Friday, June 26, 2009

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 22 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266786500066
*Order Full Text [ ]

Title:
Interaction kinetics of atoms and molecules on carbon nanotube surfaces

Authors:
Ulbricht, H

Author Full Names:
Ulbricht, Hendrik

Source:
SURFACE SCIENCE 603 (10-12): 1853-1862 Sp. Iss. SI JUN 1 2009

Language:
English

Document Type:
Article

Author Keywords:
Thermal desorption spectroscopy; Electrical transport measurements; Laser induced thermal desorption (LITD); Adsorption kinetics; Surface diffusion; Ammonia; Xenon; Carbon nanotubes

KeyWords Plus:
PHYSICAL ADSORPTION; THERMOELECTRIC-POWER; THERMAL-DESORPTION; GRAPHITE; BUNDLES; GASES; XE; SENSITIVITY; HYDROGEN; SENSORS

Abstract:
We review recent experimental investigations of the interaction of gases with the surface of single-wall carbon nanotube bundles. We discuss thermal desorption spectra of both non-polar and polar adsorbates for low and high coverage. We show experimental results for diffusion processes of Xe along and within carbon nanotube bucky paper material, which is consistent with a recently proposed coupled desorption diffusion (CDD) model. We further discuss details of the interaction of ammonia with carbon nanotube surfaces, including the experimental investigation of the influence of adsorbed ammonia on the electrical transport properties of carbon nanotubes under ultra-high vacuum conditions. (C) 2009 Elsevier B.V. All rights reserved.

Reprint Address:
Ulbricht, H, Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.

Research Institution addresses:
Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England

E-mail Address:
h.ulbricht@soton.ac.uk

Cited References:
AHUJA R, 1997, PHYS REV B, V55, P4999.
ARNOLD MS, 2006, NAT NANOTECHNOL, V1, P60, DOI 10.1038/nnano.2006.52.
BRADLEY K, 2000, PHYS REV LETT, V85, P4361.
BRADLEY K, 2003, PHYS REV LETT, V91, ARTN 218301.
CHAKAROV DV, 1995, VACUUM, V46, P1109.
CHANG H, 2001, APPL PHYS LETT, V79, P3863.
CHRISTMANN K, 1991, INTRO SURFACE PHYS C.
COLLINS PG, 2000, SCIENCE, V287, P1801.
COOPER SM, 2003, NANO LETT, V3, P189, DOI 10.1021/nl0259131.
DERYCKE V, 2002, APPL PHYS LETT, V80, P2773.
FISCHER JE, 1997, PHYS REV B, V55, P4921.
FUJIWARA A, 2001, CHEM PHYS LETT, V336, P205.
GEORGE SM, 1985, SURF SCI, V159, L425.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
HASSELBRINK E, 1995, LASER SPECTROSCOPY P.
HONE J, 1998, PHYS REV LETT, V80, P1042.
JORIO A, 2008, CARBON NANOTUBES ADV.
KAISER AB, 1999, SYNTHETIC MET, V103, P2547.
KING DA, 1974, P ROY SOC LOND A MAT, V339, P245.
KINGREY D, 2006, NANO LETT, V6, P1564, DOI 10.1021/nl060058x.
KISLIUK P, 1957, J PHYS CHEM SOLIDS, V3, P95.
KODRATYUK P, 2004, CHEM PHYS LETT, V383, P314.
KONDRATYUK P, 2007, ACCOUNTS CHEM RES, V40, P995, DOI 10.1021/ar700013c.
KONG J, 2000, SCIENCE, V287, P622.
KRAL P, 2001, PHYS REV LETT, V86, P131.
KRUPKE R, 2003, SCIENCE, V301, P344, DOI 10.1126/science.1086534.
KUZNETSOVA A, 2000, J CHEM PHYS, V112, P9590.
KUZNETSOVA A, 2001, J CHEM PHYS, V115, P6691.
MADELUNG O, 1996, INTRO SOLID STATE TH.
MOTT NF, 1979, ELECT PROCESSES NONC.
NAREHOOD DG, 2003, PHYS REV B, V67, ARTN 205409.
NIENHAUS H, 1999, PHYS REV LETT, V82, P446.
REDHEAD PA, 1962, VACUUM, V12, P203.
RINZLER AG, 1998, APPL PHYS A-MATER, V67, P29.
ROMERO HE, 2005, SCIENCE, V307, P89, DOI 10.1126/science.1102004.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
TALAPATRA S, 2002, PHYS REV LETT, V89, ARTN 246106.
ULBRICHT H, 2002, CHEM PHYS LETT, V363, P252.
ULBRICHT H, 2002, PHYS REV B, V66, ARTN 075404.
ULBRICHT H, 2003, J PHYS CHEM B, V107, P14185, DOI 10.1021/jp0353385.
ULBRICHT H, 2003, PHYS REV LETT, V90, ARTN 095501.
ULBRICHT H, 2003, SURF SCI, V532, P852, DOI 10.1016/S0039-6028(03)00104-3.
ULBRICHT H, 2006, CARBON, V44, P2931, DOI 10.1016/j.carbon.2006.05.040.
ULBRICHT H, 2008, NANOTECHNOLOGY, V19, ARTN 045502.
VIDALI G, 1991, SURF SCI REP, V12, P133.
ZACHARIA R, 2004, PHYS REV B, V69, ARTN 155406.
ZHANG Y, 2000, CHEM PHYS LETT, V331, P35.
ZHAO JJ, 2002, NANOTECHNOLOGY, V13, P195.

Cited Reference Count:
48

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Chemistry, Physical; Physics, Condensed Matter

ISSN:
0039-6028

DOI:
10.1016/j.susc.2008.09.062

IDS Number:
455ST

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266652600023
*Order Full Text [ ]

Title:
Affinity of Drugs and Small Biologically Active Molecules to Carbon Nanotubes: A Pharmacodynamics and Nanotoxicity Factor?

Authors:
Liu, J; Yang, L; Hopfinger, AJ

Author Full Names:
Liu, John; Yang, Liu; Hopfinger, Anton J.

Source:
MOLECULAR PHARMACEUTICS 6 (3): 873-882 MAY-JUN 2009

Language:
English

Document Type:
Article

Author Keywords:
Molecular dynamics; drug binding; carbon nanotubes; nanotoxicity; pharmacodynamics

KeyWords Plus:
HUMAN SERUM-ALBUMIN; ENVIRONMENTAL-HEALTH; NANOTECHNOLOGY; BINDING; KERATINOCYTES; CONFORMATION; MECHANICS; TOXICITY; EXPOSURE; PACKING

Abstract:
The MM-PBSA MD method was used to estimate the affinity, as represented by log k(b), of each of a variety of biologically active molecules to a carbon nanotube in an aqueous environment. These ligand-receptor binding simulations were calibrated by first estimating the log k(b) values for eight ligands to human serum albumin, HSA, whose log k(b) values have been observed. A validation linear correlation equation was established [R-2 = 0.888, Q(2) = 0.603] between the observed and estimated log k(b) values to HSA. This correlation equation was then used to rescale all MM-PBSA MD log k(b) values using a carbon nanotube as the receptor. The log k(b) of the eight HSA ligands, nine polar and/or rigid ligands and six nonpolar and/or flexible ligands to a carbon nanotube were estimated. The range in rescaled log k(b) values across this set of 23 ligands is 0.25 to 7.14, essentially 7 orders of magnitude. Some ligands, like PG12, bind in the log k(b) = 7 range which corresponds to th!
e lower limits of known drugs. Thus, such significant levels of binding of biologically relevant compounds to carbon nanotubes might lead to alterations in the normal pharmacodynamic profiles of these compounds and be a source of toxicity. Ligand binding potency to a carbon nanotube is largely controlled by the shape, polarity/nonpolarity distribution and flexibility of the ligand. HSA ligands exhibit the most limited binding to a carbon nanotube, and they are relatively rigid and of generally spherical shape. Polar and/or rigid ligands bind less strongly to the carbon nanotube, on average, than nonpolar and/or flexible ligands even though the chosen members of both classes of ligands in this study have chainlike shapes that facilitate binding. The introduction of only a few strategically spaced single bonds in the polar and/or rigid ligands markedly increases their binding to a carbon nanotube.

Reprint Address:
Hopfinger, AJ, 1 Univ New Mexico, Coll Pharm, 2502 Marble,NE,Rm 179,NRPH Bldg,MSC09 5360, Albuquerque, NM 87131 USA.

Research Institution addresses:
[Hopfinger, Anton J.] 1 Univ New Mexico, Coll Pharm, Albuquerque, NM 87131 USA; [Liu, John; Hopfinger, Anton J.] Chem21 Grp Inc, Lake Forest, IL 60045 USA; [Yang, Liu] Univ Delaware, Dept Chem & Biochem, Newark, DE 19711 USA

E-mail Address:
hopfingr@unm.edu

Cited References:
2007, ENV MOL MUTAGEN, V48, P524.
BHATTACHARYA AA, 2000, J BIOL CHEM, V275, P38731.
BRADSHAW JP, 1999, BIOCHEMISTRY-US, V38, P8393.
CASE DA, 2006, AMBER 9.
CHAKRAVARTY P, 2008, P NATL ACAD SCI USA, V105, P8697, DOI 10.1073/pnas.0803557105.
DONALDSON K, 2004, OCCUP ENVIRON MED, V61, P727, DOI 10.1136/oem.2004.013243.
FISCHER HC, 2007, CURR OPIN BIOTECH, V18, P565, DOI 10.1016/j.copbio.2007.11.008.
GENAIDY A, 2006, HUM FACTOR ERGON MAN, V16, P247, DOI 10.1002/hfm.20051.
GHUMAN J, 2005, J MOL BIOL, V353, P38, DOI 10.1016/j.jmb.2005.07.075.
GUO L, 2008, SMALL, V4, P721, DOI 10.1002/smll.200700754.
HAUPTMANN J, 2002, EUR J CLIN PHARMACOL, V57, P751.
HAUSER H, 1981, BIOCHIM BIOPHYS ACTA, V650, P21.
HILDER TA, 2008, MICRO NANO LETT, V3, P18, DOI 10.1049/mnl:20070070.
HUMMER G, 2001, NATURE, V414, P188.
KOLLMAN PA, 2000, ACCOUNTS CHEM RES, V33, P889.
KOSTARELOS K, 2008, NAT BIOTECHNOL, V26, P774, DOI 10.1038/nbt0708-774.
LAM CW, 2006, CRIT REV TOXICOL, V36, P189, DOI 10.1080/10408440600570233.
LIU JZ, 2005, J COMPUT AID MOL DES, V19, P567, DOI 10.1007/s10822-005-9012-4.
LIU JZ, 2008, CHEM RES TOXICOL, V21, P459, DOI 10.1021/tx700392b.
LIU Z, 2008, P NATL ACAD SCI USA, V105, P1410, DOI 10.1073/pnas.0707654105.
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI 10.1073/pnas.0400352101.
MONTEIRORIVIERE NA, 2005, TOXICOL LETT, V155, P377, DOI 10.1016/j.toxlet.2004.11.004.
ONEIL MJ, 2006, MERCK INDEX.
PASCHER I, 1987, BIOCHIM BIOPHYS ACTA, V896, P77.
PEARLMAN DA, 1995, COMPUT PHYS COMMUN, V91, P1.
POLAND CA, 2008, NAT NANOTECHNOL, V3, P423.
SERVICE RF, 2004, SCIENCE, V304, P1732.
SERVICE RF, 2007, SCIENCE, V315, P926.
SHVEDOVA AA, 2003, J TOXICOL ENV HEAL A, V66, P1909, DOI 10.1080/15287390390231566.
TOZER TN, 2006, INTRO PHARMACOKINETI.
WEEKS JR, 1978, ACTA BIOL MED GER, V37, P707.
WERMUTH CM, 2003, PRACTICE MED CHEM.
WILLIAMS DA, 2002, FOYES PRINICPLES MED.
WITZMANN FA, 2006, NANOMED-NANOTECHNOL, V2, P158, DOI 10.1016/j.nano.2006.07.005.
ZHAO YL, 2008, NAT NANOTECHNOL, V3, P191, DOI 10.1038/nnano.2008.77.

Cited Reference Count:
35

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Pharmacology & Pharmacy

ISSN:
1543-8384

DOI:
10.1021/mp800197v

IDS Number:
453ZY

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266928100008
*Order Full Text [ ]

Title:
Thermoactivated transport of molecules H-2 in narrow single-wall carbon nanotubes

Authors:
Fedorov, AS; Sadreev, AF

Author Full Names:
Fedorov, A. S.; Sadreev, A. F.

Source:
EUROPEAN PHYSICAL JOURNAL B 69 (3): 363-368 JUN 2009

Language:
English

Document Type:
Article

KeyWords Plus:
DIFFUSION; NANOPORES; ENERGY; MOTION; FLUIDS

Abstract:
By use both of the plane wave DFT and the empirical exp-6 Lennard-Jones potential methods we calculate the inner potential in narrow single-wall carbon nanotubes (SWCNT) (6, 0), (7, 0) and (3, 3) which affects the hydrogen molecules. The inner potential forms a goffered potential surface and can be approximated as V(z,r,phi)a parts per thousand V(0)sin (2 pi z/a)+V(r). We show that in these SWCNTs transport of molecules is given mainly by thermoactivated hoppings between minima of the periodic potential along the tube axis. The rate hoppings is substantially depends on temperature because of thermal fluctuations of tube wall.

Reprint Address:
Fedorov, AS, Russian Acad Sci, Inst Phys, Krasnoyarsk 660036, Russia.

