Friday, July 15, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000292290100035
*Order Full Text [ ]

Title:
Mucoadhesive Nanoparticles May Disrupt the Protective Human Mucus Barrier by Altering Its Microstructure

Authors:
Wang, YY; Lai, SK; So, C; Schneider, C; Cone, R; Hanes, J

Author Full Names:
Wang, Ying-Ying; Lai, Samuel K.; So, Conan; Schneider, Craig; Cone, Richard; Hanes, Justin

Source:
PLOS ONE 6 (6): Art. No. e21547 JUN 29 2011

Language:
English

Document Type:
Article

KeyWords Plus:
HUMAN CERVICAL-MUCUS; PARTICLE TRACKING MEASUREMENTS; DIFFUSION; NETWORKS; MUCIN; HYDROGELS; SPUTUM; MUC5B; LAYER; RAT

Abstract:
Mucus secretions typically protect exposed surfaces of the eyes and respiratory, gastrointestinal and female reproductive tracts from foreign entities, including pathogens and environmental ultrafine particles. We hypothesized that excess exposure to some foreign particles, however, may cause disruption of the mucus barrier. Many synthetic nanoparticles are likely to be mucoadhesive due to hydrophobic, electrostatic or hydrogen bonding interactions. We therefore sought to determine whether mucoadhesive particles (MAP) could alter the mucus microstructure, thereby allowing other foreign particles to more easily penetrate mucus. We engineered muco-inert probe particles 1 mm in diameter, whose diffusion in mucus is limited only by steric obstruction from the mucus mesh, and used them to measure possible MAP-induced changes to the microstructure of fresh human cervicovaginal mucus. We found that a 0.24% w/v concentration of 200 nm MAP in mucus induced a similar to 10-fold increase in the average effective diffusivity of the probe particles, and a 2- to 3-fold increase in the fraction capable of penetrating physiologically thick mucus layers. The same concentration of muco-inert particles, and a low concentration (0.0006% w/v) of MAP, had no detectable effect on probe particle penetration rates. Using an obstruction-scaling model, we determined that the higher MAP dose increased the average mesh spacing ("pore'' size) of mucus from 380 nm to 470 nm. The bulk viscoelasticity of mucus was unaffected by MAP exposure, suggesting MAP may not directly impair mucus clearance or its function as a lubricant, both of which depend critically on the bulk rheological properties of mucus. Our findings suggest mucoadhesive nanoparticles can substantially alter the microstructure of mucus, highlighting the potential of mucoadhesive environmental or engineered nanoparticles to disrupt mucus barriers and cause greater exposure to foreign particles, including pathogens and other potentially toxic nanomaterials.

Reprint Address:
Wang, YY, Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA.

Research Institution addresses:
[Wang, Ying-Ying; So, Conan; Hanes, Justin] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA; [Lai, Samuel K.; Schneider, Craig; Hanes, Justin] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD USA; [Cone, Richard] Johns Hopkins Univ, Dept Biophys, Baltimore, MD USA; [Hanes, Justin] Johns Hopkins Univ, Sch Med, Wilmer Eye Inst, Dept Ophthalmol, Baltimore, MD 21205 USA; [Hanes, Justin] Johns Hopkins Sch Publ Hlth, Dept Environm Hlth Sci, Baltimore, MD USA; [Hanes, Justin] Johns Hopkins Univ, Inst NanoBioTechnol, Ctr Canc Nanotechnol Excellence, Baltimore, MD USA; [Hanes, Justin] Johns Hopkins Univ, Sch Med, Ctr Nanomed, Baltimore, MD USA

