Thursday, April 30, 2009

ISI Web of Knowledge Alert - Zhou, X

ISI Web of Knowledge Citation Alert

Cited Article: Zhou, X. Equilibrium and kinetics: Water confined in carbon nanotubes as one-dimensional lattice gas
Alert Expires: 22 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265187000013
*Order Full Text [ ]

Title:
Structure and Dynamics of Water Within Single Wall Carbon Nanotubes and Self-Assembled Cyclic Peptide Nanotubes

Authors:
Carvajal-Diaz, JA; Liu, LJ; Cagin, T

Author Full Names:
Carvajal-Diaz, Jennifer A.; Liu, Lijun; Cagin, Tahir

Source:
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE 6 (4): 894-902 Sp. Iss. SI APR 2009

Language:
English

Document Type:
Article

Author Keywords:
Dynamics in Confined Media; Structure of Water; Carbon Nanotubes; Peptide Nanotubes; Diffusion; Membranes; Molecular Dynamics

KeyWords Plus:
MOLECULAR-DYNAMICS; DIFFUSION; MEMBRANES; CHANNEL; TRANSPORT; CONFINEMENT; CONDUCTION; ARCHITECTURE; SIMULATIONS; NANOWIRES

Abstract:
Structure and flow behavior of water in nanoscale confinement are critical for nanotechnology applications. In addition to influence of decreasing in dimensions imposed by the confinement, the nature of interaction may have substantial effect on structure and dynamics of water. In this work, we have utilized two distinct nanotube structures to assess the affect of these two factors. To emphasize the influence of atomic detail interactions play in this problem we have chosen two physically well defined systems: close packed single wall carbon nanotubes with varying diameter, length and chirality, and the self assembled cyclic peptide nanotubes formed by cyclic-[-(D-Ala-Gln-D-Ala-Glu)(2)-] subunits. We have employed molecular dynamics simulation method to study the behavior of water in these two model nano-scale membranes. To assess the similarities and differences, we have evaluated the dipole-dipole correlations, diffusion coefficient, density profiles along the nanotube, ra!
dial and axial distribution functions for water in nanotubes. The hydrophilic peptide nanotubes showed a higher value of diffusion coefficient when compared with the hydrophobic CNTs channels of equivalent diameter.

Reprint Address:
Cagin, T, Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA.

Research Institution addresses:
[Carvajal-Diaz, Jennifer A.; Liu, Lijun; Cagin, Tahir] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA

Cited References:
ACKERMAN DA, 2003, MOL SIMULAT, V29, P67.
ALBASIMIONESCO C, 2003, EUR PHYS J E, V12, P19, DOI 10.1140/epje/i2003-10055-1.
ASTHAGIRI D, 2002, BIOPHYS J, V82, P1176.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503.
BONG DT, 2001, CHEM INT ED, V40, P988.
CAGIN T, 1999, J NANOPART RES, V1, P51.
CHIPOT, 2006, PHYS BIOL, V3.
COLOMBO G, 2007, TRENDS BIOTECHNOL, V25, P5.
ENGELS M, 1995, J AM CHEM SOC, V117, P9151.
FERNANDEZLOPEZ S, 2001, NATURE, V412, P452.
GAZIT E, 2007, CHEM SOC REV, V36, P1263, DOI 10.1039/b605536m.
GHADIRI MR, 1993, NATURE, V366, P324.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GORBITZ CH, 2001, CHEM-EUR J, V7, P5153.
GRANJA JR, 1994, J AM CHEM SOC, V116, P10785.
HARTGERINK JD, 1996, J AM CHEM SOC, V118, P43.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JIRAGE KB, 1997, SCIENCE, V278, P655.
JOO SH, 2001, NATURE, V412, P169.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KHAZANOVICH N, 1994, J AM CHEM SOC, V116, P6011.
KIM HS, 1998, J AM CHEM SOC, V120, P4417.
KRISHNA R, 2000, CHEM PHYS LETT, V326, P477.
LEE KH, 2004, J PHYS CHEM B, V108, P9861, DOI 10.1021/jp036791j.
LU DY, 2005, J PHYS CHEM B, V109, P11461, DOI 10.1021/jp050420g.
LU K, 2003, J AM CHEM SOC, V125, P6391, DOI 10.1021/ja0341642.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
MAO ZG, 2001, J PHYS CHEM B, V105, P6916, DOI 10.1021/jp0103272.
MARMIER A, 2005, MOL SIMULAT, V31, P385, DOI 10.1080/08927020500066338.
MARTI J, 2001, PHYS REV E 1, V64, ARTN 021504.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MOTESHAREI K, 1997, J AM CHEM SOC, V119, P11306.
MOULIN F, 2005, PHYS REV B, V71, ARTN 165401.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781.
RAY S, 2004, ORG LETT, V6, P4463, DOI 10.1021/ol048253a.
RECHES M, 2003, SCIENCE, V300, P625.
SCHONENBERGER C, 1997, J PHYS CHEM B, V101, P5497.
SONG YJ, 2004, CHEM COMMUN, V1044, P1045.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
VARNIK F, 2003, EUR PHYS J E, V12, P167, DOI 10.1140/epje/i2003-10042-6.
VAUTHEY S, 2002, P NATL ACAD SCI USA, V99, P5355.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WATHER JH, 2001, J PHYS CHEM B, V105, P9980.
WING S, 1999, BIOPHYS J, V76, P1939.
ZANGI R, 2003, J CHEM PHYS, V119, P1694, DOI 10.1063/1.1580101.
ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702.
ZHOU X, 2004, J CHEM PHYS, V121, P7996, DOI 10.1063/1.1799971.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZHU FQ, 2004, PHYS REV LETT, V93, ARTN 224501.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
53

Times Cited:
0

Publisher:
AMER SCIENTIFIC PUBLISHERS; 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1546-1955

DOI:
10.1166/jctn.2009.1123

IDS Number:
433EL

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265187000013
*Order Full Text [ ]

Title:
Structure and Dynamics of Water Within Single Wall Carbon Nanotubes and Self-Assembled Cyclic Peptide Nanotubes

Authors:
Carvajal-Diaz, JA; Liu, LJ; Cagin, T

Author Full Names:
Carvajal-Diaz, Jennifer A.; Liu, Lijun; Cagin, Tahir

Source:
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE 6 (4): 894-902 Sp. Iss. SI APR 2009

Language:
English

Document Type:
Article

Author Keywords:
Dynamics in Confined Media; Structure of Water; Carbon Nanotubes; Peptide Nanotubes; Diffusion; Membranes; Molecular Dynamics

KeyWords Plus:
MOLECULAR-DYNAMICS; DIFFUSION; MEMBRANES; CHANNEL; TRANSPORT; CONFINEMENT; CONDUCTION; ARCHITECTURE; SIMULATIONS; NANOWIRES

Abstract:
Structure and flow behavior of water in nanoscale confinement are critical for nanotechnology applications. In addition to influence of decreasing in dimensions imposed by the confinement, the nature of interaction may have substantial effect on structure and dynamics of water. In this work, we have utilized two distinct nanotube structures to assess the affect of these two factors. To emphasize the influence of atomic detail interactions play in this problem we have chosen two physically well defined systems: close packed single wall carbon nanotubes with varying diameter, length and chirality, and the self assembled cyclic peptide nanotubes formed by cyclic-[-(D-Ala-Gln-D-Ala-Glu)(2)-] subunits. We have employed molecular dynamics simulation method to study the behavior of water in these two model nano-scale membranes. To assess the similarities and differences, we have evaluated the dipole-dipole correlations, diffusion coefficient, density profiles along the nanotube, ra!
dial and axial distribution functions for water in nanotubes. The hydrophilic peptide nanotubes showed a higher value of diffusion coefficient when compared with the hydrophobic CNTs channels of equivalent diameter.

Reprint Address:
Cagin, T, Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA.

Research Institution addresses:
[Carvajal-Diaz, Jennifer A.; Liu, Lijun; Cagin, Tahir] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA

Cited References:
ACKERMAN DA, 2003, MOL SIMULAT, V29, P67.
ALBASIMIONESCO C, 2003, EUR PHYS J E, V12, P19, DOI 10.1140/epje/i2003-10055-1.
ASTHAGIRI D, 2002, BIOPHYS J, V82, P1176.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503.
BONG DT, 2001, CHEM INT ED, V40, P988.
CAGIN T, 1999, J NANOPART RES, V1, P51.
CHIPOT, 2006, PHYS BIOL, V3.
COLOMBO G, 2007, TRENDS BIOTECHNOL, V25, P5.
ENGELS M, 1995, J AM CHEM SOC, V117, P9151.
FERNANDEZLOPEZ S, 2001, NATURE, V412, P452.
GAZIT E, 2007, CHEM SOC REV, V36, P1263, DOI 10.1039/b605536m.
GHADIRI MR, 1993, NATURE, V366, P324.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GORBITZ CH, 2001, CHEM-EUR J, V7, P5153.
GRANJA JR, 1994, J AM CHEM SOC, V116, P10785.
HARTGERINK JD, 1996, J AM CHEM SOC, V118, P43.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JIRAGE KB, 1997, SCIENCE, V278, P655.
JOO SH, 2001, NATURE, V412, P169.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KHAZANOVICH N, 1994, J AM CHEM SOC, V116, P6011.
KIM HS, 1998, J AM CHEM SOC, V120, P4417.
KRISHNA R, 2000, CHEM PHYS LETT, V326, P477.
LEE KH, 2004, J PHYS CHEM B, V108, P9861, DOI 10.1021/jp036791j.
LU DY, 2005, J PHYS CHEM B, V109, P11461, DOI 10.1021/jp050420g.
LU K, 2003, J AM CHEM SOC, V125, P6391, DOI 10.1021/ja0341642.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
MAO ZG, 2001, J PHYS CHEM B, V105, P6916, DOI 10.1021/jp0103272.
MARMIER A, 2005, MOL SIMULAT, V31, P385, DOI 10.1080/08927020500066338.
MARTI J, 2001, PHYS REV E 1, V64, ARTN 021504.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MOTESHAREI K, 1997, J AM CHEM SOC, V119, P11306.
MOULIN F, 2005, PHYS REV B, V71, ARTN 165401.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781.
RAY S, 2004, ORG LETT, V6, P4463, DOI 10.1021/ol048253a.
RECHES M, 2003, SCIENCE, V300, P625.
SCHONENBERGER C, 1997, J PHYS CHEM B, V101, P5497.
SONG YJ, 2004, CHEM COMMUN, V1044, P1045.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
VARNIK F, 2003, EUR PHYS J E, V12, P167, DOI 10.1140/epje/i2003-10042-6.
VAUTHEY S, 2002, P NATL ACAD SCI USA, V99, P5355.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WATHER JH, 2001, J PHYS CHEM B, V105, P9980.
WING S, 1999, BIOPHYS J, V76, P1939.
ZANGI R, 2003, J CHEM PHYS, V119, P1694, DOI 10.1063/1.1580101.
ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702.
ZHOU X, 2004, J CHEM PHYS, V121, P7996, DOI 10.1063/1.1799971.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZHU FQ, 2004, PHYS REV LETT, V93, ARTN 224501.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
53

Times Cited:
0

Publisher:
AMER SCIENTIFIC PUBLISHERS; 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1546-1955

DOI:
10.1166/jctn.2009.1123

IDS Number:
433EL

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265270800030
*Order Full Text [ ]

Title:
Guest species trapped inside carbon nanotubes

Authors:
Ramachandran, CN; De Fazio, D; Sathyamurthy, N; Aquilanti, V

Author Full Names:
Ramachandran, C. N.; De Fazio, Dario; Sathyamurthy, N.; Aquilanti, V.

