Friday, May 20, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290373000057
*Order Full Text [ ]

Title:
Measurement of the Rate of Water Translocation through Carbon Nanotubes

Authors:
Qin, XC; Yuan, QZ; Zhao, YP; Xie, SB; Liu, ZF

Author Full Names:
Qin, Xingcai; Yuan, Quanzi; Zhao, Yapu; Xie, Shubao; Liu, Zhongfan

Source:
NANO LETTERS 11 (5): 2173-2177 MAY 2011

Language:
English

Document Type:
Article

Author Keywords:
Nanofluidics; water flow velocity; enhancement factor; slip length; CNT-FET

KeyWords Plus:
ELECTRICAL BREAKDOWN; RAMAN-SPECTROSCOPY; FLOW; TRANSPORT; GROWTH

Abstract:
We present an approach for measuring the water flow rate through individual ultralong carbon nanotubes (CNTs) using field effect transistors array defined on individual tubes. Our work exhibits a rate enhancement of 882-51 and a slip length of 53-8 nm for CNTs with diameters of 0.81-1.59 nm. We also found that the enhancement factor does not increase monotonically with shrinking tube diameter and there exists a discontinuous region around 0.98-1.10 nm. We believe that these single-tube level results would help understand the intrinsic nanofluidics of water in CNTs.

Reprint Address:
Liu, ZF, Peking Univ, Coll Chem & Mol Engn, State Key Lab Struct Chem Unstable & Stable Speci, Ctr Nanochem,Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China.

Research Institution addresses:
[Qin, Xingcai; Xie, Shubao; Liu, Zhongfan] Peking Univ, Coll Chem & Mol Engn, State Key Lab Struct Chem Unstable & Stable Speci, Ctr Nanochem,Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China; [Yuan, Quanzi; Zhao, Yapu] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China

E-mail Address:
zfliu@pku.edu.cn

Cited References:
CHEN JY, 2005, SCIENCE, V310, P1480, DOI 10.1126/science.1120385.
COLLINS PC, 2001, SCIENCE, V292, P706.
COLLINS PG, 2001, PHYS REV LETT, V86, P3128.
DRESSELHAUS MS, 2005, PHYS REP, V409, P47, DOI 10.1016/j.physrep.2004.10.006.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JIN Z, 2007, NANO LETT, V7, P2073, DOI 10.1021/nl070980m.
KUZNETSOVA A, 2001, J AM CHEM SOC, V123, P10699.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MUGELE F, 2005, J PHYS-CONDENS MAT, V17, R705, DOI 10.1088/0953-8984/17/28/R01.
NA PS, 2005, APPL PHYS LETT, V87, ARTN 093101.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
VILLALPANDOPAEZ F, 2008, NANO LETT, V8, P3879, DOI 10.1021/nl802306t.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WASHBURN EW, 1921, PHYS REV, V17, P273.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
YAO YG, 2007, NAT MATER, V6, P283, DOI 10.1038/nmat1865.
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372.
ZHENG LX, 2004, NAT MATER, V3, P673, DOI 10.1038/nmat1216.

Cited Reference Count:
21

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1530-6984

DOI:
10.1021/n1200843g

IDS Number:
761CN

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290292900074
*Order Full Text [ ]

Title:
Effect of Electric Field on Liquid Infiltration into Hydrophobic Nanopores

Authors:
Xu, BX; Qiao, Y; Zhou, QL; Chen, X

Author Full Names:
Xu, Baoxing; Qiao, Yu; Zhou, Qulan; Chen, Xi

Source:
LANGMUIR 27 (10): 6349-6357 MAY 17 2011

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; MOLECULAR-DYNAMICS; SILICA-GEL; WATER; SURFACES; CAPILLARITY; SIMULATIONS; NANOSCALE; TRANSPORT; CHANNELS

Abstract:
Understanding the variation of nanofluidic behavior in the presence of an external electric field is critical for controlling and designing nanofluidic devices. By studying the critical infiltration pressure of liquids into hydrophobic nanopores using molecular dynamics (MD) simulations and experiments, important insights can be gained on the variation of the effective liquid solid interfacial tension with the magnitude and sign of electric field, as well as its coupling with the pore size and the solid and liquid species. It is found that the effective hydrophobicity reduces with the increase of electric intensity and/or pore size, and the behavior is asymmetric with respect to the direction of the electric field. The underlying molecular mechanisms are revealed via the study of the density profile, contact angle, and surface tension of confined liquid molecules.

Reprint Address:
Chen, X, Columbia Univ, Columbia Nanomech Res Ctr, Dept Earth & Environm Engn, New York, NY 10027 USA.

Research Institution addresses:
[Xu, Baoxing; Chen, Xi] Columbia Univ, Columbia Nanomech Res Ctr, Dept Earth & Environm Engn, New York, NY 10027 USA; [Qiao, Yu] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA; [Zhou, Qulan] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China; [Chen, Xi] Xi An Jiao Tong Univ, Sch Aerosp, Xian 710049, Peoples R China; [Chen, Xi] Hanyang Univ, Dept Civil & Environm Engn, Seoul 133791, South Korea

E-mail Address:
qlzhou@mail.xjtu.edu.cn; xichen@columbia.edu

Cited References:
AHN WS, 1972, J COLLOID INTERF SCI, V38, P605.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BERKOWITZ ML, 2006, CHEM REV, V106, P1527, DOI 10.1021/cr0403638.
BONTHUIS DJ, 2010, PHYS REV LETT, V105, ARTN 209401.
BRATKO D, 2007, J AM CHEM SOC, V129, P2504, DOI 10.1021/ja0659370.
BRATKO D, 2008, PHYS CHEM CHEM PHYS, V10, P6807, DOI 10.1039/b809072f.
CHEN X, 2006, APPL PHYS LETT, V89, ARTN 241918.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
CRUZCHU ER, 2006, J PHYS CHEM B, V110, P21497, DOI 10.1021/jp063896o.
DAUB CD, 2007, J PHYS CHEM C, V111, P505, DOI 10.1021/jp067395e.
DESBIENS N, 2005, J PHYS CHEM B, V109, P24071, DOI 10.1021/jp054168o.
DUJARDIN E, 1994, SCIENCE, V265, P1850.
GARATE JA, 2009, J CHEM PHYS, V131, ARTN 114508.
GORDILLO MC, 2008, PHYS REV B, V78, ARTN 075432.
HAN A, 2008, LANGMUIR, V24, P7044, DOI 10.1021/la800446z.
HAN AJ, 2007, CHEM LETT, V36, P882.
HAN AJ, 2007, LANGMUIR, V23, P11396, DOI 10.1021/la702606s.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708.
HELMY R, 2005, J AM CHEM SOC, V127, P12446, DOI 10.1021/ja053267c.
HUMMER G, 2001, NATURE, V414, P188.
KUTANA A, 2007, PHYS REV B, V76, ARTN 195444.
LIM MH, 1999, CHEM MATER, V11, P3285.
LIU L, 2009, LANGMUIR, V25, P11862, DOI 10.1021/la901516j.
LIU L, 2009, PHYS CHEM CHEM PHYS, V11, P6520, DOI 10.1039/b905641f.
LIU L, 2009, PHYS REV LETT, V102, ARTN 184501.
LIU L, 2010, NEW J PHYS, V12, ARTN 033021.
LU WY, 2009, LANGMUIR, V25, P9463, DOI 10.1021/la900661z.
NAGY G, 1996, J ELECTROANAL CHEM, V409, P19.
PHILIPPSEN A, 2002, BIOPHYS J, V82, P1667.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
PRYLUTSKYY YI, 2005, FULLER NANOTUB CA S1, V13, P287, DOI 10.1081/FST-200039308.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
SPARREBOOM W, 2009, NAT NANOTECHNOL, V4, P713, DOI 10.1038/NNANO.2009.332.
THOMAS JA, 2008, J CHEM PHYS, V128, ARTN 084715.
VAITHEESWARAN S, 2005, J PHYS CHEM B, V109, P6629, DOI 10.1021/jp045591k.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WONGEKKABUT J, 2010, NAT NANOTECHNOL, P555.
ZHAO JB, 2009, LANGMUIR, V25, P12687, DOI 10.1021/la901696t.
ZHAO JB, 2009, PHYS REV E 1, V80, ARTN 061206.
ZHAO JB, 2010, J PHYS-CONDENS MAT, V22, ARTN 315301.
ZHU SB, 1991, J PHYS CHEM-US, V95, P6211.