Research Institution addresses:
[Fedorov, A. S.; Sadreev, A. F.] Russian Acad Sci, Inst Phys, Krasnoyarsk 660036, Russia

E-mail Address:
almas@tnp.krasn.ru

Cited References:
ARYA G, 2003, PHYS REV LETT, V91, ARTN 026102.
BARREIRO A, 2008, SCIENCE, V320, P775, DOI 10.1126/science.1155559.
BHATIA SK, 2004, J CHEM PHYS, V120, P4472, DOI 10.1063/1.1644108.
BHATIA SK, 2005, MOL SIMULAT, V31, P6439.
BHATIA SK, 2006, AICHE J, V52, P29, DOI 10.1002/aic.10580.
BHATIA SK, 2007, J CHEM PHYS, V127, ARTN 124701.
CHEN HB, 2004, J AM CHEM SOC, V126, P7778, DOI 10.1021/ja039462d.
FEDDERS PA, 1978, PHYS REV B, V17, P40.
GUPTA V, 1996, SCIENCE, V274, P164.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, ARTN 044501.
JAKOBTORWEIHEN S, 2006, J CHEM PHYS, V124, ARTN 154706.
JAKOBTORWEIHEN S, 2007, J CHEM PHYS, V127, ARTN 024904.
JEPPS OG, 2003, PHYS REV LETT, V91, ARTN 126102.
JEPPS OG, 2004, J CHEM PHYS, V120, P5396, DOI 10.1063/1.1647516.
KARGER J, 1992, DIFFUSION ZEOLITES O.
KNUDSEN M, 1909, ANN PHYS, V28, P75.
KRESSE G, 1996, COMP MATER SCI, V6, P15.
KRESSE G, 1996, PHYS REV B, V54, UNSP 011169.
KUMAR AVA, 2006, J PHYS CHEM B, V110, P3109, DOI 10.1021/jp056670e.
LANDAU LD, 1980, STAT PHYS.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
PERDEW JP, 1996, PHYS REV LETT, V77, P3865.
PERDEW JP, 1997, PHYS REV LETT, V78, P1396.
POLLARD WG, 1948, PHYS REV, V73, P762.
RICHARDS PM, 1977, PHYS REV B, V16, P1393.
SADREEV AF, 2001, J CHEM PHYS, V115, P9513.
SAITO R, 1998, PHYS REV B, V57, P4145.
SHIOMI J, 2009, NANOTECHNOLOGY, V20, ARTN 055708.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726.
SOMADA H, NANO LETT ASAP.
SUN DY, 2007, PHYS REV B, V75, ARTN 075424.
VANDERBILT D, 1990, PHYS REV B, V41, P7892.
VINEYARD GH, 1957, J PHYS CHEM SOLIDS, V3, P121.
VLUGT TJH, 2002, J PHYS CHEM B, V106, P12757, DOI 10.1021/jp0263931.
WEI CY, 2003, PHYS REV LETT, V91, ARTN 235901.
ZAMBRANO HA, 2009, NANO LETT, V9, P66, DOI 10.1021/nl802429s.

Cited Reference Count:
40

Times Cited:
0

Publisher:
SPRINGER; 233 SPRING ST, NEW YORK, NY 10013 USA

Subject Category:
Physics, Condensed Matter

ISSN:
1434-6028

DOI:
10.1140/epjb/e2009-00152-1

IDS Number:
457KY

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266855800005
*Order Full Text [ ]

Title:
Surface modification of carbon nanotubes with ethylene glycol plasma

Authors:
Avila-Orta, CA; Cruz-Delgado, VJ; Neira-Velazquez, MG; Hernandez-Hernandez, E; Mendez-Padilla, MG; Medellin-Rodriguez, FJ

Author Full Names:
Avila-Orta, C. A.; Cruz-Delgado, V. J.; Neira-Velazquez, M. G.; Hernandez-Hernandez, E.; Mendez-Padilla, M. G.; Medellin-Rodriguez, F. J.

Source:
CARBON 47 (8): 1916-1921 JUL 2009

Language:
English

Document Type:
Article

KeyWords Plus:
ICE-NANOTUBES; FUNCTIONALIZATION; POLYMERIZATION; NANOPARTICLES; DEPOSITION; FILMS; WATER

Abstract:
Multi-walled carbon nanotubes (MWCNTs) were modified using plasma polymerization with ethylene glycol (EG) as monomer. Conditions of the EG plasma process in a specially designed reactor and the plasma-polymerized ethylene glycol (PPEG) coating were studied. The study involved varying the plasma powers of 10 and 20 W at a constant process time of 60 min, and EG flow rate of 0.15 cm(3)/min. Dispersion of the modified MWCNTs was evaluated in several solvents, showing hydrophilic behavior. Morphology of the PPEG coating and the functional groups (hydroxyl) on its surface were characterized by both transmission electron microscope and FTIR spectroscopy. Characterization by thermogravimetric analysis and FTIR suggested that the hydroxyl groups of the PPEG coating residing inside the nanotubes possessed higher thermal stability than the ones outside. (C) 2009 Elsevier Ltd. All rights reserved.

Reprint Address:
Avila-Orta, CA, Ctr Invest Quim Aplicada, Blvd Enrique Reyna 140, Saltillo 25253, Coahuila, Mexico.

Research Institution addresses:
[Avila-Orta, C. A.; Cruz-Delgado, V. J.; Neira-Velazquez, M. G.; Hernandez-Hernandez, E.; Mendez-Padilla, M. G.] Ctr Invest Quim Aplicada, Saltillo 25253, Coahuila, Mexico; [Medellin-Rodriguez, F. J.] Univ Autonoma San Luis Potosi, CIEP FCQ, San Luis Potosi 78210, Mexico

E-mail Address:
cavila@ciqa.mx

Cited References:
CHEN SM, 2006, NANOTECHNOLOGY, V17, P2368, DOI 10.1088/0957-4484/17/9/048.
COLTHUP NB, 1990, INTRO INFRARED RAMAN, P363.
DYKE CA, 2004, J PHYS CHEM A, V108, P11151.
HARPERNIXON D, 2002, 224 ACS NAT M BOST U.
HIRSCH A, 2002, ANGEW CHEM INT EDIT, V41, P1853.
HUMMER G, 2001, NATURE, V414, P188.
INAGAKI N, 1993, J APPL POLYM SCI, V48, P1433.
KHABASHESKU VN, 2002, ACCOUNTS CHEM RES, V35, P1087, DOI 10.1021/ar020146y.
KHARE BN, 2004, J PHYS CHEM B, V108, P8166, DOI 10.1021/jp049359q.
KOGA K, 2001, NATURE, V412, P802.
KOGOMA M, 1987, J PHYS D APPL PHYS, V20, P147.
KOVTYUKHOVA NI, 2003, J AM CHEM SOC, V125, P9761, DOI 10.1021/ja0344516.
KUMAR DS, 2007, J MATER SCI-MATER M, V18, P1831, DOI 10.1007/s10856-007-3033-6.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
NIYOGI S, 2002, ACCOUNTS CHEM RES, V35, P1105, DOI 10.1021/ar010155r.
PARK SH, 1994, POLYM BULL, V33, P249.
RAMOSDEVALLE LF, 2008, J APPL POLYM SCI, V107, P1893, DOI 10.1002/app.27336.
SAINI RK, 2003, J AM CHEM SOC, V125, P3617, DOI 10.1021/ja021167q.
SCHULZE RD, 2000, 2 WORKSH SELF EXC EL.
SHI DL, 2001, APPL PHYS LETT, V78, P1243.
SHI DL, 2002, J MATER RES, V17, P2555.
SHI DL, 2003, APPL PHYS LETT, V83, P5301, DOI 10.1063/1.1636521.
SUN YP, 2002, ACCOUNTS CHEM RES, V35, P1096, DOI 10.1021/er010160v.
TASIS D, 2003, CHEM-EUR J, V9, P40.
WANG CC, 2004, PROG POLYM SCI, V29, P1079, DOI 10.1016/j.progpolymsci.2004.08.001.
WEINKAUF DH, 2002, 224 ACS NAT M BOST U.
WESTERDAHL CAL, 1974, J COLLOID INTERF SCI, V47, P610.
YASUDA H, 1985, PLASMAS POLYM, P10.
YLINIEMI K, 2007, SURF COAT TECH, V201, P7865, DOI 10.1016/j.surfcoat.2007.03.023.

Cited Reference Count:
29

Times Cited:
0

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0008-6223

DOI:
10.1016/j.carbon.2009.02.033

IDS Number:
456OG

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266190600010
*Order Full Text [ ]

Title:
Extrusion of transmitter, water and ions generates forces to close fusion pore

Authors:
Tajparast, M; Glavinovic, MI

Author Full Names:
Tajparast, M.; Glavinovic, M. I.

Source:
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1788 (5): 993-1008 MAY 2009

Language:
English

Document Type:
Article

Author Keywords:
Fusion pore; Nanofluidic; Transmitter; Pore dynamics; Exocytosis; Poisson-Nernst-Planck; Navier-Stokes; Transport; Porous media; Nano-electromechanical system

KeyWords Plus:
QUANTAL SIZE; SYNAPTIC VESICLES; NEUROMUSCULAR-JUNCTION; HIPPOCAMPAL SYNAPSES; CHROMAFFIN GRANULES; SECRETORY GRANULES; CONTINUUM-THEORIES; BROWNIAN DYNAMICS; CARBON NANOTUBE; SURFACE-CHARGE

Abstract:
During exocytosis the fusion pore opens rapidly, then dilates gradually, and may subsequently close completely, but what controls its dynamics is not well understood. In this study we focus our attention on forces acting on the pore wall, and which are generated solely by the passage of transmitter, ions and water through the open fusion pore. The transport through the charged cylindrical nano-size pore is simulated using a coupled system of Poisson-Nernst-Planck and Navier-Stokes equations and the forces that act radially on the wall of the fusion pore are then estimated. Four forces are considered: a) inertial force, b) pressure, c) viscotic force, and d) electrostatic force. The inertial and viscotic forces are small, but the electrostatic force and the pressure are typically significant. High vesicular pressure tends to open the fusion pore, but the pressure induced by the transport of charged particles (glutamate, ions), which is predominant when the pore wall charge de!
nsity is high tends to close the pore. The electrostatic force, which also depends on the charge density on the pore wall, is weakly repulsive before the pore dilates, but becomes attractive and pronounced as the pore dilates. Given that the vesicular concentration of free transmitter can change rapidly due to the release, or owing to the dissociation from the gel matrix. we evaluated how much and how rapidly a change of the vesicular K+-glutamate(-) concentration affects the concentration of glutamate(-) and ions in the pore and how such changes alter the radial force on the wall of the fusion pore. A step-like rise of the vesicular K+-glutamate(-) concentration leads to a chain of events. Pore concentration (and efflux) of both K+ and glutamate(-) rise reaching their new steady-state values in less than 100 ns. Interestingly within a similar time interval the pore concentration of Na+ also rises, whereas that of Cl- diminishes, although their extra-cellular concentration !
does not change. Finally such changes affect also the water mo!
vement.
Water efflux changes bi-phasically, first increasing before decreasing to a new, but lower steady-state value. Nevertheless, even under such conditions an overall approximate neutrality of the pore is maintained remarkably well, and the electrostatic, but also inertial, viscotic and pressure forces acting on the pore wall remain constant. In conclusion the extrusion of the vesicular content generates forces, primarily the force due to the electro-kinetically induced pressure and electrostatic force (both influenced by the pore radius and even more by the charge density on the pore wall). which tend to close the fusion pore. (C) 2009 Elsevier B.V. All rights reserved.

Reprint Address:
Glavinovic, MI, McGill Univ, Dept Physiol, 3655 Sir William Oster Promenade, Montreal, PQ H3G 1Y6, Canada.

Research Institution addresses:
[Glavinovic, M. I.] McGill Univ, Dept Physiol, Montreal, PQ H3G 1Y6, Canada; [Tajparast, M.] McGill Univ, Dept Civil Engn, Montreal, PQ H3G 1Y6, Canada

E-mail Address:
mladen.glavinovic@mcgill.ca

Cited References:
ARAVANIS AM, 2003, NATURE, V423, P643, DOI 10.1038/nature01686.
ATLURI PP, 2006, J NEUROSCI, V26, P2313, DOI 10.1523/JNEUROSCI.4425-05.2006.
BARTHEL J, 1998, PHYS CHEM ELECT SOLU.
BEHRENDS JC, 1998, J NEUROPHYSIOL, V79, P2999.
BOCKRIS JOM, 1976, MODERN ELECTROCHEMIS.
BRECKENRIDGE LJ, 1987, NATURE, V328, P814.
BRECKENRIDGE LJ, 1987, P NATL ACAD SCI USA, V84, P1945.
CECCARELLI B, 1973, J CELL BIOL, V57, P499.
CHEEK TR, 1986, FEBS LETT, V207, P110.
CHITI Z, 2007, FASEB J, V21, P2540, DOI 10.1096/fj.06-7342com.
CHIU SW, 1993, BIOPHYS J, V64, P96.
CHIZMADZHEV YA, 1999, BIOPHYS J, V76, P2951.
CHOI S, 2000, NAT NEUROSCI, V3, P330.
COCHILLA AJ, 2000, J CELL BIOL, V150, P839.
CORRY B, 2000, BIOPHYS J, V78, P2364.
CORY SM, 2007, BBA-BIOMEMBRANES, V1768, P2319, DOI 10.1016/j.bbamem.2007.06.006.
DAIGUJI H, 2004, NANO LETT, V4, P137, DOI 10.1021/nl0348185.
DELUCA G, 2007, BBA-BIOMEMBRANES, V1768, P264, DOI 10.1016/j.bbamem.2006.08.015.
DURANDVIDAL S, 2000, ELECT INTERFACES.
DUTTA P, 2001, ANAL CHEM, V73, P1979.
GLAVINOVIC MI, 2001, PFLUG ARCH EUR J PHY, V443, P132.
GLAVINOVIC MI, 2002, PFLUGERS ARCH, V443, P594.
GONG LW, 2007, NAT CELL BIOL, V9, P915.
GRANSETH B, 2006, NEURON, V51, P773, DOI 10.1016/j.neuron.2006.08.029.
HAN X, 2006, J CELL BIOL, V172, P281.
HILLE B, 1975, PHILOS T R SOC B, V270, P301.
HUMMER G, 2001, NATURE, V414, P188.
JANKOWSKI JA, 1993, J BIOL CHEM, V268, P14694.
JENA BP, 2003, BIOPHYS J 1, V84, P1337.
JOHNSON RG, 1988, PHYSIOL REV, V68, P232.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
LEHNINGER AL, 1970, BIOCHEMISTRY.
MAYCOX PR, 1988, J BIOL CHEM, V263, P15423.
MCLAUGHLIN SGA, 1971, J GEN PHYSIOL, V58, P667.
MOY G, 2000, BIOPHYS J, V78, P2349.
MUNDORF ML, 2000, J BIOL CHEM, V275, P9136.
NANAVATI C, 1993, SCIENCE, V259, P963.
NECO P, 2004, J BIOL CHEM, V279, P27450, DOI 10.1074/jbc.M311462200.
NECO P, 2008, J BIOL CHEM, V283, P10949, DOI 10.1074/jbc.M709058200.
NEWMAN JS, 1991, ELECTROCHEMICAL SYST.
NJUS D, 1986, BIOCHIM BIOPHYS ACTA, V853, P237.
OHEIM M, 1999, EUR BIOPHYS J BIOPHY, V28, P91.
PATANKAR NA, 1998, ANAL CHEM, V70, P1870.
PAWLU C, 2004, NEURON, V42, P607.
POLLARD HB, 1979, J BIOL CHEM, V254, P1170.
POTHOS EN, 2002, J PHYSIOL-LONDON, V542, P453, DOI 10.1113/jphysiol.2002.018630.
QIAO R, 2003, J CHEM PHYS, V118, P692.
QIAO R, 2003, NANO LETT, V3, P1013, DOI 10.1021/nl034236n.
RABIE HR, 2006, BIOL CYBERN, V94, P483, DOI 10.1007/s00422-006-0061-0.
RICHARDS DA, 2005, J CELL BIOL, V168, P929, DOI 10.1083/jcb.200407148.
SIMON SM, 1985, BIOPHYS J, V48, P485.
SMITH GR, 1999, BIOPHYS CHEM, V79, P129.
SODERMAN O, 1996, J CHEM PHYS, V105, P10300.
SULZER D, 2000, REV NEUROSCIENCE, V11, P159.
TAJPARAST M, 2009, BIOPHYS J, DOI 10.1016/J.BBAMEM.2009.01.019.
URBE S, 1998, J CELL BIOL, V143, P1831.
VITALE ML, 1995, NEURON, V14, P353.
WANG XY, 2005, J NEUROSCI, V25, P343, DOI 10.1523/JNEUROSCI.3252-04.2005.