Source:
CHEMICAL PHYSICS LETTERS 473 (1-3): 146-150 APR 29 2009

Language:
English

Document Type:
Article

KeyWords Plus:
O-O BOND; HYDROGEN-PEROXIDE; INFRARED-SPECTRUM; WATER CLUSTERS; DRUG-DELIVERY; PI-SYSTEMS; MOLECULES; COMPLEXES; QUANTUM; DYNAMICS

Abstract:
Taking the torsional motion of H2O2 inside a carbon nanotube as an example, the interaction between the encapsulated guest species and the carbon nanotube has been studied using the density functional theoretical method with the B3LYP functional and the 6-31G** basis set. Depending upon its orientation inside the nanotube, H2O2 binds differently with the nanotube thereby inhibiting the torsional motion in the encapsulated state. The binding of the guest species with the nanotube due to the weak O-H center dot center dot center dot pi interaction is discussed. The polarization of the nanotube because of the guest species suggests that the molecular motion through the nanotube may be influenced by polar solvents and external electric fields. (C) 2009 Elsevier B.V. All rights reserved.

Reprint Address:
Sathyamurthy, N, Indian Inst Technol, Dept Chem, Kanpur 208016, Uttar Pradesh, India.

Research Institution addresses:
[Sathyamurthy, N.] Indian Inst Technol, Dept Chem, Kanpur 208016, Uttar Pradesh, India; [Ramachandran, C. N.; Aquilanti, V.] Univ Perugia, Dipartimento Chim, I-06123 Perugia, Italy; [De Fazio, Dario] CNR, Ist Metodol Inorgan & Plasmi, I-00016 Rome, Italy; [Sathyamurthy, N.] IISER, Chandigarh 160019, India

E-mail Address:
nsath@iitk.ac.in; aquila@dyn.unipg.it

Cited References:
AKTURK A, 2007, PHYS REV LETT, V98, ARTN 166803.
AQUILANTI V, 2006, ORIGINS LIFE EVOL B, V36, P435.
BARRETO PRP, 2007, J PHYS CHEM A, V111, P12754, DOI 10.1021/jp076268v.
BITENCOURT ACP, 2008, J CHEM PHYS, V129, ARTN 154316.
CUI D, 2004, MECH CHEM BIOSYST, V1, P113.
DALTON AB, 2003, NATURE, V423, P703.
DAZA MC, 1999, J CHEM PHYS, V110, P11806.
DAZA MC, 2000, PHYS CHEM CHEM PHYS, V2, P4089.
ELANGO M, 2006, J PHYS CHEM A, V110, P6294, DOI 10.1021/jp055818r.
ESWARAMOORTHY M, 1999, CHEM PHYS LETT, V304, P207.
FLAUD JM, 1989, J CHEM PHYS, V91, P1504.
FRISCH MJ, 2004, GAUSSIAN 03 REVISION.
GUNN K, 2005, CHEM PHYS LETT, V415, P279.
HARDING LB, 1989, J PHYS CHEM-US, V93, P8004.
HILDER TA, 2007, NANOTECHNOLOGY, V18, ARTN 275704.
HILDER TA, 2008, CURR APPL PHYS, V8, P258, DOI 10.1016/j.cap.2007.10.011.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
KHACHKURUZOV GA, 1974, OPT SPEKTROSK, V36, P172.
KIM KS, 1997, CHEM PHYS LETT, V265, P497.
KIM KS, 2000, CHEM REV, V100, P4145.
KOPUT J, 1986, J MOL SPECTROSC, V115, P438.
LIU Z, 2008, CANCER RES, V68, P6652, DOI 10.1158/0008-5472.CAN-08-1468.
MACIEL GS, 2006, CHEM PHYS LETT, V432, P383, DOI 10.1016/j.cplett.2006.10.073.
MACIEL GS, 2007, INT J QUANTUM CHEM, V107, P2697, DOI 10.1002/qua.21462.
MACIEL GS, 2007, J PHYS CHEM A, V111, P12604, DOI 10.1021/jp076017m.
MISHRA BK, 2007, J PHYS CHEM A, V111, P2139, DOI 10.1021/jp065584r.
PAN XL, 2007, NAT MATER, V6, P507, DOI 10.1038/nmat1916.
PEJOV L, 2002, CHEM PHYS LETT, V358, P368.
POSTMA HWC, 2001, SCIENCE, V293, P76.
PUPYSHEVA OV, 2008, NANO LETT, V8, P767, DOI 10.1021/nl071436g.
RACHID HA, 2008, PHYS REV LETT, V100, UNSP 196401.
RAMACHANDRAN CN, 2005, CHEM PHYS LETT, V410, P348, DOI 10.1016/j.cplett.2005.04.113.
REDINGTON RL, 1962, J CHEM PHYS, V36, P1311.
SHAMEEMA O, 2006, J PHYS CHEM A, V110, P2, DOI 10.1021/jp056027s.
SICKLE KV, 2007, INT J QUANTUM CHEM, V107, P1523.
SLOAN J, 2008, ACS NANO, V2, P966, DOI 10.1021/nn7002508.
SONG LC, 2005, J CHEM THEORY COMPUT, V1, P394, DOI 10.1021/ct049843x.
TARAKESHWAR P, 1999, J CHEM PHYS, V111, P5838.
TSENG YC, 2004, NANO LETT, V4, P123, DOI 10.1021/nl0349707.
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI 10.1073/pnas.0407968101.
WILLIAMS CI, 1993, J PHYS CHEM-US, V97, P11652.
YANAGI K, 2007, J AM CHEM SOC, V129, P4992, DOI 10.1021/ja067351j.
ZHANG RB, 2005, J PHYS CHEM A, V109, P8028, DOI 10.1021/jp0525437.
ZHAO Y, 2005, J PHYS CHEM B, V109, P19046, DOI 10.1021/jp0534434.

Cited Reference Count:
45

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
0009-2614

DOI:
10.1016/j.cplett.2009.03.068

IDS Number:
434JK

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert
Cited Article:   Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires:   21 OCT 2009
Number of Citing Articles:   1 new records this week (1 in this e-mail)
Organization ID:   3b97d1bbc1878baed0ab183d8b03130b

Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.

*Record 1 of 1.
*Click Here to View Full Record
*Order Full Text [ ]
Title: Molecular dynamics computer simulation of water flows in nanochannels
Authors: Kucaba-Pietal, A; Walenta, Z; Peradzynski, Z
Author Full Names: Kucaba-Pietal, A.; Walenta, Z.; Peradzynski, Z.
Source: BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES 57 (1): 55-61 MAR 2009
Language: English
Document Type: Article
Author Keywords: nanoflows; micropolar fluid; molecular dynamics simulation; nanochannels
KeyWords Plus: POISEUILLE FLOW; FLUIDS; SILICON
Abstract: The work presents the results of the simulations of water flows through narrow channels (Poiseuille flows) performed using the molecular dynamics method, for two different channel widths (equal to 5 and 10 diameters of the water molecule) and for two different materials of the channel walls (copper and quartz).
In the simulations, physical properties of the materials and their electrostatic interactions were considered. The obtained results are compared with the analytical solutions for a micropolar fluid flow taking account of the experimentally obtained rheological constants of water.
Reprint Address: Kucaba-Pietal, A, Rzeszow Univ Technol, Dept Fluid Mech & Aerodynam, 8 Powstancow Warszawy Ave, PL-35959 Rzeszow, Poland.
Research Institution addresses: [Kucaba-Pietal, A.] Rzeszow Univ Technol, Dept Fluid Mech & Aerodynam, PL-35959 Rzeszow, Poland; [Walenta, Z.] IPPT PAN, Dept Mech & Phys Fluids, PL-00049 Warsaw, Poland; [Peradzynski, Z.] Warsaw Univ, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
E-mail Address: anpieta@prz.rzeszow.pl
Cited References: 1976, METALS REFERENCE BOO.
CIEPLAK M, 1999, PHYSICA A, V274, P281.
CIEPLAK M, 2000, PHYSICA A, V287, P153.
DELHOMMELLE J, 2002, MOL PHYS, V100, P2857, DOI 10.1080/00268970210145320.
ERINGEN AC, 1996, J MATH MECH, V16, P1.
GADELHAK M, 1999, J FLUIDS ENG, V121, P1215.
KUCABAPIETAL A, 2004, B POLISH ACAD SCI TE, V52, P209.
KUCABAPIETAL A, 2004, OFICYNA WYDAWNICZA P.
PROKHORENKO P, 1999, THEORETICAL PRINCIPL.
RAPAPORT DC, 1994, EUROPHYS LETT, V26, P401.
REFSON K, 2000, COMPUT PHYS COMMUN, V126, P309.
RESTON RR, 1994, J MICROELECTROMECH S, V3, P134.
SHARP KV, 2001, HDB MEMS.
STONE HA, 2004, ANNU REV FLUID MECH, V36, P381, DOI 10.1146/annurev.fluid.36.050802.122124.
TABELING P, 2001, 14 AUSTR FLUID MECH.
THOMPSON PA, 1997, NATURE, V389, P360.
TRAVIS KP, 1997, PHYS REV E, V55, P1566.
TRAVIS KP, 1997, PHYS REV E, V55, P4288.
TRAVIS KP, 1997, PHYSICA A, V240, P315.
TRAVIS KP, 2000, J CHEM PHYS, V112, P1984.
VANBEEST BWH, 1990, PHYS REV LETT, V64, P1955.
WILDING P, 1994, CLIN CHEM, V40, P43.
Cited Reference Count: 22
Times Cited: 0
Publisher: POLISH ACAD SCIENCES DIV IV; PALAC KULTURY I NAUKI, PO BOX 20, PL DEFILAD1, WARSAW, 00-901, POLAND
Subject Category: Engineering, Multidisciplinary
ISSN: 0239-7528
IDS Number: 432YE

Order Full Text

All Customers
    Please contact your library administrator, or person(s) responsible for document delivery, to find out more about your organization's policy for obtaining the full text of the above articles. If your organization does not have a current document delivery provider, your administrator can contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 or 734-459-8565.
IDS Customers
    IDS customers can purchase the full text of an article (having page number, volume, and issue information) by returning this ENTIRE message as a Reply to Sender or Forward to orders@isidoc.com. Mark your choices with an X in the "Order Full Text: []" brackets for each item. For example, [X].