Cited Reference Count:
43

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0743-7463

DOI:
10.1021/la200477y

IDS Number:
760AL

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290127100023
*Order Full Text [ ]

Title:
Vibrational Energy Transfer between Carbon Nanotubes and Nonaqueous Solvents: A Molecular Dynamics Study

Authors:
Nelson, TR; Chaban, VV; Prezhdo, VV; Prezhdo, OV

Author Full Names:
Nelson, Tammie R.; Chaban, Vitaly V.; Prezhdo, Victor V.; Prezhdo, Oleg V.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 115 (18): 5260-5267 MAY 12 2011

Language:
English

Document Type:
Article

KeyWords Plus:
SOLVATION DYNAMICS; HYDRATED ELECTRON; AB-INITIO; SIMULATION; WATER; ACETONITRILE; RELAXATION; FUNCTIONALIZATION

Abstract:
We report molecular dynamics (MD) simulation of energy exchange between single-walled carbon nanotubes (CNTs) and two aprotic solvents, acetonitrile and cyclohexane. Following our earlier study of hydrated CNTs, we find that the time scales and molecular mechanisms of the energy transfer are largely independent of the nature of the surrounding medium, and therefore, should hold for other media including polymer matrices and DNA. The vibrational energy exchange between CNT and solvents exhibits two time-scales. Over half of the energy is transferred in less than one picosecond, indicating that the dominant exchange mechanism is inertial relaxation. It occurs by collisions of solvent molecules with CNT walls, facilitated by the short-range Lennard-Jones interaction. Additional several picoseconds are required for the remainder of the vibrational energy exchange, corresponding to the diffusive relaxation mechanism and involving collective molecular motions. The faster stage of t
he CNT-solvent energy exchange occurs on the same time-scale, and therefore, competes with the vibrational energy relaxation inside CNTs. The energy exchange time-scales are significantly influenced by the arrangement of solvent molecules inside CNTs. Generally, the effects of confinement on the dynamics can be rationalized by analysis of the solvent structure. For the same CNT diameter, the extent of the confinement effect strongly depends on the size of the solvent molecules. Icelike properties in water seen in small CNTs disappear in CNTs with intermediate diameters. In acetonitrile and cyclohexane, medium size CNTs still show strong confinement effects. Rotational motions of acetonitrile molecules are inhibited, and the cyclohexane density is dramatically decreased. The disbalance between the local temperatures of the inside and outside regions of the solvent equilibrates through a tube-mediated interaction, rather than by a direct coupling between the two solvent subsys
tems. In all cases, the CNT-solvent energy transfer is media!
ted by s
low motions in the frequency range of CNT radial breathing modes.

Reprint Address:
Prezhdo, OV, Univ Rochester, Dept Chem, Rochester, NY 14627 USA.

Research Institution addresses:
[Chaban, Vitaly V.; Prezhdo, Oleg V.] Univ Rochester, Dept Chem, Rochester, NY 14627 USA; [Nelson, Tammie R.] Univ Washington, Dept Chem, Seattle, WA 98195 USA; [Prezhdo, Victor V.] Jan Kochanowski Univ, Inst Chem, PL-25406 Kielce, Poland

E-mail Address:
oleg.prezhdo@rochester.edu

Cited References:
ANDO T, 2010, J PHYS SOC JPN, V79, ARTN 024706.
BHIRDE AA, 2009, ACS NANO, V3, P307, DOI 10.1021/nn800551s.
BRAGG AE, 2008, SCIENCE, V321, P1817, DOI 10.1126/science.1161511.
BROOKSBY C, 2003, J CHEM PHYS, V119, P9111, DOI 10.1063/1.1614203.
CAMPIDELLI S, 2006, J PHYS ORG CHEM, V19, P531, DOI 10.1002/poc.1052.
CARLSON LJ, 2008, ACCOUNTS CHEM RES, V41, P235, DOI 10.1021/ar700136v.
CHABAN VV, 2010, J PHYS CHEM B, V114, P13271.
DYKE CA, 2004, CHEM-EUR J, V10, P812.
FISCHER R, 2002, J CHEM PHYS, V117, P8467, DOI 10.1063/1.1512281.
FOSTER CE, 2001, J CHEM PHYS, V114, P8492.
GUNNERSON KN, 2007, J CHEM PHYS, V127, ARTN 164510.
GUO YJ, 1991, NATURE, V351, P464.
HABENICHT BF, 2006, PHYS REV LETT, V96, ARTN 187401.
HABENICHT BF, 2007, NANO LETT, V7, P3260, DOI 10.1021/nl0710699.
HABENICHT BF, 2008, PHYS REV LETT, V100, ARTN 197402.
HAGEN A, 2005, PHYS REV LETT, V95, ARTN 197401.
HALLS MD, 2005, NANO LETT, V5, P1861, DOI 10.1021/nl050722u.
HERTEL T, 2000, PHYS REV LETT, V84, P5002.
HESS B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q.
HILDER TA, 2009, SMALL, V5, P300, DOI 10.1002/smll.200800321.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225.
KALUGIN ON, 2008, NANO LETT, V8, P2126, DOI 10.1021/nl072976g.
KANG K, 2008, NANO LETT, V8, P4642, DOI 10.1021/nl802447a.
KILINA S, 2009, PHYS CHEM CHEM PHYS, V11, P4113, DOI 10.1039/b818473a.
LARSEN RE, 1999, J CHEM PHYS, V110, P1036.
LEFEBVRE J, 2008, NANO LETT, V8, P1890, DOI 10.1021/nl080518h.
LI LJ, 2005, NAT MATER, V4, P481, DOI 10.1038/nmat1396.
LUER L, 2009, PHYS REV LETT, V102, ARTN 127401.
MANZONI C, 2005, PHYS REV LETT, V94, ARTN 207401.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MOUNTAIN RD, 1997, J CHEM PHYS, V107, P3921.
MUKAMEL S, 1995, PRINCIPLES NONLINEAR.
NELSON T, 2010, NANO LETT, V10, P3237, DOI 10.1021/nl9035934.
NELSON TR, 2010, J PHYS CHEM B, V114, P4609, DOI 10.1021/jp912233e.
NOSE S, 1990, J PHYS-CONDENS MAT, V2, P115.
PEREBEINOS V, 2008, PHYS REV LETT, V101, ARTN 057401.
PREZHDO OV, 1996, J PHYS CHEM-US, V100, P17094.
PREZHDO OV, 1998, PHYS REV LETT, V81, P5294.
RADOVIC LR, 2003, CHEM PHYS CARBON, V28.
REN PY, 2003, J PHYS CHEM B, V107, P5933, DOI 10.1021/jp027815+.
ROTKIN SV, 2009, NANO LETT, V9, P1850, DOI 10.1021/nl803835z.
ROTKIN SV, 2010, ANNU REV PHYS CHEM, V61, P241, DOI 10.1146/annurev.physchem.012809.103304.
SCHWARTZ BJ, 1994, J CHEM PHYS, V101, P6902.
SERVICE RF, 2006, SCIENCE, V313, P902.
SONG DH, 2008, PHYS REV LETT, V100, ARTN 225503.
STEINBACH PJ, 1994, J COMPUT CHEM, V15, P667.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XUE YQ, 2006, NANOTECHNOLOGY, V17, P5216, DOI 10.1088/0957-4484/17/20/029.
YAROTSKI DA, 2009, NANO LETT, V9, P12, DOI 10.1021/nl801455t.
ZHANG M, 2004, SCIENCE, V306, P1358.
ZHAO YL, 2009, ACCOUNTS CHEM RES, V42, P1161, DOI 10.1021/ar900056z.
ZHENG M, 2003, NAT MATER, V2, P338, DOI 10.1038/nmat877.