E-mail Address:
hanes@jhu.edu

Cited References:
*EPA, 1997, EXP FACT HDB.
*OSHA, OSHA OCC SAF HLTH GU.
ALI MS, 2007, LARYNGOSCOPE, V117, P932, DOI 10.1097/MLG.0b013e3180383651.
AMSDEN B, 1998, MACROMOLECULES, V31, P8382.
AMSDEN B, 1999, MACROMOLECULES, V32, P874.
APGAR J, 2000, BIOPHYS J, V79, P1095.
BOSKEY ER, 2003, SEX TRANSM DIS, V30, P107.
CERIC F, 2005, J ELECTRON MICROSC, V54, P479, DOI 10.1093/jmicro/dfh106.
DONALDSON K, 2001, OCCUP ENVIRON MED, V58, P211.
FAHY JV, 2010, NEW ENGL J MED, V363, P2233.
GARDEL ML, 2004, SCIENCE, V304, P1301.
GIPSON IK, 2001, J CLIN ENDOCR METAB, V86, P594.
GREAVES JL, 1993, ADV DRUG DELIVER REV, V11, P349.
HUMMER G, 2001, NATURE, V414, P188.
ICRP, 1994, ANN ICRP, V24, P36.
JORDAN N, 1998, CLIN SCI, V95, P97.
KIM WD, 1997, EUR RESPIR J, V10, P1914.
KING M, 2006, PAEDIATR RESPIR R S1, V7, S212, DOI 10.1016/j.prrv.2006.04.199.
KING MV, 1991, CELL BIOPHYS, V18, P31.
LAI SK, 2007, P NATL ACAD SCI USA, V104, P1482, DOI 10.1073/pnas.0608611104.
LAI SK, 2009, ADV DRUG DELIVER REV, V61, P158, DOI 10.1016/j.addr.2008.11.002.
LAI SK, 2009, ADV DRUG DELIVER REV, V61, P86, DOI 10.1016/j.addr.2008.09.012.
LAI SK, 2009, PLOS ONE, V4, ARTN e4294.
LAI SK, 2010, P NATL ACAD SCI USA, V107, P598, DOI 10.1073/pnas.0911748107.
LI BK, 2004, COLLOID SURFACE B, V36, P81, DOI 10.1016/j.colsurfb.2004.05.006.
MACKINTOSH FC, 1995, PHYS REV LETT, V75, P4425.
MATSUO K, 1997, GUT, V40, P782.
MERCER RR, 1994, AM J RESP CELL MOL, V10, P613.
MOLLENHAUER HH, 1993, MICROSC RES TECHNIQ, V26, P496.
NEL A, 2005, SCIENCE, V308, P804, DOI 10.1126/science.1108752.
NEL A, 2006, SCIENCE, V311, P622, DOI 10.1126/science.1114397.
ODEBLAD E, 1968, ACTA OBSTET GYNEC S1, V47, P57.
OLMSTED SS, 2001, BIOPHYS J, V81, P1930.
PALMER A, 1999, BIOPHYS J, V76, P1063.
PUCHELLE E, 2002, PAEDIATR RESPIR REV, V3, P115.
SHEN H, 2006, BIOPHYS J, V91, P639, DOI 10.1529/biophysj.105.077404.
SINGH EJ, 1975, AM J OBSTET GYNECOL, V123, P128.
SUK JS, 2009, BIOMATERIALS, V30, P2591, DOI 10.1016/j.biomaterials.2008.12.076.
VALENTINE MT, 2004, BIOPHYS J, V86, P4004, DOI 10.1529/biophysj.103.037812.
VANHECKE D, 2008, METHOD CELL BIOL, V88, P151, DOI 10.1016/S0091-679X(08)00409-3.
VERKMAN AS, 2003, AM J PHYSIOL-CELL PH, V284, C2, DOI 10.1152/ajpcell.00417.2002.
VOYNOW JA, 2009, CHEST, V135, P505, DOI 10.1378/chest.08-0412.
WANG YY, 2008, ANGEW CHEM INT EDIT, V47, P9726, DOI 10.1002/anie.200803526.
WICKSTROM C, 1998, BIOCHEM J 3, V334, P685.
YANG M, 2011, ANGEW CHEM INT EDIT, V50, P2597, DOI 10.1002/anie.201006849.