 Please enter your account number here:

Help Desk Contact Information
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page.


ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT B
*Record 1 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000265213800069>
*Order Full Text [ ]
AU Creasy, MA
Leo, DJ
AF Creasy, M. Austin
Leo, Donald J.
TI SELF-HEALING BILAYER LIPID MEMBRANES FORMED OVER SYNTHETIC SUBSTRATES
SO SMASIS 2008: PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS,
ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS - 2008, VOL 2
LA English
DT Proceedings Paper
ID OIL-WATER SYSTEMS; VANDERWAALS FREE-ENERGY; ELECTRICAL PROPERTIES;
PHASE-TRANSITION; CONTACT ANGLES; FILMS; FORCES; PERMEABILITY;
DEFORMATION; CHOLESTEROL
AB Biological systems demonstrate autonomous healing of damage and are an
inspiration for developing self-healing materials. Our recent
experimental study has demonstrated that a bilayer lipid membrane
(BLM), also called a black lipid membrane, has the ability to self-heal
after mechanical failure. These molecules have a unique property that
they spontaneously self assembly into organized structures in an
aqueous medium. The BLM forms an impervious barrier to ions and fluid
between two volumes and strength of the barrier is dependent on the
pressure and electrical field applied to the membrane. A BLM formed
over an aperture on a silicon substrate is shown to self-heal for 5
pressurization failure cycles.
C1 [Creasy, M. Austin; Leo, Donald J.] Virginia Tech, Ctr Intelligent Mat Syst & Struct, Blacksburg, VA 24061 USA.
RP Creasy, MA, Virginia Tech, Ctr Intelligent Mat Syst & Struct,
Blacksburg, VA 24061 USA.
CR ANDREWS DM, 1970, SPEC DISCUSS FARADAY, V1, P46
BARNES G, 2005, INTERFACIAL SCI, P21
BERG JM, 2002, BIOCHEMISTTY, CH12
BROOKS DE, 1975, PROC ROY SOC LONDON, V347, P179
CREASY MA, 2008, P SPIE STUCT C SAN D
EVANS E, 1987, J PHYS CHEM-US, V91, P4219
EVANS E, 1988, MACROMOLECULES, V21, P1822
FETTIPLACE R, 1980, PHYSIOL REV, V60, P510
GOULD P, 2003, MATER TODAY, V6, P44
GRUEN DWR, 1981, BIOPHYS J, V33, P167
HANAI T, 1964, P ROY SOC LOND A MAT, V281, P377
HANAI T, 1965, J THEOR BIOL, V9, P278
HAYDON DA, 1968, NATURE, V217, P739
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HOPKINSON D, 2007, P MAT RES SOC BOST M
HOPKINSON D, 2007, P SPIE STRUCT C SAN
MONTAL M, 1972, P NATL ACAD SCI USA, V69, P3561
NEEDHAM D, 1983, BIOPHYS J, V41, P251
NEEDHAM D, 1988, BIOCHEMISTRY-US, V27, P4668
NEEDHAM D, 1988, BIOCHEMISTRY-US, V27, P8261
NEEDHAM D, 1989, BIOPHYS J, V55, P1001
NEEDHAM D, 1990, BIOPHYS J, V58, P997
NEEDHAM D, 1997, BIOPHYS J, V73, P2615
OLBRICH K, 2000, BIOPHYS J, V79, P321
RAWICZ W, 2000, BIOPHYS J, V79, P328
REQUENA J, 1975, P ROY SOC LOND A MAT, V347, P141
REQUENA J, 1975, P ROY SOC LOND A MAT, V347, P161
SIMON SA, 1994, BIOPHYS J, V66, P1943
SOHN H, 2003, LA13976MS LOS AL NAT
SUNDARESAN VB, 2006, J INTEL MAT SYST STR, V17, P863, DOI
10.1177/1045389X06061129
SUNDARESAN VB, 2008, P SPIE STRUCT C SAN
ZHELEV DV, 1994, BIOPHYS J, V67, P696
ZHELEV DV, 1994, BIOPHYS J, V67, P720
NR 33
TC 0
PU AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY
10016-5990 USA
BP 601
EP 606
GA BJE71
UT ISI:000265213800069
ER

PT J
*Record 2 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000265240000034>
*Order Full Text [ ]
AU Lee, SH
AF Lee, Song Hi
TI H+ Ion Migration in Water Filled Carbon Nanotube
SO BULLETIN OF THE KOREAN CHEMICAL SOCIETY
LA English
DT Article
DE Molecular dynamics simulation; OSS2 potential; Proton transfer; Carbon
nanotube
ID MOLECULAR-DYNAMICS; SOLVATED PROTON; SIMULATIONS; TRANSPORT; MODELS;
FLOW
C1 Kyungsung Univ, Dept Chem, Pusan 608736, South Korea.
RP Lee, SH, Kyungsung Univ, Dept Chem, Pusan 608736, South Korea.
EM shlee@ks.ac.kr
CR BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503
BJERRUM N, 1952, SCIENCE, V115, P385
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901
GEAR WC, 1971, NUMERICAL INITIAL VA
HASSAN SA, 2006, J CHEM PHYS, V124, ARTN 204510
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
IIJIMA S, 1991, NATURE, V354, P56
LEE SM, 2001, B KOR CHEM SOC, V22, P847
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MILLER SA, 2001, J AM CHEM SOC, V123, P12335
OJAMAE L, 1998, J CHEM PHYS, V109, P5547
VUILLEUMIER R, 1999, J CHEM PHYS, V111, P4251
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861
WIND SJ, 2002, APPL PHYS LETT, V80, P3817
ZHU FQ, 2003, BIOPHYS J, V85, P236
NR 16
TC 0
PU KOREAN CHEMICAL SOC; 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703,
SOUTH KOREA
SN 0253-2964
PD MAR 20
VL 30
IS 3
BP 700
EP 702
SC Chemistry, Multidisciplinary
GA 433XV
UT ISI:000265240000034
ER

PT B
*Record 3 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000265085300006>
*Order Full Text [ ]
AU Thomas, JA
McGaughey, AJH
AF Thomas, J. A.
McGaughey, A. J. H.
TI IDENTIFYING THE MECHANISMS OF ENHANCED WATER FLOW THROUGH CARBON
NANOTUBES
SO IMECE 2008: HEAT TRANSFER, FLUID FLOWS, AND THERMAL SYSTEMS, VOL 10,
PTS A-C
LA English
DT Proceedings Paper
ID HYDRODYNAMICS
AB Pressure-driven water flow through carbon nanotubes (CNTs) with
diameters ranging from 1.66 nm to 4.99 nm is examined using molecular
dynamics simulation. The flow rate enhancement, defined as the ratio of
the observed flow rate to that predicted from the no-slip
Hagen-Poiseuille relation, is calculated for each CNT The enhancement
decreases with increasing CNT diameter and ranges from 433 to 47. By
calculating the variation of water viscosity and slip length as a
function of CNT diameter, it is found that the results can be fully
explained in the context of continuum fluid mechanics. The enhancements
are lower than previously reported experimental results, which range
from 560 to 100000, suggesting a miscalculation of the available flow
area and/or the presence of an uncontrolled external driving force
(such as an electricfield) in the experiments.
C1 [Thomas, J. A.; McGaughey, A. J. H.] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA.
RP McGaughey, AJH, Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA
15213 USA.
CR ALLEN MP, 1987, COMPUTER SIMULATION
BARRAT JL, 2003, MOL PHYS, V101, P1605, DOI 10.1080/0026897031000068578
HANASAKI I, 2006, J CHEM PHYS, V124, P44708
HEYES DM, 1998, LIQUID STATE APPL MO
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
JOSEPH P, 2005, PHYS REV E 2, V71, P5303
JOSEPH P, 2006, PHYS REV LETT, V97, P6104
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
LI J, 1998, PHYS REV E, V57, P7259
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MCQUARRIE DA, 2005, STAT MECH
PETRAVIC J, 2007, J CHEM PHYS, V127, P74706
SINHA S, 2007, PHYS FLUIDS, V19, P13603
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u
THOMAS JA, 2008, J CHEM PHYS, V128, P84715
THOMAS JA, 2008, NANO LETT IN PRESS
TRAVIS KP, 1997, PHYS REV E, V55, P4288
WANG Z, 2007, NANO LETT, V7, P679
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112
WHITBY M, 2008, NANO LETT IN PRESS
YONGLI S, 2007, COMP MATER SCI, V38, P737
NR 23
TC 0
PU AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY
10016-5990 USA
BP 39
EP 42
GA BJE16
UT ISI:000265085300006
ER