Cited Reference Count:
58

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Biochemistry & Molecular Biology; Biophysics

ISSN:
0005-2736

DOI:
10.1016/j.bbamem.2009.01.018

IDS Number:
447KS

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Zhao, Y

ISI Web of Knowledge Citation Alert

Cited Article: Zhao, Y. Individual water-filled single-walled carbon nanotubes as hydroelectric power converters
Alert Expires: 22 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266930400007
*Order Full Text [ ]

Title:
Length-Dependent Dielectric Polarization in Metallic Single-Walled Carbon Nanotubes

Authors:
Lu, W; Xiong, Y; Chen, LW

Author Full Names:
Lu, Wei; Xiong, Yao; Chen, Liwei

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (24): 10337-10340 JUN 18 2009

Language:
English

Document Type:
Article

KeyWords Plus:
PROBE MICROSCOPY; TRANSPORT

Abstract:
A major driving force behind the research of SWNT electronic properties is their potential in nanoelectronic applications. It has been predicted and experimentally verified that the electronic properties of metallic and semiconducting SWNTs are dependent on their diameter and chirality. With the increase ill the density of integration, the length of SWNTs used in electronic devices is approaching submicrometer and nanometer scales. It is thus necessary to understand how the length affects the properties of SWNTs besides chirality and diameter. Here, we report that the dielectric response of metallic SWNTs decreases with length. Experimental investigation and numerical modeling determine that the apparent decrease in longitudinal dielectric polarization is due to higher defect density in shorter nanotubes.

Reprint Address:
Chen, LW, Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Jiangsu, Peoples R China.

Research Institution addresses:
[Lu, Wei; Chen, Liwei] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Jiangsu, Peoples R China; [Lu, Wei; Xiong, Yao; Chen, Liwei] Ohio Univ, Dept Chem & Biochem, Athens, OH 45701 USA

E-mail Address:
lwchen2008@sinaco.ac.cn

Cited References:
APPENZELLER J, 2002, PHYS REV LETT, V89, ARTN 126801.
ARNOLD MS, 2006, NAT NANOTECHNOL, V1, P60, DOI 10.1038/nnano.2006.52.
AVOURIS P, 2002, ACCOUNTS CHEM RES, V35, P1026, DOI 10.1021/ar010152e.
AVOURIS P, 2008, NAT PHOTONICS, V2, P341, DOI 10.1038/nphoton.2008.94.
BACHILO SM, 2002, SCIENCE, V298, P2361, DOI 10.1126/science.1078727.
BACHTOLD A, 2000, PHYS REV LETT, V84, P6082.
BENEDICT LX, 1995, PHYS REV B, V52, P8541.
FAGAN JA, 2007, PHYS REV LETT, V98, ARTN 147402.
FUHRER MS, 2002, NANO LETTERS, V2, P755.
GOMEZNAVARRO C, 2005, NAT MATER, V4, P534, DOI 10.1038/nmat1414.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
KIM W, 2005, APPL PHYS LETT, V87, ARTN 173101.
KOZINSKY B, 2006, PHYS REV LETT, V96, ARTN 166801.
KRUPKE R, 2003, SCIENCE, V301, P344, DOI 10.1126/science.1086534.
LIN YM, 2006, NANO LETT, V6, P930, DOI 10.1021/nl052528d.
LOURTIOZ JM, 2005, PHOTONIC CRYSTALS NA.
LU DY, 2004, NANO LETT, V4, P2383, DOI 10.1021/nl0485511.
LU W, 2007, NANO LETT, V7, P2729, DOI 10.1021/nl071208m.
LU W, 2009, NANO LETT, V9, P1668, DOI 10.1021/nl900194j.
ODOM TW, 2000, J PHYS CHEM B, V104, P2794.
PARK JY, 2004, NANO LETT, V4, P517, DOI 10.1021/nl035258c.
VENEMA LC, 1997, APPL PHYS LETT, V71, P2629.
WANG F, 2005, SCIENCE, V308, P838, DOI 10.1126/science.1110265.
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHENG M, 2003, SCIENCE, V302, P1545.

Cited Reference Count:
26

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp903062v

IDS Number:
457LQ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Thursday, June 25, 2009

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 2.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266930400007>
*Order Full Text [ ]
AU Lu, W
Xiong, Y
Chen, LW
AF Lu, Wei
Xiong, Yao
Chen, Liwei
TI Length-Dependent Dielectric Polarization in Metallic Single-Walled
Carbon Nanotubes
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID PROBE MICROSCOPY; TRANSPORT
AB A major driving force behind the research of SWNT electronic properties
is their potential in nanoelectronic applications. It has been
predicted and experimentally verified that the electronic properties of
metallic and semiconducting SWNTs are dependent on their diameter and
chirality. With the increase ill the density of integration, the length
of SWNTs used in electronic devices is approaching submicrometer and
nanometer scales. It is thus necessary to understand how the length
affects the properties of SWNTs besides chirality and diameter. Here,
we report that the dielectric response of metallic SWNTs decreases with
length. Experimental investigation and numerical modeling determine
that the apparent decrease in longitudinal dielectric polarization is
due to higher defect density in shorter nanotubes.
C1 [Lu, Wei; Chen, Liwei] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Jiangsu, Peoples R China.
[Lu, Wei; Xiong, Yao; Chen, Liwei] Ohio Univ, Dept Chem & Biochem, Athens, OH 45701 USA.
RP Chen, LW, Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou
215125, Jiangsu, Peoples R China.
EM lwchen2008@sinaco.ac.cn
CR APPENZELLER J, 2002, PHYS REV LETT, V89, ARTN 126801
ARNOLD MS, 2006, NAT NANOTECHNOL, V1, P60, DOI 10.1038/nnano.2006.52
AVOURIS P, 2002, ACCOUNTS CHEM RES, V35, P1026, DOI 10.1021/ar010152e
AVOURIS P, 2008, NAT PHOTONICS, V2, P341, DOI 10.1038/nphoton.2008.94
BACHILO SM, 2002, SCIENCE, V298, P2361, DOI 10.1126/science.1078727
BACHTOLD A, 2000, PHYS REV LETT, V84, P6082
BENEDICT LX, 1995, PHYS REV B, V52, P8541
FAGAN JA, 2007, PHYS REV LETT, V98, ARTN 147402
FUHRER MS, 2002, NANO LETTERS, V2, P755
GOMEZNAVARRO C, 2005, NAT MATER, V4, P534, DOI 10.1038/nmat1414
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
KIM W, 2005, APPL PHYS LETT, V87, ARTN 173101
KOZINSKY B, 2006, PHYS REV LETT, V96, ARTN 166801
KRUPKE R, 2003, SCIENCE, V301, P344, DOI 10.1126/science.1086534
LIN YM, 2006, NANO LETT, V6, P930, DOI 10.1021/nl052528d
LOURTIOZ JM, 2005, PHOTONIC CRYSTALS NA
LU DY, 2004, NANO LETT, V4, P2383, DOI 10.1021/nl0485511
LU W, 2007, NANO LETT, V7, P2729, DOI 10.1021/nl071208m
LU W, 2009, NANO LETT, V9, P1668, DOI 10.1021/nl900194j
ODOM TW, 2000, J PHYS CHEM B, V104, P2794
PARK JY, 2004, NANO LETT, V4, P517, DOI 10.1021/nl035258c
VENEMA LC, 1997, APPL PHYS LETT, V71, P2629
WANG F, 2005, SCIENCE, V308, P838, DOI 10.1126/science.1110265
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956
ZHENG M, 2003, SCIENCE, V302, P1545
NR 26
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
DI 10.1021/jp903062v
PD JUN 18
VL 113
IS 24
BP 10337
EP 10340
SC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
GA 457LQ
UT ISI:000266930400007
ER

PT J
*Record 2 of 2.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000266928100008>
*Order Full Text [ ]
AU Fedorov, AS
Sadreev, AF
AF Fedorov, A. S.
Sadreev, A. F.
TI Thermoactivated transport of molecules H-2 in narrow single-wall carbon
nanotubes
SO EUROPEAN PHYSICAL JOURNAL B
LA English
DT Article
ID DIFFUSION; NANOPORES; ENERGY; MOTION; FLUIDS
AB By use both of the plane wave DFT and the empirical exp-6 Lennard-Jones
potential methods we calculate the inner potential in narrow
single-wall carbon nanotubes (SWCNT) (6, 0), (7, 0) and (3, 3) which
affects the hydrogen molecules. The inner potential forms a goffered
potential surface and can be approximated as V(z,r,phi)a parts per
thousand V(0)sin (2 pi z/a)+V(r). We show that in these SWCNTs
transport of molecules is given mainly by thermoactivated hoppings
between minima of the periodic potential along the tube axis. The rate
hoppings is substantially depends on temperature because of thermal
fluctuations of tube wall.
C1 [Fedorov, A. S.; Sadreev, A. F.] Russian Acad Sci, Inst Phys, Krasnoyarsk 660036, Russia.
RP Fedorov, AS, Russian Acad Sci, Inst Phys, Krasnoyarsk 660036, Russia.
EM almas@tnp.krasn.ru
CR ARYA G, 2003, PHYS REV LETT, V91, ARTN 026102
BARREIRO A, 2008, SCIENCE, V320, P775, DOI 10.1126/science.1155559
BHATIA SK, 2004, J CHEM PHYS, V120, P4472, DOI 10.1063/1.1644108
BHATIA SK, 2005, MOL SIMULAT, V31, P6439
BHATIA SK, 2006, AICHE J, V52, P29, DOI 10.1002/aic.10580
BHATIA SK, 2007, J CHEM PHYS, V127, ARTN 124701
CHEN HB, 2004, J AM CHEM SOC, V126, P7778, DOI 10.1021/ja039462d
FEDDERS PA, 1978, PHYS REV B, V17, P40
GUPTA V, 1996, SCIENCE, V274, P164
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, ARTN 044501
JAKOBTORWEIHEN S, 2006, J CHEM PHYS, V124, ARTN 154706
JAKOBTORWEIHEN S, 2007, J CHEM PHYS, V127, ARTN 024904
JEPPS OG, 2003, PHYS REV LETT, V91, ARTN 126102
JEPPS OG, 2004, J CHEM PHYS, V120, P5396, DOI 10.1063/1.1647516
KARGER J, 1992, DIFFUSION ZEOLITES O
KNUDSEN M, 1909, ANN PHYS, V28, P75
KRESSE G, 1996, COMP MATER SCI, V6, P15
KRESSE G, 1996, PHYS REV B, V54, UNSP 011169
KUMAR AVA, 2006, J PHYS CHEM B, V110, P3109, DOI 10.1021/jp056670e
LANDAU LD, 1980, STAT PHYS
MAO ZG, 2000, J PHYS CHEM B, V104, P4618
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PERDEW JP, 1997, PHYS REV LETT, V78, P1396
POLLARD WG, 1948, PHYS REV, V73, P762
RICHARDS PM, 1977, PHYS REV B, V16, P1393
SADREEV AF, 2001, J CHEM PHYS, V115, P9513
SAITO R, 1998, PHYS REV B, V57, P4145
SHIOMI J, 2009, NANOTECHNOLOGY, V20, ARTN 055708
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726
SOMADA H, NANO LETT ASAP
SUN DY, 2007, PHYS REV B, V75, ARTN 075424
VANDERBILT D, 1990, PHYS REV B, V41, P7892
VINEYARD GH, 1957, J PHYS CHEM SOLIDS, V3, P121
VLUGT TJH, 2002, J PHYS CHEM B, V106, P12757, DOI 10.1021/jp0263931
WEI CY, 2003, PHYS REV LETT, V91, ARTN 235901
ZAMBRANO HA, 2009, NANO LETT, V9, P66, DOI 10.1021/nl802429s
NR 40
TC 0
PU SPRINGER; 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6028
DI 10.1140/epjb/e2009-00152-1
PD JUN
VL 69
IS 3
BP 363
EP 368
SC Physics, Condensed Matter
GA 457KY
UT ISI:000266928100008
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Sokhan VP

ISI Web of Knowledge Citation Alert

Cited Article: Sokhan VP. Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266712700002
*Order Full Text [ ]

Title:
HYDRODYNAMICS AND SLIP AT THE LIQUID-SOLID INTERFACE

Authors:
Ellis, JS; Thompson, M

Author Full Names:
Ellis, Jonathan S.; Thompson, Michael

Source:
ADVANCES IN CHEMICAL PHYSICS, VOL 131 131: 61-84 2005

Language:
English

Document Type:
Review

KeyWords Plus:
SELF-ASSEMBLED MONOLAYERS; MOLECULAR-DYNAMICS SIMULATION; QUARTZ-CRYSTAL MICROBALANCES; ION MASS-SPECTROMETRY; ACOUSTIC-WAVE SENSOR; BOUNDARY-CONDITIONS; HYDROPHOBIC SLIPPAGE; SURFACE-ROUGHNESS; THIN-FILMS; FLUID-FLOW

Reprint Address:
Ellis, JS, Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON, Canada.

