI Y, 2005, CHEM PHYS LETT, V406, P49, DOI 10.1016/j.cplett.2005.02.073.
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2002, BIOPHYS J, V83, P154.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.
ZHU FQ, 2004, PHYS REV LETT, V93, ARTN 224501.
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w.

Cited Reference Count:
78

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3604531

IDS Number:
786TX

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, July 8, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 8 new records this week (8 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000291899300033
*Order Full Text [ ]

Title:
Effects of viscous fluid on wave propagation in carbon nanotubes

Authors:
Wang, YZ; Cui, HT; Li, FM; Kishimoto, K

Author Full Names:
Wang, Yi-Ze; Cui, Hu-Tao; Li, Feng-Ming; Kishimoto, Kikuo

Source:
PHYSICS LETTERS A 375 (24): 2448-2451 JUN 13 2011

Language:
English

Document Type:
Article

Author Keywords:
Viscous fluid; Elastic waves; Carbon nanotubes; Small scale effects; Dispersion relation

KeyWords Plus:
COMPOSITES; MECHANICS; NANOSCALE; RESONANCE; STRESS; MODELS; SCALE

Abstract:
In this Letter, the effects of the viscous fluid on the propagation characteristics of elastic waves in carbon nanotubes are studied. Based on the nonlocal continuum theory, the small scales effects are also considered. The equations of wave motion are derived and the dispersion relation is presented. Numerical simulations are performed with the consideration of different scale coefficients to discuss the influence of the viscous fluid. From the results, it can be observed that the dispersion relation can be changed by the fluid viscosity obviously. Moreover, due to the fluid viscosity, the wave frequency will be reduced to a low region and the elastic wave behaviors can be significantly influenced by the viscous fluid velocity. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

Reprint Address:
Wang, YZ, Harbin Inst Technol, Sch Astronaut, POB 137, Harbin 150001, Peoples R China.

Research Institution addresses:
[Wang, Yi-Ze; Cui, Hu-Tao; Li, Feng-Ming] Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China; [Wang, Yi-Ze; Kishimoto, Kikuo] Tokyo Inst Technol, Dept Mech Sci & Engn, Meguro Ku, Tokyo 1528552, Japan

E-mail Address:
wangyize@gmail.com; fmli@hit.edu.cn

Cited References:
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
CHE GL, 1998, NATURE, V393, P346.
CHONG KP, 2004, J PHYS CHEM SOLIDS, V65, P1501, DOI 10.1016/j.jpcs.2003.09.032.
CHONG KP, 2008, ACTA MECH SOLIDA SIN, V20, P95.
DOYLE JF, 1997, WAVE PROPAGATION STR.
ERINGEN AC, 1972, INT J ENG SCI, V10, P1.
ERINGEN AC, 1983, J APPL PHYS, V54, P4703.
ESAWI AMK, 2007, MATER DESIGN, V28, P2394, DOI 10.1016/j.matdes.2006.09.022.
GAO YH, 2002, NATURE, V415, P599.
GIBSON RF, 2007, COMPOS SCI TECHNOL, V67, P1, DOI 10.1016/j.compscitech.2006.03.031.
HE XQ, 2005, NANOTECHNOLOGY, V16, P2086, DOI 10.1088/0957-4484/16/10/018.
HUMMER G, 2001, NATURE, V414, P188.
KHOSRAVIAN N, 2007, J PHYS D APPL PHYS, V40, P7046, DOI 10.1088/0022-3727/40/22/027.
KITIPORNCHAI S, 2005, PHYS REV B, V72, ARTN 075443.
LAU KT, 2003, CHEM PHYS LETT, V370, P399, DOI 10.1016/S0009-2614(03)00100-3.
LAU KT, 2006, COMPOS PART B-ENG, V37, P425, DOI 10.1016/j.compositesb.2006.02.020.
LEE HL, 2008, J APPL PHYS, V103, ARTN 024302.
LEE HL, 2009, J PHYS-CONDENS MAT, V21, ARTN 115302.
LI CY, 2008, COMPOS SCI TECHNOL, V68, P1277.
LIM CW, 2007, J APPL PHYS, V101, ARTN 054312.
LIM CW, 2010, APPL MATH MECH-ENGL, V31, P37, DOI 10.1007/s10483-010-0105-7.
LU P, 2007, INT J SOLIDS STRUCT, V44, P5289, DOI 10.1016/j.ijsolstr.2006.12.034.
MAO ZG, 2002, PHYS REV LETT, V89, ARTN 278301.
NATSUKI T, 2008, J APPL PHYS, V103, ARTN 094312.
NATSUKI T, 2009, J APPL PHYS, V105, ARTN 094328.
PEDDIESON J, 2003, INT J ENG SCI, V41, P305.
POSTMA HWC, 2001, SCIENCE, V293, P76.
PRADHAN SC, 2009, J APPL PHYS, V105, ARTN 124306.
REDDY CD, 2007, APPL PHYS LETT, V90, ARTN 133122.
SOLARES SD, 2004, NANOTECHNOLOGY, V15, P1405, DOI 10.1088/0957-4484/15/11/004.
SUDAK LJ, 2003, J APPL PHYS, V94, P7281, DOI 10.1063/1.1625437.
THOSTENSON ET, 2001, COMPOS SCI TECHNOL, V61, P1899.
TIMOSHENKO S, 1974, VIBRATION PROBLEMS E.
WANG L, 2009, MECH RES COMMUN, V36, P833, DOI 10.1016/j.mechrescom.2009.05.003.
WANG Q, 2006, INT J SOLIDS STRUCT, V43, P254, DOI 10.1016/j.ijsolstr.2005.02.047.
WANG X, 2006, ACTA MATER, V54, P2067, DOI 10.1016/j.actamat.2005.12.039.
WANG YZ, 2010, PHYS LETT A, V374, P4890, DOI 10.1016/j.physleta.2010.10.016.
ZHANG YQ, 2005, PHYS REV B, V71, ARTN 195404.
ZIPPILLI S, 2009, PHYS REV LETT, V102, ARTN 096804.

Cited Reference Count:
39

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Physics, Multidisciplinary

ISSN:
0375-9601

DOI:
10.1016/j.physleta.2011.05.016

IDS Number:
780ZB

========================================================================

*Record 2 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000292122100003
*Order Full Text [ ]

Title:
Flow-induced instability of double-walled carbon nanotubes based on nonlocal elasticity theory

Authors:
Chang, TP; Liu, MF

Author Full Names:
Chang, T. -P.; Liu, M. -F.

Source:
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES 43 (8): 1419-1426 JUN 2011

Language:
English

Document Type:
Article

KeyWords Plus:
FLUID-FLOW; DYNAMICS; SCALE

Abstract:
Instability occurs in double-walled carbon nanotubes when a fluid flows through them. This is investigated using an elastic shell model based on Donnell's shell theory. The dynamic governing equations of double-walled carbon nanotubes are derived on the basis of nonlocal elasticity theory, and the van der Waals interaction between the inner and outer walls is considered. Instability induced by a pressure-driven steady flow is studied. The numerical computations reveal that as the flow velocity increases, double-walled carbon nanotubes have a destabilizing style to get through multi-bifurcations of the first (pitchfork) and second (Hamiltonian Hopf) bifurcations in turn. It can be concluded that the critical flow velocity of the flow-induced instability is closely correlated to the ratio of the length to the radius of double-walled carbon nanotubes, the pressure of the fluid and the small size effects. (C) 2011 Elsevier B.V. All rights reserved.