PT B
*Record 4 of 4.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000265085300012>
*Order Full Text [ ]
AU Lee, C
Choi, CH
Kim, CJ
AF Lee, Choongyeop
Choi, Chang-Hwan
Kim, Chang-Jin C. J.
TI EFFECT OF GEOMETRIC PARAMETERS OF SUPERHYDROPHOBIC SURFACE ON LIQUID
SLIP
SO IMECE 2008: HEAT TRANSFER, FLUID FLOWS, AND THERMAL SYSTEMS, VOL 10,
PTS A-C
LA English
DT Proceedings Paper
DE superhydrophobic surface; liquid slip; wetting transition; drag
reduction
ID DRAG REDUCTION; CARBON NANOTUBES; ROUGH SURFACES; FRICTION; FLOWS;
WATER; MICROFLUIDICS; MICROCHANNELS; TRANSITIONS; RESISTANCE
AB In this paper, we experimentally study how geometric parameters of
textured hydrophobic surfaces affect a liquid slip, empowered by a
custom-tuned microfabrication procedure that produces regular
micro-patterns of posts and grates on an entire 4" wafer with a good
size uniformity and no defect. A pitch of the patterns and a gas
fraction of the structured surface are independently controlled, and
the slip length over each type of patterns is measured using a
rheometer system. On both grates and posts, the slip length increases
linearly with a pitch but exponentially with a gas fraction. The trend
of exponential increase by gas fraction appears more pronounced on
posts than on grates. The defect-free surfaces allow the flows to
maintain a de-wetted (Cassie) state at much higher pitches and gas
fractions than previously possible, permitting flows with the maximum
slip effect.
C1 [Lee, Choongyeop; Kim, Chang-Jin C. J.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
RP Lee, C, Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
CR AJDARI A, 2006, PHYS REV LETT, V96, P6102
BALASUBRAMANIAN AK, 2004, AIAA J, V42, P411
BARBIERI L, 2007, LANGMUIR, V23, P1723, DOI 10.1021/la0617964
BIBEN T, 2008, PHYS REV LETT, V100, P6103
BLOSSEY R, 2003, NAT MATER, V2, P301, DOI 10.1038/nmat856
CASSIE ABD, 1944, T FARADAY SOC, V40, P546
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425
CHOI CH, 2006, PHYS FLUIDS, V18, P87105
CHOI CH, 2006, PHYS REV LETT, V96, ARTN 066001
CHOI CH, 2006, PHYS REV LETT, V97, P9601
COTTINBIZONNE C, 2003, NAT MATER, V2, P237, DOI 10.1038/nmat857
COTTINBIZONNE C, 2004, EUR PHYS J E, V15, P427, DOI
10.1140/epje/i2004-10061-9
EIJKEL J, 2007, LAB CHIP, V7, P299, DOI 10.1039/b700364c
EXTRAND CW, 2004, LANGMUIR, V20, P5013, DOI 10.1021/la036481s
EXTRAND CW, 2006, LANGMUIR, V22, P1711, DOI 10.1021/la0525401
GOGTE S, 2005, PHYS FLUIDS, V17, P51701
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
ISHINO C, 2004, EUROPHYS LETT, V68, P419, DOI 10.1209/epl/i2004-10206-6
JOSEPH P, 2006, PHYS REV LETT, V97, P6104
KIM JW, 2002, PROC IEEE MICR ELECT, P479
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MIN TG, 2004, PHYS FLUIDS, V16, L55, DOI 10.1063/1.1755723
MOULINET S, 2007, EUR PHYS J E, V24, P251, DOI
10.1140/epje/i2007-10235-y
NAKAJIMA A, 2001, MONATSH CHEM, V132, P31
OU J, 2004, PHYS FLUIDS, V16, P4635, DOI 10.1063/1.1812011
PATANKAR NA, 2003, LANGMUIR, V19, P1249, DOI 10.1021/la026612+
PHILIP JR, 1972, Z ANGEW MATH PHYS, V23, P353
PRIEZJEV NV, 2005, PHYS REV E 1, V71, P1608
QUERE D, 2005, REP PROG PHYS, V68, P2495, DOI
10.1088/0034-4885/68/11/R01
ROACH P, 2008, SOFT MATTER, V4, P224, DOI 10.1039/b712575p
SBRAGAGLIA M, 2006, PHYS REV LETT, V97, P4503
SBRAGAGLIA M, 2007, J FLUID MECH, V578, P435
STEINBERGER A, 2007, NAT MATER, V6, P665, DOI 10.1038/nmat1962
WATANABE K, 1999, J FLUID MECH, V381, P225
WENZEL RN, 1936, IND ENG CHEM, V28, P988
WHITE FM, 1994, FLUID MECH, CH7
YBERT C, 2007, PHYS FLUIDS, V19, P23601
ZHENG QS, 2005, LANGMUIR, V21, P12207, DOI 10.1021/la052054y
NR 39
TC 0
PU AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY
10016-5990 USA
BP 77
EP 86
GA BJE16
UT ISI:000265085300012
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265240000034
*Order Full Text [ ]

Title:
H+ Ion Migration in Water Filled Carbon Nanotube

Authors:
Lee, SH

Author Full Names:
Lee, Song Hi

Source:
BULLETIN OF THE KOREAN CHEMICAL SOCIETY 30 (3): 700-702 MAR 20 2009

Language:
English

Document Type:
Article

Author Keywords:
Molecular dynamics simulation; OSS2 potential; Proton transfer; Carbon nanotube

KeyWords Plus:
MOLECULAR-DYNAMICS; SOLVATED PROTON; SIMULATIONS; TRANSPORT; MODELS; FLOW

Reprint Address:
Lee, SH, Kyungsung Univ, Dept Chem, Pusan 608736, South Korea.

Research Institution addresses:
Kyungsung Univ, Dept Chem, Pusan 608736, South Korea

E-mail Address:
shlee@ks.ac.kr

Cited References:
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503.
BJERRUM N, 1952, SCIENCE, V115, P385.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
GEAR WC, 1971, NUMERICAL INITIAL VA.
HASSAN SA, 2006, J CHEM PHYS, V124, ARTN 204510.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
IIJIMA S, 1991, NATURE, V354, P56.
LEE SM, 2001, B KOR CHEM SOC, V22, P847.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
OJAMAE L, 1998, J CHEM PHYS, V109, P5547.
VUILLEUMIER R, 1999, J CHEM PHYS, V111, P4251.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WIND SJ, 2002, APPL PHYS LETT, V80, P3817.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
16

Times Cited:
0

Publisher:
KOREAN CHEMICAL SOC; 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703, SOUTH KOREA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0253-2964

IDS Number:
433XV

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265085300006
*Order Full Text [ ]

Title:
IDENTIFYING THE MECHANISMS OF ENHANCED WATER FLOW THROUGH CARBON NANOTUBES

Authors:
Thomas, JA; McGaughey, AJH

Author Full Names:
Thomas, J. A.; McGaughey, A. J. H.

Source:
IMECE 2008: HEAT TRANSFER, FLUID FLOWS, AND THERMAL SYSTEMS, VOL 10, PTS A-C : 39-42 2009

Language:
English

Document Type:
Proceedings Paper

KeyWords Plus:
HYDRODYNAMICS

Abstract:
Pressure-driven water flow through carbon nanotubes (CNTs) with diameters ranging from 1.66 nm to 4.99 nm is examined using molecular dynamics simulation. The flow rate enhancement, defined as the ratio of the observed flow rate to that predicted from the no-slip Hagen-Poiseuille relation, is calculated for each CNT The enhancement decreases with increasing CNT diameter and ranges from 433 to 47. By calculating the variation of water viscosity and slip length as a function of CNT diameter, it is found that the results can be fully explained in the context of continuum fluid mechanics. The enhancements are lower than previously reported experimental results, which range from 560 to 100000, suggesting a miscalculation of the available flow area and/or the presence of an uncontrolled external driving force (such as an electricfield) in the experiments.

Reprint Address:
McGaughey, AJH, Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA.

Research Institution addresses:
[Thomas, J. A.; McGaughey, A. J. H.] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
BARRAT JL, 2003, MOL PHYS, V101, P1605, DOI 10.1080/0026897031000068578.
HANASAKI I, 2006, J CHEM PHYS, V124, P44708.
HEYES DM, 1998, LIQUID STATE APPL MO.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
JOSEPH P, 2005, PHYS REV E 2, V71, P5303.
JOSEPH P, 2006, PHYS REV LETT, V97, P6104.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
LI J, 1998, PHYS REV E, V57, P7259.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MCQUARRIE DA, 2005, STAT MECH.
PETRAVIC J, 2007, J CHEM PHYS, V127, P74706.
SINHA S, 2007, PHYS FLUIDS, V19, P13603.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
THOMAS JA, 2008, J CHEM PHYS, V128, P84715.
THOMAS JA, 2008, NANO LETT IN PRESS.
TRAVIS KP, 1997, PHYS REV E, V55, P4288.
WANG Z, 2007, NANO LETT, V7, P679.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WHITBY M, 2008, NANO LETT IN PRESS.
YONGLI S, 2007, COMP MATER SCI, V38, P737.

Cited Reference Count:
23

Times Cited:
0

Publisher:
AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA

IDS Number:
BJE16

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265085300012
*Order Full Text [ ]

Title:
EFFECT OF GEOMETRIC PARAMETERS OF SUPERHYDROPHOBIC SURFACE ON LIQUID SLIP

Authors:
Lee, C; Choi, CH; Kim, CJ

Author Full Names:
Lee, Choongyeop; Choi, Chang-Hwan; Kim, Chang-Jin C. J.

Source:
IMECE 2008: HEAT TRANSFER, FLUID FLOWS, AND THERMAL SYSTEMS, VOL 10, PTS A-C : 77-86 2009

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
superhydrophobic surface; liquid slip; wetting transition; drag reduction

KeyWords Plus:
DRAG REDUCTION; CARBON NANOTUBES; ROUGH SURFACES; FRICTION; FLOWS; WATER; MICROFLUIDICS; MICROCHANNELS; TRANSITIONS; RESISTANCE

Abstract:
In this paper, we experimentally study how geometric parameters of textured hydrophobic surfaces affect a liquid slip, empowered by a custom-tuned microfabrication procedure that produces regular micro-patterns of posts and grates on an entire 4" wafer with a good size uniformity and no defect. A pitch of the patterns and a gas fraction of the structured surface are independently controlled, and the slip length over each type of patterns is measured using a rheometer system. On both grates and posts, the slip length increases linearly with a pitch but exponentially with a gas fraction. The trend of exponential increase by gas fraction appears more pronounced on posts than on grates. The defect-free surfaces allow the flows to maintain a de-wetted (Cassie) state at much higher pitches and gas fractions than previously possible, permitting flows with the maximum slip effect.

Reprint Address:
Lee, C, Univ Calif Los Angeles, Los Angeles, CA 90095 USA.