Research Institution addresses:
[Ellis, Jonathan S.; Thompson, Michael] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON, Canada; [Thompson, Michael] Univ Toronto, Dept Chem, Toronto, ON M5S 1A1, Canada

Cited References:
BALDONI F, 1999, Z ANGEW MATH MECH, V79, P193.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BAUDRY J, 2001, LANGMUIR, V17, P5232.
BLAKE TD, 1990, COLLOID SURFACE, V47, P135.
BOCQUET L, 1993, PHYS REV LETT, V70, P2726.
BONACCURSO E, 2002, PHYS REV LETT, V88, ARTN 076103.
BONACCURSO E, 2003, PHYS REV LETT, V90, ARTN 144501.
BROCHARDWYART F, 1992, LANGMUIR, V8, P3033.
CARRE A, 1995, LANGMUIR, V11, P24.
CARRE A, 1996, ABSTR PAP AM CHEM SO, V212.
CARRE A, 1996, NATURE, V379, P432.
CARRE A, 1997, J COLLOID INTERF SCI, V191, P141.
CIEPLAK M, 1994, SCIENCE, V265, P1209.
COOPER E, 1998, LANGMUIR, V14, P4795.
COOPER E, 1999, LANGMUIR, V15, P1024.
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI 10.1140/epje/i2002-10112-9.
COTTINBIZONNE C, 2003, NAT MATER, V2, P237, DOI 10.1038/nmat857.
CRAIG VSJ, 2001, PHYS REV LETT, V87, ARTN 054504.
DEGENNES PG, 2002, LANGMUIR, V18, P3413.
DUNCANHEWITT WC, 1992, ANAL CHEM, V64, P94.
ELLIS JS, 2003, J APPL PHYS, V94, P7856, DOI 10.1063/1.1627949.
ELLIS JS, 2004, CHEM COMMUN 0607, P1310, DOI 10.1039/b402822h.
ELLIS JS, 2004, PHYS CHEM CHEM PHYS, V6, DOI 10.1039/B409342A.
FERRANTE F, 1994, J APPL PHYS, V76, P3448.
FRENKEL IA, 1946, KINETIC THEORY LIQUI.
GEE ML, 1990, J CHEM PHYS, V93, P1895.
HILDEBRAND FB, 1976, ADV CALCULUS APPL.
HORN RG, 2000, J CHEM PHYS, V112, P6424.
HUTT DA, 1999, J MATER CHEM, V9, P923.
ISRAELACHVILI JN, 1991, INTERMOLECULAR SURFA.
JABBARZADEH A, 1999, J CHEM PHYS, V110, P2612.
JABBARZADEH A, 2000, PHYS REV E, V61, P690.
KANTOROVICH LN, 2001, PHYS REV B, V64, ARTN 245409.
KARNIADAKIS G, 2002, MICROFLOWS FUNDAMENT.
KRIM J, 1988, PHYS REV B, V38, P12184.
LEGER L, 1997, J PHYS-CONDENS MAT, V9, P7719.
LU F, 2003, SMART MATER STRUCT, V12, P881.
LU F, 2004, J PHYS D APPL PHYS, V37, P898, DOI 10.1088/0022-3727/37/6/014.
MAXWELL JC, 1879, PHILOS T R SOC.
MCHALE G, 2000, J APPL PHYS, V88, P7304.
MCHALE G, 2004, ANALYST, V129, P284, DOI 10.1039/b400567h.
MCHALE G, 2004, J APPL PHYS, V95, P373, DOI 10.1063/1.1630373.
MCHALE NJ, 2004, PHYS REV LETT, V93, UNSP 036102-1-4.
NETO C, 2003, EUR PHYS J E S1, V12, S71, DOI 10.1140/epjed/e2003-01-018-0.
PIT R, 2000, PHYS REV LETT, V85, P980.
PONOMAREV IV, 2003, PHYS REV E 2, V67, ARTN 026302.
SHANAHAN MER, 1987, J CHIM PHYS PCB, V84, P199.
SHANAHAN MER, 1995, LANGMUIR, V11, P1396.
SHANAHAN MER, 1996, J ADHESION, V57, P179.
SHANAHAN MER, 2000, CR ACAD SCI IV-PHYS, V1, P263.
SMITH ED, 1996, PHYS REV B, V54, P8252.
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
SZYMCZAK P, 2003, PHYS REV E 2, V68, ARTN 036704.
SZYMCZAK P, 2004, PHYS REV E 2, V69, ARTN 036704.
TOLSTOI DM, 1952, DOKL AKAD NAUK SSSR, V85, P1329.
URBAKH M, 1996, ABSTR PAP AM CHEM 1, V212, P82.
VINOGRADOVA OI, 1996, J PHYS-CONDENS MAT, V8, P9491.
VINOGRADOVA OI, 1998, ABSTR PAP AM CHEM SO, V215.
VINOGRADOVA OI, 1998, LANGMUIR, V14, P2827.
VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31.
WIDOM A, 1986, PHYS REV B, V34, P1403.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.

Cited Reference Count:
64

Times Cited:
1

Publisher:
JOHN WILEY & SONS INC; 605 3RD AVE, NEW YORK, NY 10016 USA

ISSN:
0065-2385

IDS Number:
BJK65

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, June 19, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266515400011
*Order Full Text [ ]

Title:
Predicting gas diffusion regime within pores of different size, shape and composition

Authors:
Thornton, AW; Hilder, T; Hill, AJ; Hill, JM

Author Full Names:
Thornton, Aaron W.; Hilder, Tamsyn; Hill, Anita J.; Hill, James M.

Source:
JOURNAL OF MEMBRANE SCIENCE 336 (1-2): 101-108 JUL 1 2009

Language:
English

Document Type:
Article

Author Keywords:
Surface diffusion; Activation diffusion; Knudsen; Transport; Arrhenius; Separation; Membrane; Pore; Modelling

KeyWords Plus:
WALLED CARBON NANOTUBES; FREE-VOLUME; POSITRON LIFETIME; GLASSY-POLYMERS; MEMBRANES; MECHANICS; TRANSPORT; PERMEABILITY; FULLERENES; ADSORPTION

Abstract:
The ability to separate mixtures of molecules is a vital technology in a world that emits excess carbon dioxide into the atmosphere, needs purified water, desires artificial kidneys and requires hydrogen for sustainable energy alternatives. Membranes are composed of angstrom and nanometer-sized pores which may be designed to separate a gas, vapor or liquid mixture. In this paper we employ mathematical modeling, using the Lernnard-Jones interactions between the gas molecule and the pore wall, to determine the gas diffusion regime occurring within pores of different size, shape and composition. This novel approach is used to predict the transport of light gases, namely, He, H-2, CO2, O-2, N-2 and CH4, through carbon tubes, carbon slits, silica tubes and silica slits. Minimum pore size for barrier-free transport (d(min)) and the minimum pore size for Knudsen diffusion (d(k)) are calculated for each gas and a mechanism for the intermediate region is suggested in which the attrac!
tive van der Waals forces cause an accelerated entrance velocity of the gas at the pore opening. Experimental results for gas transport in carbon nanotube, carbon molecular sieving and molecular sieving silica membranes are explained well by the model. The aim of this work is to provide the guidelines for tailoring porosity in membranes and adsorbents, such that desired separations are achieved. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

Reprint Address:
Thornton, AW, Univ Wollongong, Nanomech Grp, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia.

Research Institution addresses:
[Thornton, Aaron W.; Hilder, Tamsyn; Hill, James M.] Univ Wollongong, Nanomech Grp, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia; [Thornton, Aaron W.; Hill, Anita J.] CSIRO Mat Sci & Engn, Clayton Sth Mdc, Vic 3169, Australia

E-mail Address:
aaron.thornton@csiro.au

Cited References:
ACHARYA M, 2000, AICHE J, V46, P911.
BAUSCHLICHER CW, 2000, CHEM PHYS LETT, V322, P237.
BRECK DW, 1973, MOL SIEVES STRUCTURE.
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI 10.1016/j.memsci.2005.06.030.
COX BJ, 2007, J PHYS A-MATH THEOR, V40, P13197.
COX BJ, 2007, P R SOC A, V463, P461, DOI 10.1098/rspa.2006.1771.
COX BJ, 2007, P R SOC A, V463, P477, DOI 10.1098/rspa.2006.1772.
COX BJ, 2007, Q J MECH APPL MATH 2, V60, P231, DOI 10.1093/qjmam/hbm005.
DELANGE RSA, 1995, J MEMBRANE SCI, V104, P81.
DEVOS RM, 1998, J MEMBRANE SCI, V143, P37.
DLUBEK G, 1996, PHYS STATUS SOLIDI A, V157, P351.
DUCKE MC, 2008, ADV FUNCT MATER, V18, P1.
DUREN T, 2004, LANGMUIR, V20, P2683, DOI 10.1021/la0355500.
EVERETT DH, 1976, J CHEM SOC FARADAY T, V72, P619.
FREEMAN BD, 1999, MACROMOLECULES, V32, P375.
GARBEROGLIO G, 2005, J PHYS CHEM B, V109, P13094, DOI 10.1021/jp0509481.
GILLILAND ER, 1974, IND ENG F, V13, P95.
GILRON J, 2002, J MEMBRANE SCI, V209, P339.
GRADSHTEYN IS, 2000, SERIES PRODUCTS.
GRAYWEALE AA, 1997, MACROMOLECULES, V30, P7296.
GREENFIELD ML, 1993, MACROMOLECULES, V26, P5461.
HEDSTROM JA, 2004, LANGMUIR, V20, P1535, DOI 10.1021/la0351515.
HILDER TA, 2007, J PHYS A-MATH THEOR, V40, P3851, DOI 10.1088/1751-8113/40/14/008.
HILDER TA, 2007, NANOTECHNOLOGY, V18, ARTN 275704.
HILDER TA, 2007, PHYS REV B, V75, ARTN 125415.
HILDER TA, 2009, J NANOSCI NANOTECHNO, V9, P1403, DOI 10.1166/jnn.2009.C166.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOFMANN D, 2003, MACROMOLECULES, V36, P8528, DOI 10.1021/ma0349711.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HWANG ST, 1984, MEMBRANES SEPARATION.
JINNAI H, 2000, PHYS REV E B, V61, P6773.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KNUDSEN M, 1909, ANN PHYS, V28, P75.
KOVACS AJ, 1979, J POLYM SCI POL PHYS, V17, P1097.
LIN YS, 2002, SEPAR PURIF METHOD, V31, P229, DOI 10.1081/SPM-120017009.
LIU P, 2005, J APPL PHYS, V97, ARTN 094313.
MERKEL TC, 2002, SCIENCE, V296, P519.
MERKEL TC, 2003, MACROMOLECULES, V36, P6844, DOI 10.1021/ma0341566.
MILLS AF, 2001, MASS TRANSFER.
PARK HB, 2007, SCIENCE, V318, P254, DOI 10.1126/science.1146744.
PARK JY, 1997, J MEMBRANE SCI, V125, P23.
PENG FB, 2005, CHEM MATER, V17, P6790, DOI 10.1021/cm051890q.
POLING BE, 2001, PROPERTIES GASES LIQ.
QIAN D, 2001, J PHYS CHEM B, V105, P10753.
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024.
ROBESON LM, 1991, J MEMBRANE SCI, V62, P165.
SCHRADER DM, 1988, STUDIES PHYS THEORET.
SHELEKHIN AB, 1995, AICHE J, V41, P58.
TRIEBE RW, 1995, GAS SEP PURIF, V9, P223.
WANG XY, 2004, POLYMER, V45, P3907, DOI 10.1016/j.polymer.2004.01.080.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
YAMPOLSKII Y, 2006, MAT SCI MEMBRANES GA.
YAMPOLSKII YP, 1994, MACROMOLECULES, V27, P2872.

Cited Reference Count:
54

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Engineering, Chemical; Polymer Science

ISSN:
0376-7388

DOI:
10.1016/j.memsci.2009.03.019

IDS Number:
452BU

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266500200038
*Order Full Text [ ]

Title:
Blowing bubbles in Lennard-Jonesium along the saturation curve

Authors:
Ashbaugh, HS

Author Full Names:
Ashbaugh, Henry S.

Source:
JOURNAL OF CHEMICAL PHYSICS 130 (20): Art. No. 204517 MAY 28 2009

Language:
English

Document Type:
Article

Author Keywords:
bubbles; chemical potential; critical points; enthalpy; Lennard-Jones potential; molecular dynamics method; solvation; solvent effects; surface tension

KeyWords Plus:
SCALED-PARTICLE THEORY; SOLVATION FREE-ENERGIES; CAVITY FORMATION; HYDROPHOBIC HYDRATION; MOLECULAR LIQUIDS; SURFACE-TENSION; LENGTH SCALES; N-HEXANE; WATER; THERMODYNAMICS

Abstract:
Extensive molecular simulations of the Lennard-Jones fluid have been performed to determine its liquid-vapor coexistence properties and solvent contact densities with cavities up to ten times the diameter of the solvent from the triple point to the critical point. These simulations are analyzed using a revised scaled-particle theory [H. S. Ashbaugh and L. R. Pratt, Rev. Mod. Phys. 78, 159 (2006)] to evaluate the thermodynamics of cavity solvation and curvature dependent interfacial properties along the saturation curve. While the thermodynamic signatures of cavity solvation are distinct from those in water, exhibiting a chemical potential dominated by a large temperature independent enthalpy, the solvent dewets cavities of increasing size similar with water near coexistence. The interfacial tension for forming a liquid-wall interface is found to be consistently greater than the liquid-vapor surface tension of the Lennard-Jones fluid by up to 10% and potentially reflects the !
suppression of high amplitude fluctuations at the cavity surface. The first-order curvature correction for the surface tension is negative and appears to diverge to negative infinity at temperatures approaching the critical point. Our results point to the success of the revised scaled-particle theory at bridging molecular and macroscopic descriptions of cavity solvation.

Reprint Address:
Ashbaugh, HS, Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA.

Research Institution addresses:
Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA

E-mail Address:
hanka@tulane.edu

Cited References:
*EPAPS, EJCPSA6130037922 EPA.
AGRAWAL R, 1995, MOL PHYS, V85, P43.
ANISIMOV MA, 2007, PHYS REV LETT, V98, ARTN 035702.
ASHBAUGH HS, 2001, J AM CHEM SOC, V123, P10721.
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P159, DOI 10.1103/RevModPhys.78.159.
ASHBAUGH HS, 2007, J PHYS CHEM B, V111, P9330, DOI 10.1021/jp071969d.
ATTARD P, 1996, LANGMUIR, V12, P1693.
CHEUNG JK, 2006, BIOPHYS J, V91, P2427, DOI 10.1529/biophysj.106.081802.
CHOUDHURY N, 2007, J AM CHEM SOC, V129, P4847, DOI 10.1021/ja069242a.
ERRINGTON JR, 2003, J CHEM PHYS, V118, P9915, DOI 10.1063/1.1572463.
ERRINGTON JR, 2003, PHYS REV E 1, V67, ARTN 012102.
EVANS R, 2004, J CHEM PHYS, V121, P12074, DOI 10.1063/1.1819316.
FLORIS FM, 2005, J PHYS CHEM B, V109, P24061, DOI 10.1021/jp053457+.
GRAZIANO G, 1998, J CHEM SOC FARADAY T, V94, P3345.
GRAZIANO G, 2003, BIOPHYS CHEM, V104, P393, DOI 10.1016/S0301-4622(03)00027-9.
GRAZIANO G, 2003, BIOPHYS CHEM, V105, P241, DOI 10.1016/S0301-4622(03)00073-5.
GRAZIANO G, 2003, BIOPHYS CHEM, V105, P371, DOI 10.1016/S0301-4622(03)00102-9.
GRAZIANO G, 2006, J PHYS CHEM B, V110, P11421, DOI 10.1021/jp0571269.
GROSFILS P, 2009, J CHEM PHYS, V130, ARTN 054703.
HEYING M, 2004, J PHYS CHEM B, V108, P19756, DOI 10.1021/jp040398b.
HUANG DM, 2000, PHYS REV E, V61, P1501.
HUANG DM, 2001, J PHYS CHEM B, V105, P6704.
HUMMER G, 2001, NATURE, V414, P188.
JACKSON RM, 1994, PROTEIN ENG, V7, P371.
JAIN A, 2008, J CHEM PHYS, V129, ARTN 174505.
JOHNSON JK, 1993, MOL PHYS, V78, P591.
LEE B, 1991, BIOPOLYMERS, V31, P993.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
MAIBAUM L, 2007, J PHYS CHEM B, V111, P9025, DOI 10.1021/jp072266z.
MASTNY EA, 2007, J CHEM PHYS, V127, ARTN 104504.
MITTAL J, 2008, P NATL ACAD SCI USA, V105, P20130, DOI 10.1073/pnas.0809029105.
MOODY MP, 2001, J CHEM PHYS, V115, P8967.
NIJMEIJER MJP, 1988, J CHEM PHYS, V89, P3789.
PARKER JL, 1994, J PHYS CHEM-US, V98, P8468.
PIEROTTI RA, 1976, CHEM REV, V76, P717.
POHORILLE A, 1990, J AM CHEM SOC, V112, P5066.
POTOFF JJ, 2000, J CHEM PHYS, V112, P6411.
PRATT LR, 1992, P NATL ACAD SCI USA, V89, P2995.
PREVOST M, 1996, J PHYS CHEM-US, V100, P2738.
REISS H, 1960, J CHEM PHYS, V32, P119.
REISS H, 1965, ADV CHEM PHYS, V9, P1.
ROWLINSON JS, 1982, LIQUIDS LIQUID MIXTU.
ROWLINSON JS, 2002, MOL THEORY CAPILARIT.
SMIT B, 1992, J CHEM PHYS, V96, P8639.
STILLINGER FH, 1971, J CHEM PHYS, V55, P3449.
STILLINGER FH, 1973, J SOLUTION CHEM, V2, P141.
TOLMAN RC, 1949, J CHEM PHYS, V17, P333.
TOMASOLIVEIRA I, 1999, J CHEM PHYS, V111, P8576.
TULLYSMI.DM, 1970, J CHEM PHYS, V53, P4015.