Reprint Address:
Chang, TP, Natl Kaohsiung First Univ Sci & Technol, Dept Construct Engn, 1 Univ Rd, Kaohsiung 824, Taiwan.

Research Institution addresses:
[Chang, T. -P.] Natl Kaohsiung First Univ Sci & Technol, Dept Construct Engn, Kaohsiung 824, Taiwan; [Liu, M. -F.] I Shou Univ, Dept Appl Math, Kaohsiung, Taiwan

E-mail Address:
tpchang@ccms.nkfust.edu.tw

Cited References:
AMABILI M, 1999, J SOUND VIB, V225, P655.
BACHTOLD A, 2001, SCIENCE, V294, P1317.
BITSANIS I, 1987, J CHEM PHYS, V87, P1733.
DRESSELHAUS MS, 2001, TOP APPL PHYS, V80, P1.
ERIGNEN AC, 1983, J APPL PHYS, V54, P4703.
ERINGEN AC, 1976, NONLOCAL POLAR FIELD.
HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303, DOI 10.1016/j.jmps.2004.08.003.
HUMMER G, 2001, NATURE, V414, P188.
LAU KT, 2002, COMPOS PART B-ENG, V33, P263.
LEE HL, 2009, J PHYS-CONDENS MAT, V21, ARTN 115302.
LIJIMA S, 1991, NATURE, V354, P56.
PAUL S, 2003, CHEM PHYS LETT, V373, P87, DOI 10.1016/S0009-2614(03)00537-2.
PEDDIESON J, 2003, INT J ENG SCI, V41, P305.
RU CQ, 2000, J APPL PHYS, V87, P7227.
SAITO R, 2001, CHEM PHYS LETT, V348, P187.
SHEEHAN PE, 1996, SCIENCE, V272, P1158.
SHEN HS, 2010, COMPOS STRUCT, V92, P1073, DOI 10.1016/j.compstruct.2009.10.002.
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878.
SUDAK LJ, 2003, J APPL PHYS, V94, P7281, DOI 10.1063/1.1625437.
TU ZC, 2002, PHYS REV B, V65, ARTN 233407.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
WANG CY, 2003, INT J SOLIDS STRUCT, V40, P3893, DOI 10.1016/S0020-7683(03)00213-0.
WANG L, 2009, COMP MATER SCI, V45, P584, DOI 10.1016/j.commatsci.2008.12.006.
WANG L, 2010, COMP MATER SCI, V49, P761, DOI 10.1016/j.commatsci.2010.06.019.
WANG L, 2010, J FLUID STRUCT, V26, P675, DOI 10.1016/j.jfluidstructs.2010.02.005.
WANG LF, 2005, PHYS REV B, V71, ARTN 195412.
WANG Q, 2005, J APPL PHYS, V98, ARTN 124301.
YAKOBSON BI, 1997, COMP MATER SCI, V8, P241.
YAN Y, 2007, J APPL PHYS, V102, UNSP 044307-1.
YOON J, 2006, INT J SOLIDS STRUCT, V43, P3337, DOI 10.1016/j.ijsolstr.2005.04.039.
ZHANG YQ, 2004, PHYS REV B, V70, ARTN 205430.
ZHANG YQ, 2005, PHYS LETT A, V340, P258, DOI 10.1016/j.physleta.2005.03.064.
ZHANG YQ, 2005, PHYS REV B, V71, ARTN 195404.

Cited Reference Count:
33

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Nanoscience & Nanotechnology; Physics, Condensed Matter

ISSN:
1386-9477

DOI:
10.1016/j.physe.2011.03.015

IDS Number:
783YZ

========================================================================

*Record 3 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000291871200002
*Order Full Text [ ]

Title:
Nanostructured materials for water desalination

Authors:
Humplik, T; Lee, J; O'Hern, SC; Fellman, BA; Baig, MA; Hassan, SF; Atieh, MA; Rahman, F; Laoui, T; Karnik, R; Wang, EN

Author Full Names:
Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.

Source:
NANOTECHNOLOGY 22 (29): Art. No. 292001 JUL 22 2011

Language:
English

Document Type:
Review

KeyWords Plus:
CARBON AEROGEL ELECTRODES; COMPOSITE FILM ELECTRODES; OF-THE-ART; ORDERED MESOPOROUS CARBONS; REVERSE-OSMOSIS MEMBRANES; ION-EXCHANGE MEMBRANES; MFI ZEOLITE MEMBRANES; CAPACITIVE DEIONIZATION; SEAWATER DESALINATION; NANOTUBE MEMBRANES

Abstract:
Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased effi!
ciency and capacity.

Reprint Address:
Humplik, T, MIT, Dept Mech Engn, Cambridge, MA 02139 USA.

Research Institution addresses:
[Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Karnik, R.; Wang, E. N.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA; [Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.] King Fahd Univ Petr & Minerals, Dept Mech Engn, Dhahran 31261, Saudi Arabia; [Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.] King Fahd Univ Petr & Minerals, Dept Chem Engn, Dhahran 31261, Saudi Arabia; [Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.] King Fahd Univ Petr & Minerals, Res Inst, Dhahran 31261, Saudi Arabia