Research Institution addresses:
[Lee, Choongyeop; Kim, Chang-Jin C. J.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA

Cited References:
AJDARI A, 2006, PHYS REV LETT, V96, P6102.
BALASUBRAMANIAN AK, 2004, AIAA J, V42, P411.
BARBIERI L, 2007, LANGMUIR, V23, P1723, DOI 10.1021/la0617964.
BIBEN T, 2008, PHYS REV LETT, V100, P6103.
BLOSSEY R, 2003, NAT MATER, V2, P301, DOI 10.1038/nmat856.
CASSIE ABD, 1944, T FARADAY SOC, V40, P546.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
CHOI CH, 2006, PHYS FLUIDS, V18, P87105.
CHOI CH, 2006, PHYS REV LETT, V96, ARTN 066001.
CHOI CH, 2006, PHYS REV LETT, V97, P9601.
COTTINBIZONNE C, 2003, NAT MATER, V2, P237, DOI 10.1038/nmat857.
COTTINBIZONNE C, 2004, EUR PHYS J E, V15, P427, DOI 10.1140/epje/i2004-10061-9.
EIJKEL J, 2007, LAB CHIP, V7, P299, DOI 10.1039/b700364c.
EXTRAND CW, 2004, LANGMUIR, V20, P5013, DOI 10.1021/la036481s.
EXTRAND CW, 2006, LANGMUIR, V22, P1711, DOI 10.1021/la0525401.
GOGTE S, 2005, PHYS FLUIDS, V17, P51701.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
ISHINO C, 2004, EUROPHYS LETT, V68, P419, DOI 10.1209/epl/i2004-10206-6.
JOSEPH P, 2006, PHYS REV LETT, V97, P6104.
KIM JW, 2002, PROC IEEE MICR ELECT, P479.
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MIN TG, 2004, PHYS FLUIDS, V16, L55, DOI 10.1063/1.1755723.
MOULINET S, 2007, EUR PHYS J E, V24, P251, DOI 10.1140/epje/i2007-10235-y.
NAKAJIMA A, 2001, MONATSH CHEM, V132, P31.
OU J, 2004, PHYS FLUIDS, V16, P4635, DOI 10.1063/1.1812011.
PATANKAR NA, 2003, LANGMUIR, V19, P1249, DOI 10.1021/la026612+.
PHILIP JR, 1972, Z ANGEW MATH PHYS, V23, P353.
PRIEZJEV NV, 2005, PHYS REV E 1, V71, P1608.
QUERE D, 2005, REP PROG PHYS, V68, P2495, DOI 10.1088/0034-4885/68/11/R01.
ROACH P, 2008, SOFT MATTER, V4, P224, DOI 10.1039/b712575p.
SBRAGAGLIA M, 2006, PHYS REV LETT, V97, P4503.
SBRAGAGLIA M, 2007, J FLUID MECH, V578, P435.
STEINBERGER A, 2007, NAT MATER, V6, P665, DOI 10.1038/nmat1962.
WATANABE K, 1999, J FLUID MECH, V381, P225.
WENZEL RN, 1936, IND ENG CHEM, V28, P988.
WHITE FM, 1994, FLUID MECH, CH7.
YBERT C, 2007, PHYS FLUIDS, V19, P23601.
ZHENG QS, 2005, LANGMUIR, V21, P12207, DOI 10.1021/la052054y.

Cited Reference Count:
39

Times Cited:
0

Publisher:
AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA

IDS Number:
BJE16

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hanasaki I

ISI Web of Knowledge Citation Alert

Cited Article: Hanasaki I. Flow structure of water in carbon nanotubes: Poiseuille type or plug-like?
Alert Expires: 18 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265085300006
*Order Full Text [ ]

Title:
IDENTIFYING THE MECHANISMS OF ENHANCED WATER FLOW THROUGH CARBON NANOTUBES

Authors:
Thomas, JA; McGaughey, AJH

Author Full Names:
Thomas, J. A.; McGaughey, A. J. H.

Source:
IMECE 2008: HEAT TRANSFER, FLUID FLOWS, AND THERMAL SYSTEMS, VOL 10, PTS A-C : 39-42 2009

Language:
English

Document Type:
Proceedings Paper

KeyWords Plus:
HYDRODYNAMICS

Abstract:
Pressure-driven water flow through carbon nanotubes (CNTs) with diameters ranging from 1.66 nm to 4.99 nm is examined using molecular dynamics simulation. The flow rate enhancement, defined as the ratio of the observed flow rate to that predicted from the no-slip Hagen-Poiseuille relation, is calculated for each CNT The enhancement decreases with increasing CNT diameter and ranges from 433 to 47. By calculating the variation of water viscosity and slip length as a function of CNT diameter, it is found that the results can be fully explained in the context of continuum fluid mechanics. The enhancements are lower than previously reported experimental results, which range from 560 to 100000, suggesting a miscalculation of the available flow area and/or the presence of an uncontrolled external driving force (such as an electricfield) in the experiments.

Reprint Address:
McGaughey, AJH, Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA.

Research Institution addresses:
[Thomas, J. A.; McGaughey, A. J. H.] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
BARRAT JL, 2003, MOL PHYS, V101, P1605, DOI 10.1080/0026897031000068578.
HANASAKI I, 2006, J CHEM PHYS, V124, P44708.
HEYES DM, 1998, LIQUID STATE APPL MO.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
JOSEPH P, 2005, PHYS REV E 2, V71, P5303.
JOSEPH P, 2006, PHYS REV LETT, V97, P6104.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
LI J, 1998, PHYS REV E, V57, P7259.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MCQUARRIE DA, 2005, STAT MECH.
PETRAVIC J, 2007, J CHEM PHYS, V127, P74706.
SINHA S, 2007, PHYS FLUIDS, V19, P13603.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
THOMAS JA, 2008, J CHEM PHYS, V128, P84715.
THOMAS JA, 2008, NANO LETT IN PRESS.
TRAVIS KP, 1997, PHYS REV E, V55, P4288.
WANG Z, 2007, NANO LETT, V7, P679.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WHITBY M, 2008, NANO LETT IN PRESS.
YONGLI S, 2007, COMP MATER SCI, V38, P737.

Cited Reference Count:
23

Times Cited:
0

Publisher:
AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA

IDS Number:
BJE16

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Sokhan VP

ISI Web of Knowledge Citation Alert

Cited Article: Sokhan VP. Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265085300006
*Order Full Text [ ]

Title:
IDENTIFYING THE MECHANISMS OF ENHANCED WATER FLOW THROUGH CARBON NANOTUBES

Authors:
Thomas, JA; McGaughey, AJH

Author Full Names:
Thomas, J. A.; McGaughey, A. J. H.

Source:
IMECE 2008: HEAT TRANSFER, FLUID FLOWS, AND THERMAL SYSTEMS, VOL 10, PTS A-C : 39-42 2009

Language:
English

Document Type:
Proceedings Paper

KeyWords Plus:
HYDRODYNAMICS

Abstract:
Pressure-driven water flow through carbon nanotubes (CNTs) with diameters ranging from 1.66 nm to 4.99 nm is examined using molecular dynamics simulation. The flow rate enhancement, defined as the ratio of the observed flow rate to that predicted from the no-slip Hagen-Poiseuille relation, is calculated for each CNT The enhancement decreases with increasing CNT diameter and ranges from 433 to 47. By calculating the variation of water viscosity and slip length as a function of CNT diameter, it is found that the results can be fully explained in the context of continuum fluid mechanics. The enhancements are lower than previously reported experimental results, which range from 560 to 100000, suggesting a miscalculation of the available flow area and/or the presence of an uncontrolled external driving force (such as an electricfield) in the experiments.

Reprint Address:
McGaughey, AJH, Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA.

Research Institution addresses:
[Thomas, J. A.; McGaughey, A. J. H.] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
BARRAT JL, 2003, MOL PHYS, V101, P1605, DOI 10.1080/0026897031000068578.
HANASAKI I, 2006, J CHEM PHYS, V124, P44708.
HEYES DM, 1998, LIQUID STATE APPL MO.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
JOSEPH P, 2005, PHYS REV E 2, V71, P5303.
JOSEPH P, 2006, PHYS REV LETT, V97, P6104.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
LI J, 1998, PHYS REV E, V57, P7259.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MCQUARRIE DA, 2005, STAT MECH.
PETRAVIC J, 2007, J CHEM PHYS, V127, P74706.
SINHA S, 2007, PHYS FLUIDS, V19, P13603.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
THOMAS JA, 2008, J CHEM PHYS, V128, P84715.
THOMAS JA, 2008, NANO LETT IN PRESS.
TRAVIS KP, 1997, PHYS REV E, V55, P4288.
WANG Z, 2007, NANO LETT, V7, P679.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WHITBY M, 2008, NANO LETT IN PRESS.
YONGLI S, 2007, COMP MATER SCI, V38, P737.

Cited Reference Count:
23

Times Cited:
0

Publisher:
AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA

IDS Number:
BJE16

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Friday, April 24, 2009

ISI Web of Knowledge Alert - Maibaum, L

ISI Web of Knowledge Citation Alert

Cited Article: Maibaum, L. A coarse-grained model of water confined in a hydrophobic tube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264805700006
*Order Full Text [ ]

Title:
First-Principles Study of Water Chains Encapsulated in Single-Walled Carbon Nanotube

Authors:
Wang, L; Zhao, JJ; Li, FY; Fang, HP; Lu, JP

Author Full Names:
Wang, Lu; Zhao, Jijun; Li, Fengyu; Fang, Haiping; Lu, Jian Ping

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (14): 5368-5375 APR 9 2009

Language:
English

Document Type:
Article

KeyWords Plus:
DENSITY-FUNCTIONAL THEORY; INFRARED PREDISSOCIATION SPECTRA; SIZE-SELECTED WATER; LIQUID WATER; AB-INITIO; SUPERCRITICAL WATER; MOLECULAR-BEAM; VIBRATIONAL-SPECTRA; INTERACTION ENERGY; CLUSTERS (H2O)(N)

Abstract:
Water molecules confined inside a single-walled (6, 6) carbon nanotube were investigated using density functional theory. In this narrow-sized carbon nanotube (of about 0.8 nm in diameter), the encapsulated water molecules form chain-like configurations via hydrogen bonding. As compared to the water chains in vacuum, the intramolecular charge transfer in the encapsulated water chain is enhanced and the dipole moment is reduced due to the screening effect of the carbon nanotube. The tube-molecule interaction characterized by the coupling energy is about 0.28 eV per water molecule by local density approximation and 0.1 eV by general gradient approximation; the latter one is close to the results by empirical potentials. Weak coupling between the molecular orbitals of the encapsulated water molecules and the delocalized pi electrons from the carbon nanotube was observed, implying that the tube-water interaction is not a simple effect of geometry confinement. Vibrational analysis!
revealed some unique hydrogen-bond modes for the water chains as well as red shift of the O-H stretching modes for the encapsulated water molecules with regard to the vacuum frequencies due to the tube-water interaction.

Reprint Address:
Zhao, JJ, Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China.