Cited Reference Count:
53

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp108776q

IDS Number:
757ZA

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290127100024
*Order Full Text [ ]

Title:
Vibrational Spectroscopy of Water in Narrow Nanopores

Authors:
Weinwurm, M; Dellago, C

Author Full Names:
Weinwurm, Marcus; Dellago, Christoph

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 115 (18): 5268-5277 MAY 12 2011

Language:
English

Document Type:
Article

KeyWords Plus:
ULTRAFAST INFRARED-SPECTROSCOPY; HYDROGEN-BOND DYNAMICS; CARBON NANOTUBES; LIQUID WATER; MOLECULAR SIMULATION; DILUTE HOD; D2O; CONDUCTION; TRANSPORT; MODELS

Abstract:
Inside narrow pores, for instance, realized as carbon nanotubes, water forms structures that strongly differ from the structure of bulk liquid water or ice. Here we compute vibrational spectra of such systems using molecular dynamics simulation combined with quantum mechanical perturbation theory. We focus on the spectroscopic response of single-file water chains in pores with subnanometer diameter, finding characteristic signatures of dangling and hydrogen-bonded hydrogen configurations occurring in this particular form of water. These features in the absorption spectra permit us to distinguish single-file water from the stacked-ring structures that form in wider pores. As previously observed in bulk liquid water, the vibrational frequency of the OH stretch of an HDO molecule in a system of D2O molecules is essentially determined by the electric field acting at the position of the hydrogen atom, providing a way to link the spectroscopic response to the local charge distribut
ion of specific molecular arrangements.

Reprint Address:
Dellago, C, Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria.

Research Institution addresses:
[Weinwurm, Marcus; Dellago, Christoph] Univ Vienna, Fac Phys, A-1090 Vienna, Austria

Cited References:
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
AUER B, 2007, P NATL ACAD SCI USA, V104, P14215, DOI 10.1073/pnas.0701482104.
AUER BM, 2008, J CHEM PHYS, V128, ARTN 224511.
BAKKER HJ, 2010, CHEM REV, V110, P1498, DOI 10.1021/cr9001879.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI 10.1073/pnas.0408098102.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CAMBRE S, 2010, PHYS REV LETT, V104, ARTN 207401.
CORCELLI SA, 2005, J PHYS CHEM A, V109, P6154, DOI 10.1021/jp0506540.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
EAVES JD, 2005, J PHYS CHEM A, V109, P9424, DOI 10.1021/jp051364m.
FECKO CJ, 2003, SCIENCE, V301, P1698.
FECKO CJ, 2005, J CHEM PHYS, V122, ARTN 054506.
HAYASHI T, 2005, J PHYS CHEM A, V109, P64, DOI 10.1021/jp046685x.
HENNRICH F, 2007, PHYS STATUS SOLIDI B, V244, P3896, DOI 10.1002/pssb.200776104.
HILLE B, 2001, ION CHANNELS EXCITAB.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOFINGER J, 2008, J PHYS CHEM B, V112, P2349, DOI 10.1021/jp0736185.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOFINGER J, 2009, PHYS REV LETT, V103, ARTN 080601.
KOFINGER J, 2010, NEW J PHYS, V12, ARTN 093044.
KOFINGER J, 2010, PHYS REV B, V82, ARTN 205416.
KOGA K, 2001, NATURE, V412, P802.
LI F, 2010, J CHEM PHYS, V132, ARTN 204505.
LOPARO JJ, 2004, PHYS REV B, V70, ARTN 180201.
LUZAR A, 1996, NATURE, V379, P55.
LUZAR A, 1996, PHYS REV LETT, V76, P928.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t.
MUKAMEL S, 1998, PRINCIPLES NONLINEAR.
MUKHERJEE B, 2009, J PHYS CHEM B, V113, P10322, DOI 10.1021/jp904099f.
MUSSO M, 2002, J PHYS CHEM A, V106, P10152, DOI 10.1021/jp021440a.
MUSSO M, 2009, J MOL LIQ, V147, P37, DOI 10.1016/j.molliq.2008.08.006.
NOY A, 2007, NANO TODAY, V2, P22.
QUINTILLA A, 2010, PHYS CHEM CHEM PHYS, V12, P902, DOI 10.1039/b912847f.
REIMERS JR, 1984, MOL PHYS, V52, P357.
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327, DOI 10.1016/0021-9991(77)90098-5.
SCHMIDT JR, 2005, J CHEM PHYS, V123, ARTN 044513.
SMITH JD, 2007, J AM CHEM SOC, V129, P13847, DOI 10.1021/ja071933z.
STRIOLO A, 2005, J CHEM PHYS, V122, ARTN 234712.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
VERLET L, 1967, PHYS REV, V159, P98.
WATSON IA, 1981, SPECTROCHIM ACTA A, V37, P857.
WHALLEY E, 1986, J CHEM PHYS, V84, P78.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZWANZIG R, 2001, NONEQUILIBRIUM STAT.

Cited Reference Count:
49

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp109037q

IDS Number:
757ZA

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290127200003
*Order Full Text [ ]

Title:
Effect of Curvature on the alpha-Helix Breaking Tendency of Carbon Based Nanomaterials

Authors:
Balamurugan, K; Singam, ERA; Subramanian, V

Author Full Names:
Balamurugan, K.; Singam, E. R. Azhagiya; Subramanian, V.

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 115 (18): 8886-8892 MAY 12 2011

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; NANOTUBE MEMBRANES; FORCE-FIELD; SIMULATION; PROTEINS; PEPTIDE

Abstract:
Our previous study on the interaction of alpha-helical peptide with single walled carbon nanotubes (CNTs) has revealed the structural basis for the helix breaking tendency of the CNT and associated energetics (J. Phys. Chem. B 2010, 114, 14048). In this study, a systematic attempt has been made to explore the relationship between the curvature of carbon nanomaterials (NMs) and their alpha-helix breaking tendency. The interaction of a model alpha-helical peptide, polyalanine consisting of 40 residues (PA(40)) with CNTs of different chiralities ((6,6), (10,10), (14,14), and (18,18)) and planar graphene sheet has been investigated using molecular dynamics (MD) simulation approach. The structural changes in the helical peptide which is adsorbed onto the surface of the NMs of different curvatures have been derived from the MD simulation. The role of electrostatic and van der Waals energies in the interaction process has also been obtained from the MD trajectory. Results show that
the extent of helix breakage induced by the NMs is inversely proportional to their curvature; that is, the helix breaking tendency is minimum for the CNT having the highest curvature and maximum for the planar graphene sheet.

Reprint Address:
Subramanian, V, Cent Leather Res Inst, Chem Lab, Council Sci & Ind Res, Madras 600020, Tamil Nadu, India.

Research Institution addresses:
[Balamurugan, K.; Singam, E. R. Azhagiya; Subramanian, V.] Cent Leather Res Inst, Chem Lab, Council Sci & Ind Res, Madras 600020, Tamil Nadu, India