E-mail Address:
tlaoui@kfupm.edu.sa; karnik@mit.edu; enwang@mit.edu

Cited References:
*DOW WAT SOL FILMT, 2001, PROD INF CAT.
*GE WAT PROC TECHN, GE WAT PROC TECHN DE.
*KOCH MEMBR SYST, KOCH MEMBR SYST TECH.
*NAT RES COUNC, 2008, DES NAT PERSP, V14, P298.
*STAT DES, 2009, IDA WORLD C DES WAT.
*TRISEP CORP, TRISEP CORP DES LIT.
AHN HJ, 2007, MAT SCI ENG A-STRUCT, V449, P841, DOI 10.1016/j.msea.2006.02.448.
ALLEN MJ, 2010, CHEM REV, V110, P132, DOI 10.1021/cr900070d.
ALOBAIDANI S, 2008, J MEMBRANE SCI, V323, P85, DOI 10.1016/j.memsci.2008.06.006.
ALSHAMMIRI M, 1999, DESALINATION, V126, P45.
ANDERSON MA, 2010, ELECTROCHIM ACTA, V55, P3845, DOI 10.1016/j.electacta.2010.02.012.
ARICO AS, 2005, NAT MATER, V4, P366, DOI 10.1038/nmat1368.
ARJMANDI N, 2009, SCI IRAN TRANS D, V16, P61.
AVRAHAM E, 2009, J ELECTROCHEM SOC, V156, P157, DOI 10.1149/1.3193709.
AVRAHAM E, 2009, J ELECTROCHEM SOC, V156, P95, DOI 10.1149/1.3115463.
AYRANCI E, 2005, J HAZARD MATER, V124, P125, DOI 10.1016/j.hazmat.2005.04.020.
BAE S, 2010, NAT NANOTECHNOL, V5, P574, DOI 10.1038/NNANO.2010.132.
BAHR JL, 2002, J MATER CHEM, V12, P1952.
BAI JW, 2010, NAT NANOTECHNOL, V5, P190, DOI 10.1038/NNANO.2010.8.
BAILEY SE, 1999, WATER RES, V33, P2469.
BAKER JS, 1998, DESALINATION, V118, P81.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BAZANT MZ, 2004, PHYS REV E 1, V70, ARTN 021506.
BAZANT MZ, 2009, NEW J PHYS, V11, ARTN 075016.
BIESHEUVEL PM, 2009, J PHYS CHEM C, V113, P5636, DOI 10.1021/jp809644s.
BIESHEUVEL PM, 2010, PHYS REV E 1, V81, ARTN 031502.
BUNCH JS, 2008, NANO LETT, V8, P2458, DOI 10.1021/nl801457b.
BUTT F, 1985, DESALINATION, V54, P307.
CEJKA J, 2007, INTRO ZEOLITE SCI PR, P1058.
CHEN JH, 2009, PHYS REV LETT, V102, ARTN 236805.
CHEN ZH, 2007, APPL PHYS LETT, V90, UNSP 173108.
CHEUNG CL, 2002, J PHYS CHEM B, V106, P2429.
CHRISTEN K, 2006, ENVIRON SCI TECHNOL, V40, P639.
DRESSELHAUS MS, 1995, CARBON, V33, P883.
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI 10.1007/s10404-004-0012-9.
ELBOURAWI MS, 2006, J MEMBRANE SCI, V285, P4, DOI 10.1016/j.memsci.2006.08.002.
ELDESSOUKY H, 2002, CHEM ENG PROCESS, V41, P551.
ELDESSOUKY H, 2002, HEAT TRANSFER ENG, V23, P1, DOI 10.1080/01457630290090590.
ELDESSOUKY HT, 1999, CHEM ENG J, V73, P173.
ELDIN AMS, 1994, DESALINATION, V99, P73.
ETTOUNEY H, 1999, INT J ENERG RES, V23, P431.
FALK K, 2010, NANO LETT, V10, P4067, DOI 10.1021/nl1021046.
FARMER JC, 1995, EL POW RES I LOW LEV.
FARMER JC, 1996, J APPL ELECTROCHEM, V26, P1007.
FARMER JC, 1996, J ELECTROCHEM SOC, V143, P159.
FATH HES, 1998, DESALINATION, V116, P45.
FISCHBEIN MD, 2008, APPL PHYS LETT, V93, ARTN 113107.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FRANK S, 1998, SCIENCE, V280, P1744.
FRITZMANN C, 2007, DESALINATION, V216, P1, DOI 10.1016/j.desal.2006.12.009.
GABELICH CJ, 2002, ENVIRON SCI TECHNOL, V36, P3010.
GAMBY J, 2001, J POWER SOURCES, V101, P109.
GARAJ S, 2010, NATURE, V467, P190, DOI 10.1038/nature09379.
GEIM AK, 2009, SCIENCE, V324, P1530, DOI 10.1126/science.1158877.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GOOSEN MFA, 2004, SEPAR SCI TECHNOL, V39, P2261, DOI 10.1081/SS-120039343.
GOTZOTSI Y, 2006, CARBON NANOMATERIALS, P326.
GREENLEE LF, 2009, WATER RES, V43, P2317, DOI 10.1016/j.watres.2009.03.010.
GRUNWALD E, 1997, THERMODYNAMICS MOL S, P319.
HAHN WJ, 1986, DESALINATION, V59, P321.
HAMED OA, 1999, DESALINATION, V123, P185.
HAMPSEY JE, 2005, CARBON, V43, P2977, DOI 10.1016/j.carbon.2005.06.004.
HAN JY, 2008, LAB CHIP, V8, P23, DOI 10.1039/b714128a.
HASHIMOTO A, 2004, NATURE, V430, P870, DOI 10.1038/nature02817.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HO D, 2004, IEEE T NANOTECHNOL, V3, P256, DOI 10.1109/tnano.2004.828530.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HWANG SW, 2004, J NON-CRYST SOLIDS, V347, P238, DOI 10.1016/j.jnoncrysol.2004.07.075.
IIJIMA S, 1991, NATURE, V354, P56.
INUI N, 2010, APPL PHYS A-MATER, V98, P787, DOI 10.1007/s00339-009-5528-0.
JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI 10.1016/j.memsci.2007.02.025.
JIANG DE, 2009, NANO LETT, V9, P4019, DOI 10.1021/nl9021946.
JOHNSON AM, 1971, J ELECTROCHEM SOC, V118, P510.
JONES BJ, 2009, ASME, V131, UNSP 121009.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
JUNG HH, 2007, DESALINATION, V216, P377, DOI 10.1016/j.desal.2006.11.023.
KABAY N, 2007, REACT FUNCT POLYM, V67, P1643, DOI 10.1016/j.reactfunctpolym.2007.07.033.
KABAY N, 2008, DESALINATION, V223, P38, DOI 10.1016/j.desal.2007.01.196.
KALOGIROU SA, 2005, PROG ENERG COMBUST, V31, P242, DOI 10.1016/j.pecs.2005.03.001.
KHAWAJI AD, 2008, DESALINATION, V221, P47, DOI 10.1016/j.desal.2007.01.067.
KILIC MS, 2007, PHYS REV E 1, V75, ARTN 021502.
KILIC MS, 2007, PHYS REV E 1, V75, ARTN 021502.
KIM SJ, 2010, NAT NANOTECHNOL, V5, P297, DOI 10.1038/nnano.2010.34.
KIMURA S, 1967, AICHE J, V13, P497.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KRASHENINNIKOV AV, 2001, PHYS REV B, V63, ARTN 245405.
KRASHENINNIKOV AV, 2002, PHYS REV B, V65, ARTN 165423.
LAI ZP, 2004, ADV FUNCT MATER, V14, P716, DOI 10.1002/adfm.200400040.
LAWSON KW, 1997, J MEMBRANE SCI, V124, P1.
LEE C, 2008, SCIENCE, V321, P385, DOI 10.1126/science.1157996.