Cited Reference Count:
49

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3143716

IDS Number:
451VY

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266263300159
*Order Full Text [ ]

Title:
Analysis of the vibration characteristics of fluid-conveying double-walled carbon nanotubes

Authors:
Natsuki, T; Ni, QQ; Endo, M

Author Full Names:
Natsuki, Toshiaki; Ni, Qing-Qing; Endo, Morinobu

Source:
JOURNAL OF APPLIED PHYSICS 105 (9): Art. No. 094328 MAY 1 2009

Language:
English

Document Type:
Article

KeyWords Plus:
WAVE PROPAGATION; WATER; FIBER; MODEL

Abstract:
Vibration characteristics of double-walled carbon nanotubes (DWCNTs) with conveying fluid are analyzed based on the Euler-Bernoulli beam theory and using the wave propagation approach. The DWCNTs are considered as two nanotube shells coupled through the van der Waals interaction between them. The influences of internal moving fluids, such as flow velocity and mass density of fluids, on the vibration frequency of DWCNTs and the DWCNTs embedded in an elastic matrix are investigated in detail. The effect of matrix surrounding carbon nanotubes is considered as a spring element defined by the Winkler model. In this paper, we consider the double-walled nanotubes with an inner diameter of 2.2 nm and an outer diameter of 3.0 nm. According to this analysis, the numerical results indicate that the vibration frequency for the first mode (mode 1) reduces to zero at a critical flow velocity in the case of higher flow velocity, which coincides with the previous study based on a single bea!
m model. The critical flow velocity is largely affected by the fluid properties and the vibration modes. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3117511]

Reprint Address:
Natsuki, T, Shinshu Univ, Fac Text Sci & Technol, 3-15-1 Tokida, Ueda, Nagano 3868567, Japan.

Research Institution addresses:
[Natsuki, Toshiaki; Ni, Qing-Qing] Shinshu Univ, Fac Text Sci & Technol, Ueda, Nagano 3868567, Japan; [Endo, Morinobu] Shinshu Univ, Fac Engn, Nagano 3808553, Japan

E-mail Address:
natsuki@shinshu-u.ac.jp

Cited References:
AYDOGDU M, 2008, INT J MECH SCI, V50, P837, DOI 10.1016/j.ijmecsci.2007.10.003.
BABIC B, 2003, NANO LETT, V3, P1577, DOI 10.1021/nl0344716.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303, DOI 10.1016/j.jmps.2004.08.003.
HILDER TA, 2008, CURR APPL PHYS, V8, P258, DOI 10.1016/j.cap.2007.10.011.
HSU JC, 2008, PHYS LETT A, V372, P2757, DOI 10.1016/j.physleta.2008.01.007.
HUMMER G, 2001, NATURE, V414, P188.
KOZIOL K, 2007, SCIENCE, V318, P1892, DOI 10.1126/science.1147635.
LANIR Y, 1972, J COMPOS MATER, V6, P387.
LEISSA AW, 1973, VIBRATION SHELLS.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
NATSUKI T, 2005, J APPL PHYS, V97, ARTN 044307.
NATSUKI T, 2006, J APPL PHYS, V99, ARTN 034311.
NATSUKI T, 2008, J APPL PHYS, V103, ARTN 094312.
PAIDOUSSIS MP, 1974, J SOUND VIBRATION, V33, P267.
QIAN D, 2002, APPL MECH REV, V55, P495.
REDDY CD, 2007, APPL PHYS LETT, V90, ARTN 133122.
SAITO R, 2001, CHEM PHYS LETT, V348, P187.
THOSTENSON ET, 2001, COMPOS SCI TECHNOL, V61, P1899.
TREACY MMJ, 1996, NATURE, V381, P678.
WANG CM, 2006, J SOUND VIB, V294, P1060, DOI 10.1016/j.jsv.2006.01.005.
WANG CY, 2004, ASME, V71, P622.
WANG CY, 2005, PHYS REV B, V72, ARTN 075414.
WONG EW, 1971, SCIENCE, V277, P1997.
YANG F, 2008, MED HYPOTHESES, V70, P765, DOI 10.1016/j.mehy.2007.07.045.
YOON J, 2002, PHYS REV B, V66, ARTN 233402.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2003, J APPL PHYS, V93, P4801, DOI 10.1063/1.1559932.
YOON J, 2004, COMPOS PART B-ENG, V35, P87, DOI 10.1016/j.compositesb.2003.09.002.
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI 10.1016/j.compscitech.2004.12.002.

Cited Reference Count:
31

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0021-8979

DOI:
10.1063/1.3117511

IDS Number:
448LE

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266679500009
*Order Full Text [ ]

Title:
Structural Evidence for the Ordered Crystallites of Ionic Liquid in Confined Carbon Nanotubes

Authors:
Dong, K; Zhou, GH; Liu, XM; Yao, XQ; Zhang, SJ; Lyubartsev, A

Author Full Names:
Dong, Kun; Zhou, Guohui; Liu, Xiaomin; Yao, Xiaoqian; Zhang, Suojiang; Lyubartsev, Alexander

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (23): 10013-10020 JUN 11 2009

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATION; ROOM-TEMPERATURE; 1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; ICE NANOTUBES; FREE-ENERGY; TRANSPORT; MIXTURES; SOLVENTS; METHANE; POTENTIALS

Abstract:
Ionic liquids (ILs) are a class of new green materials that have attracted extensive attention in recent decades. Many novel properties not evident under normal conditions may appear when ionic liquids are confined to a nanometer scale. As was observed in the experiment, an anomalous phase behavior from liquid to high melting point perfect crystal occurred when 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) ionic liquid was confined in a carbon nanotube. In this work, we performed molecular dynamics (MD) simulations for [bmim][PF6] ionic liquid and provided direct structural evidence that the ionic crystallizes in a carbon nanotube. The ordered ionic arrangement in both the radial and the axial directions can be observed inside the channels of the CNTs to induce the form of crystallites. The ionic stacking and distributing can be determined by the sizes of the CNTs. Hydrogen bonds remain the dominant interactions between cations and anions when the ionic liq!
uid enters into the CNT from the bulk phase. The free energies as the thermal driven forces were calculated, and it is found that it is very difficult for a single anion to enter into the channel of the CNT spontaneously. A more favorable way is through an ion-pair in which a cation "pulls" an anion to enter into the channel of the CNT together. It is predicted that other ionic liquids that possess similar structures, even including the pyridinium-based ionic liquids, can show higher melting points when confined in CNTs.

Reprint Address:
Zhang, SJ, Chinese Acad Sci, State Key Lab Multiphase Complex Syst, Inst Proc Engn, Beijing 100190, Peoples R China.

Research Institution addresses:
[Dong, Kun; Zhou, Guohui; Liu, Xiaomin; Yao, Xiaoqian; Zhang, Suojiang] Chinese Acad Sci, State Key Lab Multiphase Complex Syst, Inst Proc Engn, Beijing 100190, Peoples R China; [Lyubartsev, Alexander] Stockholm Univ, Arrhenius Lab, Div Phys Chem, S-10691 Stockholm, Sweden

E-mail Address:
sjzhang@home.ipe.ac.cn

Cited References:
AJAYAN PM, 1997, REP PROG PHYS, V60, P1025.
BAI J, 2003, J CHEM PHYS, V118, P3913, DOI 10.1063/1.1555091.
BONDI A, 1964, J PHYS CHEM-US, V68, P441.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CAO DP, 2003, J PHYS CHEM B, V107, P13286, DOI 10.1021/jp036094r.
CHEN SM, 2007, J AM CHEM SOC, V129, P2416, DOI 10.1021/ja067972c.
DELPOPOLO MG, 2004, J PHYS CHEM B, V108, P1744, DOI 10.1021/jp0364699.
DONG K, 2006, J PHYS CHEM A, V110, P9775, DOI 10.1021/jp054054c.
EARLE MJ, 1999, GREEN CHEM, V1, P23.
EARLE MJ, 2000, PURE APPL CHEM, V72, P1391.
FREDLAKE CP, 2004, J CHEM ENG DATA, V49, P954, DOI 10.1021/je034261a.
FUKUSHIMA T, 2003, SCIENCE, V300, P2072.
HANKE CG, 2001, MOL PHYS, V99, P801.
HANKE CG, 2003, J PHYS CHEM B, V107, P10873, DOI 10.1021/jp034221d.
HINDS BJ, 2004, SCIENCE, V303, P5654.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG XH, 2005, J AM CHEM SOC, V127, P17842, DOI 10.1021/ja055315z.
HUDDLESTON JG, 2001, GREEN CHEM, V3, P156.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KALRA A, 2004, J PHYS CHEM B, V108, P544, DOI 10.1021/jp035828x.
KANAKUBO M, 2005, CHEM LETT, V34, P324, DOI 10.1246/cl.2005.324.
KELKAR MS, 2007, J PHYS CHEM B, V111, P9492.
KHLOBYSTOV AN, 2005, ACCOUNTS CHEM RES, V38, P901.
KOGA K, 2000, J CHEM PHYS, V113, P5037.
KOGA K, 2001, NATURE, V412, P802.
KONG J, 2000, SCIENCE, V287, P5453.
LIU C, 1999, SCIENCE, V286, P1127.
LIU YD, 2006, J AM CHEM SOC, V128, P7456, DOI 10.1021/ja062685u.
LIU ZP, 2004, J PHYS CHEM B, V108, P12978, DOI 10.1021/jp048369o.
LUDER K, 2006, J PHYS CHEM B, V110, P15514, DOI 10.1021/jp061245m.
LYUBARTSEV AP, 1996, MOL SIMULAT, V18, P43.
LYUBARTSEV AP, 1998, J CHEM PHYS, V108, P227.
LYUBARTSEV AP, 2000, COMPUT PHYS COMMUN, V128, P565.
LYUBARTSEV AP, 2001, J PHYS CHEM B, V105, P7775.
MARGULIS CJ, 2002, J PHYS CHEM B, V106, P12017, DOI 10.1021/jp021392u.
MARGULIS CJ, 2004, MOL PHYS, V102, P829, DOI 10.1080/00268970410001683843.
MARTYNA GJ, 1996, MOL PHYS, V87, P1117.
MORROW TI, 2002, J PHYS CHEM B, V106, P12807, DOI 10.1021/jp0267003.
SAZONOVA V, 2004, NATURE, V431, P284, DOI 10.1038/nature02905.
SHAH JK, 2002, GREEN CHEM, V4, P112.
SHELDON R, 2001, CHEM COMMUN, P2399.
SNOW ES, 2005, SCIENCE, V307, P1942, DOI 10.1126/science.1109128.
TALATY ER, 2004, J PHYS CHEM B, V108, P13177, DOI 10.1021/jp040199s.
TASIS D, 2006, CHEM REV, V106, P1105, DOI 10.1021/cr050569o.
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990.
WANG J, 2003, ACTA CHIM SINICA, V61, P1891.
WANG YT, 2005, J AM CHEM SOC, V127, P12192, DOI 10.1021/ja053796g.
WELTON T, 1999, CHEM REV, V99, P2071.
WILSON M, 2001, J AM CHEM SOC, V123, P2101.
WILSON M, 2004, NANO LETT, V4, P299, DOI 10.1021/nl035044v.
WILSON M, 2006, ACTA CRYSTALLOGR A 4, V62, P287, DOI 10.1107/S0108767306018101.
WILSON M, 2006, J CHEM PHYS, V124, ARTN 124706.
YAN TY, 2004, J PHYS CHEM B, V108, P11877, DOI 10.1021/jp047619y.

Cited Reference Count:
54

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp900533k

IDS Number:
454JZ

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266679500039
*Order Full Text [ ]

Title:
DF-DFT-SAPT Investigation of the Interaction of a Water Molecule to Coronene and Dodecabenzocoronene: Implications for the Water-Graphite Interaction

Authors:
Jenness, GR; Jordan, KD

Author Full Names:
Jenness, Glen R.; Jordan, Kenneth D.

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (23): 10242-10248 JUN 11 2009

Language:
English

Document Type:
Review

KeyWords Plus:
DENSITY-FUNCTIONAL THEORY; DISTRIBUTED MULTIPOLE ANALYSIS; ADAPTED PERTURBATION-THEORY; PI-PI INTERACTIONS; INTERMOLECULAR INTERACTION ENERGIES; DER-WAALS INTERACTIONS; KOHN-SHAM ORBITALS; CARBON NANOTUBES; BENZENE DIMER; BASIS-SETS

Abstract:
In the present study we revisit the problem of the interaction of a water molecule with a single graphite sheet. The density fitting-density functional theory-symmetry-adapted perturbation theory (DF-DFT-SAPT; J. Chem. Phys. 2005, 122, 014103) method is used to calculate the individual contributions arising from the interaction of a water molecule with various acenes, including benzene, coronene, and dodecabenzocoronene. These results are combined with calculations of the electrostatic interactions with water and a C216H36 acene to extrapolate to the limit of an infinite graphite sheet, giving a interaction energy of -2.2 kcal/mol for the water-graphite system, with the assumed geometrical structure with one hydrogen atom pointed down toward the ring system. The structure with two hydrogens pointed down is predicted to be more stable, with a net interaction energy of -2.7 kcal/mol.