E-mail Address:
subuchem@hotmail.com

Cited References:
*GAUSS INC, 2003, GAUSSVIEW.
AJAYAN PM, 1999, CHEM REV, V99, P1787.
BALAMURUGAN K, 2010, J PHYS CHEM B, V114, P14048, DOI 10.1021/jp106177n.
BAUGHMAN RH, 1999, SCIENCE, V284, P1340.
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BUSSI G, 2007, J CHEM PHYS, V126, ARTN 014101.
CHIU CC, 2008, J PHYS CHEM B, V112, P16326, DOI 10.1021/jp805313p.
CHIU CC, 2009, BIOPOLYMERS, V92, P156, DOI 10.1002/bip.21159.
DELANO WL, 2008, PYMOL MOL GRAPHICS S.
DRESSELHAUS M, 1998, PHYS WORLD, V11, P33.
DUAN Y, 2003, J COMPUT CHEM, V24, P1999, DOI 10.1002/jcc.10349.
ENKHBAYAR P, 2006, PROTEINS, V64, P691, DOI 10.1002/prot.21026.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
GIANESE G, 2009, J PHYS CHEM B, V113, P12105, DOI 10.1021/jp903652v.
HEGEFELD WA, 2010, J PHYS CHEM A, V114, P12391, DOI 10.1021/jp102612d.
HESS B, 1997, J COMPUT CHEM, V18, P1463.
HESS B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JOHNSON RR, 2008, NANO LETT, V8, P69, DOI 10.1021/nl071909j.
JOHNSON RR, 2009, NANO LETT, V9, P537, DOI 10.1021/nl802645d.
KABSCH W, 1983, BIOPOLYMERS, V22, P2577.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KANG YK, 2009, NANO LETT, V9, P1414, DOI 10.1021/nl8032334.
LIJIMA S, 1991, NATURE, V354, P56.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
MATSUURA K, 2006, CHEM PHYS LETT, V429, P497, DOI 10.1016/j.cplett.2006.08.044.
NIYOGI S, 2002, ACCOUNTS CHEM RES, V35, P1105, DOI 10.1021/ar010155r.
NOSE S, 1983, MOL PHYS, V50, P1055.
PARRINELLO M, 1981, J APPL PHYS, V52, P7182.
PORTNEY NG, 2006, ANAL BIOANAL CHEM, V384, P620, DOI 10.1007/s00216-005-0247-7.
ROSCA ID, 2005, CARBON, V43, P3124, DOI 10.1016/j.carbon.2005.06.019.
SANDEEP S, 2004, LANGMUIR, V20, P11594.
SAZONOVA V, 2004, NATURE, V431, P284, DOI 10.1038/nature02905.
SHERRILL DC, 2009, J COMPUT CHEM, V30, P2187.
SINGH R, 2006, P NATL ACAD SCI USA, V103, P3357, DOI 10.1073/pnas.0509009103.
TOMASIO MS, 2009, J PHYS CHEM C, V113, P8778.
WALLACE EJ, 2010, NANOSCALE, V2, P967, DOI 10.1039/b9nr00355j.

Cited Reference Count:
40

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp110898r

IDS Number:
757ZB

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290369200010
*Order Full Text [ ]

Title:
Salty water desalination using carbon nanotubes membrane

Authors:
Tofighy, MA; Shirazi, Y; Mohammadi, T; Pak, A

Author Full Names:
Tofighy, Maryam Ahmadzadeh; Shirazi, Yaser; Mohammadi, Toraj; Pak, Afshin

Source:
CHEMICAL ENGINEERING JOURNAL 168 (3): 1064-1072 APR 15 2011

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotubes membrane; Salty water desalination; Taguchi method

KeyWords Plus:
METAL-IONS; CVD

Abstract:
Carbon nanotube (CNT) film was synthesized directly on macroporous surface of a-alumina support by chemical vapor deposition (CVD) of cyclohexanol and ferrocene in nitrogen atmosphere at 650 degrees C, and oxidized using HNO3 and H2SO4 and then employed as membrane in desalination process (sodium chloride removal from water). In order to enhance the performance of the oxidized CNTs membrane, effects of operating parameters on the yield of desalinated water (separation percent and permeate flux) were studied. Four parameters at three levels were selected: feed concentration (10,000, 20,000 and 30,000 ppm), temperature (25. 35 and 45 degrees C), pressure (4, 7 and 10 bar) and flow rate (200, 350 and 5001/h). Taguchi method was used to plan a minimum number of experiments and to find the optimal conditions. The results showed that increasing feed concentration, temperature and flow rate as well as decreasing pressure optimize the performance of the oxidized CNTs membrane (separa
tion percent and permeate flux). Analysis of variance (ANOVA) was applied and it was found that temperature is the most influential factor on the oxidized CNTs membrane performance (its contribution percentage was calculated to be about 60%). (C) 2011 Elsevier B.V. All rights reserved.

Reprint Address:
Mohammadi, T, Iran Univ Sci & Technol IUST, Res Ctr Membrane Separat Proc, Fac Chem Engn, Tehran, Iran.

Research Institution addresses:
[Tofighy, Maryam Ahmadzadeh; Shirazi, Yaser; Mohammadi, Toraj; Pak, Afshin] Iran Univ Sci & Technol IUST, Res Ctr Membrane Separat Proc, Fac Chem Engn, Tehran, Iran

E-mail Address:
torajmohammadi@iust.ac.ir

Cited References:
BOEHM HP, 1994, CARBON, V32, P759.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
HALT JK, 2006, SCIENCE, V312, P1034.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HUA L, 2008, INT C EL PACK TECHN.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KANDAH MI, 2007, J HAZARD MATER, V146, P283, DOI 10.1016/j.jhazmat.2006.12.019.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KOTSALIS EM, 2004, INT J MULTIPHAS FLOW, V30, P995, DOI 10.1016/j.imultiphaseflow.2004.03.009.
KUMAR M, 2003, DIAM RELAT MATER, V12, P998.
LUFTING JT, 1998, DESIGN EXPT QUALITY.
MAMONTOV E, 2006, J CHEM PHYS, V124, ARTN 194703.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MI WL, 2005, MICROPOR MESOPOR MAT, V81, P185, DOI 10.1016/j.micromeso.2005.02.003.
MI WL, 2007, J MEMBRANE SCI, V304, P1, DOI 10.1016/j.memsci.2007.07.021.
MOHAMMADI T, 2009, INT J CHEM REACT ENG, V7, ARTN A75.
MUSSO S, 2005, DIAM RELAT MATER, V14, P784, DOI 10.1016/j.diamond.2004.12.030.
MUSSO S, 2007, DIAM RELAT MATER, V16, P1183, DOI 10.1016/j.diamond.2006.11.087.
MUSSO S, 2009, J NANOSCI NANOTECHNO, V6, P3593.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NOAH JS, 1990, CARBON, V28, P675.
NOY A, 2007, NANO TODAY, V2, P22.
RAO GP, 2007, SEP PURIF TECHNOL, V58, P224, DOI 10.1016/j.seppur.2006.12.006.
SADRZADEH M, 2008, DESALINATION, V221, P440, DOI 10.1016/j.desal.2007.01.103.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
STAFIEJ A, 2007, SEP PURIF TECHNOL, V58, P49, DOI 10.1016/j.seppur.2007.07.008.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
TOFIGHY MA, 2010, DESALINATION, V258, P182, DOI 10.1016/j.desal.2010.03.017.
TOFIGHY MA, 2011, DESALINATION, V268, P208, DOI 10.1016/j.desal.2010.10.028.
TOFIGHY MA, 2011, J HAZARD MATER, V185, P140, DOI 10.1016/j.jhazmat.2010.09.008.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.

Cited Reference Count:
33

Times Cited:
0

Publisher:
ELSEVIER SCIENCE SA; PO BOX 564, 1001 LAUSANNE, SWITZERLAND

Subject Category:
Engineering, Environmental; Engineering, Chemical

ISSN:
1385-8947

DOI:
10.1016/j.cej.2011.01.086

IDS Number:
761BI

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, May 13, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289829200007
*Order Full Text [ ]

Title:
A mechanical model for single-file transport of water through carbon nanotube membranes

Authors:
Chan, Y; Hill, JM

Author Full Names:
Chan, Yue; Hill, James M.

Source:
JOURNAL OF MEMBRANE SCIENCE 372 (1-2): 57-65 APR 15 2011

Language:
English

Document Type:
Article

Author Keywords:
Single-file transport; Continuous approximation; Classical phonon theory; Carbon nanotube; Water molecules

KeyWords Plus:
DIFFUSION; CHANNEL; FULLERENES; ATOMS; IONS; BEHAVIOR; FLOW

Abstract:
Carbon nanotubes can be embedded into a polymer matrix to manufacture nanotube membranes generating rapid water transport. In particular, for nanotubes of small radii, the single-file transport of water diffusing rapidly and concertedly through densely filled carbon nanotubes has been reported. In this paper, we provide an additional methodology to investigate such problems by employing both applied mathematical modelling and classical phonon theory. Our approach has the merit of giving rise to rapid computational times in comparison to the molecular dynamics simulations approach. The total energy of a water molecule inside a carbon nanotube can be determined analytically using point-point interactions and the continuous approximation. In addition, we may use classical phonon theory for the collective motion of water molecules inside the nanotube to formulate the basic equations of motion for water diffusing through a carbon nanotube. Upon making a 'sufficiently long' hypoth!
esis, the average water flow time can be deduced analytically. Furthermore, we incorporate external forces at the tube ends and show that water is virtually incompressible for external forces up to 3 pN. We also determine the variation of the water flow time under random fluctuations in the presence of the external forces and find that the random effect diminishes as the external force increases. This outcome could open up a precise engineering approach for using such nanotube membranes in numerous applications. (C) 2011 Elsevier B.V. All rights reserved.