LEE J, 2010, J APPL PHYS, V108, ARTN 044315.
LEE JB, 2006, DESALINATION, V196, P125, DOI 10.1016/j.desal.2006.01.011.
LEE JB, 2009, DESALINATION, V237, P155, DOI 10.1016/j.desal.2007.11.058.
LEE KP, 2011, J MEMBRANE SCI, V370, P1, DOI 10.1016/j.memsci.2010.12.036.
LI D, 2010, J MATER CHEM, V20, P4551, DOI 10.1039/b924553g.
LI HB, 2008, WATER RES, V42, P4923, DOI 10.1016/j.watres.2008.09.026.
LI J, 2006, J POWER SOURCES, V158, P784, DOI 10.1016/j.jpowsour.2005.09.045.
LI LX, 2004, J MEMBRANE SCI, V243, P401, DOI 10.1016/j.memsci.2004.06.045.
LI LX, 2008, DESALINATION, V228, P217, DOI 10.1016/j.desal.2007.10.010.
LI LX, 2008, DESALINATION, V228, P217, DOI 10.1016/j.desal.2007.10.010.
LI LX, 2009, CARBON, V47, P775, DOI 10.1016/j.carbon.2008.11.012.
LI LX, 2009, SEPAR SCI TECHNOL, V44, P3455, DOI 10.1080/01496390903253395.
LU AH, 2007, ANGEW CHEM INT EDIT, V46, P1222, DOI 10.1002/anie.200602866.
LUCCHESE MM, 2010, CARBON, V48, P1592, DOI 10.1016/j.carbon.2009.12.057.
LUKIC B, 2005, NANO LETT, V5, P2074, DOI 10.1021/nl051034d.
MA ZY, 2009, LANGMUIR, V25, P5446, DOI 10.1021/la900494u.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MALAEB L, 2011, DESALINATION, V267, P1, DOI 10.1016/j.desal.2010.09.001.
MERCHANT CA, 2010, NANO LETT, V10, P2915, DOI 10.1021/nl101046t.
MEYER JC, 2008, NANO LETT, V8, P3582, DOI 10.1021/nl801386m.
MILLER JE, 2003, SAND20030800.
MURAD S, 1998, MOL PHYS, V95, P401.
MURAD S, 2002, IND ENG CHEM RES, V41, P1076.
MURATA K, 2000, NATURE, V407, P599.
MURPHY CJ, 2005, J PHYS CHEM B, V109, P13857, DOI 10.1021/jp0516846.
NARAYAN GP, 2010, RENEW SUST ENERG REV, V14, P1187, DOI 10.1016/j.rser.2009.11.014.
NEOFOFISTOU I, 2004, DESALINATION, V167, P257.
NIYOGI S, 2002, ACCOUNTS CHEM RES, V35, P1105, DOI 10.1021/ar010155r.
NOKED M, 2009, J PHYS CHEM C, V113, P21319, DOI 10.1021/jp905987j.
NOVOSELOV KS, 2004, SCIENCE, V306, P666, DOI 10.1126/science.1102896.
NYGARD J, 2000, NATURE, V408, P342.
OFARRELL N, 2006, INT J NANOMED, V1, P451.
OH HJ, 2006, THIN SOLID FILMS, V515, P220, DOI 10.1016/j.tsf.2005.12.146.
OREN Y, 2008, DESALINATION, V228, P10, DOI 10.1016/j.desal.2007.08.005.
PAN LK, 2009, DESALINATION, V244, P139, DOI 10.1016/j.desal.2008.05.019.
PARK KK, 2007, DESALINATION, V206, P86, DOI 10.1016/j.desal.2006.04.051.
PATANKAR NA, 2004, LANGMUIR, V20, P8209, DOI 10.1021/la048629t.
PATEL S, 1999, DESALINATION, V124, P63.
PAUL DR, 2004, J MEMBRANE SCI, V241, P371, DOI 10.1016/j.memsci.2004.05.026.
PEKALA RW, 1998, J NON-CRYST SOLIDS, V225, P74.
PINT CL, 2008, NANO LETT, V8, P1879, DOI 10.1021/nl0804295.
POMOELL JAV, 2004, J APPL PHYS, V96, P2864, DOI 10.1063/1.1776317.
POTTS E, 1981, DESALINATION, V36, P235.
PROBSTEIN RF, 2003, PHYSICOCHEM HYDRODYN, V15, P400.
RALUY G, 2006, ENERGY, V31, P2361, DOI 10.1016/j.energy.2006.02.005.
RYOO MW, 2003, J COLLOID INTERF SCI, V264, P414, DOI 10.1016/S0021-9797(03)00375-8.
RYOO MW, 2003, WATER RES, V37, P1527.
RYOO R, 2001, ADV MATER, V13, P677.
SABLANI SS, 2001, DESALINATION, V141, P269.
SAHOO SK, 2003, DRUG DISCOV TODAY, V8, P1112.
SAITO M, 2007, JPN J APPL PHYS 2, V46, L1185, DOI 10.1143/JJAP.46.L1185.
SAVAGE N, 2005, J NANOPART RES, V7, P331, DOI 10.1007/s11051-005-7523-5.
SCHNEIDER GF, 2010, NANO LETT, V10, P3163, DOI 10.1021/nl102069z.
SEMIAT R, 2008, ENVIRON SCI TECHNOL, V42, P8193, DOI 10.1021/es801330u.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f.
SOLTANIEH M, 1981, CHEM ENG COMMUN, V12, P279.
SONG C, 2009, J PHYS CHEM B, V113, P7642, DOI 10.1021/jp810102u.
SONUNE A, 2004, DESALINATION, V167, P55, DOI 10.1016/j.desal.2004.06.113.
SPIEGLER KS, 2001, DESALINATION, V134, P109.
STRIEMER CC, 2007, NATURE, V445, P749, DOI 10.1038/nature05532.
SUK ME, 2001, J PHYS CHEM LETT, V1, P1590.
SUN LF, 2000, NATURE, V403, P384.
TANS SJ, 1997, NATURE, V386, P474.
THERON J, 2008, CRIT REV MICROBIOL, V34, P43, DOI 10.1080/10408410701710442.
UGARTE D, 1996, SCIENCE, V274, P1897.
VANDEZANDE P, 2008, CHEM SOC REV, V37, P365, DOI 10.1039/b610848m.
VARANASI KK, 2009, APPL PHYS LETT, V95, ARTN 094101.
VOITH M, 2009, CHEM ENG NEWS, V87, P20.
WANG H, 2007, INT J HEAT MASS TRAN, V50, P3933, DOI 10.1016/j.ijheatmasstransfer.2007.01.052.
WANG J, 2003, J AM CHEM SOC, V125, P2408, DOI 10.1021/ja028951v.
WANG J, 2005, ELECTROANAL, V17, P7, DOI 10.1002/elan.200403113.
WANG XZ, 2006, APPL PHYS LETT, V89, ARTN 053127.
WANG XZ, 2006, ELECTROCHEM SOLID ST, V9, E23, DOI 10.1149/1.2213354.
WEI DC, 2009, NANO LETT, V9, P1752, DOI 10.1021/nl803279t.
WIJMANS JG, 1995, J MEMBRANE SCI, V107, P1.
XU P, 2008, WATER RES, V42, P2605, DOI 10.1016/j.watres.2008.01.011.
XU TW, 2005, J MEMBRANE SCI, V263, P1, DOI 10.1016/j.memsci.2005.05.002.
YANG CM, 2005, DESALINATION, V174, P125, DOI 10.1016/j.desal.2004.09.006.
YANG KL, 2001, LANGMUIR, V17, P1961.
YU M, 2009, NANO LETT, V9, P225, DOI 10.1021/nl802816h.
ZHANG J, 2003, J PHYS CHEM B, V107, P3712, DOI 10.1021/jp027500u.
ZHENG M, 2003, NAT MATER, V2, P338, DOI 10.1038/nmat877.
ZHOU MJ, 2007, J AM CHEM SOC, V129, P9574, DOI 10.1021/ja073067w.
ZOU L, 2008, DESALINATION, V225, P329, DOI 10.1016/j.desal.2007.07.014.
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w.