Research Institution addresses:
[Wang, Lu; Zhao, Jijun; Li, Fengyu] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China; [Wang, Lu; Zhao, Jijun; Li, Fengyu] Dalian Univ Technol, Coll Adv Sci & Technol, Dalian 116024, Peoples R China; [Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Lu, Jian Ping] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA

E-mail Address:
zhaojj@dlut.edu.cn

Cited References:
AGRAWAL BK, 2007, PHYS REV B, V75, ARTN 195421.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ANICK DJ, 2006, J PHYS CHEM A, V110, P5135, DOI 10.1021/jp055632s.
BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI 10.1073/pnas.0408098102.
BUCH V, 2005, J PHYS CHEM B, V109, P17771, DOI 10.1021/jp052819a.
BUCK U, 2000, CHEM REV, V100, P3863.
BUONTEMPO U, 1994, MOL PHYS, V81, P217.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
COKER DF, 1985, J CHEM PHYS, V82, P3554.
CUMMINGS PT, 1991, J CHEM PHYS, V94, P5606.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
DELLEY B, 2000, J CHEM PHYS, V113, P7756.
DEVLIN JP, 1995, J PHYS CHEM-US, V99, P16534.
DEVLIN JP, 2001, J PHYS CHEM A, V105, P974.
DU Q, 1993, PHYS REV LETT, V70, P2313.
DUNN ME, 2006, J PHYS CHEM A, V110, P303.
DYKE TR, 1977, J CHEM PHYS, V66, P498.
ENKVIST C, 2000, INT J QUANTUM CHEM, V79, P325.
ESTRIN DA, 1996, J PHYS CHEM-US, V100, P8701.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
FENG C, 2007, J PHYS CHEM C, V111, P14131, DOI 10.1021/jp0742822CCC.
FOIS ES, 1994, CHEM PHYS LETT, V223, P411.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HANASAKI I, 2008, J PHYS-CONDENS MAT, V20, ARTN 015213.
HELMY AK, 2007, APPL SURF SCI, V253, P4966, DOI 10.1016/j.apsusc.2006.11.001.
HILLE B, 1984, IONIC CHANNELS EXCIT.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG ZS, 1989, J CHEM PHYS, V91, P6613.
HUISKEN F, 1996, J CHEM PHYS, V104, P17.
HUMMER G, 2001, NATURE, V414, P188.
IKUSHIMA Y, 1998, J CHEM PHYS, V108, P5855.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KONDRATYUK P, 2007, ACCOUNTS CHEM RES, V40, P995, DOI 10.1021/ar700013c.
LEE C, 1995, J CHEM PHYS, V102, P1266.
LEE CY, 1984, J CHEM PHYS, V80, P4448.
LENZ A, 2006, J PHYS CHEM A, V110, P13388, DOI 10.1021/jp066372x.
LI AHT, 2006, J CHEM PHYS, V125, ARTN 094312.
LI H, 2008, J CHEM PHYS, V128, ARTN 034707.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LI Y, 2005, J COMPUT ELECT, V4, P161.
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
LOVAS FJ, 1978, J PHYS CHEM REF DATA, V7, P1445.
LOW GR, 1999, J CHEM PHYS, V110, P9104.
LUDWIG R, 2001, ANGEW CHEM INT EDIT, V40, P1808.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MARTI J, 2001, PHYS REV B, V63, ARTN 165430.
MARTI J, 2006, J CHEM PHYS, V124, ARTN 094703.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MILLER Y, 2004, J PHYS CHEM A, V108, P4405, DOI 10.1021/jp030678b.
MUKHERJEE B, 2007, J CHEM PHYS, V126, ARTN 124704.
MUKHERJEE B, 2007, J NANOSCI NANOTECHNO, V7, P1796, DOI 10.1166/jnn.2007.718.
MURATA K, 2000, NATURE, V407, P599.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
OHNO K, 2005, PHYS CHEM CHEM PHYS, V7, P3005, DOI 10.1039/b506641g.
PAGE RH, 1984, CHEM PHYS LETT, V106, P373.
PAUL JB, 1999, J PHYS CHEM A, V103, P2972.
PERDEW JP, 1992, PHYS REV B, V45, P13244.
PERDEW JP, 1992, PHYS REV B, V46, P6671.
PERTSIN A, 2004, J PHYS CHEM B, V108, P1357, DOI 10.1021/jp0356968.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
SADLEJ J, 1999, J PHYS CHEM A, V103, P4933.
SAPAROV SM, 2004, P NATL ACAD SCI USA, V101, P4805, DOI 10.1073/pnas.0308309101.
SCHMIDT DA, 2007, J PHYS CHEM A, V111, P10119, DOI 10.1021/jp074737n.
SCHOFIELD DP, 2003, PHYS CHEM CHEM PHYS, V5, P3100, DOI 10.1039/b304952c.
SHARMA SC, 2005, J RAMAN SPECTROSC, V36, P755, DOI 10.1002/jrs.1345.
STEINBACH C, 2004, J PHYS CHEM A, V108, P6165, DOI 10.1021/jp049276+.
STOWELL MHB, 1997, SCIENCE, V276, P812.
SUDIARTA IW, 2006, J PHYS CHEM A, V110, P10501, DOI 10.1021/jp060554+.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TSUZUKI S, 2001, J CHEM PHYS, V114, P3949.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VERNON MF, 1982, J CHEM PHYS, V77, P47.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG L, 2008, J PHYS CHEM C, V112, P11779, DOI 10.1021/jp8048185.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XANTHEAS SS, 1993, J CHEM PHYS, V99, P8774.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
90

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp808873r

IDS Number:
427UX

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 22 OCT 2009
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264950600007
*Order Full Text [ ]

Title:
The channel length effect on the electrical performance of suspended-single-wall-carbon-nanotube-based field effect transistors

Authors:
Aissa, B; El Khakani, MA

Author Full Names:
Aissa, B.; El Khakani, M. A.

Source:
NANOTECHNOLOGY 20 (17): Art. No. 175203 APR 29 2009

Language:
English

Document Type:
Article

KeyWords Plus:
THIN-FILM TRANSISTORS; LOGIC-CIRCUITS; GROWTH; NETWORKS; MOBILITY; RESISTANCE; CHIRALITY; SENSORS; ARRAYS

Abstract:
We report on the electrical performance of field effect transistor (FET) nanodevices based on suspended single-wall carbon nanotubes (SWCNTs) grown by our 'all-laser' synthesis process. The attractiveness of the proposed approach lies in the combination of standard microfabrication processing with the in situ 'all-laser' localized growth of SWCNTs, offering an affordable way of directly integrating SWCNTs into nanodevices. The 'all-laser' process uses the same KrF excimer laser (248 nm), first, to deposit the nanocatalyzed electrodes and, in a second step, to grow the SWCNTs in a suspended geometry, achieving thereby the lateral bridging of the electrodes. The nanocatalyzed electrodes consist of a multilayer stack sandwiching a catalyst nanolayer (similar to 5 nm thick) composed of Co/Ni nanoparticles. The 'all-laser' grown SWCNTs (similar to 1 nm diameter) are most often seen to self-assemble into bundles (10-20 nm diameter) and to bridge laterally the various gap lengths (!
in the 2-10 mu m investigation range) separating adjacent electrodes. The suspended-SWCNT-based FETs were found to behave as p-type transistors, in air and at room temperature, with very high ON/OFF switching ratios (whose magnitude markedly increases as the active channel length is reduced). For the shortest gap (i.e. 2 mu m), the suspended-SWCNT-based FETs exhibited not only an ON/OFF switching ratio in excess of seven orders of magnitude, but also an ON-state conductance as high as 3.26 mu S. Their corresponding effective carrier mobility was estimated (at V-SD = 100 mV) to a value of similar to 4000 cm(2) V-1 s(-1), which is almost ten times higher than the hole mobility in single-crystal silicon at room temperature.

Reprint Address:
El Khakani, MA, INRS Energie Mat & Telecommun, Inst Natl Rech Sci, 1650 Blvd Lionel Boulet,CP 1020, Varennes, PQ J3X 1S2, Canada.

Research Institution addresses:
[Aissa, B.; El Khakani, M. A.] INRS Energie Mat & Telecommun, Inst Natl Rech Sci, Varennes, PQ J3X 1S2, Canada

E-mail Address:
elkhakani@emt.inrs.ca

Cited References:
APPENZELLER J, 2004, PHYS REV LETT, UNSP 93196805.
ARTUKOVIC E, 2005, NANO LETT, V5, P757, DOI 10.1021/nl0505254o.
AUSTING DG, 2007, APPL PHYS LETT, V90, ARTN 103112.
AVOURIS P, 2002, PHYSICA B, V323, P6.
BACHTOLD A, 2001, SCIENCE, V294, P1317.
BANDOW S, 1998, PHYS REV LETT, V80, P3779.
BLANCHET GB, 2004, APPL PHYS LETT, V84, P296, DOI 10.1063/1.1639937.
BURGHARD M, 2005, SURF SCI REP, V58, P1, DOI 10.1016/j.surfrep.2005.07.001.
CAO Q, 2006, APPL PHYS LETT, V88, ARTN 113511.
CAO Q, 2007, APPL PHYS LETT, V90, ARTN 023516.
CAO Q, 2008, NANO RES, V1, P259.
CASTRUCCI P, 2004, APPL PHYS LETT, V85, P3857, DOI 10.1063/1.1809277.
CHEN CX, 2007, CARBON, V45, P436, DOI 10.1016/j.carbon.2006.08.021.
CHEN J, 2005, APPL PHYS LETT, V86, ARTN 123108.
CHEN Z, 2005, NANO LETT, V5, P149.
CHEN ZH, 2008, IEEE ELECTR DEVICE L, V29, P183, DOI 10.1109/LED.2007.914069.
DURKOP T, 2004, NANO LETT, V4, P35, DOI 10.1021/nl034841q.
ELKHAKANI MA, 2004, NANOTECHNOLOGY, V15, S534, DOI 10.1088/0957-4484/15/10/007.
ELKHAKANI MA, 2006, IEEE T NANOTECHNOL, V5, P237, DOI 10.1109/TNANO.2006.874043.
FUHRER MS, 2002, NANO LETTERS, V2, P755.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GILES P, 2004, NANO LETT, V4, P927.
GUO XF, 2005, J AM CHEM SOC, V127, P15045.
HAZANI M, 2004, APPL PHYS LETT, V85, P5025, DOI 10.1063/1.1823017.
HU YF, 2007, APPL PHYS LETT, V90, ARTN 223116.
HUR SH, 2005, APPL PHYS LETT, V86, ARTN 243502.
JAVEY A, 2002, NAT MATER, V1, P241, DOI 10.1038/nmat769.
JAVEY A, 2003, NATURE, V424, P654, DOI 10.1038/nature01797.
JAVEY A, 2004, NANO LETT, V4, P1319, DOI 10.1021/nl049222b.
JORIO A, 2005, PHYS REV B, V72, ARTN 075207.
KO H, 2006, NANO LETT, V6, P1443, DOI 10.1021/nl060608r.
KOCABAS C, 2006, J AM CHEM SOC, V128, P4540, DOI 10.1021/ja0603150.
KONG J, 2000, SCIENCE, V287, P622.
LEE JU, 2007, APPL PHYS LETT, V90, ARTN 053103.
LI XL, 2005, APPL PHYS LETT, V87, ARTN 243102.
LI YM, 2004, NANO LETT, V4, P317, DOI 10.1021/nl035097c.
LIU X, 2006, APPL PHYS LETT, V89, UNSP 163512.
LIU XL, 2001, APPL PHYS LETT, V79, P3329.
MARTEL R, 1998, APPL PHYS LETT, V73, P2447.
MARTEL R, 2001, PHYS REV LETT, UNSP 256805.
MISEWICH JA, 2003, SCIENCE, V300, P783.
MIZUTANI T, 2008, J PHYS CONF SER, V109, ARTN 012002.
NOSHO Y, 2007, NANOTECHNOLOGY, V18, ARTN 415202.
NOVAK JP, 2004, SOLID STATE ELECTRON, V48, P1753, DOI 10.1016/j.sse.2004.05.010.
OHNO Y, 2004, APPL PHYS LETT, V84, P1368, DOI 10.1063/1.1650554.
OZEL T, 2005, NANO LETT, V5, P905, DOI 10.1021/nl0503781.
PUREWAL MS, 2007, PHYS REV LETT, V98, ARTN 186808.
SCHINDLER A, 2007, PHYSICA E, V37, P119, DOI 10.1016/j.physe.2006.07.016.
SHIM M, 2001, J AM CHEM SOC, V123, P11512.
SHIRAISHI M, 2004, CHEM PHYS LETT, V394, P110, DOI 10.1016/j.cplett.2004.06.130.
SNOW ES, 2003, APPL PHYS LETT, V82, P2145, DOI 10.1063/1.1564291.
STREETMAN BG, 2006, SOLID STATE ELECT DE.
TAKENOBU T, 2006, APPL PHYS LETT, V88, ARTN 033511.
TERSOFF J, 2005, APPL PHYS LETT, V86, ARTN 263108.
TRANS SJ, 1998, NATURE, V393, P49.
TU R, 2007, NANO LETT, V7, P1561, DOI 10.1021/nl070378w.
WANG XR, 2008, PHYS REV LETT, V100, ARTN 206803.
WIND SJ, 2002, APPL PHYS LETT, V80, P3817.
WIND SJ, 2003, PHYS REV LETT, V91, ARTN 058301.
ZHANG M, 2006, APPL PHYS LETT, V89, ARTN 023116.