Reprint Address:
Chan, Y, Univ Adelaide, Nanomech Grp, Sch Math Sci, Adelaide, SA 5005, Australia.

Research Institution addresses:
[Chan, Yue; Hill, James M.] Univ Adelaide, Nanomech Grp, Sch Math Sci, Adelaide, SA 5005, Australia

E-mail Address:
yue.chan@adelaide.edu.au

Cited References:
AJAYAN PM, 1992, NATURE, V358, P23.
ALEXANDER S, 1978, PHYS REV B, V18, P2011.
BAOWAN D, 2007, J PHYS A, P7543.
BELLMAN R, 1963, DIFFERENTIAL DIFFERE.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
BURDEN RL, 2005, NUMERICAL ANAL.
CHAN Y, 2009, FEW-BODY SYST, P239.
CHAN Y, 2009, INT J THEOR APPL MUL, V1, P176.
CHAN Y, 2010, MICRO NANO LETT, V5, P247, DOI 10.1049/mnl.2010.0058.
CHARLES K, 1996, INTRO SOLID STATE PH.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
COX BJ, 2007, P R SOC A, V463, P461, DOI 10.1098/rspa.2006.1771.
COX BJ, 2007, P ROY SOC A-MATH PHY, V463, P477, DOI 10.1098/rspa.2006.1772.
FINKELSTEIN A, 1981, J MEMBRANE BIOL, V59, P155.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
HAHN K, 1998, J PHYS CHEM B, V102, P5766.
HILDER TA, 2007, CURR APPL PHYS, V8, P258.
HILDER TA, 2007, MICRONANOLETT, V3, P18.
HILDER TA, 2009, SMALL, V5, P300, DOI 10.1002/smll.200800321.
HUMMER G, 2001, NATURE, V414, P188.
JIRAGE KB, 1997, SCIENCE, V278, P655.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KARGER J, 1992, PHYS REV A, V45, P4173.
KOGA K, 2001, NATURE, V412, P802.
LEVITT DG, 1973, PHYS REV A, V8, P3050.
LIJIMA S, 1991, NATURE, V354, P56.
LYNDENBELL RM, 1996, J CHEM PHYS, V105, P9266.
MACKAY DHJ, 1986, J BIOMOL STRUCT DYN, V4, P491.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
MITCHELL DT, 2002, J AM CHEM SOC, V124, P11864, DOI 10.1021/ja027247b.
MUKHERJEE B, 2010, ACS NANO, V4, P985, DOI 10.1021/nn900858a.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
RICHARDS PM, 1977, PHYS REV B, V16, P1393.
SANSOM MSP, 2000, TRENDS BIOCHEM SCI, V25, P368.
STONE M, 2009, MATH PHYS GUIDED TOU.
SUI HX, 2001, NATURE, V414, P872.
THORNTON AW, 2009, J AM CHEM SOC, V131, P10662, DOI 10.1021/ja9036302.
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w.

Cited Reference Count:
43

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Engineering, Chemical; Polymer Science

ISSN:
0376-7388

DOI:
10.1016/j.memsci.2011.01.040

IDS Number:
754CI

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289840200028
*Order Full Text [ ]

Title:
Phase transition of nanotube-confined water driven by electric field

Authors:
Fu, ZM; Luo, Y; Ma, JP; Wei, GH

Author Full Names:
Fu, Zhaoming; Luo, Yin; Ma, Jianpeng; Wei, Guanghong

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (15): Art. No. 154507 APR 21 2011

Language:
English

Document Type:
Article

KeyWords Plus:
WALLED CARBON NANOTUBES; ICE-NANOTUBES; TRANSPORT-PROPERTIES; CHANNEL; DYNAMICS; NMR

Abstract:
The effects of electric field on the phase behaviors of water encapsulated in a thick single-walled carbon nanotube (SWCNT) (diameter = 1.2 nm) have been studied by performing extensive molecular dynamics simulations at atmospheric pressure. We found that liquid water can freeze continuously into either pentagonal or helical solidlike ice nanotube in SWCNT, depending on the strengths of the external electric field applied along the tube axis. Remarkably, the helical one is new ice phase which was not observed previously in the same size of SWCNT in the absence of electric field. Furthermore, a discontinuous solid-solid phase transition is observed between pentagonal and helical ice nanotubes as the strengths of the external electric field changes. The mechanism of electric-field-induced phase transition is discussed. The dependence of ice structures on the chiralities of SWCNTs is also investigated. Finally, we present a phase diagram of confined water in the electric field-!
temperature plane. (C) 2011 American Institute of Physics. [doi:10.1063/1.3579482]

Reprint Address:
Wei, GH, Fudan Univ, State Key Lab Surface Phys, Key Lab Computat Phys Sci, Minist Educ, Shanghai 200433, Peoples R China.

Research Institution addresses:
[Fu, Zhaoming; Luo, Yin; Wei, Guanghong] Fudan Univ, State Key Lab Surface Phys, Key Lab Computat Phys Sci, Minist Educ, Shanghai 200433, Peoples R China; [Fu, Zhaoming; Luo, Yin; Wei, Guanghong] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China; [Ma, Jianpeng] Rice Univ, Verna & Marrs McLean Dept Biochem & Mol Biol, Baylor Coll Med, Houston, TX USA; [Ma, Jianpeng] Rice Univ, Dept Bioengn, Houston, TX USA

E-mail Address:
ghwei@fudan.edu.cn

Cited References:
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CAMBRE S, 2010, PHYS REV LETT, V104, ARTN 207401.
EISENBERG D, 1969, STRUCTURE PROPERTIES.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9.
HAN SH, 2010, NAT PHYS, V6, P685, DOI 10.1038/NPHYS1708.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HUMMER G, 2001, NATURE, V414, P188.
JAYENDRAN CR, 2008, ANNU REV PHYS CHEM, V59, P713.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU YC, 2005, J CHEM PHYS, V123, ARTN 234701.
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MARTI J, 2001, PHYS REV E, V64, P1504.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
NOSE S, 1984, MOL PHYS, V52, P255.
REICH S, 2004, CARBON NANOTUBES BAS.
SEKHANEH W, 2006, CHEM PHYS LETT, V428, P143, DOI 10.1016/j.cplett.2006.06.105.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w.

Cited Reference Count:
32

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3579482

IDS Number:
754FM

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, May 6, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289725300011
*Order Full Text [ ]

Title:
Theory and simulations of water flow through carbon nanotubes: prospects and pitfalls

Authors:
Bonthuis, DJ; Rinne, KF; Falk, K; Kaplan, CN; Horinek, D; Berker, AN; Bocquet, L; Netz, RR

Author Full Names:
Bonthuis, Douwe Jan; Rinne, Klaus F.; Falk, Kerstin; Kaplan, C. Nadir; Horinek, Dominik; Berker, A. Nihat; Bocquet, Lyderic; Netz, Roland R.