Cited Reference Count:
177

Times Cited:
1

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied

ISSN:
0957-4484

DOI:
10.1088/0957-4484/22/29/292001

IDS Number:
780PR

========================================================================

*Record 4 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000292104000005
*Order Full Text [ ]

Title:
TRAVELING BEHAVIOR OF A WATER CLUSTER RELEASED FROM A CARBON NANOTUBE

Authors:
Yu, HQ; Li, YF; Li, H; Liew, KM

Author Full Names:
Yu, H. Q.; Li, Y. F.; Li, H.; Liew, K. M.

Source:
NANO 6 (3): 231-237 JUN 2011

Language:
English

Document Type:
Article

Author Keywords:
Traveling behavior; energy barrier; three-dimensional motion; graphite sheet; electric charges

KeyWords Plus:
MASS-TRANSPORT; MEMBRANES; CHANNEL; CONDUCTION; CHEMISTRY; DYNAMICS; SURFACES; LIQUIDS; ANIONS; MODEL

Abstract:
Molecular dynamics simulation is used to observe the traveling behavior of a water cluster released from the interior of single-walled carbon nanotube (SWCNT) to a graphite sheet. The simulation results reveal that there is a need for the water cluster overcoming the energy barrier of the binding energy between the water cluster and the SWCNT to escape from the tube. The water cluster undergoes a three-dimensional motion when released from the SWCNT, due to the effect of the thermal velocity. When encountering the graphite sheet in the forward direction, the x axis impact velocity has much effect on the delivery of the water cluster. The fact that the water cluster is bounced back reduces the possibility of being captured by the graphite sheet, resulting in a decrease in the delivery efficiency of the water cluster. The presence of the electric charges can help the graphite sheet to effectively trap the water cluster. These results have implications for the design and fabric!
ation of novel drug delivery devices.

Reprint Address:
Li, H, Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China.

Research Institution addresses:
[Yu, H. Q.; Li, Y. F.; Li, H.] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China; [Liew, K. M.] City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China

E-mail Address:
lihuilmy@hotmail.com

Cited References:
CHEN X, 2007, P NATL ACAD SCI USA, V104, P8218, DOI 10.1073/pnas.0700567104.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
FRISCH MJ, 2004, GAUSSIAN 03 REVISION.
GUO ZH, 2009, PHYS LETT A, V4, P462.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 174714.
HANASAKI I, 2008, J PHYS-CONDENS MAT, V20, ARTN 015213.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JENA P, 2006, P NATL ACAD SCI USA, V103, P10560, DOI 10.1073/pnas.0601782103.
JUNG YC, 2008, LANGMUIR, V24, P6262, DOI 10.1021/la8003504.
KALRA A, 2004, J PHYS CHEM B, V108, P544, DOI 10.1021/jp035828x.
KOGA K, 2001, NATURE, V412, P802.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LO SY, 2009, PHYS LETT A, V373, P3872, DOI 10.1016/j.physleta.2009.08.061.
LOZANO CD, 2002, J PHYS CHEM B, V106, P9372.
MAHESHWARY S, 2001, J PHYS CHEM A, V105, P10525.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
PARK S, 2009, NANO LETT, V9, P1325, DOI 10.1021/nl802962t.
SAMHA MA, 2008, J CHEM PHYS, V128, UNSP 154710.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
STACE A, 2001, SCIENCE, V294, P1292.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TANG DS, 2006, CARBON, V44, P2155, DOI 10.1016/j.carbon.2006.03.023.
TELEMAN O, 1987, MOL PHYS, V60, P193.
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI 10.1073/pnas.0407968101.
VERLET JRR, 2005, SCIENCE, V307, P93, DOI 10.1126/science.1106719.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WALTHER JH, 2004, CARBON, V42, P1185, DOI 10.1016/j.carbon.2003.12.071.
WANG BY, 2006, J AM CHEM SOC, V128, P15984, DOI 10.1021/ja066431k.
XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
ZAPPA F, 2008, J AM CHEM SOC, V130, P5573, DOI 10.1021/ja075421w.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
35

Times Cited:
0

Publisher:
WORLD SCIENTIFIC PUBL CO PTE LTD; 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE

Subject Category:
Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied

ISSN:
1793-2920

DOI:
10.1142/S1793292011002603

IDS Number:
783SJ

========================================================================

*Record 5 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000292124000061
*Order Full Text [ ]

Title:
Membranes of Vertically Aligned Superlong Carbon Nanotubes

Authors:
Du, F; Qu, LT; Xia, ZH; Feng, LF; Dai, LM

Author Full Names:
Du, Feng; Qu, Liangti; Xia, Zhenhai; Feng, Lianfang; Dai, Liming

Source:
LANGMUIR 27 (13): 8437-8443 JUL 5 2011

Language:
English

Document Type:
Article

KeyWords Plus:
COMPOSITES; TRANSPORT; SIDEWALL; FRACTION; CHANNEL; ARRAYS; FLOW

Abstract:
In the present work, we have developed a simple but effective method to prepare superlong vertically aligned carbon nanotubes (SLVA-CNT) and epoxy composite membranes, and we have demonstrated that various liquids, including water, hexane, and dodecane, can effectively pass through the SLVA-CNT membranes. These results were confirmed by molecular dynamics simulations, While the mechanical densification was used to further enhance the flow transport through the SLVA-CNT membranes, we developed in this study a magnetic-nanoparticle switching system to turn on and off the flow through the nanotube membrane by simply applying an alternating voltage. The methodologies developed in this study should have a significant implication to the development of various smart membranes for advanced intelligent systems.

Reprint Address:
Dai, LM, Case Western Reserve Univ, Case Sch Engn, Dept Macromol Sci & Engn, 10900 Euclid Ave, Cleveland, OH 44106 USA.

Research Institution addresses:
[Du, Feng; Dai, Liming] Case Western Reserve Univ, Case Sch Engn, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA; [Du, Feng; Dai, Liming] Case Western Reserve Univ, Case Sch Engn, Dept Chem Engn, Cleveland, OH 44106 USA; [Du, Feng; Qu, Liangti; Dai, Liming] Univ Dayton, Sch Engn, Dept Chem & Mat Engn, Dayton, OH 45469 USA; [Qu, Liangti] Beijing Inst Technol, Sch Sci, Dept Chem, Key Lab Cluster Sci, Beijing 100081, Peoples R China; [Xia, Zhenhai] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA; [Feng, Lianfang] Zhejiang Univ, Dept Chem & Biol Engn, State Key Lab Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China