Reprint Address:
Jordan, KD, Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15620 USA.

Research Institution addresses:
[Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15620 USA; Univ Pittsburgh, Ctr Mol & Mat Simulat, Pittsburgh, PA 15620 USA

E-mail Address:
jordan@pitt.edu

Cited References:
ADAMO C, 1999, J CHEM PHYS, V110, P6158.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALONSO JA, 2007, THEOR CHEM ACC, V117, P467, DOI 10.1007/s00214-006-0079-3.
ANDERSSON Y, 1996, PHYS REV LETT, V76, P102.
ARAI N, 2008, J AM CHEM SOC, V130, P7916, DOI 10.1021/ja7108739.
AVGUL NN, 1970, CHEMISTRY PHYSICS CA, V6, P1.
BARBER AH, 2005, PHYS REV B, V71, ARTN 115443.
BENEDICT LX, 1995, PHYS REV B, V52, P8541.
BENEDICT WS, 1956, J CHEM PHYS, V24, P1139.
BIRKETT GR, 2007, J PHYS CHEM C, V111, P5735, DOI 10.1021/jp068479q.
BOYS SF, 1970, MOL PHYS, V19, P553.
BUKOWSKI R, 2005, CHEM PHYS LETT, V414, P111, DOI 10.1016/j.cplett.2005.08.048.
BUSHUEV Y, 2005, SENSORS-BASEL, V5, P139.
CHAKAROV DV, 1995, LANGMUIR, V11, P1201.
COURTY A, 1998, J PHYS CHEM A, V102, P6590.
CYBULSKI SM, 2003, J CHEM PHYS, V119, P12704, DOI 10.1063/1.1635351.
DANG LX, 1997, J CHEM PHYS, V106, P8149.
DANG LX, 2000, J PHYS CHEM B, V104, P4403.
FELLER D, 1999, J PHYS CHEM A, V103, P7558.
FELLER D, 2000, J PHYS CHEM A, V104, P9971.
FRISCH MJ, 2004, GAUSSIAN 03 REVISION.
GONZALEZ BS, 2007, J PHYS CHEM C, V111, P14862, DOI 10.1021/jp074249f.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
GRIMME S, 2006, J CHEM PHYS, V124, ARTN 034108.
GRIMME S, 2007, J PHYS CHEM C, V111, P11199, DOI 10.1021/jp0720791.
GRUNING M, 2001, J CHEM PHYS, V114, P652.
HESSELMANN A, 2002, CHEM PHYS LETT, V357, P464.
HESSELMANN A, 2002, CHEM PHYS LETT, V362, P319.
HESSELMANN A, 2003, CHEM PHYS LETT, V367, P778.
HESSELMANN A, 2005, J CHEM PHYS, V122, ARTN 014103.
HOBZA P, 1996, J PHYS CHEM-US, V100, P18790.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HULT E, 1996, PHYS REV LETT, V77, P2029.
HUMMER G, 2001, NATURE, V414, P188.
JEZIORSKI B, 1993, METHODS TECHNIQUES C, B, P79.
JOHNSON ER, 2006, J CHEM PHYS, V124, ARTN 174104.
JORGENSEN WL, 1985, MOL PHYS, V56, P1381.
KAIRYS V, 1999, CHEM PHYS LETT, V315, P140.
KARAPETIAN K, 2003, WATER CONFINING GEOM, P139.
KENDALL RA, 1992, J CHEM PHYS, V96, P6769.
KHALIULLIN RZ, 2008, J CHEM PHYS, V128, ARTN 184112.
KING EC, 2007, J ENVIRON ENG GEOPH, V12, P15.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOGA K, 2001, NATURE, V412, P802.
KOGA K, 2002, PHYSICA A, V314, P462.
KOHN W, 1998, PHYS REV LETT, V80, P4153.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KOLESNIKOV AI, 2006, PHYSICA B 1, V385, P272, DOI 10.1016/j.physb.2006.05.065.
LEENAERTS O, 2008, PHYS REV B, V77, ARTN 125416.
LIA SG, NIST CHEM WEBBOOK.
LIN IC, 2008, PHYS CHEM CHEM PHYS, V10, P2730, DOI 10.1039/b718594d.
MAMONTOV E, 2006, J CHEM PHYS, V124, ARTN 194703.
MARKOVIC N, 1999, CHEM PHYS, V247, P413.
MISQUITTA AJ, 2003, PHYS REV LETT, V91, ARTN 033201.
MISQUITTA AJ, 2005, J CHEM PHYS, V122, ARTN 214109.
MISQUITTA AJ, 2005, J CHEM PHYS, V123, ARTN 214103.
NANOK T, J PHYS CH A IN PRESS.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
PERTSIN A, 2004, J PHYS CHEM B, V108, P1357, DOI 10.1021/jp0356968.
PERTSIN A, 2006, J CHEM PHYS, V125, ARTN 114707.
PODESZWA R, 2005, CHEM PHYS LETT, V412, P488, DOI 10.1016/j.cplett.2005.07.029.
PODESZWA R, 2006, J CHEM THEORY COMPUT, V2, P400, DOI 10.1021/ct050304h.
PODESZWA R, 2006, J PHYS CHEM A, V110, P10345, DOI 10.1021/jp064095o.
PONDER JW, 2004, TINKER SOFTWARE TOOL.
PRICE SL, 1983, CHEM PHYS LETT, V98, P419.
PRICE SL, 1984, MOL PHYS, V52, P987.
RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P479.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
REN PY, 2003, J PHYS CHEM B, V107, P5933, DOI 10.1021/jp027815+.
RUBES M, 2008, PHYS CHEM CHEM PHYS, V10, P2611, DOI 10.1039/b718701g.
RUBES M, 2009, J PHYS CHEM C, V113, P8412, DOI 10.1021/jp901410m.
RYBAK S, 1991, J CHEM PHYS, V95, P6576.
SALA FD, 2001, J CHEM PHYS, V115, P5718.
SHAO Y, 2006, PHYS CHEM CHEM PHYS, V8, P3172, DOI 10.1039/b517914a.
SILVESTRELLI PL, 2008, PHYS REV LETT, V100, ARTN 053002.
SINHA S, 2007, PHYS FLUIDS, V19, ARTN 013603.
SINNOKROT MO, 2002, J AM CHEM SOC, V124, P10887, DOI 10.1021/ja025896h.
SINNOKROT MO, 2004, J PHYS CHEM A, V108, P10200, DOI 10.1021/jp0469517.
STONE AJ, 1981, CHEM PHYS LETT, V83, P233.
STONE AJ, 1996, THEORY INTERMOLECULA.
STONE AJ, 2005, J CHEM THEORY COMPUT, V1, P1128, DOI 10.1021/ct050190+.
SUDIARTA IW, 2006, J PHYS CHEM A, V110, P10501, DOI 10.1021/jp060554+.
THOMAS JA, 2007, J CHEM PHYS, V126, ARTN 034707.
THOMAS JA, 2008, J CHEM PHYS, V128, ARTN 084715.
TSUZUKI S, 1996, CHEM PHYS LETT, V252, P206.
TSUZUKI S, 2000, CHEM PHYS LETT, V319, P547.
TSUZUKI S, 2002, J AM CHEM SOC, V124, P104.
VAHTRAS O, 1993, CHEM PHYS LETT, V213, P514.
VANLEEUWEN R, 1994, PHYS REV A, V49, P2421.
VANMOURIK T, 2002, J CHEM PHYS, V116, P9620.
VERNOV A, 1992, LANGMUIR, V8, P155.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WEHLING TO, 2008, APPL PHYS LETT, V93, ARTN 202110.
WEIGEND F, 2002, J CHEM PHYS, V116, P3175.
WEIGEND F, 2002, PHYS CHEM CHEM PHYS, V4, P4285, DOI 10.1039/b204199p.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WERNER HJ, 2006, MOLPRO VERSION 2006.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
WHITEHOUSE DB, 1993, J CHEM SOC FARADAY T, V89, P1909.
WILLIAMS HL, 2001, J PHYS CHEM A, V105, P646.
XU J, UNPUB.
ZHANG XH, 2007, LANGMUIR, V23, P23.
ZHAO Y, 2005, J CHEM THEORY COMPUT, V1, P415, DOI 10.1021/ct049851d.
ZHAO Y, 2005, J PHYS CHEM B, V109, P19046, DOI 10.1021/jp0534434.
ZHAO Z, 2005, MOL SIMULAT, V1, P1.

Cited Reference Count:
106

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp9015307

IDS Number:
454JZ

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266549300080
*Order Full Text [ ]

Title:
Gating of Water Flow Induced by Bending of a Carbon Nanotube

Authors:
Wang, S; Lu, HJ; Tu, YS; Wang, CL; Fang, HP

Author Full Names:
Wang Shen; Lu Hang-Jun; Tu Yu-Song; Wang Chun-Lei; Fang Hai-Ping

Source:
CHINESE PHYSICS LETTERS 26 (6): Art. No. 068702 JUN 2009

Language:
English

Document Type:
Article

KeyWords Plus:
BIOLOGICAL CHANNELS; PERMEATION; CONDUCTION; TRANSPORT; DYNAMICS; PIPES

Abstract:
The ON-OFF state transition of the water transport induced by the structural bending of a carbon nanotube is studied by molecule dynamics simulation. The water permeation through a bent carbon nanotube shows excellent gating property with a threshold bending angle of about 14.6 degrees. We also investigate the water density distribution inside the nanochannel to illustrate the mechanism.

Reprint Address:
Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204, Shanghai 201800, Peoples R China.

Research Institution addresses:
[Wang Shen; Tu Yu-Song; Wang Chun-Lei; Fang Hai-Ping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Wang Shen; Tu Yu-Song; Wang Chun-Lei] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China; [Lu Hang-Jun] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China; [Fang Hai-Ping] Chinese Acad Sci, TPCSF, Beijing 100049, Peoples R China

E-mail Address:
fanghaiping@sinap.ac.cn

Cited References:
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BERNE BJ, 2009, ANN REV PHY IN PRESS, V60.
BRENNER DW, 1990, PHYS REV B, V42, P9458.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GONG XJ, 2008, CHINESE PHYS B, V17, P2739.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
LI JY, 2007, CHINESE PHYS LETT, V24, P2710.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU J, 1998, SCIENCE, V280, P1253.
LU HJ, 2008, CHINESE PHYS LETT, V25, P1145.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
PAN ZW, 1998, NATURE, V394, P631.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TERSOFF J, 1988, PHYS REV LETT, V61, P2879.
VANDERSPOEL D, 2005, GROMACS USER MANUAL.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
24

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Multidisciplinary

ISSN:
0256-307X

IDS Number:
452OA

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Zhao, Y

ISI Web of Knowledge Citation Alert

Cited Article: Zhao, Y. Individual water-filled single-walled carbon nanotubes as hydroelectric power converters
Alert Expires: 22 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266549300080
*Order Full Text [ ]

Title:
Gating of Water Flow Induced by Bending of a Carbon Nanotube

Authors:
Wang, S; Lu, HJ; Tu, YS; Wang, CL; Fang, HP

Author Full Names:
Wang Shen; Lu Hang-Jun; Tu Yu-Song; Wang Chun-Lei; Fang Hai-Ping

Source:
CHINESE PHYSICS LETTERS 26 (6): Art. No. 068702 JUN 2009

Language:
English

Document Type:
Article

KeyWords Plus:
BIOLOGICAL CHANNELS; PERMEATION; CONDUCTION; TRANSPORT; DYNAMICS; PIPES

Abstract:
The ON-OFF state transition of the water transport induced by the structural bending of a carbon nanotube is studied by molecule dynamics simulation. The water permeation through a bent carbon nanotube shows excellent gating property with a threshold bending angle of about 14.6 degrees. We also investigate the water density distribution inside the nanochannel to illustrate the mechanism.

Reprint Address:
Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204, Shanghai 201800, Peoples R China.

Research Institution addresses:
[Wang Shen; Tu Yu-Song; Wang Chun-Lei; Fang Hai-Ping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Wang Shen; Tu Yu-Song; Wang Chun-Lei] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China; [Lu Hang-Jun] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China; [Fang Hai-Ping] Chinese Acad Sci, TPCSF, Beijing 100049, Peoples R China

E-mail Address:
fanghaiping@sinap.ac.cn

Cited References:
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BERNE BJ, 2009, ANN REV PHY IN PRESS, V60.
BRENNER DW, 1990, PHYS REV B, V42, P9458.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GONG XJ, 2008, CHINESE PHYS B, V17, P2739.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
LI JY, 2007, CHINESE PHYS LETT, V24, P2710.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU J, 1998, SCIENCE, V280, P1253.
LU HJ, 2008, CHINESE PHYS LETT, V25, P1145.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
PAN ZW, 1998, NATURE, V394, P631.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TERSOFF J, 1988, PHYS REV LETT, V61, P2879.
VANDERSPOEL D, 2005, GROMACS USER MANUAL.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
24

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Multidisciplinary

ISSN:
0256-307X

IDS Number:
452OA

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert
Cited Article:   Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires:   21 OCT 2009
Number of Citing Articles:   3 new records this week (3 in this e-mail)
Organization ID:   3b97d1bbc1878baed0ab183d8b03130b

Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.