Cited Reference Count:
45

Times Cited:
0

Publisher:
PUBLIC LIBRARY SCIENCE; 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA

Subject Category:
Biology

ISSN:
1932-6203

DOI:
10.1371/journal.pone.0021547

IDS Number:
786FZ

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000292327300002
*Order Full Text [ ]

Title:
Adsorption and diffusion of water on graphene from first principles

Authors:
Ma, J; Michaelides, A; Alfe, D; Schimka, L; Kresse, G; Wang, EG

Author Full Names:
Ma, Jie; Michaelides, Angelos; Alfe, Dario; Schimka, Laurids; Kresse, Georg; Wang, Enge

Source:
PHYSICAL REVIEW B 84 (3): Art. No. 033402 JUL 1 2011

Language:
English

Document Type:
Article

KeyWords Plus:
GENERALIZED GRADIENT APPROXIMATION; GRAPHITE INTERACTION; CARBON NANOTUBE; DENSITY; MOLECULE; SURFACE; ENERGY; COMPLEXES; CLUSTERS; EXCHANGE

Abstract:
Water monomer adsorption on graphene is examined with state-of-the- art electronic structure approaches. The adsorption energy determinations on this system from quantum Monte Carlo and the random-phase approximation yield small values of <100 meV. These benchmarks provide a deeper understanding of the reactivity of graphene that may underpin the development of improved more approximate methods enabling the accurate treatment of more complex processes at wet-carbon interfaces. As an example, we show how dispersion-corrected density functional theory, which we show gives a satisfactory description of this adsorption system, predicts that water undergoes ultra-fast diffusion on graphene at low temperatures.

Reprint Address:
Ma, J, Chinese Acad Sci, Inst Phys, Box 603, Beijing 100190, Peoples R China.

Research Institution addresses:
[Ma, Jie; Wang, Enge] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China; [Michaelides, Angelos] UCL, London Ctr Nanotechnol, London WC1H 0AJ, England; [Michaelides, Angelos] UCL, Dept Chem, London WC1H 0AJ, England; [Alfe, Dario] Dept Earth Sci, London, England; [Alfe, Dario] Univ London Univ Coll, Dept Phys & Astron, London WC1E 6BT, England; [Schimka, Laurids; Kresse, Georg] Univ Vienna, Fac Phys, Vienna, Austria; [Schimka, Laurids; Kresse, Georg] Ctr Computat Mat Sci, Vienna, Austria; [Wang, Enge] Peking Univ, Sch Phys, Beijing 100871, Peoples R China

E-mail Address:
angelos.michaelides@ucl.ac.uk

Cited References:
ADAMO C, 1999, J CHEM PHYS, V110, P6158.
BECKE AD, 1988, PHYS REV A, V38, P3098.
BECKE AD, 1993, J CHEM PHYS, V98, P5648.
BOCQUET L, 2010, CHEM SOC REV, V39, P1073, DOI 10.1039/b909366b.
DION M, 2004, PHYS REV LETT, V92, ARTN 246401.
FALK K, 2010, NANO LETT, V10, P4067, DOI 10.1021/nl1021046.
FELLER D, 2000, J PHYS CHEM A, V104, P9971, DOI 10.1021/jp0017660.
GRIMME S, 2004, J COMPUT CHEM, V25, P1463, DOI 10.1002/jcc.20078.
HARL J, 2009, PHYS REV LETT, V103, ARTN 056401.
HUMMER G, 2001, NATURE, V414, P188.
JENNESS GR, 2009, J PHYS CHEM C, V113, P10242, DOI 10.1021/jp9015307.
JENNESS GR, 2010, PHYS CHEM CHEM PHYS, V12, P6375, DOI 10.1039/c000988a.
KLIMES J, 2010, J PHYS-CONDENS MAT, V22, P46401, ARTN 246401.
KLIMES J, 2011, PHYS REV B, V83, ARTN 195131.
LEBEGUE S, 2010, PHYS REV LETT, V105, ARTN 196401.
LEE C, 1988, PHYS REV B, V37, P785, DOI 10.1103/PHYSREVB.37.785.
LIN CS, 2005, J PHYS CHEM B, V109, P14183, DOI 10.1021/jp0504591.
MA J, 2009, J CHEM PHYS, V130, P54303, ARTN 154303.
NEEDS RJ, 2010, J PHYS-CONDENS MAT, V22, P23201, ARTN 023201.
PERDEW JP, 1996, PHYS REV LETT, V77, P3865.
RUBES M, 2009, J PHYS CHEM C, V113, P8412, DOI 10.1021/jp901410m.
RUUSKA H, 2003, CARBON, V41, P699, DOI 10.1016/S0008-6223(02)00381-0.
SCHIMKA L, 2010, NAT MATER, V9, P741, DOI 10.1038/NMAT2806.
STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623.
SUDIARTA IW, 2006, J PHYS CHEM A, V110, P10501, DOI 10.1021/jp060554+.
TROULLIER N, 1991, PHYS REV B, V43, P1993.
VOSKO SH, 1980, CAN J PHYS, V58, P1200.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
XU S, 2005, J PHYS CHEM A, V109, P9563, DOI 10.1021/jp05324j.
ZHANG YK, 1998, PHYS REV LETT, V80, P890.