E-mail Address:
liming.dai@case.edu

Cited References:
CHAKRABARTI S, 2008, J PHYS CHEM C, V112, P8136, DOI 10.1021/jp802059t.
CHANG DW, 2007, NANOTECHNOLOGY, V18, ARTN 365605.
CHOPRA N, 2005, ADV FUNCT MATER, V15, P858, DOI 10.1002/adfm.200400399.
CONNOLLY MJ, 2008, LANGMUIR, V24, P3228.
COOPER SM, 2004, NANO LETT, V4, P377, DOI 10.1021/nl0350682.
DAI L, 2006, CARBON NANOTECHNOLOG.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
GIANCANE G, 2010, ADV FUNCT MATER, V20, P2481, DOI 10.1002/adfm.201000290.
GOEL G, 2008, PHYS REV LETT, V100, ARTN 106001.
GONG KP, 2008, ANGEW CHEM INT EDIT, V47, P5446, DOI 10.1002/anie.200801744.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GULDI DM, 2004, J PHYS CHEM B, V108, P8770, DOI 10.1021/jp048504x.
HARRIS PJF, 1999, CARBON NANOTUBES REL.
HATA K, 2004, SCIENCE, V306, P1362.
HINDS B, 2006, CARBON NANOTECHNOLOG.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
LEE CY, 2010, SCIENCE, V329, P1320, DOI 10.1126/science.1193383.
LEE KM, 2005, J AM CHEM SOC, V127, P4122.
LIU JW, 2007, J APPL PHYS, V101, ARTN 064312.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAMEDOV AA, 2002, NAT MATER, V1, P190, DOI 10.1038/nmat747.
MITTAL J, 2007, J PHYS CHEM B, V111, P10054, DOI 10.1021/jp071369e.
NEDNOOR P, 2007, J MATER CHEM, V17, P1755, DOI 10.1039/b703365f.
QU L, 2007, ADV MATER, V19, P3844, DOI 10.1002/adma.200700023.
QU LT, 2008, SCIENCE, V322, P238, DOI 10.1126/science.1159503.
SHAO Q, 2007, J PHYS CHEM C, V111, P15677, DOI 10.1021/jp0736140.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
THOMAS JA, 2010, INT J THERM SCI, V49, P281, DOI 10.1016/j.ijthermalsci.2009.07.008.
TORSI L, 2008, NAT MATER, V7, P412, DOI 10.1038/nmat2167.
WARDLE BL, 2008, ADV MATER, V20, P2707, DOI 10.1002/adma.200800295.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
WON CY, 2007, CHEM COMMUN, V129, P2748.

Cited Reference Count:
34

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0743-7463

DOI:
10.1021/la200995r

IDS Number:
783ZS

========================================================================

*Record 6 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000291896000012
*Order Full Text [ ]

Title:
Carbon Nanotube Wins the Competitive Binding over Proline-Rich Motif Ligand on SH3 Domain

Authors:
Zuo, GH; Gu, W; Fang, HP; Zhou, RH

Author Full Names:
Zuo, Guanghong; Gu, Wei; Fang, Haiping; Zhou, Ruhong

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 115 (25): 12322-12328 JUN 30 2011

Language:
English

Document Type:
Article

KeyWords Plus:
REPLICA EXCHANGE; STRUCTURAL BASIS; MULTIDOMAIN PROTEIN; IN-VIVO; WATER; RECOGNITION; MECHANISM; NANOPARTICLES; SIMULATION; PEPTIDES

Abstract:
The binding competition between a proline-rich motif (PRM) ligand and a hydrophobic nanoparticle, the single-wall carbon nanotube (SWCNT), at the binding pocket of SH3 domain, has been investigated by molecular dynamics simulations. It is found that the SWCNT has a very high probability of occupying the binding pocket of the SH3 domain, which prevents the PRM ligand from binding to the pocket. The binding free energy landscapes show that the SWCNT has similar to 0.6 kcal/mol stronger binding affinity than the ligand in the three-way binding competition (SWCNT + ligand + protein). The potent binding affinity between the SWCNT and the SH3 domain is shown to be mainly from the pi-pi stacking interactions between the CNT and aromatic residues in the binding pocket. Our findings show that the existence of hydrophobic particles can greatly reduce the possibility of the regular binding of the ligand with the target protein, suggesting potential toxicity to proteins by hydrophobic n!
anoscale particles.

Reprint Address:
Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204, Shanghai 201800, Peoples R China.

Research Institution addresses:
[Zuo, Guanghong; Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Zuo, Guanghong; Fang, Haiping] Fudan Univ, Dept Phys, T Life Res Ctr, Shanghai 200433, Peoples R China; [Gu, Wei] Univ Saarland, Zentrum Bioinformat, D-66041 Saarbrucken, Germany; [Zhou, Ruhong] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA; [Zhou, Ruhong] Columbia Univ, Dept Chem, New York, NY 10027 USA