Cited Reference Count:
60

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Engineering, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied

ISSN:
0957-4484

DOI:
10.1088/0957-4484/20/17/175203

IDS Number:
429WK

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264792300036
*Order Full Text [ ]

Title:
Manipulating Biomolecules with Aqueous Liquids Confined within Single-Walled Nanotubes

Authors:
Xiu, P; Zhou, B; Qi, WP; Lu, HJ; Tu, YS; Fang, HP

Author Full Names:
Xiu, Peng; Zhou, Bo; Qi, Wenpeng; Lu, Hangjun; Tu, Yusong; Fang, Haiping

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 131 (8): 2840-2845 MAR 4 2009

Language:
English

Document Type:
Article

KeyWords Plus:
DIP-PEN NANOLITHOGRAPHY; CARBON NANOTUBES; WATER CHANNEL; MASS-TRANSPORT; PROTEIN; MEMBRANES; PEPTIDE; ICE; SIMULATIONS; SOLVATION

Abstract:
Confinement of molecules inside nanoscale pores has become an important method for exploiting new dynamics not happening in bulk systems and for fabricating novel structures. Molecules that are encapsulated in nanopores are difficult to control with respect to their position and activity. On the basis of molecular dynamics simulations, we have achieved controllable manipulation, both in space and time, of biomolecules with aqueous liquids inside a single-walled nanotube by using an external charge or a group of external charges. The remarkable manipulation abilities are attributed to the single-walled structure of the nanotube that the electrostatic interactions of charges inside and outside the single-walled nanotube are strong enough, and the charge-induced dipole-orientation ordering of water confined in the nanochannel so that water has a strong interaction with the external charge. These designs are expected to serve as lab-in-nanotube for the interactions and chemical !
reactions of molecules especially biomolecules, and have wide applications in nanotechnology and biotechnology.

Reprint Address:
Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204, Shanghai 201800, Peoples R China.

Research Institution addresses:
[Xiu, Peng; Zhou, Bo; Qi, Wenpeng; Lu, Hangjun; Tu, Yusong; Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Xiu, Peng; Qi, Wenpeng] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China; [Zhou, Bo; Tu, Yusong] Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China; [Lu, Hangjun] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China; [Fang, Haiping] CAS, Theoret Phys Ctr Sci Facil, Beijing 100049, Peoples R China

E-mail Address:
fanghaiping@sinap.ac.cn

Cited References:
BALBACH JJ, 2000, BIOCHEMISTRY-US, V39, P13748.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u.
BONOMI M, 2007, BIOPHYS J, V93, P2813, DOI 10.1529/biophysj.107.106369.
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGROOT BL, 2003, J MOL BIOL, V333, P279, DOI 10.1016/j.jmb.2003.08.003.
DOKTER AM, 2005, J PHYS REV LETT, V94, UNSP 178301.
EGGERS DK, 2001, PROTEIN SCI, V10, P250.
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GINGER DS, 2004, ANGEW CHEM INT EDIT, V43, P30, DOI 10.1002/anie.200300608.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HO CM, 2001, PROC IEEE MICR ELECT, P375.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HORINEK D, 2008, P NATL ACAD SCI USA, V105, P2842, DOI 10.1073/pnas.0707879105.
HU J, 1996, J VAC SCI TECHNOL B, V14, P1341.
HUMMER G, 2001, NATURE, V414, P188.
INSEPOV Z, 2006, NANO LETT, V6, P1893, DOI 10.1021/nl060932m.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225.
JU SP, 2006, J PHYS CHEM B, V110, P9286, DOI 10.1021/jp056567p.
KOGA K, 2001, NATURE, V412, P802.
KRAL P, 1999, PHYS REV LETT, V82, P5373.
LI JC, 1993, NATURE, V365, P327.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
LOONG CK, 2004, NANOTECHNOLOGY, V15, S664.
LUCENT D, 2007, P NATL ACAD SCI USA, V104, P10430, DOI 10.1073/pnas.0608256104.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
NELSON R, 2005, NATURE, V435, P773, DOI 10.1038/nature03680.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
OKADA T, 2006, CHEM PHYS LETT, V417, P288, DOI 10.1016/j.cplett.2005.10.030.
PAN XL, 2007, NAT MATER, V6, P507, DOI 10.1038/nmat1916.
PINER RD, 1999, SCIENCE, V283, P661.
RAO PVG, 2007, LANGMUIR, V23, P12795, DOI 10.1021/la7022902.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
SAVARIAR EN, 2008, NAT NANOTECHNOL, V3, P112, DOI 10.1038/nnano.2008.6.
SHIN K, 2007, NAT MATER, V6, P961, DOI 10.1038/nmat2031.
SISTIABUDI R, 2007, J PHYS CHEM C, V111, P11676, DOI 10.1021/jp072757j.
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 198103.
SORIN EJ, 2006, J AM CHEM SOC, V128, P6316, DOI 10.1021/ja060917j.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
SYKES MT, 2007, P NATL ACAD SCI USA, V104, P12336, DOI 10.1073/pnas.0705573104.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TANG J, 2008, LANGMUIR, V24, P4975, DOI 10.1021/1a800329k.
VAITHEESWARAN S, 2006, J AM CHEM SOC, V128, P13490, DOI 10.1021/ja063445h.
VERDAGUER A, 2006, CHEM REV, V106, P1478, DOI 10.1021/cr040376l.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG BY, 2006, J AM CHEM SOC, V128, P15984, DOI 10.1021/ja066431k.
WANG BY, 2007, PHYS REV LETT, V98, ARTN 266102.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.
WIERZBINSKI E, 2006, LANGMUIR, V22, P2426, DOI 10.1021/la053224+.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
YANG HQ, 2007, ANGEW CHEM INT EDIT, V46, P6861, DOI 10.1002/anie.200701747.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
ZHANG SQ, 2007, NANO LETT, V7, P3438, DOI 10.1021/n1071948v.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHOU RH, 2004, SCIENCE, V305, P1605.
ZIMMERLI U, 2008, BIOPHYS J, V94, P2546, DOI 10.1529/biophysj.106.102467.

Cited Reference Count:
62

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja804586w

IDS Number:
427PX

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Zhao, Y

ISI Web of Knowledge Citation Alert

Cited Article: Zhao, Y. Individual water-filled single-walled carbon nanotubes as hydroelectric power converters
Alert Expires: 22 OCT 2009
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264792300036
*Order Full Text [ ]

Title:
Manipulating Biomolecules with Aqueous Liquids Confined within Single-Walled Nanotubes

Authors:
Xiu, P; Zhou, B; Qi, WP; Lu, HJ; Tu, YS; Fang, HP

Author Full Names:
Xiu, Peng; Zhou, Bo; Qi, Wenpeng; Lu, Hangjun; Tu, Yusong; Fang, Haiping

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 131 (8): 2840-2845 MAR 4 2009

Language:
English

Document Type:
Article

KeyWords Plus:
DIP-PEN NANOLITHOGRAPHY; CARBON NANOTUBES; WATER CHANNEL; MASS-TRANSPORT; PROTEIN; MEMBRANES; PEPTIDE; ICE; SIMULATIONS; SOLVATION

Abstract:
Confinement of molecules inside nanoscale pores has become an important method for exploiting new dynamics not happening in bulk systems and for fabricating novel structures. Molecules that are encapsulated in nanopores are difficult to control with respect to their position and activity. On the basis of molecular dynamics simulations, we have achieved controllable manipulation, both in space and time, of biomolecules with aqueous liquids inside a single-walled nanotube by using an external charge or a group of external charges. The remarkable manipulation abilities are attributed to the single-walled structure of the nanotube that the electrostatic interactions of charges inside and outside the single-walled nanotube are strong enough, and the charge-induced dipole-orientation ordering of water confined in the nanochannel so that water has a strong interaction with the external charge. These designs are expected to serve as lab-in-nanotube for the interactions and chemical !
reactions of molecules especially biomolecules, and have wide applications in nanotechnology and biotechnology.

Reprint Address:
Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204, Shanghai 201800, Peoples R China.