*Record 1 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: The effective slip length and vortex formation in laminar flow over a rough surface
Authors: Niavarani, A; Priezjev, NV
Author Full Names: Niavarani, Anoosheh; Priezjev, Nikolai V.
Source: PHYSICS OF FLUIDS 21 (5): Art. No. 052105 MAY 2009
Language: English
Document Type: Article
Author Keywords: external flows; laminar flow; Navier-Stokes equations; rough surfaces; shear flow; slip flow; vortices
KeyWords Plus: BOUNDARY-CONDITION; FLUID-FLOW; SOLID-SURFACES; HEAT-TRANSFER; CHANNELS; WALL; VORTICES; MICROFLUIDICS; MICROCHANNELS; ENHANCEMENT
Abstract: The flow of viscous incompressible fluid over a periodically corrugated surface is investigated numerically by solving the Navier-Stokes equation with the local slip and no-slip boundary conditions. We consider the effective slip length which is defined with respect to the level of the mean height of the surface roughness. With increasing corrugation amplitude the effective no-slip boundary plane is shifted toward the bulk of the fluid, which implies a negative effective slip length. The analysis of the wall shear stress indicates that a flow circulation is developed in the grooves of the rough surface provided that the local boundary condition is no-slip. By applying a local slip boundary condition, the center of the vortex is displaced toward the bottom of the grooves and the effective slip length increases. When the intrinsic slip length is larger than the corrugation amplitude, the flow streamlines near the surface are deformed to follow the boundary curvature, the vorte! x vanishes, and the effective slip length saturates to a constant value. Inertial effects promote vortex flow formation in the grooves and reduce the effective slip length.
Reprint Address: Niavarani, A, Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA.
Research Institution addresses: [Niavarani, Anoosheh; Priezjev, Nikolai V.] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
Cited References: BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BEEBE DJ, 2002, ANNU REV BIOMED ENG, V4, P261, DOI 10.1146/annurev.bioeng.4.112601.125916.
BENJAMIN TB, 1959, J FLUID MECH, V6, P161.
BERGER SA, 2000, ANNU REV FLUID MECH, V32, P347.
BORDNER GL, 1978, PHYS FLUIDS, V21, P1471.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
CHOW JCF, 1972, PHYS FLUIDS, V15, P1700.
CHURAEV NV, 1984, J COLLOID INTERF SCI, V97, P574.
COTTINBIZONNE C, 2005, PHYS REV LETT, V94, ARTN 056102.
EINZEL D, 1990, PHYS REV LETT, V64, P2269.
FORRESTER JH, 1970, J BIOMECH, V3, P297.
GEYER PE, 2006, MICROFLUID NANOFLUID, V2, P195, DOI 10.1007/s10404-005-0062-7.
GIGRAS A, 2008, MICROFLUID NANOFLUID, V5, P89, DOI 10.1007/s10404-007-0230-z.
HEINRICH JC, 1981, COMPUT FLUIDS, V9, P73.
HEINRICH JC, 1999, INTERMEDIATE FINITE.
HOCKING LM, 1976, J FLUID MECH, V76, P801.
HORN RG, 2000, J CHEM PHYS, V112, P6424.
HUGHES TJR, 1979, J COMPUT PHYS, V30, P1.
JANSONS KM, 1988, PHYS FLUIDS, V31, P15.
KUNERT C, 2007, PHYS REV LETT, V99, ARTN 176001.
LECOQ N, 2004, J FLUID MECH, V513, P247, DOI 10.1017/S0022112004009942.
LENEWEIT G, 1999, J FLUID MECH, V387, P129.
MENGEAUD V, 2002, ANAL CHEM, V74, P4279, DOI 10.1021/ac025642e.
METWALLY HM, 2004, INT J HEAT MASS TRAN, V47, P2283, DOI 10.1016/j.ijheatmasstransfer.2003.11.019.
MIKSIS MJ, 1994, J FLUID MECH, V273, P125.
MOFFATT HK, 1964, J FLUID MECH, V18, P1.
NIAVARANI A, 2008, J CHEM PHYS, V129, ARTN 144902.
NISHIMURA T, 1984, J CHEM ENG JPN, V17, P466.
PAN F, 1967, J FLUID MECH, V28, P643.
PANZER P, 1992, INT J MOD PHYS B, V6, P3251.
PIT R, 2000, PHYS REV LETT, V85, P980.
POZRIKIDIS C, 1987, J FLUID MECH, V180, P495.
PRIEZJEV NV, 2004, PHYS REV LETT, V92, ARTN 018302.
PRIEZJEV NV, 2006, J FLUID MECH, V554, P25, DOI 10.1017/S0022112006009086.
PRIEZJEV NV, 2007, PHYS REV E 1, V75, ARTN 051605.
RICHARDSON S, 1973, J FLUID MECHANICS 4, V59, P707.
ROSAGUTI NR, 2007, CHEM ENG SCI, V62, P694, DOI 10.1016/j.ces.2006.09.045.
SARKAR K, 1996, J FLUID MECH, V316, P223.
SCHLICHTING H, 2000, BOUNDARY LAYER THEOR.
SCHOLLE M, 2004, ACTA MECH, V168, P167, DOI 10.1007/s00707-004-0083-4.
SOBEY IJ, 1980, J FLUID MECH, V96, P1.
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878.
SQUIRES TM, 2005, REV MOD PHYS, V77, P977.
TANEDA S, 1979, J PHYS SOC JPN, V46, P1935.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1997, NATURE, V389, P360.
TSANGARIS S, 1986, ACTA MECH, V61, P109.
TUCK EO, 1995, J FLUID MECH, V300, P59.
VINOGRADOVA OI, 2006, PHYS REV E 2, V73, ARTN 045302.
WANG CY, 2003, PHYS FLUIDS, V15, P1114, DOI 10.1063/1.1560925.
WOOTTON DM, 1999, ANNU REV BIOMED ENG, V1, P299.
ZHOU H, 2003, PHYS FLUIDS, V15, P3114, DOI 10.1063/1.1603747.
Cited Reference Count: 52
Times Cited: 0
Publisher: AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA
Subject Category: Mechanics; Physics, Fluids & Plasmas
ISSN: 1070-6631
DOI: 10.1063/1.3121305
IDS Number: 451WB

*Record 2 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: MOLECULAR DYNAMICS SIMULATIONS OF THERMAL INTERACTIONS IN NANOSCALE LIQUID CHANNELS
Authors: Kim, B; Beskok, A; Cagin, T
Author Full Names: Kim, BoHung; Beskok, Ali; Cagin, Tahir
Source: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 13, PTS A AND B : 897-905 2009
Language: English
Document Type: Proceedings Paper
KeyWords Plus: LENNARD-JONES ARGON; SOLID INTERFACE; BOUNDARY RESISTANCE; KAPITZA RESISTANCE; CONDUCTIVITY; TRANSPORT; STATES
Abstract: Molecular Dynamics (MD) simulations of nano-scale flows typically utilize fixed lattice crystal interactions between the fluid and stationary wall molecules. This approach cannot properly model thermal exchange at the wall-fluid interface. Therefore, We use an interactive thermal wall model that can properly simulate the flow and heat transfer in nano-scale channels. Using the interactive thermal wall, Fourier law of heat conduction is verified for the 3.24 nm channel, while the thermal conductivity obtained from Fourier law is verified using the predictions of Green-Kubo theory. Moreover, temperature jumps at the liquid/solid interface, corresponding to the well known Kapitza resistance, are observed. Using systematic studies thermal resistance length at the interface is characterized as a function of the surface wettability, thermal oscillation frequency, wall temperature and thermal gradient. An empirical model for the thermal resistance length, which could be used as the! jump-coefficient of a Navier boundary condition, is developed.
Reprint Address: Kim, B, Old Dominion Univ, Dept Aerosp Engn, Norfolk, VA 23529 USA.
Research Institution addresses: [Kim, BoHung; Beskok, Ali] Old Dominion Univ, Dept Aerosp Engn, Norfolk, VA 23529 USA
Cited References: ALLEN MP, 1989, COMPUTER SIMULATION.
BARRAT JL, 2003, MOL PHYS, V101, P1605, DOI 10.1080/0026897031000068578.
BORGELT P, 1990, PHYS REV A, V42, P789.
CAHILL DG, 2003, APPL PHYS REV, V93, P793.
CHAUDHURI D, 2006, PHYS REV E, V93.
CHAUDHURI D, 2007, J PHYS-CONDENS MAT, V19, P52201, ARTN 152201.
CHE JW, 2000, NANOTECHNOLOGY, V11, P65.
EVANS DJ, 1985, J CHEM PHYS, V83, P4069.
KAPITZA PL, 1941, J PHYS-USSR, V4, P181.
KIM BH, 2008, MICROFLUID NANOFLUID, V5, P551, DOI 10.1007/s10404-008-0267-7.
MCGAUGHEY AJH, 2004, INT J HEAT MASS TRAN, V47, P1783, DOI 10.1016/j.ijheatmasstransfer.2003.11.002.
POLLACK GL, 1969, REV MOD PHYS, V41, P48.
PRASHER RS, 2001, J HEAT TRANS-T ASME, V123, P105.
SCHELLING PK, 2002, PHYS REV B, V65, ARTN 144306.
STEVENS RJ, 2004 ASME INT MECH E.
STEVENS RJ, 2007, INT J HEAT MASS TRAN, V50, P3977, DOI 10.1016/j.ijheatmasstransfer.2007.01.040.
SWARTZ ET, 1989, REV MOD PHYS, V61, P605.
TENENBAUM A, 1983, PHYS REV A, V28, P3132.
THOMPSON PA, 1997, NATURE, V389, P360.
TRETIAKOV KV, 2004, J CHEM PHYS, V120, P3765, DOI 10.1063/1.1642611.
XUE L, 2003, J CHEM PHYS, V118, P337, DOI 10.1063/1.1525806.
XUE L, 2004, INT J HEAT MASS TRAN, V47, P4277, DOI 10.1016/ijheatmasstransfer.2004.05.016.
Cited Reference Count: 22
Times Cited: 0
Publisher: AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
IDS Number: BJJ80