Source:
JOURNAL OF PHYSICS-CONDENSED MATTER 23 (18): Art. No. 184110 Sp. Iss. SI MAY 11 2011

Language:
English

Document Type:
Article

KeyWords Plus:
NANOFLUIDIC CHANNELS; HYDROPHILIC SURFACES; INTERFACIAL WATER; ENERGY-CONVERSION; TRANSPORT; CHARGE; ELECTROKINETICS; MICROFLUIDICS; NANOCHANNELS; ALGORITHMS

Abstract:
We study water flow through carbon nanotubes using continuum theory and molecular dynamics simulations. The large slip length in carbon nanotubes greatly enhances the pumping and electrokinetic energy conversion efficiency. In the absence of mobile charges, however, the electro-osmotic flow vanishes. Uncharged nanotubes filled with pure water can therefore not be used as electric field-driven pumps, contrary to some recently ventured ideas. This is in agreement with results from a generalized hydrodynamic theory that includes the angular momentum of rotating dipolar molecules. The electro-osmotic flow observed in simulations of such carbon nanotubes is caused by an imprudent implementation of the Lennard-Jones cutoff. We also discuss the influence of other simulation parameters on the spurious electro-osmotic flow.

Reprint Address:
Bonthuis, DJ, Tech Univ Munich, Dept Phys, D-85748 Garching, Germany.

Research Institution addresses:
[Bonthuis, Douwe Jan; Rinne, Klaus F.; Kaplan, C. Nadir; Horinek, Dominik; Berker, A. Nihat; Bocquet, Lyderic; Netz, Roland R.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany; [Falk, Kerstin; Bocquet, Lyderic] Univ Lyon 1, CNRS, Lab PMCN, UMR 5586, F-69622 Villeurbanne, France; [Kaplan, C. Nadir] Brandeis Univ, Martin Fisher Sch Phys, Waltham, MA 02454 USA; [Berker, A. Nihat] Sabanci Univ, TR-34956 Istanbul, Turkey

Cited References:
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BONTHUIS DJ, 2006, PHYS REV LETT, V97, ARTN 128104.
BONTHUIS DJ, 2009, PHYS REV LETT, V103, ARTN 144503.
BONTHUIS DJ, 2010, LANGMUIR, V26, P12614, DOI 10.1021/la9034535.
BORN M, 1920, Z PHYS, V1, P221.
CATTERALL WA, 1995, ANNU REV BIOCHEM, V64, P193.
CHANDLER D, 2007, NATURE, V445, P831, DOI 10.1038/445831a.
CONDIFF DW, 1964, PHYS FLUIDS, V7, P842.
DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945.
DEGENNES PG, 2002, LANGMUIR, V18, P3413.
DEGROOT SR, 1962, NONEQUILIBRIUM THERM.
DOYLE DA, 1998, SCIENCE, V280, P69.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HESS B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q.
HUANG DM, 2008, PHYS REV LETT, V101, ARTN 226101.
HUMMER G, 2001, NATURE, V414, P188.
INSEPOV Z, 2006, NANO LETT, V6, P1893, DOI 10.1021/nl060932m.
JANECEK J, 2007, LANGMUIR, V23, P8417, DOI 10.1021/la700561q.
JOLY L, 2004, PHYS REV LETT, V93, ARTN 257805.
JOLY L, 2006, J CHEM PHYS, V125, ARTN 204716.
JOSEPH S, 2006, LANGMUIR, V22, P9041, DOI 10.1021/1a0610147.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
KAMENEV A, 2006, PHYSICA A, V359, P129, DOI 10.1016/j.physa.2005.05.097.
KIENKER PK, 1994, P NATL ACAD SCI USA, V91, P4859.
KIM D, 2009, J COLLOID INTERF SCI, V330, P194, DOI 10.1016/j.jcis.2008.10.029.
KNECHT V, 2008, J COLLOID INTERF SCI, V318, P477, DOI 10.1016/j.jcis.2007.10.035.
KRAL P, 1999, PHYS REV LETT, V82, P5373.
KUYUCAK S, 2001, REP PROG PHYS, V64, P1427.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LYKLEMA J, 2003, COLLOID SURFACE A, V222, P5, DOI 10.1016/S0927-7757(03)00217-6.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAMATKULOV SI, 2004, LANGMUIR, V20, P4756, DOI 10.1021/la036036x.
OLTHUIS W, 2005, SENSOR ACTUAT B-CHEM, V111, P385, DOI 10.1016/j.snb.2005.03.039.
PARSEGIAN A, 1969, NATURE, V221, P844.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
REN YQ, 2008, NANOTECHNOLOGY, V19, ARTN 195707.
SENDNER C, 2009, LANGMUIR, V25, P10768, DOI 10.1021/la901314b.
SERVICE RF, 2006, SCIENCE, V313, P1088.
SQUIRES TM, 2005, REV MOD PHYS, V77, P977.
STEIN D, 2004, PHYS REV LETT, V93, ARTN 035901.
STONE HA, 2004, ANNU REV FLUID MECH, V36, P381, DOI 10.1146/annurev.fluid.36.050802.122124.
TERRY LJ, 2007, SCIENCE, V318, P1412, DOI 10.1126/science.1142204.
VANDERHEYDEN FHJ, 2006, NANO LETT, V6, P2232, DOI 10.1021/nl061524l.
VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
VINOGRADOVA OI, 1995, LANGMUIR, V11, P2213.
WONGEKKABUT J, 2010, NAT NANOTECHNOL, V5, P555.
YANG J, 2003, J MICROMECH MICROENG, V13, P963.
ZHANG J, 2005, PHYS REV LETT, V95, ARTN 200403.
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w.

Cited Reference Count:
51

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Condensed Matter

ISSN:
0953-8984

DOI:
10.1088/0953-8984/23/18/184110

IDS Number:
752WD

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289697300013
*Order Full Text [ ]

Title:
Molecular Simulations of the Structure and Dynamics of Water Confined between Alkanethiol Self-Assembled Monolayer Plates

Authors:
Layfield, JP; Troya, D

Author Full Names:
Layfield, Joshua P.; Troya, Diego

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 115 (16): 4662-4670 APR 28 2011

Language:
English

Document Type:
Article

KeyWords Plus:
RANGE HYDROPHOBIC ATTRACTION; HIGH-PRESSURE CRYSTALLOGRAPHY; LONG-RANGE; AQUEOUS-ELECTROLYTE; FORCE MICROSCOPY; LIQUID WATER; DISSOLVED-GAS; PROTEIN TETRABRACHION; POTENTIAL FUNCTIONS; LENGTH SCALES

Abstract:
We have studied structural and dynamic properties of water confined between hydrophobic alkanethiol self-assembled monolayers (SAMs) using molecular-dynamics simulations. After quantifying the hydrophobic nature of the SAM surfaces via contact-angle calculations involving water droplets, we analyze the effect that the hydrophobic surfaces have on structural properties of the cofined water such as density, tetrahedral ordering, orientational structure at the SAM-water interface, and on dynamical properties via calculation of diffusion coefficients. Both the SPC/E and TIP5P water models have been utilized in the calculations. All of the analyses of the structures and dynamics of water are performed as a function of separation from the surface with a focus on determining the range of the effect of hydrophobic surfaces on the water film. We show that the effects of the surface are not noticeable at water-film depths of approximately 1 nm for the structural properties examined. Ho
wever, calculated diffusion coefficients in the plane of the surface indicate the SAMs induce enhancement of water motion clearly beyond 1 nm. while the enhanced lateral diffusion coefficients persist into deeper regions of the water film than any other measure of the hydrophobic effect examined in this work, the range of influence of the surface on the dynamics of water falls dramatically short of the range for hydrophobic interactions measured some experiments.

Reprint Address:
Troya, D, Virginia Tech, Dept Chem, 107 Davidson Hall, Blacksburg, VA 24061 USA.