Research Institution addresses:
[Xiu, Peng; Zhou, Bo; Qi, Wenpeng; Lu, Hangjun; Tu, Yusong; Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Xiu, Peng; Qi, Wenpeng] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China; [Zhou, Bo; Tu, Yusong] Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China; [Lu, Hangjun] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China; [Fang, Haiping] CAS, Theoret Phys Ctr Sci Facil, Beijing 100049, Peoples R China

E-mail Address:
fanghaiping@sinap.ac.cn

Cited References:
BALBACH JJ, 2000, BIOCHEMISTRY-US, V39, P13748.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u.
BONOMI M, 2007, BIOPHYS J, V93, P2813, DOI 10.1529/biophysj.107.106369.
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGROOT BL, 2003, J MOL BIOL, V333, P279, DOI 10.1016/j.jmb.2003.08.003.
DOKTER AM, 2005, J PHYS REV LETT, V94, UNSP 178301.
EGGERS DK, 2001, PROTEIN SCI, V10, P250.
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GINGER DS, 2004, ANGEW CHEM INT EDIT, V43, P30, DOI 10.1002/anie.200300608.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HO CM, 2001, PROC IEEE MICR ELECT, P375.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HORINEK D, 2008, P NATL ACAD SCI USA, V105, P2842, DOI 10.1073/pnas.0707879105.
HU J, 1996, J VAC SCI TECHNOL B, V14, P1341.
HUMMER G, 2001, NATURE, V414, P188.
INSEPOV Z, 2006, NANO LETT, V6, P1893, DOI 10.1021/nl060932m.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225.
JU SP, 2006, J PHYS CHEM B, V110, P9286, DOI 10.1021/jp056567p.
KOGA K, 2001, NATURE, V412, P802.
KRAL P, 1999, PHYS REV LETT, V82, P5373.
LI JC, 1993, NATURE, V365, P327.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
LOONG CK, 2004, NANOTECHNOLOGY, V15, S664.
LUCENT D, 2007, P NATL ACAD SCI USA, V104, P10430, DOI 10.1073/pnas.0608256104.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
NELSON R, 2005, NATURE, V435, P773, DOI 10.1038/nature03680.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
OKADA T, 2006, CHEM PHYS LETT, V417, P288, DOI 10.1016/j.cplett.2005.10.030.
PAN XL, 2007, NAT MATER, V6, P507, DOI 10.1038/nmat1916.
PINER RD, 1999, SCIENCE, V283, P661.
RAO PVG, 2007, LANGMUIR, V23, P12795, DOI 10.1021/la7022902.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
SAVARIAR EN, 2008, NAT NANOTECHNOL, V3, P112, DOI 10.1038/nnano.2008.6.
SHIN K, 2007, NAT MATER, V6, P961, DOI 10.1038/nmat2031.
SISTIABUDI R, 2007, J PHYS CHEM C, V111, P11676, DOI 10.1021/jp072757j.
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 198103.
SORIN EJ, 2006, J AM CHEM SOC, V128, P6316, DOI 10.1021/ja060917j.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
SYKES MT, 2007, P NATL ACAD SCI USA, V104, P12336, DOI 10.1073/pnas.0705573104.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TANG J, 2008, LANGMUIR, V24, P4975, DOI 10.1021/1a800329k.
VAITHEESWARAN S, 2006, J AM CHEM SOC, V128, P13490, DOI 10.1021/ja063445h.
VERDAGUER A, 2006, CHEM REV, V106, P1478, DOI 10.1021/cr040376l.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG BY, 2006, J AM CHEM SOC, V128, P15984, DOI 10.1021/ja066431k.
WANG BY, 2007, PHYS REV LETT, V98, ARTN 266102.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.
WIERZBINSKI E, 2006, LANGMUIR, V22, P2426, DOI 10.1021/la053224+.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
YANG HQ, 2007, ANGEW CHEM INT EDIT, V46, P6861, DOI 10.1002/anie.200701747.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
ZHANG SQ, 2007, NANO LETT, V7, P3438, DOI 10.1021/n1071948v.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHOU RH, 2004, SCIENCE, V305, P1605.
ZIMMERLI U, 2008, BIOPHYS J, V94, P2546, DOI 10.1529/biophysj.106.102467.

Cited Reference Count:
62

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja804586w

IDS Number:
427PX

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000264805700006
*Order Full Text [ ]

Title:
First-Principles Study of Water Chains Encapsulated in Single-Walled Carbon Nanotube

Authors:
Wang, L; Zhao, JJ; Li, FY; Fang, HP; Lu, JP

Author Full Names:
Wang, Lu; Zhao, Jijun; Li, Fengyu; Fang, Haiping; Lu, Jian Ping

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (14): 5368-5375 APR 9 2009

Language:
English

Document Type:
Article

KeyWords Plus:
DENSITY-FUNCTIONAL THEORY; INFRARED PREDISSOCIATION SPECTRA; SIZE-SELECTED WATER; LIQUID WATER; AB-INITIO; SUPERCRITICAL WATER; MOLECULAR-BEAM; VIBRATIONAL-SPECTRA; INTERACTION ENERGY; CLUSTERS (H2O)(N)

Abstract:
Water molecules confined inside a single-walled (6, 6) carbon nanotube were investigated using density functional theory. In this narrow-sized carbon nanotube (of about 0.8 nm in diameter), the encapsulated water molecules form chain-like configurations via hydrogen bonding. As compared to the water chains in vacuum, the intramolecular charge transfer in the encapsulated water chain is enhanced and the dipole moment is reduced due to the screening effect of the carbon nanotube. The tube-molecule interaction characterized by the coupling energy is about 0.28 eV per water molecule by local density approximation and 0.1 eV by general gradient approximation; the latter one is close to the results by empirical potentials. Weak coupling between the molecular orbitals of the encapsulated water molecules and the delocalized pi electrons from the carbon nanotube was observed, implying that the tube-water interaction is not a simple effect of geometry confinement. Vibrational analysis!
revealed some unique hydrogen-bond modes for the water chains as well as red shift of the O-H stretching modes for the encapsulated water molecules with regard to the vacuum frequencies due to the tube-water interaction.

Reprint Address:
Zhao, JJ, Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China.

Research Institution addresses:
[Wang, Lu; Zhao, Jijun; Li, Fengyu] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China; [Wang, Lu; Zhao, Jijun; Li, Fengyu] Dalian Univ Technol, Coll Adv Sci & Technol, Dalian 116024, Peoples R China; [Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Lu, Jian Ping] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA

E-mail Address:
zhaojj@dlut.edu.cn

Cited References:
AGRAWAL BK, 2007, PHYS REV B, V75, ARTN 195421.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ANICK DJ, 2006, J PHYS CHEM A, V110, P5135, DOI 10.1021/jp055632s.
BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI 10.1073/pnas.0408098102.
BUCH V, 2005, J PHYS CHEM B, V109, P17771, DOI 10.1021/jp052819a.
BUCK U, 2000, CHEM REV, V100, P3863.
BUONTEMPO U, 1994, MOL PHYS, V81, P217.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
COKER DF, 1985, J CHEM PHYS, V82, P3554.
CUMMINGS PT, 1991, J CHEM PHYS, V94, P5606.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
DELLEY B, 2000, J CHEM PHYS, V113, P7756.
DEVLIN JP, 1995, J PHYS CHEM-US, V99, P16534.
DEVLIN JP, 2001, J PHYS CHEM A, V105, P974.
DU Q, 1993, PHYS REV LETT, V70, P2313.
DUNN ME, 2006, J PHYS CHEM A, V110, P303.
DYKE TR, 1977, J CHEM PHYS, V66, P498.
ENKVIST C, 2000, INT J QUANTUM CHEM, V79, P325.
ESTRIN DA, 1996, J PHYS CHEM-US, V100, P8701.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
FENG C, 2007, J PHYS CHEM C, V111, P14131, DOI 10.1021/jp0742822CCC.
FOIS ES, 1994, CHEM PHYS LETT, V223, P411.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HANASAKI I, 2008, J PHYS-CONDENS MAT, V20, ARTN 015213.
HELMY AK, 2007, APPL SURF SCI, V253, P4966, DOI 10.1016/j.apsusc.2006.11.001.
HILLE B, 1984, IONIC CHANNELS EXCIT.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG ZS, 1989, J CHEM PHYS, V91, P6613.
HUISKEN F, 1996, J CHEM PHYS, V104, P17.
HUMMER G, 2001, NATURE, V414, P188.
IKUSHIMA Y, 1998, J CHEM PHYS, V108, P5855.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KONDRATYUK P, 2007, ACCOUNTS CHEM RES, V40, P995, DOI 10.1021/ar700013c.
LEE C, 1995, J CHEM PHYS, V102, P1266.
LEE CY, 1984, J CHEM PHYS, V80, P4448.
LENZ A, 2006, J PHYS CHEM A, V110, P13388, DOI 10.1021/jp066372x.
LI AHT, 2006, J CHEM PHYS, V125, ARTN 094312.
LI H, 2008, J CHEM PHYS, V128, ARTN 034707.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LI Y, 2005, J COMPUT ELECT, V4, P161.
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
LOVAS FJ, 1978, J PHYS CHEM REF DATA, V7, P1445.
LOW GR, 1999, J CHEM PHYS, V110, P9104.
LUDWIG R, 2001, ANGEW CHEM INT EDIT, V40, P1808.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MARTI J, 2001, PHYS REV B, V63, ARTN 165430.
MARTI J, 2006, J CHEM PHYS, V124, ARTN 094703.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MILLER Y, 2004, J PHYS CHEM A, V108, P4405, DOI 10.1021/jp030678b.
MUKHERJEE B, 2007, J CHEM PHYS, V126, ARTN 124704.
MUKHERJEE B, 2007, J NANOSCI NANOTECHNO, V7, P1796, DOI 10.1166/jnn.2007.718.
MURATA K, 2000, NATURE, V407, P599.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
OHNO K, 2005, PHYS CHEM CHEM PHYS, V7, P3005, DOI 10.1039/b506641g.
PAGE RH, 1984, CHEM PHYS LETT, V106, P373.
PAUL JB, 1999, J PHYS CHEM A, V103, P2972.
PERDEW JP, 1992, PHYS REV B, V45, P13244.
PERDEW JP, 1992, PHYS REV B, V46, P6671.
PERTSIN A, 2004, J PHYS CHEM B, V108, P1357, DOI 10.1021/jp0356968.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
SADLEJ J, 1999, J PHYS CHEM A, V103, P4933.
SAPAROV SM, 2004, P NATL ACAD SCI USA, V101, P4805, DOI 10.1073/pnas.0308309101.
SCHMIDT DA, 2007, J PHYS CHEM A, V111, P10119, DOI 10.1021/jp074737n.
SCHOFIELD DP, 2003, PHYS CHEM CHEM PHYS, V5, P3100, DOI 10.1039/b304952c.
SHARMA SC, 2005, J RAMAN SPECTROSC, V36, P755, DOI 10.1002/jrs.1345.
STEINBACH C, 2004, J PHYS CHEM A, V108, P6165, DOI 10.1021/jp049276+.
STOWELL MHB, 1997, SCIENCE, V276, P812.
SUDIARTA IW, 2006, J PHYS CHEM A, V110, P10501, DOI 10.1021/jp060554+.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TSUZUKI S, 2001, J CHEM PHYS, V114, P3949.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VERNON MF, 1982, J CHEM PHYS, V77, P47.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG L, 2008, J PHYS CHEM C, V112, P11779, DOI 10.1021/jp8048185.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XANTHEAS SS, 1993, J CHEM PHYS, V99, P8774.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
90

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp808873r

IDS Number:
427UX

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================