E-mail Address:
fanghaiping@sinap.ac.cn; ruhongz@us.ibm.com

Cited References:
AHMAD M, 2008, ANGEW CHEM INT EDIT, V47, P7626, DOI 10.1002/anie.200801856.
ALLEN BL, 2008, NANO LETT, V8, P3899, DOI 10.1021/nl802315h.
BALL LJ, 2005, ANGEW CHEM INT EDIT, V44, P2852, DOI 10.1002/anie.200400618.
BECKER ML, 2007, ADV MATER, V19, P939, DOI 10.1002/adma.200602667.
BROWN S, 2008, SMALL, V4, P416, DOI 10.1002/smll.200700940.
BUCCIANTINI M, 2002, NATURE, V416, P507.
CHEN Z, 2006, TOXICOL LETT, V163, P109, DOI 10.1016/j.toxlet.2005.10.003.
DONALDSON K, 2006, TOXICOL SCI, V92, P5, DOI 10.1093/toxsci/kfj130.
DUAN Y, 1998, SCIENCE, V282, P740.
DUAN Y, 2003, J COMPUT CHEM, V24, P1999, DOI 10.1002/jcc.10349.
GAO YQ, 2005, CELL, V123, P195, DOI 10.1016/j.cell.2005.10.001.
GARCIA AE, 2008, J AM CHEM SOC, V130, P815, DOI 10.1021/ja074191i.
GILBERT N, 2009, NATURE, V460, P937, DOI 10.1038/460937a.
GIOVAMBATTISTA N, 2008, P NATL ACAD SCI USA, V105, P2274, DOI 10.1073/pnas.0708088105.
GOLDBERGOPPENHEIMER P, 2007, SMALL, V3, P1894, DOI 10.1002/smll.200700124.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GORINA S, 1996, SCIENCE, V274, P1001.
HESS B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q.
HU WB, 2010, ACS NANO, V4, P4317, DOI 10.1021/nn101097v.
HUA L, 2006, J PHYS CHEM B, V110, P3704, DOI 10.1021/jp055399y.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KARAJANAGI SS, 2004, LANGMUIR, V20, P11594, DOI 10.1021/la047994h.
KARPLUS M, 2005, PHILOS T ROY SOC A, V363, P331, DOI 10.1098/rsta.2004.1496.
KOBASHIGAWA Y, 2007, NAT STRUCT MOL BIOL, V14, P503, DOI 10.1038/nsmb1241.
KRONE MG, 2008, J AM CHEM SOC, V130, P11066, DOI 10.1021/ja8017303.
LEVY Y, 2004, P NATL ACAD SCI USA, V101, P511, DOI 10.1073/pnas.2534828100.
LI HK, 2005, ANGEW CHEM INT EDIT, V44, P5100, DOI 10.1002/anie.200500403.
LI WF, 2008, J AM CHEM SOC, V130, P892, DOI 10.1021/ja075302g.
LI XF, 2006, J BIOL CHEM, V281, P28430, DOI 10.1074/jbc.M604135200.
LINDMAN S, 2007, NANO LETT, V7, P914, DOI 10.1021/nl062743+.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
LIU P, 2006, J PHYS CHEM B, V110, P19018, DOI 10.1021/jp060365r.
MACIAS MJ, 2002, FEBS LETT, V513, P30.
MAYOR U, 2003, NATURE, V421, P863, DOI 10.1038/nature01428.
MICHALET X, 2005, SCIENCE, V307, P538, DOI 10.1126/science.1104274.
MIRNY L, 2001, ANNU REV BIOPH BIOM, V30, P361.
MIYASHITA N, 2009, J AM CHEM SOC, V131, P17843, DOI 10.1021/ja905457d.
NADASSY K, 1999, BIOCHEMISTRY-US, V38, P1999.
NEL A, 2006, SCIENCE, V311, P622, DOI 10.1126/science.1114397.
NGUYEN JT, 1998, SCIENCE, V282, P2088.
PARK KH, 2003, J BIOL CHEM, V278, P50212, DOI 10.1074/jbc.M310216200.
ROITBERG AE, 2007, J PHYS CHEM B, V111, P2415, DOI 10.1021/jp068335b.
ROSI NL, 2006, SCIENCE, V312, P1027, DOI 10.1126/science.1125559.
SCHREIBER G, 1996, NAT STRUCT BIOL, V3, P427.
SELZER T, 2000, NAT STRUCT BIOL, V7, P537.
SERVICE RF, 2000, SCIENCE, V290, P1526.
SHEN JW, 2008, BIOMATERIALS, V29, P3847, DOI 10.1016/j.biomaterials.2008.06.013.
SNOW CD, 2002, NATURE, V420, P102, DOI 10.1038/nature01160.
TOMASIO SD, 2007, MOL PHYS, V105, P221, DOI 10.1080/00268970701197445.
TU YS, 2009, P NATL ACAD SCI USA, V106, P18120, DOI 10.1073/pnas.0902676106.
VENTER JC, 2001, SCIENCE, V291, P1304.
WANG SQ, 2003, NAT MATER, V2, P196, DOI 10.1038/nmat833.
WANG X, 2008, CA-CANCER J CLIN, V58, P97, DOI 10.3322/CA.2007.0003.
WU XD, 1995, STRUCTURE, V3, P215.
ZARRINPAR A, 2003, SCI STKE, RE8, DOI 10.1126/STKE.2003.179.RE8.
ZHAO YL, 2008, NAT NANOTECHNOL, V3, P191, DOI 10.1038/nnano.2008.77.
ZHENG LF, 2009, J PHYS CHEM C, V113, P3978, DOI 10.1021/jp809370z.
ZHOU RH, 2004, J MOL GRAPH MODEL, V22, P451, DOI 10.1016/j.jmgm.2003.12.011.
ZHOU RH, 2004, SCIENCE, V305, P1605.
ZHOU RH, 2007, P NATL ACAD SCI USA, V104, P5824, DOI 10.1073/pnas.0701249104.
ZUO GH, 2009, PHYS REV E 1, V79, ARTN 031925.
ZUO GH, 2010, ACS NANO, V4, P7508, DOI 10.1021/nn101762b.

Cited Reference Count:
63

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp2026303

IDS Number:
780XZ

========================================================================

*Record 7 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000291896000028
*Order Full Text [ ]

Title:
Phase Transitions of Water in Graphite and Mica Pores

Authors:
Srivastava, R; Docherty, H; Singh, JK; Cummings, PT

Author Full Names:
Srivastava, Rajat; Docherty, Hugh; Singh, Jayant K.; Cummings, Peter T.

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 115 (25): 12448-12457 JUN 30 2011

Language:
English

Document Type:
Article

KeyWords Plus:
HYDROPHOBIC SURFACES; HYDRATION WATER; SIMPLE LIQUIDS; CONFINEMENT; SIMULATION; DYNAMICS; FLUIDS; VISCOSITY; HEAT

Abstract:
We report all-atom molecular dynamics simulations of water confined in graphite and mica slit pores of variable size ranging from 10 to 60 angstrom. For each pore size, we demonstrate that the confinement not only reduces the critical temperature of the water but also introduces inhomogeneity in the system that, in turn, results in different vapor liquid coexistence densities at different layers of the pore. We report, in detail, the contribution of different layers toward the vapor liquid phase diagram of the confined water in graphite and mica slit pores. We also present the hydrogen bonding (HB) distribution in various layers and the ordering of water molecules near the surface of pore. Bond orientational order calculations of water near the surface of the pores indicate that water molecules tend to order near the mica surface whereas the ordering is absent for the case of graphite pores.

Reprint Address:
Singh, JK, Indian Inst Technol, Dept Chem Engn, Kanpur 208016, Uttar Pradesh, India.

Research Institution addresses:
[Srivastava, Rajat; Singh, Jayant K.] Indian Inst Technol, Dept Chem Engn, Kanpur 208016, Uttar Pradesh, India; [Docherty, Hugh; Cummings, Peter T.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA; [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA

E-mail Address:
jayantks@iitk.ac.in; petercummings@vanderbilt.edu

Cited References:
ABASCAL JLF, 2005, J CHEM PHYS, V123, ARTN 234505.
BARTKOWIAK MS, 2001, J CHEM PHYS, V114, P950.
BINDER K, 1972, PHYS REV B, V6, P3461.
BINDER K, 1974, PHYS REV B, V9, P2194.
BINDER K, 1983, PHASE TRANSITIONS CR, P1.
BROVCHENKO I, 2004, J PHYS-CONDENS MAT, V16, S5345, DOI 10.1088/0953-8984/16/45/004.
BROVCHENKO I, 2008, INTERFACIAL CONFINED.
CASTRILLON SRV, 2009, J PHYS CHEM B, V113, P1438, DOI 10.1021/jp809032n.
COASNE B, 2007, PHYS REV B, V76, ARTN 085416.
CUI ST, 2001, J CHEM PHYS, V114, P7189.
CUMMINGS PT, 2010, AICHE J, V56, P842, DOI 10.1002/aic.12226.
DARHUBER AA, 2005, ANNU REV FLUID MECH, V37, P425, DOI 10.1146/annurev.fluid.36.050802.122052.
DOCHERTY H, 2010, SOFT MATTER, V6, P1640, DOI 10.1039/c000821d.
GIOVAMBATTISTA N, 2009, PHYS REV LETT, V102, ARTN 050603.
GORDILLO MC, 2005, J CHEM PHYS, V123, ARTN 054707.
HAN SH, 2009, PHYS REV E 1, V79, ARTN 041202.
HEINZ H, 2005, CHEM MATER, V17, P5658, DOI 10.1021/cm0509328.
HUA L, 2007, J PHYS CHEM B, V111, P9069, DOI 10.1021/jp0707923.
HUMMER G, 2001, NATURE, V414, P188.
KLEIN J, 1995, SCIENCE, V269, P816.
KLEIN J, 1998, J CHEM PHYS, V108, P6996.
KOGA K, 2001, NATURE, V412, P802.
LUZAR A, 1996, NATURE, V379, P55.
MERCADO YR, 2009, PHYSICA A, V388, P799.
MERMIN ND, 1968, PHYS REV, V176, P250.
NGUYEN VT, 2010, J PHYS CHEM C, V114, P22171, DOI 10.1021/jp107273y.
OLEINIKOVA A, 2006, MOL PHYS, V104, P3841, DOI 10.1080/00268970601108229.
OLEINIKOVA A, 2010, EPL-EUROPHYS LETT, V90, ARTN 36001.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
RADHAKRISHNAN IT, 2002, J CHEM PHYS, V116, P1147.
RADHAKRISHNAN R, 2000, J CHEM PHYS, V112, P11048.
RAVIV U, 2002, J PHYS-CONDENS MAT, V14, P9275.
ROTHBAUER R, 1971, NEUES JB MINER MONAT, P143.
ROWLINSON JS, 1982, LIQUIDS LIQUID MIXTU.
ROWLINSON JS, 1982, MOL THEORY CAPILLARI.
SINGH JK, 2007, J CHEM PHYS, V126, ARTN 024702.
SWIATLAWOJCIK D, 2007, CHEM PHYS, V342, P260, DOI 10.1016/j.chemphys.2007.10.009.
ZANGI R, 2004, J PHYS-CONDENS MAT, V16, S5371, DOI 10.1088/0953-8984/16/45/005.
ZHOU RH, 2004, SCIENCE, V305, P1605.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096104.