Cited Reference Count:
30

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Condensed Matter

ISSN:
1098-0121

DOI:
10.1103/PhysRevB.84.033402

IDS Number:
786SD

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000292331900035
*Order Full Text [ ]

Title:
Confined water inside single-walled carbon nanotubes: Global phase diagram and effect of finite length

Authors:
Kyakuno, H; Matsuda, K; Yahiro, H; Inami, Y; Fukuoka, T; Miyata, Y; Yanagi, K; Maniwa, Y; Kataura, H; Saito, T; Yumura, M; Iijima, S

Author Full Names:
Kyakuno, Haruka; Matsuda, Kazuyuki; Yahiro, Hitomi; Inami, Yu; Fukuoka, Tomoko; Miyata, Yasumitsu; Yanagi, Kazuhiro; Maniwa, Yutaka; Kataura, Hiromichi; Saito, Takeshi; Yumura, Motoo; Iijima, Sumio

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (24): Art. No. 244501 JUN 28 2011

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; electrical resistivity; ice; molecular dynamics method; nuclear magnetic resonance; phase diagrams; water; X-ray diffraction

KeyWords Plus:
ICE-NANOTUBES; MOLECULAR-DYNAMICS; LIQUID WATER; TRANSPORT; ADSORPTION; NANOSCALE; BEHAVIOR; DIFFRACTION; TRANSITION; MEMBRANES

Abstract:
Studies on confined water are important not only from the viewpoint of scientific interest but also for the development of new nanoscale devices. In this work, we aimed to clarify the properties of confined water in the cylindrical pores of single-walled carbon nanotubes (SWCNTs) that had diameters in the range of 1.46 to 2.40 nm. A combination of x-ray diffraction (XRD), nuclear magnetic resonance, and electrical resistance measurements revealed that water inside SWCNTs with diameters between 1.68 and 2.40 nm undergoes a wet-dry type transition with the lowering of temperature; below the transition temperature T-wd, water was ejected from the SWCNTs. T-wd increased with increasing SWCNT diameter D. For the SWCNTs with D = 1.68, 2.00, 2.18, and 2.40 nm, T-wd obtained by the XRD measurements were 218, 225, 236, and 237 K, respectively. We performed a systematic study on finite length SWCNT systems using classical molecular dynamics calculations to clarify the effect of open ends of the SWCNTs and water content on the water structure. It was found that ice structures that were formed at low temperatures were strongly affected by the bore diameter, a = D - sigma(OC), where sigma(OC) is gap distance between the SWCNT and oxygen atom in water, and the number of water molecules in the system. In small pores (a < 1.02 nm), tubule ices or the so-called ice nanotubes (ice NTs) were formed irrespective of the water content. On the other hand, in larger pores (a > 1.10 nm) with small water content, filled water clusters were formed leaving some empty space in the SWCNT pore, which grew to fill the pore with increasing water content. For pores with sizes in between these two regimes (1.02 < a < 1.10 nm), tubule ice also appeared with small water content and grew with increasing water content. However, once the tubule ice filled the entire SWCNT pore, further increase in the water content resulted in encapsulation of the additional water molecules inside the tubule ice. Corresponding XRD measurements on SWCNTs with a!
mean di
ameter of 1.46 nm strongly suggested the presence of such a filled structure. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3593064]

Reprint Address:
Kyakuno, H, Tokyo Metropolitan Univ, Fac Sci, Dept Phys, 1-1 Minami Osawa, Tokyo 1920397, Japan.