Research Institution addresses:
[Layfield, Joshua P.; Troya, Diego] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA

E-mail Address:
troya@vt.edu

Cited References:
BAR G, 1997, LANGMUIR, V13, P3807.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BUSSI G, 2007, J CHEM PHYS, V126, ARTN 014101.
CARAMBASSIS A, 1998, PHYS REV LETT, V80, P5357.
CASTRILLON SRV, 2009, J PHYS CHEM B, V113, P7973, DOI 10.1021/jp9025392.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHOUDHURY N, 2007, J AM CHEM SOC, V129, P4847, DOI 10.1021/ja069242a.
CHOUDHURY N, 2010, J CHEM PHYS, V132, ARTN 064505.
CHRISTENSON HK, 1987, P INDIAN AS-CHEM SCI, V98, P379.
CHRISTENSON HK, 2001, ADV COLLOID INTERFAC, V91, P391.
COLLINS MD, 2005, P NATL ACAD SCI USA, V102, P16668, DOI 10.1073/pnas.0508224102.
COLLINS MD, 2007, J MOL BIOL, V367, P752, DOI 10.1016/j.jmb.2006.12.021.
CONSIDINE RF, 1999, LANGMUIR, V15, P1657.
CORIDAN RH, 2009, PHYS REV LETT, V103, ARTN 237402.
CRAIG VSJ, 1998, LANGMUIR, V14, P3326.
CRAIG VSJ, 1999, LANGMUIR, V15, P1562.
DALVI VH, 2010, P NATL ACAD SCI USA, V107, P13603, DOI 10.1073/pnas.0915169107.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DAY BS, 2005, J CHEM PHYS, V122, ARTN 234714.
DERJAGUIN B, 1993, PROG SURF SCI, V43, P30.
DUCKER WA, 2009, LANGMUIR, V25, P8907, DOI 10.1021/la902011v.
ERIKSSON JC, 1989, J CHEM SOC FARAD T 2, V85, P163.
ERRINGTON JR, 2001, NATURE, V409, P318.
FERNANDEZ RG, 2006, J CHEM PHYS, V124, ARTN 144506.
FIELDEN ML, 1996, LANGMUIR, V12, P3721.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
GIOVAMBATTISTA N, 2007, J PHYS CHEM B, V111, P9581, DOI 10.1021/jp071957s.
GIOVAMBATTISTA N, 2009, J PHYS CHEM B, V113, P13723, DOI 10.1021/jp9018266.
GIOVAMBATTISTA N, 2009, PHYS REV LETT, V102, ARTN 050603.
GODAWAT R, 2009, P NATL ACAD SCI USA, V106, P15119, DOI 10.1073/pnas.0902778106.
GRAUPE M, 1999, J AM CHEM SOC, V121, P3222.
HATO M, 1996, J PHYS CHEM-US, V100, P18530.
HAUGSTAD G, 1999, ULTRAMICROSCOPY, V76, P77.
HAUTMAN J, 1989, J CHEM PHYS, V91, P4994.
HESS B, 1997, J COMPUT CHEM, V18, P1463.
HESS B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q.
HUANG X, 2003, P NATL ACAD SCI USA, V100, P11953, DOI 10.1073/pnas.1934837100.
HUBER G, 2005, P NATL ACAD SCI USA, V102, P16293.
HUMMER G, 1998, PHYS REV LETT, V80, P4193.
HUMMER G, 2001, NATURE, V414, P188.
ISHIDA N, 1999, J COLLOID INTERF SCI, V216, P387.
ISHIDA N, 2000, LANGMUIR, V16, P5681, DOI 10.1021/la991146i.
ISHIDA N, 2000, LANGMUIR, V16, P6377, DOI 10.1021/la000219r.
ISRAELACHVILI J, 1982, NATURE, V300, P341.
JAMADAGNI SN, 2009, J PHYS CHEM B, V113, P4093, DOI 10.1021/jp806528m.
JAMADAGNI SN, 2009, LANGMUIR, V25, P13092, DOI 10.1021/la9011839.
JORGENSEN WL, 1984, J AM CHEM SOC, V106, P6638.
KALRA A, 2010, EUR PHYS J-SPEC TOP, V189, P147, DOI 10.1140/epjst/e2010-01317-9.
KARAMAN ME, 1996, J PHYS CHEM-US, V100, P15503.
KEKICHEFF P, 1995, PHYS REV LETT, V75, P1851.
KUHLE A, 1997, J APPL PHYS, V81, P6562.
KUMAR P, 2005, PHYS REV E 1, V72, ARTN 051503.
LEE CY, 1984, J CHEM PHYS, V80, P4448.
LEE SH, 1994, J CHEM PHYS, V100, P3334.
LIU P, 2004, J PHYS CHEM B, V108, P6595, DOI 10.1021/jp0375057.
LOVEDAY JS, 2008, PHYS CHEM CHEM PHYS, V10, P937, DOI 10.1039/b704740a.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
LUO PZ, 1999, P NATL ACAD SCI USA, V96, P4930.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MALASPINA DC, 2010, EUR PHYS J E, V32, P35, DOI 10.1140/epje/i2010-10594-2.
MITTAL J, 2010, FARADAY DISCUSS, V146, P341, DOI 10.1039/b925913a.
PARKER JL, 1994, J PHYS CHEM-US, V98, P8468.
PARTHASARATHY R, 1990, P NATL ACAD SCI USA, V87, P871.
PETERS J, 1996, J MOL BIOL, V257, P1031.
PREUSS M, 1998, LANGMUIR, V14, P3164.
RABINOVICH YI, 1988, COLLOID SURFACE, V30, P243.
SAKAMOTO M, 2002, LANGMUIR, V18, P5713.
SARUPRIA S, 2009, PHYS REV LETT, V103, ARTN 037803.
SCHEIDLER P, 2002, EUROPHYS LETT, V59, P701.
SCHERAGA HA, 1998, J BIOMOL STRUCT DYN, V16, P447.
SHENOGINA N, 2009, PHYS REV LETT, V102, ARTN 156101.
TAMAYO J, 1996, LANGMUIR, V12, P4430.
VERWEY EJ, 1947, THEORY STABILITY LYO.
WALSH MR, 2009, SCIENCE, V326, P1095, DOI 10.1126/science.1174010.
WOOD J, 1995, LANGMUIR, V11, P4797.
YAMINSKY V, 1996, LANGMUIR, V12, P3531.
YAMINSKY VV, 1996, LANGMUIR, V12, P1936.
YIN H, 2007, J AM CHEM SOC, V129, P7369, DOI 10.1021/ja070456h.
ZHANG JH, 2005, LANGMUIR, V21, P5831, DOI 10.1021/la047398n.
ZHANG LZ, 2002, J CHEM PHYS, V117, P7342, DOI 10.1063/1.1507777.

Cited Reference Count:
81

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp1120178

IDS Number:
752MZ

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289697300025
*Order Full Text [ ]

Title:
Gating of a Water Nanochannel Driven by Dipolar Molecules

Authors:
Meng, XW; Wang, Y; Zhao, YJ; Huang, JP

Author Full Names:
Meng, X. W.; Wang, Y.; Zhao, Y. J.; Huang, J. P.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 115 (16): 4768-4773 APR 28 2011

Language:
English

Document Type:
Article

KeyWords Plus:
INTEGRAL MEMBRANE-PROTEIN; CARBON NANOTUBE MEMBRANES; CHANNEL; PERMEATION; DYNAMICS; CONDUCTION; TRANSPORT; GATE; DETERMINANTS; AQUAPORIN-1

Abstract:
On the basis of molecular dynamics simulations, we investigate Water permeation across a single walled carbon nanotube (SWCNT) Under the influence of four symmetrical half rings, each having six LiF dipolar molecules. The flux remains almost fixed as the separation, R, between the rings and SWCNT is larger than 1.562 rim, but decreases significantly as 0.944 nm < R < 1.562 nm, and reaches zero as R < 0.944 nm. This nanochannel shows an excellent on off gate that is both effectively resistant to dipole noises and sensitive to . available signals. The finite element method reveals that the electrostatic field generated by LiF molecules plays a unique role in achieving the gating of the water SWCNT. Each water molecule tends to stay at the most stable, state by moving to the location with the highest field strength in order to maintain its lowest electric energy. These findings may have biological implications because membrane water nanochannels made up of proteins accompanied w
ith co-ions and counterions (due to ionization) share a similar single file water chain inside the SWCNT with dipoles. The Appendix shows a possible link between the model system and a membrane water nanochannel with co-ions and counterions. Furthermore, our observations may have significance for the design of SWCNT-based nanoscale devices With dipolar molecules.

Reprint Address:
Zhao, YJ, Fudan Univ, Adv Mat Lab, Shanghai 200438, Peoples R China.