Cited Reference Count:
40

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp2003563

IDS Number:
780XZ

========================================================================

*Record 8 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000292113700031
*Order Full Text [ ]

Title:
Anomalous decline of water transport in covalently modified carbon nanotube membranes

Authors:
Majumder, M; Corry, B

Author Full Names:
Majumder, Mainak; Corry, Ben

Source:
CHEMICAL COMMUNICATIONS 47 (27): 7683-7685 2011

Language:
English

Document Type:
Article

KeyWords Plus:
IONIC-DIFFUSION; MASS-TRANSPORT; CHANNEL; PORES; FLOW

Abstract:
Carbon nanotube membranes have been shown to rapidly transport liquids; but progressive hydrophilic modification-contrary to expectations-induces a drastic reduction of water flow. Enhanced electrostatic interaction and the disruption of the mechanically smooth graphitic walls is the determinant of this behavior. These results have critical implications in the design of nanofluidic devices.

Reprint Address:
Majumder, M, Monash Univ, NSEL, Clayton, Vic, Australia.

Research Institution addresses:
[Majumder, Mainak] Monash Univ, NSEL, Clayton, Vic, Australia; [Corry, Ben] Univ Western Australia, Sch Biomed Biomol & Chem Sci, Perth, WA 6009, Australia

E-mail Address:
mainak.majumder@monash.edu; ben.corry@uwa.edu.au

Cited References:
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
CORRY B, 2011, ENERG ENVIRON SCI, V4, P751, DOI 10.1039/c0ee00481b.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FORNASIERO F, 2010, LANGMUIR, V26, P14848, DOI 10.1021/la101943h.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
LEE CY, 2010, SCIENCE, V329, P1320, DOI 10.1126/science.1193383.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k.
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI 10.1016/j.memsci.2007.09.068.
MAJUMDER M, 2011, ACS NANO, V5, P3867, DOI 10.1021/nn200222g.
WU J, 2010, P NATL ACAD SCI US.

Cited Reference Count:
15

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Multidisciplinary

ISSN:
1359-7345

DOI:
10.1039/c1cc11134e

IDS Number:
783WB

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, July 1, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000291731900017
*Order Full Text [ ]

Title:
Effect of the position of constriction on water permeation across a single-walled carbon nanotube

Authors:
Wu, LS; Wu, FM; Kou, JL; Lu, HJ; Liu, Y

Author Full Names:
Wu, Linsong; Wu, Fengmin; Kou, Jianlong; Lu, Hangjun; Liu, Yang

Source:
PHYSICAL REVIEW E 83 (6): Art. No. 061913 Part 1 JUN 16 2011

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; CHANNELS; TRANSPORT; CONDUCTION; AQUAPORIN-1; SIMULATION; MEMBRANES; IONS

Abstract:
The transportation of water across a cell membrane facilitated by water channel proteins is fundamental to the normal water metabolism in all forms of life. It is understood that the narrow region in a water channel is responsible for gating or selectivity. However, the influence of the position of the narrow region on water transportation is still not thoroughly understood. By choosing a single-walled carbon nanotube (SWNT) as a simplified model and using molecular dynamics simulation, we have found that the water flux through the nanotube would change significantly if the narrow location moves away from the middle region along the tube. Simulation results show that the flux reaches the maximum when the deformation occurs in the middle part of nanotube and decreases as the deformation location moves toward the ends of the nanotube. However, the decrease of water flux is not monotonic and the flux gets the minimum near the ends. These interesting phenomena can be explained in terms of water-water interactions and water-SWNT interactions. It can be concluded that the regulation of water transportation through nanopores depends sensitively on the location of the narrow region, and these findings are helpful in devising high flux nanochannels and nanofiltration as well.

Reprint Address:
Wu, LS, Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China.

Research Institution addresses:
[Wu, Linsong; Wu, Fengmin; Kou, Jianlong; Lu, Hangjun] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China; [Liu, Yang] Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China

E-mail Address:
zjlhjun@zjnu.cn; mmyliu@polyu.edu.hk

Cited References:
ANDREEV S, 2005, J CHEM PHYS, V123, P94502, ARTN 194502.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI 10.1073/pnas.0408098102.
CHINAPPI M, 2006, PHYS REV LETT, V97, ARTN 144509.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
FRENKEL D, 1996, UNDERSTANDING MOL SI.
FUJIYOSHI Y, 2002, CURR OPIN STRUC BIOL, V12, P509.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
GONG XJ, 2010, J AM CHEM SOC, V132, P1873, DOI 10.1021/ja905753p.
GROOT BL, 2001, SCIENCE, V294, P2353.
HASHIDO M, 2007, BIOPHYS J, V93, P373, DOI 10.1529/biophysj.107.101170.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
JENSEN MO, 2002, P NATL ACAD SCI USA, V99, P6731.
JENSEN MO, 2003, BIOPHYS J, V85, P2884.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2001, NATURE, V412, P802.
KOSZTIN I, 2006, J CHEM PHYS, V124, P64106, ARTN 064106.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU B, 2009, NANO LETT, V9, P1386, DOI 10.1021/nl8030339.
LU HJ, 2008, J PHYS CHEM B, V112, P16777, DOI 10.1021/jp802263v.
LU HJ, 2008, PHYS REV B, V77, ARTN 174115.
MURATA K, 2000, NATURE, V407, P599.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
SANSOM MSP, 2001, CURR BIOL, V11, R71.
SUI HX, 2001, NATURE, V414, P872.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
YE H, 2004, NANOTECHNOLOGY, V15, P1.
ZHU FQ, 2002, BIOPHYS J, V83, P154.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.

Cited Reference Count:
38

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Fluids & Plasmas; Physics, Mathematical

ISSN:
1539-3755

DOI:
10.1103/PhysRevE.83.061913

IDS Number:
778UG

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================