Research Institution addresses:
[Kyakuno, Haruka; Matsuda, Kazuyuki; Yahiro, Hitomi; Inami, Yu; Fukuoka, Tomoko; Yanagi, Kazuhiro; Maniwa, Yutaka] Tokyo Metropolitan Univ, Fac Sci, Dept Phys, Tokyo 1920397, Japan; [Miyata, Yasumitsu] Nagoya Univ, Dept Chem, Nagoya, Aichi 4648602, Japan; [Miyata, Yasumitsu] Nagoya Univ, Inst Adv Res, Nagoya, Aichi 4648602, Japan; [Maniwa, Yutaka; Kataura, Hiromichi] CREST, JST, Kawaguchi, Saitama 3320012, Japan; [Kataura, Hiromichi] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058562, Japan; [Saito, Takeshi; Yumura, Motoo; Iijima, Sumio] Natl Inst Adv Ind Sci & Technol, Nanotube Res Ctr, Tsukuba, Ibaraki 3058565, Japan

E-mail Address:
maniwa@phys.se.tmu.ac.jp

Cited References:
ABRAGAM A, 1982, PRINCIPLES NUCL MAGN.
AGRAWAL BK, 2007, PHYS REV B, V75, ARTN 195420.
ALCOUTLABI M, 2005, J PHYS-CONDENS MAT, V17, R461.
BAI J, 2003, J CHEM PHYS, V118, P3913, DOI 10.1063/1.1555091.
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BARTKOWIAK MS, 2001, J CHEM PHYS, V114, P950.
BARTKOWIAK MS, 2001, PHYS CHEM CHEM PHYS, V3, P1179.
BARTKOWIAK MS, 2008, PHYS CHEM CHEM PHYS, V10, P4909.
BETHUNE DS, 1993, NATURE, V363, P605.
BUCH V, 2003, WATER CONFINING GEOM.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CALBI MM, 2001, REV MOD PHYS, V73, P857.
CAMBRE S, 2010, PHYS REV LETT, V104, ARTN 207401.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DAS A, 2010, ACS NANO, V4, P1687, DOI 10.1021/nn901554h.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708.
HARANO Y, 2005, BIOPHYS J, V89, P2701, DOI 10.1529/biophysj.104.057604.
HENSEN EJM, 2002, J PHYS CHEM B, V106, P12664, DOI 10.1021/jp0264883.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
IIJIMA S, 1993, NATURE, V363, P603.
JACKSON KA, 1958, J APPL PHYS, V29, P1178.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KADOWAKI H, 2005, J PHYS SOC JPN, V74, P2990, DOI 10.1143/JPSJ.74.2990.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KALRA A, 2004, J PHYS CHEM B, V108, P544, DOI 10.1021/jp035828x.
KITTEL C, 1996, INTRO SOLID STATE PH.
KOGA K, 2000, J CHEM PHYS, V113, P5037.
KOGA K, 2001, NATURE, V412, P802.
KOGA K, 2006, J CHEM PHYS, V124, ARTN 131103.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KRAL P, 2001, PHYS REV LETT, V86, P131.
KURITA T, 2007, PHYS REV B, V75, ARTN 205424.
KYAKUNO H, 2010, J PHYS SOC JPN, V79, ARTN 083802.
LENG YS, 2005, PHYS REV LETT, V94, ARTN 026101.
LEVINGER NE, 2002, SCIENCE, V298, P1722.
LIU ZH, 2003, PHYS REV E 1, V67, ARTN 061602.
LUO CF, 2008, NANO LETT, V8, P2607, DOI 10.1021/nl072642r.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANIWA Y, 1999, JPN J APPL PHYS 2, V38, L668.
MANIWA Y, 2000, MOL CRYST LIQ CRYST, V340, P671.
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MARTI J, 2001, PHYS REV E, V64, UNSP 021504.
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t.
MORISHIGE K, 1999, J CHEM PHYS, V110, P4867.
MURATA K, 2000, NATURE, V407, P599.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NGUYEN TD, 2005, P NATL ACAD SCI USA, V102, P10029, DOI 10.1073/pnas.0504109102.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
NOY A, 2007, NANO TODAY, V2, P22.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
PATI R, 2002, APPL PHYS LETT, V81, P2638, DOI 10.1063/1.1510969.
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946.
ROLS S, 2008, PHYS REV LETT, V101, ARTN 065507.
SAITO T, 2006, J PHYS CHEM B, V110, P5849, DOI 10.1021/jp057513i.
SAITO T, 2008, J NANOSCI NANOTECHNO, V8, P6153, DOI 10.1166/jnn.2008.SW23.
SANSOM MSP, 2001, NATURE, V414, P156.
SCHMIDT R, 1995, J AM CHEM SOC, V117, P4049.
SEKHANEH W, 2006, CHEM PHYS LETT, V428, P143, DOI 10.1016/j.cplett.2006.06.105.
SHIOMI J, 2007, J PHYS CHEM C, V111, P12188, DOI 10.1021/jp071508s.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
STRIOLO A, 2005, J CHEM PHYS, V122, ARTN 234712.
STRIOLO A, 2006, J CHEM PHYS, V124, ARTN 074710.
SUI HX, 2001, NATURE, V414, P872.
TADOKORO M, CHEM COMMUN, V2006, P1274.
TADOKORO M, 2010, J PHYS CHEM B, V114, P2091, DOI 10.1021/jp9069465.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TANAKA M, 2010, J BIOMAT SCI-POLYM E, V21, P1849, DOI 10.1163/092050610X517220.
THESS A, 1996, SCIENCE, V273, P483.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
YANAGI K, 2008, APPL PHYS EXPRESS, V1, ARTN 034003.
YANAGI K, 2010, ACS NANO, V4, P4027, DOI 10.1021/nn101177n.
YOKOI H, AIP C P IN PRESS.
YUI H, 2005, LANGMUIR, V21, P721, DOI 10.1021/la040109a.
ZAHAB A, 2000, PHYS REV B, V62, P10000.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.