*Record 3 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: STATISTICAL MECHANICS OF STATIC AND LOW-VELOCITY KINETIC FRICTION
Authors: Muser, MH; Urbakh, M; Robbins, MO
Author Full Names: Mueser, Martin H.; Urbakh, Michael; Robbins, Mark O.
Source: ADVANCES IN CHEMICAL PHYSICS, VOL 126 126: 187-272 2003
Language: English
Document Type: Review
KeyWords Plus: STICK-SLIP MOTION; DEPENDENT SLIDING FRICTION; CHARGE-DENSITY WAVES; QUARTZ-CRYSTAL MICROBALANCE; FRENKEL-KONTOROVA MODEL; ATOMIC-FORCE MICROSCOPE; MOLECULARLY THIN-FILMS; MULTIWALLED CARBON NANOTUBES; ORDERED ORGANIC MONOLAYERS; SINGLE-ASPERITY CONTACTS
Reprint Address: Muser, MH, Univ Western Ontario, Dept Appl Math, London, ON N6A 5B9, Canada.
Research Institution addresses: [Mueser, Martin H.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany; [Urbakh, Michael] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel; [Robbins, Mark O.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
Cited References: ABARBANEL HDI, 1993, REV MOD PHYS, V65, P1331.
ABRAHAM FF, 1978, J CHEM PHYS, V68, P3713.
ACKERSON BJ, 1986, J CHEM PHYS, V84, P2344.
AMONTONS, 1699, HIST ACAD ROYALE SCI, P206.
AUBRY S, 1983, J PHYS-PARIS, V44, P147.
BAK P, 1980, PHYS REV B, V21, P3287.
BAK P, 1982, REP PROG PHYS, V45, P587.
BALJON ARC, 1996, SCIENCE, V271, P482.
BALJON ARC, 1997, NATO ADV SCI I E-APP, V330, P533.
BARRAT JL, 1999, FARADAY DISCUSS, V112, P1.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BARRETO E, 1995, PHYS REV E A, V51, P4169.
BARYAKHTAR VG, 1988, TEOR MAT FIZ, V74, P46.
BATISTA AA, 1998, PHYS REV E A, V57, P4986.
BAUDRY J, 2001, LANGMUIR, V17, P5232.
BAUMBERGER T, 1995, COMMENTS COND MAT PH, V17, P306.
BAUMBERGER T, 1998, EUR PHYS J B, V4, P13.
BAUMBERGER T, 2002, PHYS REV LETT, V88, ARTN 075509.
BELAK J, 1992, FUNDAMENTALS FRICTIO, P511.
BERGMAN DJ, 1983, PHYS REV A, V27, P3345.
BERMAN A, 1998, TRIBOL LETT, V4, P95.
BERTHOUD P, 1998, EUROPHYS LETT, V41, P617.
BERTHOUD P, 1998, P ROY SOC LOND A MAT, V454, P1615.
BHUSHAN B, 2001, MODERN TRIBOLOGY HDB, P49.
BINNIG G, 1986, PHYS REV LETT, V56, P930.
BITSANIS I, 1990, J CHEM PHYS, V92, P3827.
BOCQUET L, 1994, PHYS REV E A, V49, P3079.
BOGDANOVIC G, 2001, LANGMUIR, V17, P5911.
BOUHACINA T, 1997, PHYS REV B, V56, P7694.
BOWDEN FP, 1986, FRICTION LUBRICATION.
BRASS A, 1989, PHYS REV B, V39, P102.
BRAUN OM, 1998, PHYS REP, V306, P1.
BRILLOUIN M, 1990, NOTICE TRAVEAUX SCI.
BRISCOE BJ, 1978, J ADHESION, V9, P145.
BRISCOE BJ, 1981, PHILOS MAG A, V43, P511.
BRISCOE BJ, 1982, P R SOC A, V380, P389.
BRUCH LW, 2000, PHYS REV B, V61, P16201.
BULDUM A, 1997, PHYS REV B, V55, P12892.
BULDUM A, 1999, PHYS REV LETT, V83, P5050.
BUREAU L, 2000, PHYS REV E B, V62, P6810.
BURRIDGE R, 1967, B SEISMOL SOC AM, V57, P341.
CARLSON JM, 1994, REV MOD PHYS, V66, P657.
CARLSON JM, 1996, PHYS REV E B, V53, P4153.
CAROLI C, 1998, EUR PHYS J B, V4, P233.
CARPICK RW, 1997, CHEM REV, V97, P1163.
CHAN DYC, 1985, J CHEM PHYS, V83, P5311.
CHARITAT T, 2000, EUR PHYS J E, V3, P369.
CHAUVE P, 2000, PHYS REV B, V62, P6241.
CHO YK, 1996, WEAR, V200, P346.
CHOU CI, 1997, PHYS REV E A, V55, P5092.
CIEPLAK M, 1994, SCIENCE, V265, P1209.
COCHARD A, CONDMAT0111369.
CURRY JE, 1994, J CHEM PHYS, V101, P10824.
CZICHOS H, 1989, WEAR, V135, P171.
DAMNJANOVIC M, 1999, J PHYS A-MATH GEN, V32, P4097.
DAYO A, 1998, PHYS REV LETT, V80, P1690.
DEHLINGER U, 1929, ANN PHYS-BERLIN, V2, P749.
DEMIREL AL, 1996, PHYS REV LETT, V77, P2261.
DEMIREL AL, 1996, PHYS REV LETT, V77, P4330.
DEMIREL AL, 1998, J CHEM PHYS, V109, P6889.
DEMIREL AL, 2001, J CHEM PHYS, V115, P1498.
DHINOJWALA A, 2000, TRIBOL LETT, V9, P55.
DIETERICH JH, 1979, J GEOPHYS RES, V84, P2161.
DIETERICH JH, 1994, PURE APPL GEOPHYS, V143, P238.
DIETERICH JH, 1996, P NATL ACAD SCI USA, V93, P3787.
DIETERICH JH, 1996, TECTONOPHYSICS, V256, P219.
DOWSON D, 1979, HIST TRIBOLOGY.
DUDKO OK, 2002, CHEM PHYS LETT, V352, P499.
ELMER FJ, 1998, PHYS REV E, V57, P4903.
ESTRIN Y, 1996, PURE APPL GEOPHYS, V147, P745.
EVANS E, 1997, BIOPHYS J, V72, P1541.
EVANS E, 2001, ANNU REV BIOPH BIOM, V30, P105.
FALVO MR, 1999, NATURE, V397, P236.
FALVO MR, 2000, PHYS REV B, V62, P10665.
FERRY JD, 1980, VISCOELASTIC PROPERT.
FISHER DS, 1983, PHYS REV LETT, V50, P1486.
FISHER DS, 1985, PHYS REV B, V31, P1396.
FISHER DS, 1998, PHYS REP, V301, P113.
FLORIN EL, 1994, SCIENCE, V264, P415.
FRANK FC, 1949, P ROY SOC LOND A MAT, V198, P205.
FRENKEL YI, 1938, ZH EKSP TEOR FIZ, V8, P1340.
FUKUYAMA H, 1978, PHYS REV B, V17, P535.
GAO GT, 2000, J CHEM PHYS, V113, P11293.
GAO JP, 1997, J CHEM PHYS, V106, P4309.
GAO JP, 1997, J PHYS CHEM B, V101, P4013.
GAO JP, 1998, J PHYS CHEM B, V102, P5033.
GAO JP, 2000, TRIBOL LETT, V9, P3.
GEE ML, 1990, J CHEM PHYS, V93, P1895.
GEMINARD JC, 1999, PHYS REV E B, V59, P5881.
GERDE E, 2001, NATURE, V413, P285.
GLOSLI JN, 1993, PHYS REV LETT, V70, P1960.
GNECCO E, 2000, PHYS REV LETT, V84, P1172.
GNECCO E, 2001, J PHYS-CONDENS MAT, V13, R619.
GOPAL AD, 1995, PHYS REV LETT, V75, P2610.
GOTZE W, 1992, REP PROG PHYS, V55, P241.
GRANICK S, 1991, MRS BULL, V16, P33.
GRANICK S, 1991, SCIENCE, V253, P1374.
GREENWOOD JA, 1966, P ROY SOC LOND A MAT, V295, P300.
GREST GS, 1981, ADV CHEM PHYS, V48, P455.
GROSCH KA, 1963, P ROY SOC A, V274, P21.
GYALOG T, 1997, Z PHYS B CON MAT, V104, P669.
HAMMERBERG JE, 1998, PHYSICA D, V123, P330.
HANGGI P, 1990, REV MOD PHYS, V62, P251.
HARDY WB, 1936, COLLECTED WORKS.
HARRISON JA, 1991, THIN SOLID FILMS, V206, P213.
HARRISON JA, 1992, PHYS REV B, V46, P9700.
HARRISON JA, 1992, SURF SCI, V271, P57.
HARRISON JA, 1993, J PHYS CHEM-US, V97, P6573.
HARRISON JA, 1999, HDB MICRO NANOTRIBOL, P525.
HE G, 1999, SCIENCE, V284, P1650.
HE G, 2001, PHYS REV B, V64, ARTN 035413.
HE G, 2001, TRIBOL LETT, V10, P7.
HESLOT F, 1994, PHYS REV E A, V49, P4973.
HEUBERGER M, 1998, J PHYS CHEM B, V102, P5038.
HIRANO M, 1990, PHYS REV B, V41, P11837.
HIRANO M, 1991, PHYS REV LETT, V67, P2642.
HIRANO M, 1993, WEAR, V168, P121.
HIRANO M, 1997, PHYS REV LETT, V78, P1448.
HORN RG, 1981, J CHEM PHYS, V75, P1400.
HU B, 2001, EUROPHYS LETT, V53, P342.
HU HW, 1991, PHYS REV LETT, V66, P2758.
HURTADO JA, 1999, P ROY SOC LOND A MAT, V455, P3363.
HURTADO JA, 1999, P ROY SOC LOND A MAT, V455, P3385.
ISRAELACHVILI J, 1990, J PHYS-CONDENS MAT A, V2, SA89.
ISRAELACHVILI JN, 1986, J COLLOID INTERF SCI, V110, P263.
ISRAELACHVILI JN, 1988, SCIENCE, V240, P189.
ISRAELACHVILI JN, 1992, SURF SCI REP, V14, P109.
JAEGER HM, 1996, REV MOD PHYS, V68, P1259.
KAWAGUCHI T, 1997, PHYS REV B, V56, P13932.
KLEIN H, 1997, SURF SCI, V387, P227.
KLEIN J, 1995, SCIENCE, V269, P816.
KLEIN J, 1998, J CHEM PHYS, V108, P6996.
KLUPPEL M, 2000, RUBBER CHEM TECHNOL, V73, P578.
KOCHENDORFER A, 1950, Z PHYS, V127, P533.
KOLMOGOROV AN, 2000, PHYS REV LETT, V85, P4727.
KRIM J, 1988, PHYS REV B, V38, P12184.
KRIM J, 1990, J VAC SCI TECHNOL A, V8, P3417.
KRIM J, 1991, PHYS REV LETT, V66, P181.
KRIM J, 1996, SCI AM, V275, P74.
KRIM J, 1999, PHYS REV LETT, V83, P1262.
KUO MC, 1974, J APPL MECH, V41, P197.
LACOMBE F, 2000, EUR PHYS J E, V2, P181.
LANCON F, 2000, EUROPHYS LETT, V49, P603.
LANCON F, 2002, EUROPHYS LETT, V57, P74.
LANDMAN U, 1989, J VAC SCI TECHNOL A, V7, P2829.
LANDMAN U, 1989, SURF SCI LETT, V210, L117.
LANDMAN U, 1990, SCIENCE, V248, P454.
LANDMAN U, 1991, J VAC SCI TECHNOL 2, V9, P414.
LANDMAN U, 1992, WEAR, V153, P3.
LANDMAN U, 1996, LANGMUIR, V12, P4514.
LARKIN AI, 1979, J LOW TEMP PHYS, V34, P409.
LEDOUSSAL P, 1998, EPL-EUROPHYS LETT, V44, P110.
LEE GU, 1994, SCIENCE, V266, P771.
LEE PA, 1979, PHYS REV B, V19, P3970.
LESLIE J, 1804, EXPT INQUIRY NATURE.
LINKER MF, 1992, J GEOPHYS RES-SOL EA, V97, P4923.
LIU AJ, 2000, JAMMING RHEOLOGY CON.
LIU J, 1998, SCIENCE, V280, P1253.
LUENGO G, 1997, J MACROMOLECULES, V30, P2482.
LUENGO G, 1999, WEAR, V200, P1263.
LUPOWSKI M, 1991, J CHEM PHYS, V95, P1995.
MACKAY RS, 1991, PHYSICA D, V50, P71.
MAGDA JJ, 1985, J CHEM PHYS, V83, P1888.
MAK C, 1997, FARADAY DISCUSS, V107, P389.
MARTIN JM, 1993, PHYS REV B, V48, P10583.
MASON BL, 2001, TRIBOL LETT, V10, P59.
MATE CM, 1942, PHYS REV LETT, V59, P1987.
MATE CM, 1997, NATO ADV SCI I E-APP, V330, P647.
MCCUMBER DE, 1968, J APPL PHYS, V39, P3113.
MCGUIGGAN PM, 2001, TRIBOL LETT, V10, P217.
MIDDLETON AA, 1992, PHYS REV LETT, V68, P670.
MINGALEEV SF, 2000, PHYS REV E B, V61, P4454.
MIURA K, 2002, EPL-EUROPHYS LETT, V58, P601.
MIYAKE H, 1998, J PHYS SOC JPN, V67, P3891.
MORIWAKI T, 1989, ANN CIRP, V38, P115.
MUSER MH, 2000, PHYS REV B, V61, P2335.
MUSER MH, 2001, PHYS REV LETT, V86, P1295.
MUSER MH, 2001, TRIBOL LETT, V10, P15.
MUSER MH, 2002, PHYS REV LETT, V89, ARTN 224301.
NABARRO FRN, 1947, P PHYS SOC LOND, V59, P256.
NASUNO S, 1997, PHYS REV LETT, V79, P949.
NIEMINEN JA, 1992, ACTA METALL MATER, V40, P2503.
NORDHOLM S, 1980, AUST J CHEM, V33, P2013.
NOVOTNY T, 1999, PHYS REV LETT, V83, P4112.
OBERHAUSER AF, 1998, NATURE, V393, P181.
OHZONO T, 1998, JPN J APPL PHYS 1, V37, P6535.
OTT E, 1990, PHYS REV LETT, V64, P1196.
PANYUKOV S, 1997, PHYS REV E, V56, P7053.
PEACHEY J, 1991, REV SCI INSTRUM, V62, P462.
PEIERLS R, 1940, P PHYS SOC LOND 1, V52, P34.
PERSSON BNJ, 1991, PHYS REV B, V44, P3277.
PERSSON BNJ, 1998, SLIDING FRICTION PHY.
PERSSON BNJ, 1999, SOLID STATE COMMUN, V109, P739.
PERSSON BNJ, 2000, J CHEM PHYS, V112, P2021.
PERSSON BNJ, 2001, J CHEM PHYS, V115, P3840.
PERSSON BNJ, 2001, PHYS REV LETT, V87, ARTN 116101.
PERSSON BNJ, 2002, PHYS REV B, V65, ARTN 134106.
PEYRARD M, 1983, J PHYS C SOLID STATE, V16, P1593.
PLISCHKE M, 1986, J CHEM PHYS, V84, P2846.
POPOV VL, 1999, JETP LETT+, V69, P558.
POPOV VL, 1999, PHYS REV LETT, V83, P1632.
PORTO M, 2000, TRIBOL LETT, V9, P45.
PRANDTL L, 1928, ANGEW MATH MECH, V8, P85.
PUTMAN CAJ, 1995, APPL PHYS LETT, V66, P3221.
RABINOWICZ E, 1965, FRICTION WEAR MAT.
RABONOWICZ E, 1958, P PHYS SOC LOND, V71, P668.
RAFFITABOR H, 1992, MATER RES SOC S P, V239, P313.
RAVIV U, 2001, NATURE, V413, P51.
REEDY ED, 1990, ENG FRACT MECH, V36, P575.
RENNER RL, 1999, PHYS REV LETT, V83, P1261.
RICE MJ, 1976, PHYS REV LETT, V36, P432.
RICHARDSON E, 1999, J GEOPHYS RES-SOL EA, V104, P28859.
RIEF M, 1997, SCIENCE, V275, P1295.
RIGNEY DA, 1998, MRS BULL, V23, P32.
RISKEN H, 1979, Z PHYS B, V33, P297.
RISKEN H, 1984, FOKKER PLANCK EQUATI.
ROBBINS MO, 1991, SCIENCE, V253, P916.
ROBBINS MO, 1996, LANGMUIR, V12, P4543.
ROBBINS MO, 1998, MRS BULL, V23, P23.
ROBBINS MO, 2000, MICROSTRUCTURE MICRO, P91.
ROBBINS MO, 2001, MODERN TRIBOLOGY HDB, P717.
ROBERTS AD, 1992, RUBBER CHEM TECHNOL, V65, P3.
ROZMAN MG, 1996, PHYS REV E, V54, P6485.
ROZMAN MG, 1996, PHYS REV LETT, V77, P683.
ROZMAN MG, 1998, PHYS REV E, V57, P7340.
RUINA A, 1983, J GEOPHYS RES, V88, P10359.
SANG Y, 2001, PHYS REV LETT, V87, P4301.
SCHOEN M, 1987, J CHEM PHYS, V87, P5464.
SCHOEN M, 1988, J CHEM PHYS, V88, P1394.
SCHOEN M, 1989, SCIENCE, V245, P1223.
SCHWARZ UD, 1997, PHYS REV B, V56, P6987.
SINGER IL, COMMUNICATION.
SINGER IL, 1992, FUNDAMENTALS FRICTIO, P237.
SMITH ED, 1996, PHYS REV B, V54, P8252.
SNOOK IK, 1980, J CHEM PHYS, V72, P2907.
SOKOLOFF JB, 2001, PHYS REV LETT, V86, P3312.
SOKOLOFF JB, 2002, PHYS REV B, V65, ARTN 115415.
SORENSEN MR, 1996, PHYS REV B, V53, P2101.
STEVENS MJ, 1993, PHYS REV E, V48, P3778.
STEVENS MJ, 1997, J CHEM PHYS, V106, P7303.
SUH NP, 1986, TRIBOPHYSICS.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1990, SCIENCE, V250, P792.
THOMPSON PA, 1991, PHYS REV LETT, V67, P1751.
THOMPSON PA, 1992, PHYS REV LETT, V68, P3448.
THOMPSON PA, 1993, THIN FILMS TRIBOLOGY, P347.
THOMPSON PA, 1995, ISR J CHEM, V35, P93.
THOMPSON PA, 1997, NATURE, V389, P360.
TOMAGNINI O, 1993, SURF SCI B, V287, P1041.
TOMASSONE MS, 1997, PHYS REV LETT, V79, P4798.
TOMASSONE MS, 1999, PHYS REV B, V60, P4005.
TOMLINSON GA, 1929, PHILOS MAG JUN, V7, P905.
TOXVAERD S, 1981, J CHEM PHYS, V74, P1998.
UHLENBECK GE, 1930, PHYS REV, V36, P823.
VAFEK O, 1999, PHYS REV B, V60, P12002.
VANALSTEN J, 1988, PHYS REV LETT, V61, P2570.
VANOSSI A, 2001, PHYS REV E 2, V63, ARTN 017203.
VEJE CT, 1999, PHYS REV E B, V59, P739.
VOLMER A, 1997, Z PHYS B CON MAT, V104, P363.
WEISS M, 1996, PHYS REV B, V53, P7539.
WEISS M, 1997, Z PHYS B CON MAT, V104, P55.
WENNING L, 2001, EUROPHYS LETT, V54, P693.
WILLIAMS MJ, 2001, J APPL MECH, V19, P526.
YOSHIZAWA H, 1993, J PHYS CHEM-US, V97, P11300.
YU MF, 2000, J PHYS CHEM B, V104, P8764.
ZALOJ V, 1998, PHYS REV LETT, V81, P1227.
ZALOJ V, 1999, J CHEM PHYS, V110, P1263.
ZALOJ V, 1999, PHYS REV LETT, V82, P4823.
ZHANG LC, 1997, WEAR, V211, P44.
ZHANG LC, 1998, TRIBOL INT, V31, P425.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096104.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.
Cited Reference Count: 272
Times Cited: 46
Publisher: JOHN WILEY & SONS INC; 605 3RD AVE, NEW YORK, NY 10016 USA
ISSN: 0065-2385
IDS Number: BJK11

Order Full Text

All Customers
    Please contact your library administrator, or person(s) responsible for document delivery, to find out more about your organization's policy for obtaining the full text of the above articles. If your organization does not have a current document delivery provider, your administrator can contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 or 734-459-8565.
IDS Customers
    IDS customers can purchase the full text of an article (having page number, volume, and issue information) by returning this ENTIRE message as a Reply to Sender or Forward to orders@isidoc.com. Mark your choices with an X in the "Order Full Text: []" brackets for each item. For example, [X].

 Please enter your account number here:

Help Desk Contact Information
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page.