Research Institution addresses:
[Zhao, Y. J.] Fudan Univ, Adv Mat Lab, Shanghai 200438, Peoples R China; [Meng, X. W.; Wang, Y.; Huang, J. P.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China; [Meng, X. W.; Wang, Y.; Huang, J. P.] Fudan Univ, State Key Lab Surface Phys, Shanghai 200438, Peoples R China

E-mail Address:
zhaoyanjiao@fudan.edu.cn; jphuang@fudan.edu.cn

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
ANDREEV S, 2005, J CHEM PHYS, V123, ARTN 194502.
BADER RFW, 1965, J AM CHEM SOC, V87, P3063.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
CHENG YK, 1998, NATURE, V392, P696.
CHEUNG MS, 2006, J MOL BIOL, V357, P632, DOI 10.1016/j.jmb.2005.12.048.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DEGROOT BL, 2005, CURR OPIN STRUC BIOL, V15, P176, DOI 10.1016/j.sbi.2005.02.003.
DENKER BM, 1988, J BIOL CHEM, V263, P15634.
DILL KA, 1997, NAT STRUCT BIOL, V4, P10.
FERNANDEZ A, 2003, P NATL ACAD SCI USA, V100, P113.
GAO Y, 2010, PHYS REV LETT, V104, ARTN 034501.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HUMMER G, 2001, NATURE, V414, P188.
ITO Y, 2000, LANGMUIR, V16, P5376.
IWATA H, 1988, J MEMBRANE SCI, V38, P185.
JENSEN MO, 2003, BIOPHYS J, V85, P2884.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2001, NATURE, V412, P802.
LEE SH, 2005, PLANT CELL ENVIRON, V28, P1191.
LEUNG K, 2008, J AM CHEM SOC, V130, P1808, DOI 10.1021/ja076229xS0002-7863(07)06229-4.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
MIYAZAWA A, 2003, NATURE, V423, P949, DOI 10.1038/nature01748.
MURATA K, 2000, NATURE, V407, P599.
OSADA Y, 1986, J MEMBRANE SCI, V27, P327.
POMES R, 1998, BIOPHYS J, V75, P33.
PRESTON GM, 1991, P NATL ACAD SCI USA, V88, P11110.
SUI HX, 2001, NATURE, V414, P872.
WALLQVIST A, 2001, J PHYS CHEM B, V105, P6745.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG LL, 2003, PHYS REV B, V68, ARTN 115409.
WONGEKKABUT J, 2010, NAT NANOTECHNOL, V5, P555.
YANG M, 2010, J MEMBRANE SCI, V355, P142, DOI 10.1016/j.memsci.2010.03.015.
YOSHIMI Y, 2010, ANAL CHIM ACTA, V682, P110, DOI 10.1016/j.aca.2010.09.050.
ZEIDEL ML, 1992, BIOCHEMISTRY-US, V31, P7436.
ZHANG L, 2008, J PHYS CHEM B, V112, P3767, DOI 10.1021/jp800381a.
ZHOU M, 2001, NATURE, V411, P657.
ZHOU RH, 2004, SCIENCE, V305, P1605.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w.

Cited Reference Count:
45

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp2025297

IDS Number:
752MZ

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289742100081
*Order Full Text [ ]

Title:
Electronic Sensitivity of Carbon Nanotubes to Internal Water Wetting

Authors:
Cao, D; Pang, P; He, J; Luo, T; Park, JH; Krstic, P; Nuckolls, C; Tang, JY; Lindsay, S

Author Full Names:
Cao, Di; Pang, Pei; He, Jin; Luo, Tao; Park, Jae Hyun; Krstic, Predrag; Nuckolls, Colin; Tang, Jinyao; Lindsay, Stuart

Source:
ACS NANO 5 (4): 3113-3119 APR 2011

Language:
English

Document Type:
Article

Author Keywords:
nanofluidics; nanopore; carbon nanotube; biosensor; nanoconfinement; water in nanoscale channels

KeyWords Plus:
FET DEVICES; DNA; TRANSISTORS; TRANSPORT; TRANSLOCATION; CONDUCTIVITY; MEMBRANES; CONTACTS; CHANNEL

Abstract:
We have constructed devices in which the interior of a single-walled carbon nanotube (SWCNT) field-effect transistor acts as a nanofluidic channel that connects two fluid reservoirs, permitting measurement of the electronic properties of the SWCNT as it Is wetted by an analyte. Wetting of the Inside of the SWCNT by water turns the transistor on, while wetting of the outside has little effect. These observations are consistent with theoretical simulations that show that internal water both generates a large dipole electric field, causing charge polarization of the tube and metal electrodes, and shifts the valence band of the SWCNT, while external water has little effect. This finding may provide a new method to investigate water behavior at nanoscale. This also opens a new avenue for building sensors in which the SWCNT simultaneously functions as a concentrator, nanopore, and extremely sensitive electronic detector, exploiting the enhanced sensitivity of the interior surface.

Reprint Address:
Lindsay, S, Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA.

Research Institution addresses:
[Cao, Di; Pang, Pei; He, Jin; Luo, Tao; Lindsay, Stuart] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA; [Cao, Di; Pang, Pei; Luo, Tao; Lindsay, Stuart] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA; [Lindsay, Stuart] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA; [Park, Jae Hyun; Krstic, Predrag] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA; [Nuckolls, Colin; Tang, Jinyao] Columbia Univ, Dept Chem, New York, NY 10027 USA

E-mail Address:
jinhe@asu.edu; stuart.lindsay@asu.edu

Cited References:
AVOURIS P, 2007, NAT NANOTECHNOL, V2, P605, DOI 10.1038/nnano.2007.300.
BISWAS PK, 2005, J CHEM PHYS, V123, ARTN 164114.
BRADLEY K, 2003, NANO LETT, V3, P639, DOI 10.1021/nl025941j.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CAMBRE S, 2010, PHYS REV LETT, V104, ARTN 207401.
CHEN Q, 2008, NANO LETT, V8, P1902, DOI 10.1021/nl080569e.
CUI XD, 2003, NANO LETT, V3, P783, DOI 10.1021/nl034193a.
DEKKER C, 2007, NAT NANOTECHNOL, V2, P209, DOI 10.1038/nnano.2007.27.
DOUGLAS RK, 2008, ANGEW CHEM INT EDIT, V47, P6550.
DUJARDIN E, 1994, SCIENCE, V265, P1850.
ERIK D, 1998, ADV MATER, V10, P1472.
FAN R, 2005, NANO LETT, V5, P1633, DOI 10.1021/nl0509677.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
HEINZE S, 2002, PHYS REV LETT, V89, ARTN 106801.
HELLER I, 2009, NANO LETT, V9, P377, DOI 10.1021/nl8031636.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
KENDALL RA, 2000, COMPUT PHYS COMMUN, V128, P260.
KIM W, 2003, NANO LETT, V3, P193, DOI 10.1021/nl0259232.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KONG J, 2000, SCIENCE, V287, P622.
LEE RS, 1997, NATURE, V388, P255.
LIANG XG, 2008, NANO LETT, V8, P1472, DOI 10.1021/nl080473k.
LIU HT, 2010, SCIENCE, V327, P64, DOI 10.1126/science.1181799.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MARCUS F, 2001, APPL PHYS LETT, V79, P3326.
NA PS, 2005, APPL PHYS LETT, V87, ARTN 093101.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
PATI R, 2002, APPL PHYS LETT, V81, P2638, DOI 10.1063/1.1510969.
STAII C, 2005, NANO LETT, V5, P1774, DOI 10.1021/nl051261f.
STAR A, 2003, NANO LETT, V3, P459, DOI 10.1021/nl0340172.
SUNG D, 2006, APPL PHYS LETT, V89, ARTN 243110.
WENRONG Y, 2010, ANGEW CHEM INT EDIT, V49, P2114.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WON CY, 2006, J CHEM PHYS, V125, ARTN 114701.
YANG MH, 2005, APPL PHYS LETT, V87, ARTN 253116.
ZAHAB A, 2000, PHYS REV B, V62, P10000.
ZUO G, 2009, ACS NANO, V4, P205.

Cited Reference Count:
42

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn200251z

IDS Number:
753CJ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================