Cited Reference Count:
88

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3593064

IDS Number:
786TX

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000292331900047
*Order Full Text [ ]

Title:
Effect of nanotube-length on the transport properties of single-file water molecules: Transition from bidirectional to unidirectional

Authors:
Su, JY; Guo, HX

Author Full Names:
Su, Jiaye; Guo, Hongxia

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (24): Art. No. 244513 JUN 28 2011

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; electrohydrodynamics; flow simulation; molecular dynamics method; pipe flow; transport processes; water

KeyWords Plus:
NARROW CARBON NANOTUBES; ICE NANOTUBES; DRUG-DELIVERY; LIQUID WATER; FLUID-FLOW; CHANNEL; SIMULATION; MEMBRANES; AQUAPORIN-1; COMPOSITES

Abstract:
We use molecular dynamics (MD) simulations to study the transport of single-file water molecules through carbon nanotubes (CNTs) with various lengths in an electric field. Most importantly, we find that even the water dipoles inside the CNT are maintained along the field direction, a large amount of water molecules can still transport against the field direction for short CNTs, leading to a low unidirectional transport efficiency (eta). As the CNT length increases, the efficiency eta will increase remarkably, and achieves the maximum value of 1.0 at or exceeding a critical CNT length. Consequently, the transition from bidirectional to unidirectional transport is observed and is found to be relevant to thermal fluctuations of the two reservoirs, which is explored by the interaction between water molecules inside and outside the CNT. We also find that the water flow vs CNT length follows an exponential decay of f similar to exp(-L/L-0), and the average translocation time of individual water molecules yields to a power law of tau(trans) similar to L-nu, where L-0 and nu are constant and slightly depend on the field strength. We further compare our results with the continuous-time random-walk (CTRW) model and find that the water flow can also be described by a power law of f similar to L-mu modified from CTRW. Our results provide some new physical insights into the biased transport of single-file water molecules, which show the feasibility of using CNTs with any length to pump water in an electric field. The mechanism is important for designing efficient nanofluidic apparatuses. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3604531]

Reprint Address:
Guo, HX, Chinese Acad Sci, Beijing Natl Lab Mol Sci, Joint Lab Polymer Sci & Mat, State Key Lab Polymer Phys & Chem,Inst Chem, Beijing 100190, Peoples R China.

Research Institution addresses:
[Su, Jiaye; Guo, Hongxia] Chinese Acad Sci, Beijing Natl Lab Mol Sci, Joint Lab Polymer Sci & Mat, State Key Lab Polymer Phys & Chem,Inst Chem, Beijing 100190, Peoples R China

E-mail Address:
hxguo@iccas.ac.cn

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503.
BHIRDE AA, 2009, ACS NANO, V3, P307, DOI 10.1021/nn800551s.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
BONTHUIS DJ, 2010, PHYS REV LETT, V105, ARTN 209401.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GONG XJ, 2008, PHYS REV LETT, V101, ARTN 257801.
GONG XJ, 2010, J AM CHEM SOC, V132, P1873, DOI 10.1021/ja905753p.
HEYMANN JB, 1999, NEWS PHYSIOL SCI, V14, P187.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HU JT, 1999, NATURE, V399, P48.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784.
JAVEY A, 2008, ACS NANO, V2, P1329, DOI 10.1021/nn8003982.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2001, NATURE, V412, P802.
KREUER KD, 2004, CHEM REV, V104, P4637, DOI 10.1021/cr020715f.
KUMAR H, 2011, J CHEM PHYS, V134, ARTN 124105.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LI N, 2010, ACS NANO, V4, P1759, DOI 10.1021/nn901812t.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU Z, 2007, ACS NANO, V1, P50, DOI 10.1021/nn700040t.
LUO CF, 2008, NANO LETT, V8, P2607, DOI 10.1021/nl072642r.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAMEDOV AA, 2002, NAT MATER, V1, P190, DOI 10.1038/nmat747.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MIYAZAWA A, 2003, NATURE, V423, P949, DOI 10.1038/nature01748.
MUKHERJEE B, 2007, J CHEM PHYS, V126, ARTN 124704.
MUKHERJEE B, 2008, ACS NANO, V2, P1189, DOI 10.1021/nn800182v.
MUKHERJEE B, 2009, J PHYS CHEM B, V113, P10322, DOI 10.1021/jp904099f.
MUKHERJEE B, 2010, ACS NANO, V4, P985, DOI 10.1021/nn900858a.
MURATA K, 2000, NATURE, V407, P599.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
RAGHUNATHAN AV, 2006, PHYS REV LETT, V97, ARTN 024501.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
SERVICE RF, 2006, SCIENCE, V313, P1088.
SHIM BS, 2007, CHEM MATER, V19, P5467, DOI 10.1021/cm070442a.
SHIM BS, 2009, ACS NANO, V3, P1711, DOI 10.1021/nn9002743.
SHIM BS, 2010, ACS NANO, V4, P3725, DOI 10.1021/nn100026n.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SU JY, 2011, ACS NANO, V5, P351, DOI 10.1021/nn1014616.
SUI HX, 2001, NATURE, V414, P872.
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120.
SUK ME, 2010, PHYS REV LETT, V105, ARTN 209402.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
THOMAS JA, 2010, PHYS REV B, V81, ARTN 045413.
TU YS, 2009, P NATL ACAD SCI USA, V106, P18120, DOI 10.1073/pnas.0902676106.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WALZ T, 1994, J BIOL CHEM, V269, P1583.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WAN RZ, 2009, PHYS CHEM CHEM PHYS, V11, P9898, DOI 10.1039/b907926m.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WU KF, 2010, J CHEM PHYS, V133, ARTN 204702.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12171.
YONETANI Y, 2005, CHEM PHYS LETT, V406, P49, DOI 10.1016/j.cplett.2005.02.073.
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2002, BIOPHYS J, V83, P154.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.
ZHU FQ, 2004, PHYS REV LETT, V93, ARTN 224501.
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w.

Cited Reference Count:
78

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3604531

IDS Number:
786TX

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: