Thursday, September 24, 2009

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 22 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000269724100006
*Order Full Text [ ]

Title:
Electrooptic and dielectric properties of ferroelectric liquid crystal/single walled carbon nanotubes dispersions confined in thin cells

Authors:
Podgornov, FV; Suvorova, AM; Lapanik, AV; Haase, W

Author Full Names:
Podgornov, Fedor V.; Suvorova, Anastasia M.; Lapanik, Artsiom V.; Haase, Wolfgang

Source:
CHEMICAL PHYSICS LETTERS 479 (4-6): 206-210 SEP 17 2009

Language:
English

Document Type:
Article

KeyWords Plus:
CRYSTALS; FIELD

Abstract:
Electrooptic and dielectric properties of ferroelectric liquid crystals/chiral carbon nanotubes dispersions were investigated. It was demonstrated that even a small amount of chiral single walled carbon nanotubes affects greatly the performance of ferroelectric liquid crystal cells. Particularly, the spontaneous polarization, the Goldstone mode dielectric strength and the rise time are decreased in doped cells.
The experimental results are explained by two effects. First, the spontaneous polarization of the FLC is screened by the pi-pi electron system of the carbon nanotube. Secondly, pi electrons trap the ionic impurities which results in significant modification of the internal electric field inside the cells. (c) 2009 Elsevier B.V. All rights reserved.

Reprint Address:
Podgornov, FV, S Ural State Univ, Dept Phys, Lenin Ave 76, Chelyabinsk 454080, Russia.

Research Institution addresses:
[Podgornov, Fedor V.; Suvorova, Anastasia M.] S Ural State Univ, Dept Phys, Chelyabinsk 454080, Russia; [Podgornov, Fedor V.; Lapanik, Artsiom V.; Haase, Wolfgang] Tech Univ Darmstadt, Eduard Zintl Inst Inorgan & Phys Chem, D-64287 Darmstadt, Germany

E-mail Address:
fedorpod@yahoo.de

Cited References:
BAIK IS, 2005, APPL PHYS LETT, V87, ARTN 263110.
BLINOV LM, 2002, PHYS REV E 1, V66, ARTN 021701.
BLINOV LM, 2005, PHYS REV E 1, V71, ARTN 051715.
CHEN HY, 2005, OPT REV, V12, P223.
CHEN HY, 2005, P SPIE, V5947.
CHEN HY, 2006, APPL PHYS LETT, V88, ARTN 222105.
DIERKING I, 2005, J APPL PHYS, V97, ARTN 044309.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GHOSH S, 2005, CHEM PHYS LETT, V406, P10, DOI 10.1016/j.cplett.2005.02.088.
HAASE W, 2006, GREAT LAK PHOT S DAY.
HILL NE, 1969, DIELECTRIC PROPERTIE.
HUANG CY, 2005, JPN J APPL PHYS 1, V44, P8077, DOI 10.1143/JJAP.44.8077.
HUANG CY, 2006, APPL PHYS LETT, V89, ARTN 056101.
HUANG Y, 2007, CARBON, V45, P1614, DOI 10.1016/j.carbon.2007.04.016.
JEON SY, 2006, APPL PHYS LETT, V89, ARTN 056102.
LAGERWALL ST, 1999, FERROELECTRIC ANTIFE.
LEE W, 2007, JPN J APPL PHYS 1, V46, P2962, DOI 10.1143/JJAP.46.2962.
LYNCH MD, 2002, NANO LETT, V2, P1197, DOI 10.1021/nl025694j.
MARTINOTLAGARDE P, 1981, MOL CRYST LIQUID CRY, V75, P249.
SCALIA G, 2006, PHYS STATUS SOLIDI B, V243, P3238, DOI 10.1002/pssb.200669205.
SUVOROVA AM, 2008, IZVESTIA S URAL STAT, V11, P74.
TU XM, 2009, NATURE, V460, P250, DOI 10.1038/nature08116.

Cited Reference Count:
22

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
0009-2614

DOI:
10.1016/j.cplett.2009.08.005

IDS Number:
493GQ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 1.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000269699400034>
*Order Full Text [ ]
AU Mu, MF
Clarke, N
Composto, RJ
Winey, KI
AF Mu, Minfang
Clarke, Nigel
Composto, Russell J.
Winey, Karen I.
TI Polymer Diffusion Exhibits a Minimum with Increasing Single-Walled
Carbon Nanotube Concentration
SO MACROMOLECULES
LA English
DT Article
ID ELECTRICAL-CONDUCTIVITY; ENTANGLED POLYMERS; MOLECULAR-WEIGHT;
NANOCOMPOSITES; REPTATION; CHAIN; MELTS; COMPOSITES; STABILITY; NETWORKS
AB Nanoparticles present a new frontier for understanding polymer dynamics
in complex, nanoscale environments. We report that the addition of
single-walled carbon nanotubes(SWCNTs) produces a minimum in the
diffusion coefficient with increasing nanoparticle concentration, phi.
Initially, tracer diffusion coefficients (D) are suppressed with
increasing phi and then increase beyond a critical concentration,
phi(crit) < 1 vol %. Shorter tracer chains exhibit a greater slowing
down than longer chains, whereas longer matrix chains decrease the
value of phi(crit). The experimental results are discussed in terms of
locally anisotropic diffusion perpendicular and parallel to the
nanotube Filler and Simulated using a trap model that defines a trap
size and the extent of slowing perpendicular to the cylindrical trap.
The simulated diffusion coefficients capture both the initial decrease
in D attributed to isolated traps and the recovery of D above phi(crit)
corresponding to trap percolation. Nanoparticles influence polymer
diffusion in fascinating ways and will refine our understanding of
polymer reptation and might also inform the study of biopolymer
diffusion in living systems.
C1 [Mu, Minfang; Composto, Russell J.; Winey, Karen I.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
[Clarke, Nigel] Univ Durham, Dept Chem, Durham DH1 3LE, England.
RP Winey, KI, Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St,
Philadelphia, PA 19104 USA.
EM winey@seas.upenn.edu
CR AJAYAN PM, 2003, NANOCOMPOSITE SCI TE
CLARKE N, 2006, MACROMOLECULES, V39, P1290, DOI 10.1021/ma051973s
COMPOSTO RJ, 1987, NATURE, V328, P234
COMPOSTO RJ, 1992, MACROMOLECULES, V25, P4167
COMPOSTO RJ, 2002, MAT SCI ENG R, V38, P107
CRANK J, 1975, MATH DIFFUSION
DEGENNES PG, 1971, J CHEM PHYS, V55, P572
DU FM, 2003, J POLYM SCI POL PHYS, V41, P3333, DOI 10.1002/polb.10701
DU FM, 2004, MACROMOLECULES, V37, P9048, DOI 10.1021/ma049164g
EINSTEIN A, 1906, ANN PHYS-BERLIN, V19, P371
ELF J, 2007, SCIENCE, V316, P1191, DOI 10.1126/science.1141967
FERRY J, 1980, VISCOELASTIC PROPERT
FICK A, 1855, PHILOS MAG, V10, P30
FICK A, 1855, POGG ANN, V94, P59
GREEN PF, 1984, PHYS REV LETT, V53, P2145
GREEN PF, 1986, J MATER RES, V1, P202
GREEN PF, 1986, MACROMOLECULES, V19, P1108
HILL RJ, 2006, PHYS REV LETT, V96, ARTN 216001
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HOUGH LA, 2004, PHYS REV LETT, V93, ARTN 168102
KAPNISTOS M, 2008, NAT MATER, V7, P997, DOI 10.1038/nmat2292
KASHIWAGI T, 2005, NAT MATER, V4, P928, DOI 10.1038/nmat1502
KONOPKA MC, 2009, J BACTERIOL, V191, P231, DOI 10.1128/JB.00536-08
LODGE TP, 1995, PHYS REV LETT, V75, P657
LODGE TP, 1999, PHYS REV LETT, V83, P3218
MAXWELL C, 1983, TREATISE ELECT MAGNE, V1
MCLEISH T, 2008, PHYS TODAY, V61, P40
MCWILLIAMS A, 2006, NANO21C
MILLS PJ, 1986, J POLYM SCI POL PHYS, V24, P1
MU M, 2007, J PHYS CHEM C, V111, P17923, DOI 10.1021/jp0715530
RITTIGSTEIN P, 2006, J POLYM SCI POL PHYS, V44, P2935, DOI
10.1002/polb.20925
THESS A, 1996, SCIENCE, V273, P483
VAIA RA, 1993, CHEM MATER, V5, P1694
VONSEGGERN J, 1991, MACROMOLECULES, V24, P3300
WANG SQ, 2003, J POLYM SCI POL PHYS, V41, P1589, DOI 10.1002/polb.10524
WINEY KI, 2007, MRS BULL, V32, P314
ZHOU W, 2001, CHEM PHYS LETT, V350, P6
NR 38
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
DI 10.1021/ma901122s
PD SEP 22
VL 42
IS 18
BP 7091
EP 7097
SC Polymer Science
GA 492YR
UT ISI:000269699400034
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000269684400001
*Order Full Text [ ]

Title:
Nanotube Boiler: Attogram Copper Evaporation Driven by Electric Current, Joule Heating, Charge, and Ionization

Authors:
Dong, LX; Tao, XY; Hamdi, M; Zhang, L; Zhang, XB; Ferreira, A; Nelson, BJ

Author Full Names:
Dong, Lixin; Tao, Xinyong; Hamdi, Mustapha; Zhang, Li; Zhang, Xiaobin; Ferreira, Antoine; Nelson, Bradley J.

Source:
IEEE TRANSACTIONS ON NANOTECHNOLOGY 8 (5): 565-568 SEP 2009

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotube; nanoboiler; nanofluidics; nanorobotic manipulation; transmission electron microscope

KeyWords Plus:
FILLED CARBON NANOTUBES; DEPOSITION; BEAM; BEHAVIOR; SCALE; FLOW

Abstract:
Controlled copper evaporation at attogram level from individual carbon nanotube (CNT) vessels, which we call nanotube boilers, is investigated experimentally and theoretically. We compared the evaporation modes induced by electric current, Joule heating, charge, and ionization in these CNT boilers, which can serve as sources for mass transport and deposition in nanofluidic systems. Experiments and molecular dynamics simulations show that the most effective method for evaporation is by positively ionizing the encapsulated copper; therefore, an electrostatic field can be used to guide the flow.

Reprint Address:
Dong, LX, Michigan State Univ, E Lansing, MI 48824 USA.

Research Institution addresses:
[Zhang, Li; Nelson, Bradley J.] ETH, Swiss Fed Inst Technol Zurich, Inst Robot & Intelligent Syst, CH-8092 Zurich, Switzerland; [Tao, Xinyong; Zhang, Xiaobin] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China; [Hamdi, Mustapha; Ferreira, Antoine] ENSI, Inst PRISME, F-18000 Bourges, France

E-mail Address:
ldong@ethz.ch; xinyongtao@gmail.com; mfhamdi@gmail.com; lizhang@ethz.ch; zhangxb@zju.edu.cn; antoine.ferreira@ensi-bourges.fr; bnelson@ethz.ch

Cited References:
COLLINS PG, 2000, SCI AM, V283, P62.
COSTA PMFJ, 2008, NANO LETT, V8, P3120, DOI 10.1021/nl8012506.
DONG LX, 2002, APPL PHYS LETT, V81, P1919, DOI 10.1063/1.1504486.
DONG LX, 2007, NANO LETT, V7, P58, DOI 10.1021/nl061980+.
DONG LX, 2007, NANO TODAY, V2, P12.
DONG LX, 2008, IEEE T NANOTECHNOL, V7, P508, DOI 10.1109/TNANO.2008.926443.
GAO YH, 2002, NATURE, V415, P599.
GOLBERG D, 2007, ADV MATER, V19, P1937, DOI 10.1002/adma.200700126.
HIRAYAMA H, 2001, APPL PHYS LETT, V79, P1169.
KOMETANI R, 2006, JPN J APPL PHYS 2, V45, L711, DOI 10.1143/JJAP.45.L711.
KRAL P, 1999, PHYS REV LETT, V82, P5373.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
SCHAPER AK, 2005, J MATER RES, V20, P1844, DOI 10.1557/JMR.2005.0230.
SUBRAMANIAN A, 2007, NANOTECHNOLOGY, V18, UNSP 075703-1-075703-9.
SUN L, 2006, SCIENCE, V312, P1199, DOI 10.1126/science.1124594.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
SVENSSON K, 2004, PHYS REV LETT, V93, ARTN 145901.
TAO XY, 2006, DIAM RELAT MATER, V15, P1271, DOI 10.1016/j.diamond.2005.09.043.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XIE G, 2006, APPL PHYS LETT, V88, UNSP 263120-1-263120-3.
XU SY, 2005, SMALL, V1, P1221, DOI 10.1002/smll.200500240.
YOKOTA T, 2003, PHYS REV LETT, V91, ARTN 265504.

Cited Reference Count:
23

Times Cited:
0

Publisher:
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC; 445 HOES LANE, PISCATAWAY, NJ 08855 USA

Subject Category:
Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied

ISSN:
1536-125X

DOI:
10.1109/TNANO.2009.2026172

IDS Number:
492UC

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Thursday, September 17, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000269592800005
*Order Full Text [ ]

Title:
NONLINEAR VIBRATION CHARACTERISTICS OF FLUID-FILLED DOUBLE-WALLED CARBON NANOTUBES

Authors:
Yan, Y; Wang, WQ; Zhang, LX

Author Full Names:
Yan, Y.; Wang, W. Q.; Zhang, L. X.

Source:
MODERN PHYSICS LETTERS B 23 (22): 2625-2636 AUG 2009

Language:
English

Document Type:
Article

Author Keywords:
Nonlinear vibration; amplitude-frequency curve; fluid-filled double-walled carbon nanotubes; Donnell's cylindrical shell model

KeyWords Plus:
CYLINDRICAL-SHELLS; ELASTIC MEDIUM; FLOW; PREDICTION; PRESSURE; DYNAMICS; MODEL; SCALE; TUBES

Abstract:
Nonlinear vibration behaviors of double-walled carbon nanotubes (DWCNTs) with fluid inside the inner tube are investigated based on Donnell's cylindrical shell model and the more refined van der Waals (vdW) interaction formula. The Galerkin method and harmonic balance method are used to study the issue. The results obtained show that the radial vibrational modes of simply supported DWCNTs have twice the dynamical mode transitions as the frequency increases. The transitions correspond to twice the noncoaxial vibrations which play a critical role in electronic and transport properties of CNTs. Moreover, comparisons of the dynamical behaviors of fluid-filled DWCNTs with different wave numbers, radii and aspect ratios demonstrate that the amplitude-frequency curve topological forms are identical. Meanwhile, it is also concluded that the existence of fluid is significant for the value of amplitude ratio corresponding to noncoaxial vibration whereas it does not change the nonlinea!
r vibrating topological pattern of amplitude-frequency curves.

Reprint Address:
Yan, Y, Kunming Univ Sci & Technol, Dept Engn Mech, Kunming 650051, Yunnan, Peoples R China.

Research Institution addresses:
[Yan, Y.; Wang, W. Q.; Zhang, L. X.] Kunming Univ Sci & Technol, Dept Engn Mech, Kunming 650051, Yunnan, Peoples R China

Cited References:
AMABILI M, 1998, J FLUID STRUCT, V12, P883.
BANDOW S, 2001, CHEM PHYS LETT, V48, P337.
BITSANIS I, 1990, J CHEM PHYS, V93, P3427.
DIKMEN M, 1982, THEORY THIN ELASTIC.
DONG K, 2007, MODEL SIMUL MATER SC, V15, P427, DOI 10.1088/0965-0393/15/5/004.
FUJISAWA N, 2006, MICROFLUID NANOFLUID, V2, P447, DOI 10.1007/s10404-006-0088-5.
GAO YH, 2002, NATURE, V415, P599.
HE XQ, 2005, INT J SOLIDS STRUCT, V42, P6032, DOI 10.1016/j.ijsolstr.2005.03.045.
HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303, DOI 10.1016/j.jmps.2004.08.003.
HE XQ, 2006, J APPL PHYS, V100, ARTN 124317.
HU N, 2007, INT J SOLIDS STRUCT, V44, P6535, DOI 10.1016/j.ijsolstr.2007.02.043.
HUMMER G, 2001, NATURE, V414, P188.
KITIPORNCHAI S, 2005, J APPL PHYS, V97, ARTN 114318.
LIEW KM, 2007, J APPL PHYS, V102, ARTN 053511.
LIU J, 1998, SCIENCE, V280, P1253.
LIU YZ, 2001, NONLINEAR VIBRATIONS.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
NATSUKI T, 2007, J APPL PHYS, V101, ARTN 034319.
RU CQ, 2001, J MECH PHYS SOLIDS, V49, P1265.
SAITO R, 2001, CHEM PHYS LETT, V348, P187.
SCHULZ W, 2000, CHEM ENG NEWS, V16, P39.
SHEN HS, 2004, INT J SOLIDS STRUCT, V41, P2643, DOI 10.1016/j.ijsolstr.2003.11.028.
SMITH BW, 2000, CHEM PHYS LETT, V321, P169.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
TRAVIS KP, 1997, PHYS REV E, V55, P1566.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
WANG CM, 2002, J CONSTR STEEL RES, V58, P1177.
WANG CM, 2007, NANOTECHNOLOGY, V18, ARTN 105401.
WANG LF, 2005, PHYS REV B, V71, ARTN 195412.
WANG LF, 2005, PHYS REV LETT, V95, ARTN 105501.
YAKOBSON BI, 1996, PHYS REV LETT, V76, P2511.
YAKOBSON BI, 1997, AM SCI, V85, P324.
YAN Y, 2007, J APPL PHYS, V102, ARTN 044307.
YAN Y, 2008, INT J MOD PHYS B, V22, P4975.
YAN Y, 2008, J APPL PHYS, V103, ARTN 113523.
YAN Y, 2009, APPL MATH MODEL, V33, P1430, DOI 10.1016/j.apm.2008.02.010.
YAN Y, 2009, J SOUND VIB, V319, P1003, DOI 10.1016/j.jsv.2008.07.001.
YOON J, 2002, PHYS REV B, V66, ARTN 233402.
ZHANG YY, 2006, COMP MATER SCI, V37, P578, DOI 10.1016/j.commatsci.2005.10.007.

Cited Reference Count:
39

Times Cited:
0

Publisher:
WORLD SCIENTIFIC PUBL CO PTE LTD; 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE

Subject Category:
Physics, Applied; Physics, Condensed Matter; Physics, Mathematical

ISSN:
0217-9849

DOI:
10.1142/S0217984909020746

IDS Number:
491PZ

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000269589100012
*Order Full Text [ ]

Title:
A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid

Authors:
Wang, L; Ni, Q

Author Full Names:
Wang, L.; Ni, Q.

Source:
MECHANICS RESEARCH COMMUNICATIONS 36 (7): 833-837 OCT 2009

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotube; Viscous fluid; Instability; Critical flow velocity

KeyWords Plus:
INSTABILITY; VIBRATION; FLOW; STORAGE; SCALE

Abstract:
By using the Euler-Bernoulli classical beam theory to model the nanotube as a continuum structure, a reevaluation of the computational modelling of carbon nanotubes conveying viscous fluid is undertaken in this paper, with some fresh insights as to if the viscosity of flowing fluid does influence the free vibration of the nanotube. It is found that during the flow of a fluid through a nanotube, modelled as a continuum beam, the effect of viscosity of flowing fluid on the vibration and instability of CNTs can be ignored. (C) 2009 Elsevier Ltd. All rights reserved.

Reprint Address:
Wang, L, Huazhong Univ Sci & Technol, Dept Mech, Wuhan 430074, Peoples R China.

Research Institution addresses:
[Wang, L.; Ni, Q.] Huazhong Univ Sci & Technol, Dept Mech, Wuhan 430074, Peoples R China

E-mail Address:
wanglinfliping@sohu.com

Cited References:
BERT CW, 1996, APPL MECH REV, V49, P1.
CHE GL, 1998, NATURE, V393, P346.
DONG K, 2007, MODEL SIMUL MATER SC, V15, P427, DOI 10.1088/0965-0393/15/5/004.
DONG K, 2008, COMP MATER SCI, V42, P139, DOI 10.1016/j.commatsci.2007.07.007.
EVANS E, 1996, SCIENCE, V273, P933.
GADD GE, 1997, SCIENCE, V277, P933.
GAO YH, 2002, NATURE, V415, P599.
GIBSON RF, 2007, COMPOS SCI TECHNOL, V67, P1, DOI 10.1016/j.compscitech.2006.03.031.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
HUMMER G, 2001, NATURE, V414, P188.
KHOSRAVIAN N, 2007, J PHYS D APPL PHYS, V40, P7046, DOI 10.1088/0022-3727/40/22/027.
LI J, 2003, J CHEM PHYS, V119, P2376, DOI 10.1063/1.1582831.
LIU J, 1998, SCIENCE, V280, P1253.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
NATSUKI T, 2007, J APPL PHYS, V101, ARTN 034319.
PAIDOUSSIS MP, 1998, FLUID STRUCTURE INTE, V1.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
WANG L, 2008, COMP MATER SCI, V43, P399.
WANG L, 2008, COMP MATER SCI, V44, P821, DOI 10.1016/j.commatsci.2008.06.001.
WANG L, 2008, PHYSICA E, V40, P3179, DOI 10.1016/j.physe.2008.05.009.
WANG L, 2009, COMP MATER SCI, V45, P584.
WANG X, 2006, ACTA MATER, V54, P2067, DOI 10.1016/j.actamat.2005.12.039.
WANG XY, 2007, J PHYS D APPL PHYS, V40, P2563, DOI 10.1088/0022-3727/40/8/022.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI 10.1016/j.compscitech.2004.12.002.
YOON J, 2006, INT J SOLIDS STRUCT, V43, P3337, DOI 10.1016/j.ijsolstr.2005.04.039.

Cited Reference Count:
27

Times Cited:
0

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Mechanics

ISSN:
0093-6413

DOI:
10.1016/j.mechrescom.2009.05.003

IDS Number:
491OS

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000269655700018
*Order Full Text [ ]

Title:
General Anesthetic Binding to Neuronal alpha 4 beta 2 Nicotinic Acetylcholine Receptor and Its Effects on Global Dynamics

Authors:
Liu, LT; Willenbring, D; Xu, Y; Tang, P

Author Full Names:
Liu, Lu Tian; Willenbring, Dan; Xu, Yan; Tang, Pei

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 113 (37): 12581-12589 SEP 17 2009

Language:
English

Document Type:
Article

KeyWords Plus:
GATED ION-CHANNEL; GAUSSIAN NETWORK MODEL; X-RAY-STRUCTURE; MOLECULAR-DYNAMICS; TRANSMEMBRANE DOMAIN; FIREFLY LUCIFERASE; GATING MECHANISM; STRUCTURAL BASIS; OPEN-STATE; HALOTHANE

Abstract:
The neuronal alpha 4 beta 2 nicotinic acetylcholine receptor (nAChR) is a target for general anesthetics, Currently available experimental structural information is inadequate to understand where anesthetics bind and how they modulate the receptor motions essential to function. Using our published open-channel structure model of alpha 4 beta 2 nAChR, we identified and evaluated six amphiphilic interaction sites for the volatile anesthetic halothane via flexible ligand docking and subsequent 20-ns molecular dynamics simulations. Halothane binding energies ranged from -6.8 to -2.4 kcal/mol. The primary binding sites were located at the interface of extracellular and transmembrane domains, where halothane perturbed conformations of, and widened the gap among, the Cys loop, the beta 1-beta 2 loop, and the TM2-TM3 linker. The halothane with the highest binding affinity at the interface between the alpha 4 and beta 2 subunits altered interactions between the protein and nearby lip!
ids by competing for hydrogen bonds. Gaussian network model analyses of the alpha 4 beta 2 nAChR structures at the end of 20-ns simulations in the absence of presence of halothane revealed profound changes in protein residue mobility. The concerted motions critical to protein function were also perturbed considerably. Halothane's effect oil protein dynamics was not confined to the residues adjacent to the binding sites, indicating all action on a more global scale.

Reprint Address:
Tang, P, Univ Pittsburgh, Dept Anesthesiol, Sch Med, 2049 Biomed Sci Tower 3,3501 5th Ave, Pittsburgh, PA 15261 USA.

Research Institution addresses:
[Liu, Lu Tian; Willenbring, Dan; Xu, Yan; Tang, Pei] Univ Pittsburgh, Dept Anesthesiol, Sch Med, Pittsburgh, PA 15261 USA; [Xu, Yan; Tang, Pei] Univ Pittsburgh, Dept Pharmacol & Chem Biol, Sch Med, Pittsburgh, PA 15261 USA; [Xu, Yan] Univ Pittsburgh, Dept Biol Struct, Sch Med, Pittsburgh, PA 15261 USA; [Tang, Pei] Univ Pittsburgh, Dept Computat Biol, Sch Med, Pittsburgh, PA 15261 USA

E-mail Address:
TangP@anes.upmc.edu

Cited References:
BAHAR I, 1997, FOLD DES, V2, P173.
BECKSTEIN O, 2004, PHYS BIOL, V1, P42.
BELLONE M, 1989, J IMMUNOL, V143, P3568.
BHATTACHARYA AA, 2000, J BIOL CHEM, V275, P38731.
BOCQUET N, 2009, NATURE, V457, P111, DOI 10.1038/nature07462.
BONDARENKO V, 2007, BIOPHYS J, V92, P1616, DOI 10.1529/biophysj.106.095364.
BONDARENKO V, 2008, BIOPHYS J, V94, P1681, DOI 10.1529/biophysj.107.116772.
BORGHESE CM, 2002, ALCOHOL CLIN EXP RES, V26, P1764, DOI 10.1097/01.ALC.0000042012.58231.D9.
BOUZAT C, 2004, NATURE, V430, P896, DOI 10.1038/nature02753.
CAMPAGNA JA, 2003, NEW ENGL J MED, V348, P2110.
CANLAS CG, 2008, J PHYS CHEM B, V112, P14312, DOI 10.1021/jp805952w.
CARDOSO RA, 1999, ANESTHESIOLOGY, V91, P1370.
CHENG MHY, 2007, J PHYS CHEM B, V111, P14186, DOI 10.1021/jp075467b.
CHIARA DC, 2003, BIOCHEMISTRY-US, V42, P13457, DOI 10.1021/bi0351561.
CHIARA DC, 2009, MOL PHARMACOL, V75, P1084, DOI 10.1124/mol.108.054353.
CHIPOT C, 2002, MOL SIMULAT, V28, P1.
CUI TX, 2008, BIOPHYS J, V94, P4464, DOI 10.1529/biophysj.107.117853.
DALZIEL AW, 1980, FEBS LETT, V122, P193.
DOWNIE DL, 2002, J BIOL CHEM, V277, P10367.
ECKENHOFF RG, 1996, P NATL ACAD SCI USA, V93, P2807.
FLOOD P, 1997, ANESTHESIOLOGY, V86, P859.
FRANKS NP, 1998, BIOPHYS J, V75, P2205.
GLEITSMAN KR, 2008, J BIOL CHEM, V283, P35638, DOI 10.1074/jbc.M807226200.
HADDADIAN EJ, 2008, J PHYS CHEM B, V112, P13981, DOI 10.1021/jp804868s.
HILF RJC, 2008, NATURE, V452, P375, DOI 10.1038/nature06717.
HILF RJC, 2009, NATURE, V457, P115, DOI 10.1038/nature07461.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
IVANOV I, 2007, J AM CHEM SOC, V129, P8217, DOI 10.1021/ja070778l.
JOHANSSON JS, 2005, FEBS J, V272, P573.
KONRAD H, 1999, CHEM PHYS, V111, P10766.
LAW RJ, 2005, P NATL ACAD SCI USA, V102, P6813.
LIU RY, 2005, FASEB J, V19, P567, DOI 10.1096/fj.04-3171com.
LIU ZW, 2004, J PHYS CHEM A, V108, P781, DOI 10.1021/jp0368482.
LUMMIS SCR, 2005, NATURE, V438, P248, DOI 10.1038/nature04130.
LYNDENBELL RM, 1996, J CHEM PHYS, V105, P9266.
MA JP, 2004, CURR PROTEIN PEPT SC, V5, P119.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MORI T, 2001, MOL PHARMACOL, V59, P732.
MORRIS GM, 1998, J COMPUT CHEM, V19, P1639.
NIRTHANAN S, 2008, J BIOL CHEM, V283, P22051, DOI 10.1074/jbc.M801332200.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781.
PUROHIT P, 2007, NATURE, V446, P930, DOI 10.1038/nature05721.
SALADINO AC, 2005, BIOPHYS J, V88, P1009, DOI 10.1529/biophysj.104.053421.
SINE SM, 2006, NATURE, V440, P448, DOI 10.1038/nature04708.
SMART OS, 1996, J MOL GRAPH MODEL, V14, P354.
SZARECKA A, 2007, BIOPHYS J, V93, P1895, DOI 10.1529/biophys.106.102780.
SZARECKA A, 2007, PROTEINS, V68, P948, DOI 10.1002/prot.21462.
TAMA F, 2001, PROTEIN ENG, V14, P1.
TANG P, 1999, BIOPHYS J, V76, P2346.
TANG P, 2001, J COMPUT CHEM, V22, P436.
TANG P, 2002, P NATL ACAD SCI USA, V99, P16035, DOI 10.1073/pnas.252522299.
VIOLET JM, 1997, ANESTHESIOLOGY, V86, P866.
WENNINGMANN I, 2001, MOL PHARMACOL, V60, P584.
XIU XA, 2009, NATURE, V458, P534, DOI 10.1038/nature07768.
XIU XN, 2005, J BIOL CHEM, V280, P41655, DOI 10.1074/jbc.M508635200.
XU Y, 1997, BBA-BIOMEMBRANES, V1323, P154.
XU Y, 2000, BIOPHYS J, V78, P746.
YAMAKURA T, 2000, ANESTHESIOLOGY, V93, P1095.
YAMAKURA T, 2000, J BIOL CHEM, V275, P40879.
YAMASHITA M, 2005, ANESTHESIOLOGY, V102, P76.
YANG LW, 2005, BIOINFORMATICS, V21, P2978, DOI 10.1093/bioinformatics/bti469.
YANG LW, 2006, NUCLEIC ACIDS RES, V34, W24, DOI 10.1093/nar/gkl084.
YONKUNAS MJ, 2005, BIOPHYS J, V89, P2350, DOI 10.1529/biophysj.105.063396.
YUSHMANOV VE, 2003, BIOCHEMISTRY-US, V42, P13058, DOI 10.1021/bi0350396.
ZACHARIAS M, 1994, J CHEM PHYS, V100, P9025.
ZHOU QL, 2000, BIOCHEMISTRY-US, V39, P14920.
ZIEBELL MR, 2004, J BIOL CHEM, V279, P17640, DOI 10.1074/jbc.M313886200.

Cited Reference Count:
68

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp9039513

IDS Number:
492KW

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert
Cited Article:   Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires:   21 OCT 2009
Number of Citing Articles:   1 new records this week (1 in this e-mail)
Organization ID:   3b97d1bbc1878baed0ab183d8b03130b

Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.

*Record 1 of 1.
*Click Here to View Full Record
*Order Full Text [ ]
Title: Interfacial Water at Hydrophobic and Hydrophilic Surfaces: Slip, Viscosity, and Diffusion
Authors: Sendner, C; Horinek, D; Bocquet, L; Netz, RR
Author Full Names: Sendner, Christian; Horinek, Dominik; Bocquet, Lyderic; Netz, Roland R.
Source: LANGMUIR 25 (18): 10768-10781 SEP 15 2009
Language: English
Document Type: Article
KeyWords Plus: HYDRODYNAMIC BOUNDARY-CONDITIONS; MOLECULAR-DYNAMICS SIMULATIONS; SELF-ASSEMBLED MONOLAYERS; PARTICLE MESH EWALD; COMPUTER-SIMULATION; WETTING TRANSITIONS; CONFINED FLUIDS; LIQUID WATER; HYDRATION; PRESSURE
Abstract: The dynamics and structure of water at hydrophobic and hydrophilic diamond surfaces is examined via nonequilibrium Molecular Dynamics simulations. For hydrophobic surfaces under shearing conditions, the general hydrodynamic boundary condition involves a finite surface slip, The value of the slip length depends sensitively oil the surface water interaction strength and the surface roughness; heuristic scaling relations between slip length, contact angle, and depletion layer thickness are proposed. Inert gas in the aqueous phase exhibits pronounced surface activity but only mildly increases the slip length. On polar hydrophilic surfaces, in contrast, slip is absent, but the water viscosity is found to be increased within a thin surface layer. The viscosity and the thickness of this surface layer depend on the density of polar surface groups. The dynamics of single water molecules in the Surface layer exhibits a similar distinction: oil hydrophobic surfaces the dynamics is pure! ly diffusive, while close to a hydrophilic surface transient binding or trapping of water molecules over times of the order of hundreds of picoseconds occurs. We also discuss in detail the effect of the Lennard-Jones cutoff length on the interfacial properties.
Reprint Address: Sendner, C, Tech Univ Munich, Dept Phys, D-85748 Garching, Germany.
Research Institution addresses: [Sendner, Christian; Horinek, Dominik; Netz, Roland R.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany; [Bocquet, Lyderic] Univ Lyon 1, LPMCN, F-69622 Villeurbanne, France; [Bocquet, Lyderic] Univ Lyon, CNRS, UMR 5586, F-69622 Villeurbanne, France
E-mail Address: csendner@ph.tum.de; netz@ph.tum.de
Cited References: BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BARRAT JL, 1999, FARADAY DISCUSS, V112, P119.
BARSKY S, 2002, PHYS REV E 1, V65, ARTN 021808.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BOCQUET L, 1994, PHYS REV E A, V49, P3079.
BOCQUET L, 2007, SOFT MATTER, V3, P685, DOI 10.1039/b616490k.
BOUCHET MID, 2007, TRIBOLOGY MAT SURFAC, V1, P28.
BOUZIGUES CI, 2008, PHYS REV LETT, V101, ARTN 114503.
BRATKO D, 2008, LANGMUIR, V24, P1247, DOI 10.1021/la702328w.
CANTRELL W, 2001, J PHYS CHEM B, V105, P5434.
CASTRILLON SRV, 2009, J PHYS CHEM B, V113, P1438, DOI 10.1021/jp809032n.
COTTINBIZONNE C, 2005, PHYS REV LETT, V94, ARTN 056102.
DAMMER SM, 2006, PHYS REV LETT, V96, ARTN 206101.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGENNES PG, 2002, LANGMUIR, V18, P3413.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DIETRICH S, 1986, PHYS REV B, V33, P4952.
DOSHI DA, 2005, P NATL ACAD SCI USA, V102, P9458, DOI 10.1073/pnas.0504034102.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
GENZER J, 2000, SCIENCE, V290, P2130.
GIOVAMBATTISTA N, 2007, J PHYS CHEM B, V111, P9581, DOI 10.1021/jp071957s.
GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1321.
HESS B, 1997, J COMPUT CHEM, V18, P1463.
HESS B, 2002, J CHEM PHYS, V116, P209.
HOLMBERG M, 2003, LANGMUIR, V19, P10510, DOI 10.1021/la0352669.
HUANG DM, 2008, PHYS REV LETT, V101, ARTN 226101.
INTVELD PJ, 2007, J CHEM PHYS, V127, ARTN 144711.
ISMAIL AE, 2006, J CHEM PHYS, V125, ARTN 014702.
JANECEK J, 2007, LANGMUIR, V23, P8417, DOI 10.1021/la700561q.
JOLY L, 2004, PHYS REV LETT, V93, ARTN 257805.
JOLY L, 2006, PHYS REV LETT, V96, ARTN 046101.
JOSEPH P, 2005, PHYS REV E 2, V71, ARTN 035303.
KANO M, 2006, TRIBOL INT, V39, P1682, DOI 10.1016/j.triboint.2006.02.068.
KOPLIK J, 2006, PHYS REV LETT, V96, ARTN 044505.
LANE JMD, 2008, LANGMUIR, V24, P5209, DOI 10.1021/la704005v.
LAUGA E, 2007, HDB EXPT FLUID DYNAM, CH19.
LEE SH, 1994, J CHEM PHYS, V100, P3334.
LENG Y, 2005, PHYS REV LETT, V94, UNSP 0261014.
LENG YS, 2006, J CHEM PHYS, V124, ARTN 074711.
LENG YS, 2006, J CHEM PHYS, V125, ARTN 104701.
LI TD, 2007, PHYS REV B, V75, ARTN 115415.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIPOWSKY R, 1987, PHYS REV B, V36, P2126.
LIPOWSKY R, 1988, NATO ADV SCI INST E, V157, P227.
LIPOWSKY R, 1994, BIOPHYS CHEM, V49, P27.
LIU P, 2004, J PHYS CHEM B, V108, P6595, DOI 10.1021/jp0375057.
LIU P, 2005, J PHYS CHEM B, V109, P2949, DOI 10.1021/jp0468071.
MAALI A, 2008, APPL PHYS LETT, V92, UNSP 053101-2.
MAMATKULOV SI, 2004, LANGMUIR, V20, P4756, DOI 10.1021/la036036x.
MARK P, 2001, J PHYS CHEM A, V105, P9954.
MILLS R, 1973, J PHYS CHEM-US, V77, P685.
MITTAL J, 2008, P NATL ACAD SCI USA, V105, P20130, DOI 10.1073/pnas.0809029105.
MITTAL J, 2008, PHYS REV LETT, V100, ARTN 145901.
NETZ RR, 1995, EUROPHYS LETT, V29, P345.
NIJMEIJER MJP, 1990, PHYS REV A, V42, P6052.
ODELIUS M, 1997, PHYS REV LETT, V78, P2855.
OOSTENBRINK C, 2004, J COMPUT CHEM, V25, P1656, DOI 10.1002/jcc.20090.
PERTSIN A, 2008, LANGMUIR, V24, P135, DOI 10.1021/la702209g.
PERTSIN A, 2008, LANGMUIR, V24, P4750, DOI 10.1021/la7036313.
PRICE WS, 1999, J PHYS CHEM A, V103, P448.
RAVIV U, 2001, NATURE, V413, P51.
RAVIV U, 2002, SCIENCE, V297, P1540.
REZUS YLA, 2007, PHYS REV LETT, V99, ARTN 148301.
ROWLINSON J, 1982, MOL THEORY CAPILLARI.
SAKUMA H, 2006, PHYS REV LETT, V96, ARTN 046104.
SCHWENDEL D, 2003, LANGMUIR, V19, P2284, DOI 10.1021/la026716k.
SCOTT WRP, 1999, J PHYS CHEM A, V103, P3596.
SEDLMEIER F, 2008, BIOINTERPHASES, V3, FC23, DOI 10.1116/1.2999559.
SERVANTIE J, 2008, PHYS REV LETT, V101, ARTN 026101.
SIMONSEN AC, 2004, J COLLOID INTERF SCI, V273, P291, DOI 10.1016/j.jcis.2003.12.035.
SQUIRES TM, 2005, REV MOD PHYS, V77, P977.
STONE HA, 2004, ANNU REV FLUID MECH, V36, P381, DOI 10.1146/annurev.fluid.36.050802.122124.
SWITKES M, 2004, APPL PHYS LETT, V84, P4759, DOI 10.1063/1.1755837.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1990, SCIENCE, V250, P792.
THOMPSON PA, 1997, NATURE, V389, P360.
TRETHEWAY DC, 2002, PHYS FLUIDS, V14, L9.
TYRRELL JWG, 2001, PHYS REV LETT, V87, ARTN 176104.
VINOGRADOVA OI, 1995, LANGMUIR, V11, P2213.
VINOGRADOVA OI, 2003, LANGMUIR, V19, P1227, DOI 10.1021/la026419f.
WEAST RC, 1986, CRC HDB CHEM PHYS.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WILHELM E, 1977, CHEM REV, V77, P219.
ZANGI R, 2003, PHYS REV LETT, V91, ARTN 025502.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096104.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.
Cited Reference Count: 87
Times Cited: 0
Publisher: AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
Subject Category: Chemistry, Physical
ISSN: 0743-7463
DOI: 10.1021/la901314b
IDS Number: 492KR

Order Full Text

All Customers
    Please contact your library administrator, or person(s) responsible for document delivery, to find out more about your organization's policy for obtaining the full text of the above articles. If your organization does not have a current document delivery provider, your administrator can contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 or 734-459-8565.
IDS Customers
    IDS customers can purchase the full text of an article (having page number, volume, and issue information) by returning this ENTIRE message as a Reply to Sender or Forward to orders@isidoc.com. Mark your choices with an X in the "Order Full Text: []" brackets for each item. For example, [X].

 Please enter your account number here:

Help Desk Contact Information
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page.


ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 1.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000269639800034>
*Order Full Text [ ]
AU Savard, M
Tremblay-Darveau, C
Gervais, G
AF Savard, M.
Tremblay-Darveau, C.
Gervais, G.
TI Flow Conductance of a Single Nanohole
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID CARBON NANOTUBES; SUPERFLUID HE-4; MASS-FLOW; TRANSPORT; NANOPORES
AB The mass flow conductance of single nanoholes with a diameter ranging
from 75 to 100 nm was measured using mass spectrometry. For all
nanoholes, a smooth crossover is observed between single-particle
statistical flow (effusion) and the collective viscous flow emanating
from the formation of a continuum. This crossover is shown to occur
when the gas mean free path matches the size of the nanohole diameter.
As a consequence of the pinhole geometry, the breakdown of the
Poiseuille approximation is observed in the power-law temperature
exponent of the measured conductance.
C1 [Savard, M.; Tremblay-Darveau, C.; Gervais, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
RP Savard, M, McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8,
Canada.
CR AVENEL O, 1985, PHYS REV LETT, V55, P2704
DEKKER C, 2007, NAT NANOTECHNOL, V2, P209, DOI 10.1038/nnano.2007.27
EWART T, 2007, J FLUID MECH, V584, P337, DOI 10.1017/S0022112007006374
FU JP, 2007, NAT NANOTECHNOL, V2, P121, DOI 10.1038/nnano.2006.206
GRUENER S, 2008, PHYS REV LETT, V100, ARTN 064502
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUH D, 2007, NAT MATER, V6, P424, DOI 10.1038/nmat1907
KARNIADAKIS G, 2005, MICROFLOWS NANOFLOWS
LAMBERT G, 2008, LOW TEMP PHYS+, V34, P249, DOI 10.1063/1.2908872
MARCHENKOV A, 2002, PHYS REV B, V65, ARTN 075414
MCCARTY RD, 1973, J PHYS CHEM REF DATA, V2, P923
PEREVERZEV SV, 1997, NATURE, V388, P449
ROY S, 2003, J APPL PHYS, V93, P4870, DOI 10.1063/1.1559936
SATO Y, 2005, J LOW TEMP PHYS, V141, P99, DOI 10.1007/s10909-005-8223-3
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839
SHARIPOV F, 1998, J PHYS CHEM REF DATA, V27, P657
SHERMAN M, 1992, J FLUID ENG-T ASME, V114, P601
STONE HA, 2004, ANNU REV FLUID MECH, V36, P381, DOI
10.1146/annurev.fluid.36.050802.122124
SUKHATME K, 2001, NATURE, V411, P280
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
NR 20
TC 0
PU AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
DI 10.1103/PhysRevLett.103.104502
PD SEP 4
VL 103
IS 10
AR 104502
SC Physics, Multidisciplinary
GA 492FH
UT ISI:000269639800034
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Thursday, September 10, 2009

ISI Web of Knowledge Alert - Ghosh, S

ISI Web of Knowledge Citation Alert

Cited Article: Ghosh, S. Carbon nanotube flow sensors
Alert Expires: 22 OCT 2009
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000269310700057
*Order Full Text [ ]

Title:
Surface Modification of Multiwalled Carbon Nanotubes via Esterification Using a Biodegradable Polyol

Authors:
d'Arlas, BF; Goyanes, S; Rubiolo, GH; Mondragon, I; Corcuera, MA; Eceiza, A

Author Full Names:
Fernandez d'Arlas, B.; Goyanes, S.; Rubiolo, G. H.; Mondragon, I.; Corcuera, M. A.; Eceiza, A.

Source:
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 9 (10): 6064-6071 OCT 2009

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Multiwalled Carbon Nanotubes; Esterification; Biodegradable Polyol

KeyWords Plus:
POLYURETHANE; ADSORPTION; POLYMERS; SENSORS

Abstract:
Multiwalled carbon nanotubes (MWCNT) were surface modified firstly oxidizing them with a H2SO4/HNO3 mixture to obtain more reactive carboxylic groups on their surface and then higher functionality. Secondly the oxidized nanotubes (MWCNT-COOH) were dispersed in tetrahydrofuran (THF) and made react via esterification with a poly(hexamethylene carbonate-co-caprolactone)diol, a potentially biodegradable polyol with hydroxyl groups at its ends. Modification process steps were (THF) characterized using Fourier transform infrared spectroscopy, FTIR, ultraviolet spectroscopy, UV, solubility in different solvents, thermo-gravimetric analysis, TGA, as well as atomic force microscopy, AFM. Results suggest that surface carboxylic groups are reactive enough to graft polymer chains onto their surface.

Reprint Address:
Eceiza, A, Euskal Herriko Unibertsitatea, Eskola Politeknikoa, Dept Chem & Environm Engn, Mat & Technol Grp, Pza Europa 1, Donostia San Sebastian 20018, Spain.

Research Institution addresses:
[Fernandez d'Arlas, B.; Mondragon, I.; Corcuera, M. A.; Eceiza, A.] Euskal Herriko Unibertsitatea, Eskola Politeknikoa, Dept Chem & Environm Engn, Mat & Technol Grp, Donostia San Sebastian 20018, Spain; [Goyanes, S.; Rubiolo, G. H.] Univ Nac Buenos Aires, CONICET, Lab Polimeros & Mat Compuestos, FCEyN, RA-1428 Buenos Aires, DF, Argentina; [Rubiolo, G. H.] CNEA, Unidad Actividad Mat, RA-1650 Buenos Aires, DF, Argentina

Cited References:
ELLI S, 2008, POLYMER, V49, P1716.
GECKELER K, 2006, AM SCI PUBL, P143.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GOYANES S, 2007, DIAM RELAT MATER, V16, P412, DOI 10.1016/j.diamond.2006.08.021.
IIJIMA S, 1991, NATURE, V56, P354.
KANG IP, 2006, COMPOS PART B-ENG, V37, P382, DOI 10.1016/j.compositesb.2006.02.011.
KHANG D, 2005, REV ADV MATER SCI, V10, P205.
KONG J, 2000, SCIENCE, V287, P622.
KUAN HC, 2005, COMPOS SCI TECHNOL, V65, P1703, DOI 10.1016/j.compscitech.2005.02.017.
LOVAT V, 2005, NANO LETT, V5, P1107, DOI 10.1021/nl050637m.
MATTSON MP, 2000, J MOL NEUROSCI, V14, P175.
MENG J, 2005, J BIOMED MATER RES A, V74, P208, DOI 10.1002/jbm.a.30315.
MORRISON RT, 1987, ORGANIC CHEM, P826.
NAPAL D, 2006, AM SCI PUBL, P57.
WANG TJ, 1996, POLYM ADVAN TECHNOL, V7, P88.
WEBSTER TJ, 2004, NANOTECHNOLOGY, V15, P48.
XIA HS, 2006, MACROMOL CHEM PHYSIC, V207, P1945, DOI 10.1002/macp.200600349.
XIE L, 2007, MACROMOLECULES, V40, P3296, DOI 10.1021/ma062103t.
XIONG JW, 2006, POLYMER, V47, P1763, DOI 10.1016/j.polymer.2006.01.083.
ZWEISTRA HJA, 2006, PHYS REV E 1, V74, P1806.

Cited Reference Count:
20

Times Cited:
0

Publisher:
AMER SCIENTIFIC PUBLISHERS; 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1533-4880

DOI:
10.1166/jnn.2009.1560

IDS Number:
487XE

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000269310600079
*Order Full Text [ ]

Title:
Ultrafast Switching Time and Third Order Nonlinear Coefficients of Microwave Treated Single Walled Carbon Nanotube Suspensions

Authors:
Kamaraju, N; Kumar, S; Karthikeyan, B; Kakade, B; Pillai, VK; Sood, AK

Author Full Names:
Kamaraju, N.; Kumar, Sunil; Karthikeyan, B.; Kakade, Bhalchandra; Pillai, Vijayamohanan K.; Sood, A. K.

Source:
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 9 (9): 5550-5554 SEP 2009

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Ultra-Fast Switching; SWCNT; Nonlinear Optical Coefficients

KeyWords Plus:
ABSORPTION; FUNCTIONALIZATION

Abstract:
Microwave treated water soluble and amide functionalized single walled carbon nanotubes have been investigated using femtosecond degenerate pump-probe and nonlinear transmission experiments. The time resolved differential transmission using 75 femtosecond pulse with the central wavelength of 790 nm shows a bi-exponential ultrafast photo-bleaching with time constants of 160 fs (130 fs) and 920 fs (300 fs) for water soluble (amide functionalized) nanotubes. Open and closed aperture z-scans show saturation absorption and positive (negative) nonlinear refraction for water soluble (amide functionalized) nanotubes. Two photon absorption coefficient, beta(0) similar to 250 cm/GW (650 cm/GW) and nonlinear index, gamma similar to 15 cm(2)/pW (-30 cm(2)/pW) are obtained from the theoretical fit in the saturation limit to the data for two types of nanotubes.

Reprint Address:
Sood, AK, Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India.

Research Institution addresses:
[Kamaraju, N.; Kumar, Sunil; Karthikeyan, B.; Sood, A. K.] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India; [Kamaraju, N.; Kumar, Sunil; Karthikeyan, B.; Sood, A. K.] Indian Inst Sci, Ctr Ultrafast Laser Applicat, Bangalore 560012, Karnataka, India; [Kakade, Bhalchandra; Pillai, Vijayamohanan K.] Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, Maharashtra, India

Cited References:
CHEN J, 1998, SCIENCE, V282, P95.
COLLINS PG, 1997, SCIENCE, V278, P100.
ELLINGSON RJ, 2005, PHYS REV B, V71, P5444.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
HAMON MA, 1999, ADV MATER, V11, P834.
JIN ZX, 2000, CHEM PHYS LETT, V318, P505.
KAKADE BA, 2008, APPL SURF SCI, V254, P4936, DOI 10.1016/j.apsusc.2008.01.148.
KAKADE BA, 2008, J PHYS CHEM C, V112, P3183, DOI 10.1021/jp711657f.
KAMARAJU N, 2007, APPL PHYS LETT, V91, P51103.
KANNAN R, 2008, ANGEW CHEM INT EDIT, V47, P1.
KONOROV SO, 2003, J RAMAN SPECTROSC, V34, P1018, DOI 10.1002/jrs.1080.
MAEDA A, 2005, PHYS REV LETT, V94, P7404.
MANZONI C, 2005, PHYS REV LETT, V94, P7401.
MARGULIS VA, 2001, J OPT A-PURE APPL OP, V3, P267.
MISEWICH JA, 2003, SCIENCE, V300, P783.
OJOSTIC GN, 2004, PHYS REV LETT, V92, P7402.
PRASAD BLV, 2001, PHYS REV B, V64, P5407.
RAO AM, 1997, NATURE, V388, P257.
SAKAKIBARA Y, 2003, JPN J APPL PHYS 2, V42, L494, DOI 10.1143/JJAP.42.L494.
VIVIEN L, 1999, CHEM PHYS LETT, V307, P317.
WANG YB, 2006, J AM CHEM SOC, V128, P95, DOI 10.1021/ja053003q.
YANG JP, 2005, PHYS CHEM CHEM PHYS, V7, P512, DOI 10.1039/b415524f.

Cited Reference Count:
22

Times Cited:
0

Publisher:
AMER SCIENTIFIC PUBLISHERS; 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1533-4880

DOI:
10.1166/jnn.2009.1184

IDS Number:
487XD

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000269288500009
*Order Full Text [ ]

Title:
Orientational Dynamics and Dielectric Response of Nanopore Water

Authors:
Kofinger, J; Dellago, C

Author Full Names:
Koefinger, Juergen; Dellago, Christoph

Source:
PHYSICAL REVIEW LETTERS 103 (8): Art. No. 080601 AUG 21 2009

Language:
English

Document Type:
Article

KeyWords Plus:
BORON-NITRIDE NANOTUBE; CARBON NANOTUBES; CONDUCTION; TRANSPORT; PORES

Abstract:
We present numerical calculations, simulation results, and analytical considerations for the frequency-dependent dielectric constant of single-file water in narrow nanopores, described by a recently developed dipole lattice model. We find Debye relaxation over all length scales with relaxation times that strongly depend on pore length. This behavior is analyzed in terms of the dynamics of orientational defects leading to simple quantitative expressions for the static dielectric susceptibility and the relaxation time in the limits of short and long pores. Based on these formulas, we suggest how the predicted macroscopic order of nanopore water can be probed via dielectric spectroscopy and explain how the excitation energy, diffusion constant, and effective interaction of the defects that destroy the order can be extracted from such measurements.

Reprint Address:
Kofinger, J, Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria.

Research Institution addresses:
[Koefinger, Juergen] Univ Vienna, Fac Phys, A-1090 Vienna, Austria; Univ Vienna, Ctr Computat Mat Sci, A-1090 Vienna, Austria

Cited References:
BAXTER RJ, 2007, EXACTLY SOLVED MODEL.
BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI 10.1073/pnas.0408098102.
BUTTER K, 2003, NAT MATER, V2, P88.
DELLAGO C, 2003, PHYS REV LETT, V90, P5902.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
DENDZIK Z, 2008, J NON-CRYST SOLIDS, V354, P4300, DOI 10.1016/j.jnoncrysol.2008.06.042.
ERNE BH, 2007, J MAGN MAGN MATER, V311, P145, DOI 10.1016/j.jmmm.2006.11.169.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GLAUBER RJ, 1963, J MATH PHYS, V4, P294.
HILLE B, 2001, ION CHANNELS EXCITAB.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOFINGER J, IN PRESS.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOFINGER J, 2009, J CHEM PHYS, V130, P54110, ARTN 154110.
MATYUSHOV DV, 2007, J CHEM PHYS, V127, P54702, ARTN 054702.
MCQUARRIE DA, 2000, STAT MECH.
METROPOLIS M, 1953, J CHEM PHYS, V21, P1087.
PUNTES VF, 2001, APPL PHYS LETT, V78, P2187.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
SAHA SK, 2006, APPL PHYS LETT, V89, P43117, ARTN 043117.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VANKAMPEN NG, 1992, STOCHASTIC PROCESSES.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
WON CY, 2008, J PHYS CHEM C, V112, P1812, DOI 10.1021/jp076747u.
XU DS, 2003, NEW J CHEM, V27, P300, DOI 10.1039/b204359a.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
28

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Multidisciplinary

ISSN:
0031-9007

DOI:
10.1103/PhysRevLett.103.080601

IDS Number:
487PY

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000269337800016
*Order Full Text [ ]

Title:
The effect of Fe doping on adsorption of CO2/N-2 within carbon nanotubes: a density functional theory study with dispersion corrections

Authors:
Du, AJ; Sun, CH; Zhu, ZH; Lu, GQ; Rudolph, V; Smith, SC

Author Full Names:
Du, A. J.; Sun, C. H.; Zhu, Z. H.; Lu, G. Q.; Rudolph, V.; Smith, Sean C.

Source:
NANOTECHNOLOGY 20 (37): Art. No. 375701 SEP 16 2009

Language:
English

Document Type:
Article

KeyWords Plus:
MEMBRANES; FLUX

Abstract:
An ab initio density functional theory (DFT) study with correction for dispersive interactions was performed to study the adsorption of N-2 and CO2 inside an (8, 8) single-walled carbon nanotube. We find that the approach of combining DFT and van der Waals correction is very effective for describing the long-range interaction between N-2/CO2 and the carbon nanotube (CNT). Surprisingly, exohedral doping of an Fe atom onto the CNT surface will only affect the adsorption energy of the quadrupolar CO2 molecule inside the CNT (20-30%), and not that of molecular N-2. Our results suggest the feasibility of enhancement of CO2/N-2 separation in CNT-based membranes by using exohedral doping of metal atoms.

Reprint Address:
Du, AJ, Univ Queensland, AIBN, Ctr Computat Mol Sci, Bldg 75, Brisbane, Qld 4072, Australia.

Research Institution addresses:
[Du, A. J.; Sun, C. H.; Smith, Sean C.] Univ Queensland, AIBN, Ctr Computat Mol Sci, Brisbane, Qld 4072, Australia; [Du, A. J.; Sun, C. H.; Lu, G. Q.; Smith, Sean C.] Univ Queensland, AIBN, ARC Ctr Funct Nanomat, Brisbane, Qld 4072, Australia; [Zhu, Z. H.; Rudolph, V.] Univ Queensland, Sch Engn, Div Chem Engn, Brisbane, Qld 4072, Australia

E-mail Address:
a.du@uq.edu.au; z.zhu@uq.edu.au; s.smith@uq.edu.au

Cited References:
*IBM CORP, 1990, CPMD V3 13 2.
ARORA G, 2007, NANO LETT, V7, P565, DOI 10.1021/nl062201s.
CARR R, 1985, PHYS REV LETT, V55, P2471.
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI 10.1016/j.memsci.2005.06.030.
DU AJ, 2005, NANOTECHNOLOGY, V16, P2118, DOI 10.1088/0957-4484/16/10/024.
FAGAN SB, 2003, PHYS REV B, V67, ARTN 205414.
FREEMAN BD, 1999, MACROMOLECULES, V32, P375.
GRIMME S, 2006, J COMPUT CHEM, V27, P1787, DOI 10.1002/jcc.20495.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HSIEH HP, 1996, INORGANIC MEMBRANES.
HUMMER G, 2001, NATURE, V414, P188.
MAJUMDER M, 2005, NATURE, V438, P7064.
MONKHORST HJ, 1976, PHYS REV B, V13, P5188.
PERDEW JP, 1996, PHYS REV LETT, V77, P865.
PRESS WH, 1992, NUMERICAL RECIPES.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
VIDALI G, 1991, SURF SCI REP, V12, P133.
ZHANG ZQ, 2008, PHYS REV B, V78, ARTN 035439.
ZHAO JJ, 2002, NANOTECHNOLOGY, V13, P195.
ZHU ZH, 2004, CARBON, V42, P2509, DOI 10.1016/j.carbon.2004.05.019.

Cited Reference Count:
22

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Engineering, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied

ISSN:
0957-4484

DOI:
10.1088/0957-4484/20/37/375701

IDS Number:
488GR

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000269310600032
*Order Full Text [ ]

Title:
Reorientation of Water Inside Carbon Nanorings by Large Angular Jumps

Authors:
Mukherjee, B; Maiti, PK; Dasgupta, C; Sood, AK

Author Full Names:
Mukherjee, Biswaroop; Maiti, Prabal K.; Dasgupta, Chandan; Sood, A. K.

Source:
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 9 (9): 5303-5306 SEP 2009

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
MD Simulation; Carbon Nanoring; Orientational Dynamics

KeyWords Plus:
CONDUCTION; DYNAMICS; MOLECULES; MECHANISM; CHANNEL; PROTON; MODELS; ORDER

Abstract:
Molecular dynamics simulations of the orientational dynamics of water molecules confined inside narrow carbon nanorings reveal that reorientational relaxation is mediated by large amplitude angular jumps. The distribution of waiting time between jumps peaks at about 60 fs, and has a slowly decaying exponential tail with a timescale of about 440 fs. These time scales are much faster than the mean waiting time between jumps of the water molecules in bulk.

Reprint Address:
Sood, AK, Indian Inst Sci, Dept Phys, Ctr Condensed Matter Theory, Bangalore 560012, Karnataka, India.

Research Institution addresses:
[Mukherjee, Biswaroop; Maiti, Prabal K.; Dasgupta, Chandan; Sood, A. K.] Indian Inst Sci, Dept Phys, Ctr Condensed Matter Theory, Bangalore 560012, Karnataka, India; [Mukherjee, Biswaroop; Dasgupta, Chandan] Jawaharlal Nehru Ctr Adv Sci Res, Condensed Matter Theory Unit, Bangalore 560064, Karnataka, India

Cited References:
ATKINS PW, 1998, PHYS CHEM.
BAGCHI B, 2005, CHEM REV, V105, P3197, DOI 10.1021/cr020661+.
CASE DA, 1999, AMBER7.
DEBENEDETTI PG, 2003, PHYS TODAY, V40.
DELLAGO C, 2003, PHYS REV LETT, V90, P5902.
ERRINGTON JR, 2001, NATURE, V409, P318.
HANASAKI I, 2006, J PHYS CONDENS MATT, V20, P15213.
HUMMER G, 2001, NATURE, V414, P188.
IVANOV EN, 1964, SOV PHYS JETP, V18, P1041.
LAAGE D, 2006, CHEM PHYS LETT, V433, P80, DOI 10.1016/j.cplett.2006.11.035.
LAAGE D, 2006, SCIENCE, V311, P832, DOI 10.1126/science.1122154.
LAAGE D, 2007, P NATL ACAD SCI USA, V104, P11167, DOI 10.1073/pnas.0701699104.
LYNDENBELL RM, 2005, J PHYS CHEM B, V109, P6527, DOI 10.1021/jp0458553.
MARX D, 1999, NATURE, V397, P601.
POMES R, 2002, BIOPHYS J, V82, P2304.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
16

Times Cited:
0

Publisher:
AMER SCIENTIFIC PUBLISHERS; 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1533-4880

DOI:
10.1166/jnn.2009.1124

IDS Number:
487XD

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000269430600012
*Order Full Text [ ]

Title:
A molecular dynamics study of the Gibbs free energy of solvation of fullerene particles in octanol and water

Authors:
Redmill, PS; Capps, SL; Cummings, PT; McCabe, C

Author Full Names:
Redmill, Patrick S.; Capps, Shannon L.; Cummings, Peter T.; McCabe, Clare

Source:
CARBON 47 (12): 2865-2874 OCT 2009

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; C-60 FULLERENE; SOLVENT MIXTURES; PHASE-EQUILIBRIA; ORGANIC-SOLVENTS; SOLUBILITY; ALKANES; C-70; GENOTOXICITY; SIMULATIONS

Abstract:
The Gibbs free energy of solvation (Delta G(solv)) for C-60, and six other idealized, non-functionalized, fullerene particles of differing size and shape has been determined in octanol and water solvents from molecular dynamics simulations using thermodynamic integration. In particular, we have studied Buckminster fullerene (C-60) and open and capped carbon nanotubes of different aspect ratios and solvent accessible surface areas. Knowledge of the Delta G(solv) of a molecule in octanol and water can be used to understand the partitioning of the molecule between organic and aqueous phases and is one of several parameters used to model the fate of chemicals in the natural environment. The simulations were performed at ambient conditions, i.e., a temperature of 25 degrees C and a pressure of 1 bar. The fullerene molecules are all found to have a very high Delta G(solv) in water, and a very low Delta G(solv) in octanol, suggesting a strong preference for the organic phase. From !
a comparison of the results for capped and uncapped carbon nanotubes we found that the uncapped tubes exhibit significantly higher Delta G(solv) than capped tubes. Furthermore, for capped carbon nanotubes, hydrophobic/organophilic shifts are observed with increasing excluded volume and solvent accessible surface area. (C) 2009 Elsevier Ltd. All rights reserved.

Reprint Address:
McCabe, C, Vanderbilt Univ, Dept Chem & Biomol Engn, 221 Kirkland Hall, Nashville, TN 37235 USA.

Research Institution addresses:
[Redmill, Patrick S.; Capps, Shannon L.; Cummings, Peter T.; McCabe, Clare] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA; [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA; [McCabe, Clare] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA

E-mail Address:
c.mccabe@vanderbilt.edu

Cited References:
ABASCAL JLF, 2005, J CHEM PHYS, V123, UNSP 234505:1-12.
ANDREEV S, 2005, J CHEM PHYS, V123, UNSP 194502:1-91.
AVRAMENKO NV, 2006, J THERM ANAL CALORIM, V84, P259, DOI 10.1007/s10973-005-7172-z.
BECK MT, 1998, PURE APPL CHEM, V70, P1881.
BENNAIM A, 1987, SOLVATION THERMODYNA.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BEUTLER TC, 1994, CHEM PHYS LETT, V222, P524.
BOARKE AD, 2003, J PHYS CHEM B, V107, P6079.
BOJAN MJ, 1987, LANGMUIR, V3, P1123.
BRANT J, 2005, J NANOPART RES, V7, P545, DOI 10.1007/s11051-005-4884-8.
BRANZ W, 2002, PHYS REV B, V66, P1.
CHEN B, 2001, J PHYS CHEM B, V105, P3093.
CHEN B, 2003, J PHYS CHEM B, V107, P12320, DOI 10.1021/jp0361069.
CHIANG LY, 1992, J AM CHEM SOC, V114, P10154.
DAROS T, 1999, CHEM COMMUN 0421, P663.
DHAWAN A, 2006, ENVIRON SCI TECHNOL, V40, P7394, DOI 10.1021/es0609708.
DUMORTIER H, 2006, NANO LETT, V6, P1522, DOI 10.1021/nl061160x.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
HAGEN MHJ, 1993, NATURE, V365, P425.
HANSEN CM, 2004, CARBON, V42, P1591, DOI 10.1016/j.carbon.2004.02.011.
HELMY AK, 2007, APPL SURF SCI, V253, P4966, DOI 10.1016/j.apsusc.2006.11.001.
HUMMER G, 2001, NATURE, V414, P188.
JEDLOVSZKY P, 1998, J CHEM PHYS, V108, P8528.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KROTO HW, 1987, NATURE, V329, P529.
KULKARNI PP, 2008, ENVIRON SCI TECHNOL, V42, P845, DOI 10.1021/es071062t.
LIU X, 2005, CHEM REV, V105, P3643.
MAGREZ A, 2006, NANO LETT, V6, P1121, DOI 10.1021/nl060162e.
MARCUS Y, 2001, J PHYS CHEM B, V105, P2499.
MAYO SL, 1990, J PHYS CHEM-US, V94, P8897.
MCCABE C, 2003, J PHYS CHEM B, V107, P12307, DOI 10.1021/jp0352332.
MCQUARRIE DA, 2000, STAT MECH.
MIYAWAKI J, 2008, ACS NANO, V2, P213, DOI 10.1021/nn700185t.
MOORE JW, 1981, KINETICS MECH.
NI B, 2001, J PHYS CHEM B, V105, P12719, DOI 10.1021/jp0123233.
OBERDOSTER E, 2007, ENV HLTH PERSPECT, V112, P1058.
PARICAUD P, 2005, J CHEM PHYS, V122, UNSP 244511:1-14.
PEDRETTI A, 2002, J MOL GRAPH MODEL, V21, P47.
PETTERSEN EF, 2004, J COMPUT CHEM, V25, P1605, DOI 10.1002/jcc.20084.
RUDALEVIGE T, 1998, J PHYS CHEM A, V102, P9797.
SANNER MF, 1996, BIOPOLYMERS, V38, P305.
SAYES CM, 2004, NANO LETT, V4, P1881, DOI 10.1021/nl0489586.
SIVARAMAN N, 1992, J ORG CHEM, V57, P6077.
SMITH W, 2003, DL POLY.
SRIRAMAN S, 2005, PHYS REV LETT, V95, P1.
STILL WC, 1990, J AM CHEM SOC, V112, P6127.
SZENDI K, 2008, ANTICANCER RES, V28, P349.
TERASHIMA M, 2007, CHEM LETT, V36, P302.
TOKUYAMA H, 1993, J AM CHEM SOC, V115, P7918.
VEETIL JV, 2007, BIOTECHNOL PROGR, V23, P517, DOI 10.1021/bp0602395.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WALTHER JH, 2004, CARBON, V42, P1185, DOI 10.1016/j.carbon.2003.12.071.
WESCOTT JT, 2002, J CHEM PHYS, V116, P2361.
ZHAO XC, 2005, BIOPHYS J, V89, P3856, DOI 10.1529/biophysj.105.064410.
ZHAO XC, 2008, J PHYS CHEM C, V112, P8898, DOI 10.1021/jp801180w.

Cited Reference Count:
56

Times Cited:
0

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0008-6223

DOI:
10.1016/j.carbon.2009.06.040

IDS Number:
489OT

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert
Cited Article:   Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires:   21 OCT 2009
Number of Citing Articles:   2 new records this week (2 in this e-mail)
Organization ID:   3b97d1bbc1878baed0ab183d8b03130b

Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.

*Record 1 of 2.
*Click Here to View Full Record
*Order Full Text [ ]
Title: Molecular dynamics-continuum hybrid simulation for condensation of gas flow in a microchannel
Authors: Sun, J; He, YL; Tao, WQ
Author Full Names: Sun, Jie; He, Ya-Ling; Tao, Wen-Quan
Source: MICROFLUIDICS AND NANOFLUIDICS 7 (3): 407-422 NOV 2009
Language: English
Document Type: Article
Author Keywords: Molecular dynamics; Finite volume method; Multiscale coupling; Hybrid method; Condensation; Micro fluidics
KeyWords Plus: ATOMISTIC SIMULATION; FLUID; PARTICLE; RESISTANCE; EQUATION; SURFACE; MODEL
Abstract: A molecular dynamics-continuum coupling method combining fluid flow and heat transfer is developed to study the condensation process of gas flow in a microchannel. The computational domain is decomposed into particle (P), continuum (C) and overlap (O) regions with solving approaches of molecular dynamics simulation, finite volume method and the developed coupling method, respectively. Continuities of momentum and energy in O region are ensured by constraint dynamics and the Langevin method. The validity of the developed method is confirmed by a good agreement between hybrid results and analytical solutions from two cases including the unsteady dynamical and thermal problems. For the condensation process of gas flow, the hybrid transient velocity and temperature fields indicate that the process does not progress smoothly but wavily with noticeable fluctuation, leading to oscillation in temperature field and recirculation flow in velocity field. Analysis based on heat and mass! transfer is carried out in P region, and the Kapitza resistance and the thermal conductivity in liquid are obtained with the satisfying agreement with experimental data, which shows the availability of the developed model for the investigation on the thermal boundary resistance. The good performance had demonstrated that the developed coupling method and computational model are available to provide a multiscale overview in dynamical and thermal problems including phase-transition from nanoscale to microscale, which will show significantly potential in micro fluidics and thermal engineering.
Reprint Address: He, YL, Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China.
Research Institution addresses: [Sun, Jie; He, Ya-Ling; Tao, Wen-Quan] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China
E-mail Address: thisissj@163.com; yalinghe@mail.xjtu.edu.cn
Cited References: *NIST, 2005, THERM PROP FLUID SYS.
CARSLAW HS, 1986, CONDUCTION HEAT SOLI.
CENGEL YA, 2002, THERMODYNAMICS ENG A.
CHAN YL, 1985, INT J HEAT MASS TRAN, V28, P603.
DELGADOBUSCALIO.R, 2003, PHYS REV E, V119.
DELGADOBUSCALIONI R, 2003, J CHEM PHYS, V119, P978, DOI 10.1063/1.1579475.
DELGADOBUSCALIONI R, 2005, EUROPHYS LETT, V69, P959, DOI 10.1209/epl/i2004-10431-y.
DELGADOBUSCALIONI R, 2006, PHYSICA A, V362, P30, DOI 10.1016/j.physa.2005.09.011.
FLEKKOY EG, 2000, EUROPHYS LETT, V52, P271.
FLEKKOY EG, 2005, PHYS REV E, V69.
HADJICONSTANTINOU NG, 1997, INT J MOD PHYS C, V8, P967.
HADJICONSTANTINOU NG, 1999, J COMPUT PHYS, V154, P245.
HADJICOSTANTINOU NG, 1999, PHYS REV E B, V59, P2475.
JOHNSON JK, 1993, MOL PHYS, V78, P591.
KHORDAD R, 2008, PHYSICA A, V387, P4519, DOI 10.1016/j.physa.2008.03.025.
LIU J, 2007, J COMPUT PHYS, V227, P279.
MARUYAMA S, 1999, THERMAL SCI ENG, V7, P63.
MARUYAMA S, 2000, ADV NUMERICAL HEAT T, V2, P189.
NAGAYAMA G, 2003, J CHEM PHYS, V118, P1392, DOI 10.1063/1.1528192.
NIE XB, 2004, J FLUID MECH, V500, P55, DOI 10.1017/S0022112003007225.
NIE XB, 2004, PHYS FLUIDS, V16, P3579, DOI 10.1063/1.1779531.
NIE XB, 2006, PHYS REV LETT, V500.
OCONNELL ST, 1995, PHYS REV E, V52, P5792.
RAPAPORT DC, 2004, ART MOL DYNAMICS SIM.
STODDARD SD, 1973, PHYS REV A, V8, P1504.
SWARTZ ET, 1989, REV MOD PHYS, V61, P605.
THOMPSON PA, 1997, NATURE, V389, P360.
VERSTEEG HK, 1995, INTRO COMPUTATIONAL.
WAGNER G, 2002, COMPUT PHYS COMMUN, V147, P670.
WANG CS, 2007, INT J THERM SCI, V46, P1203, DOI 10.1016/j.ijthermalsci.2007.01.009.
WANG YC, 2007, CHEM ENG SCI, V62, P3574.
WERDER T, 2005, J COMPUT PHYS, V205, P373, DOI 10.1016/j.jcp.2004.11.019.
XU JL, 2007, INT J HEAT MASS TRAN, V50, P2571, DOI 10.1016/j.ijheatmasstransfer.2006.11.031.
YEN TH, 2007, MICROFLUID NANOFLUID, V3, P729, DOI 10.1007/s10404-007-0202-3.
YI P, 2002, INT J HEAT MASS TRAN, V45, P2087.
Cited Reference Count: 35
Times Cited: 0
Publisher: SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
Subject Category: Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas
ISSN: 1613-4982
DOI: 10.1007/s10404-008-0394-1
IDS Number: 486OD

*Record 2 of 2.
*Click Here to View Full Record
*Order Full Text [ ]
Title: The dynamics and rheology of a dilute suspension of hydrodynamically Janus spheres in a linear flow
Authors: Ramachandran, A; Khair, AS
Author Full Names: Ramachandran, Arun; Khair, Aditya S.
Source: JOURNAL OF FLUID MECHANICS 633: 233-269 AUG 25 2009
Language: English
Document Type: Article
KeyWords Plus: NO-SHEAR CONDITIONS; BOUNDARY-CONDITION; STOKES-FLOW; PARTICLES; SLIP; ANISOTROPY; MOTION; INTERFACES; SURFACES; DESIGN
Abstract: The creeping motion of a hydrodynamically 'Janus' spherical particle, whose surface is partitioned into two distinct regions, is investigated. Oil one region, fluid adjacent to the particle obeys the no-slip condition, whereas on the other, fluid slips past the particle. The fore-aft asymmetry of this 'slip-stick' sphere (Swan & Khair, J. Fluid Mech., vol. 606, 2008, p. 115) leads to a number of interesting results when it is placed in different flows, which is illustrated by computing the particle motion to first order in the ratio of slip length to particle radius. For example, in a pure straining field the sphere attains an equilibrium orientation either along the compressional or extensional axis of the flow, depending on the ratio of slip-to-stick surface areas. In a simple shear flow, on the other hand, the slip-stick sphere undergoes a periodic rotational motion, or Jeffrey orbit. Moreover, depending on its initial orientation, the particle can either follow a per! iodic translational orbit or undergo a net displacement along the flow direction. Lastly, to first order in the volume fraction of slip-stick spheres, the suspension rheology is non-Newtonian, with non-zero first and second normal stress differences.
Reprint Address: Ramachandran, A, Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA.
Research Institution addresses: [Ramachandran, Arun; Khair, Aditya S.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
E-mail Address: akhair@engineering.uscb.edu
Cited References: BASSET AB, 1961, TREATISE HYDRODYNAMI.
BATCHELOR GK, 1970, J FLUID MECH, V41, P545.
BATCHELOR GK, 1973, INTRO FLUID DYNAMICS.
BEHREND CJ, 2005, J MAGN MAGN MATER, V293, P663, DOI 10.1016/j.jmmm.2005.02.072.
BEITEL A, 1971, CHEM ENG SCI, V26, P711.
BOEHNKE UC, 1999, J COLLOID INTERF SCI, V211, P243.
BRETHERTON FP, 1962, J FLUID MECH, V14, P284.
CASAGRANDE C, 1989, EUROPHYS LETT, V9, P251.
CAYRE O, 2003, J MATER CHEM, V13, P2445, DOI 10.1039/b308817k.
CHENG JT, 2002, PHYS REV E 1, V65, ARTN 031206.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
DEGENNES PG, 1992, REV MOD PHYS, V64, P645.
DIETRICH C, 2001, BIOPHYS J, V80, P1417.
DORREPAAL JM, 1978, J FLUID MECH, V84, P265.
EINSTEIN A, 1906, ANN PHYS-BERLIN, V19, P289.
ERICKSEN JL, 1960, ARCH RATION MECH AN, V4, P231.
GANGWAL S, 2008, PHYS REV LETT, V100, ARTN 058302.
GLASER N, 2006, LANGMUIR, V22, P5227, DOI 10.1021/1a060693i.
GLOTZER SC, 2007, NAT MATER, V6, P557, DOI 10.1038/nmat1949.
HAPPEL J, 1965, LOW REYNOLDS NUMBER.
HINCH EJ, 1972, J FLUID MECH, V52, P683.
HONG L, 2006, LANGMUIR, V22, P9459.
HOWSE JR, 2007, PHYS REV LETT, V99, ARTN 048102.
KIM S, 2005, MICROHYDRODYNAMICS P.
KORLACH J, 1999, P NATL ACAD SCI USA, V96, P8461.
LAMB H, 1932, HYDRODYNAMICS.
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695.
LAUGA E, 2007, HDB EXPT FLUID DYNAM, P1219.
LEAL LG, 2007, ADV TRANSPORT PHENOM.
NAVIER CLM, 1823, MEMOIRES ACAD ROYALE, V6, P389.
NIE ZH, 2006, J AM CHEM SOC, V128, P9408, DOI 10.1021/ja060882n.
NIR A, 1973, J FLUID MECH, V59, P209.
NISISAKO T, 2006, ADV MATER, V18, P1152, DOI 10.1002/adma.200502431.
PERRO A, 2005, J MATER CHEM, V15, P3745, DOI 10.1039/b505099e.
PHILIP JR, 1972, Z ANGEW MATH PHYS, V23, P353.
PHILIP JR, 1972, Z ANGEW MATH PHYS, V23, P960.
PRIEZJEV NV, 2005, PHYS REV E 1, V71, ARTN 041608.
ROH KH, 2005, NAT MATER, V4, P759, DOI 10.1038/nmat1486.
SADHAL SS, 1983, J FLUID MECH, V126, P237.
SQUIRES TM, 2006, J FLUID MECH, V560, P65, DOI 10.1017/S0022112006000371.
SWAN JW, 2008, J FLUID MECH, V606, P115, DOI 10.1017/S0022112008001614.
TAKEI H, 1997, LANGMUIR, V13, P1865.
TAYLOR GI, 1971, J FLUID MECH, V49, P319.
THOMPSON PA, 1997, NATURE, V389, P360.
TYRRELL JWG, 2001, PHYS REV LETT, V87, ARTN 176104.
VELEV OD, 2000, SCIENCE, V287, P2240.
WALTHER A, 2008, SOFT MATTER, V4, P663, DOI 10.1039/b718131k.
Cited Reference Count: 47
Times Cited: 0
Publisher: CAMBRIDGE UNIV PRESS; 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
Subject Category: Mechanics; Physics, Fluids & Plasmas
ISSN: 0022-1120
DOI: 10.1017/S0022112009007472
IDS Number: 489IC

Order Full Text

All Customers
    Please contact your library administrator, or person(s) responsible for document delivery, to find out more about your organization's policy for obtaining the full text of the above articles. If your organization does not have a current document delivery provider, your administrator can contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 or 734-459-8565.
IDS Customers
    IDS customers can purchase the full text of an article (having page number, volume, and issue information) by returning this ENTIRE message as a Reply to Sender or Forward to orders@isidoc.com. Mark your choices with an X in the "Order Full Text: []" brackets for each item. For example, [X].

 Please enter your account number here:

Help Desk Contact Information
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page.


ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 18 OCT 2009
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 2.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000269288500009>
*Order Full Text [ ]
AU Kofinger, J
Dellago, C
AF Koefinger, Juergen
Dellago, Christoph
TI Orientational Dynamics and Dielectric Response of Nanopore Water
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID BORON-NITRIDE NANOTUBE; CARBON NANOTUBES; CONDUCTION; TRANSPORT; PORES
AB We present numerical calculations, simulation results, and analytical
considerations for the frequency-dependent dielectric constant of
single-file water in narrow nanopores, described by a recently
developed dipole lattice model. We find Debye relaxation over all
length scales with relaxation times that strongly depend on pore
length. This behavior is analyzed in terms of the dynamics of
orientational defects leading to simple quantitative expressions for
the static dielectric susceptibility and the relaxation time in the
limits of short and long pores. Based on these formulas, we suggest how
the predicted macroscopic order of nanopore water can be probed via
dielectric spectroscopy and explain how the excitation energy,
diffusion constant, and effective interaction of the defects that
destroy the order can be extracted from such measurements.
C1 [Koefinger, Juergen] Univ Vienna, Fac Phys, A-1090 Vienna, Austria.
Univ Vienna, Ctr Computat Mat Sci, A-1090 Vienna, Austria.
RP Kofinger, J, Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna,
Austria.
CR BAXTER RJ, 2007, EXACTLY SOLVED MODEL
BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI
10.1073/pnas.0408098102
BUTTER K, 2003, NAT MATER, V2, P88
DELLAGO C, 2003, PHYS REV LETT, V90, P5902
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901
DENDZIK Z, 2008, J NON-CRYST SOLIDS, V354, P4300, DOI
10.1016/j.jnoncrysol.2008.06.042
ERNE BH, 2007, J MAGN MAGN MATER, V311, P145, DOI
10.1016/j.jmmm.2006.11.169
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
10.1073/pnas.0710437105
GLAUBER RJ, 1963, J MATH PHYS, V4, P294
HILLE B, 2001, ION CHANNELS EXCITAB
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KOFINGER J, IN PRESS
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI
10.1073/pnas.0801448105
KOFINGER J, 2009, J CHEM PHYS, V130, P54110, ARTN 154110
MATYUSHOV DV, 2007, J CHEM PHYS, V127, P54702, ARTN 054702
MCQUARRIE DA, 2000, STAT MECH
METROPOLIS M, 1953, J CHEM PHYS, V21, P1087
PUNTES VF, 2001, APPL PHYS LETT, V78, P2187
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713
SAHA SK, 2006, APPL PHYS LETT, V89, P43117, ARTN 043117
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271
VANKAMPEN NG, 1992, STOCHASTIC PROCESSES
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318
WON CY, 2008, J PHYS CHEM C, V112, P1812, DOI 10.1021/jp076747u
XU DS, 2003, NEW J CHEM, V27, P300, DOI 10.1039/b204359a
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126
NR 28
TC 0
PU AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
DI 10.1103/PhysRevLett.103.080601
PD AUG 21
VL 103
IS 8
AR 080601
SC Physics, Multidisciplinary
GA 487PY
UT ISI:000269288500009
ER

PT J
*Record 2 of 2.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000269337800016>
*Order Full Text [ ]
AU Du, AJ
Sun, CH
Zhu, ZH
Lu, GQ
Rudolph, V
Smith, SC
AF Du, A. J.
Sun, C. H.
Zhu, Z. H.
Lu, G. Q.
Rudolph, V.
Smith, Sean C.
TI The effect of Fe doping on adsorption of CO2/N-2 within carbon
nanotubes: a density functional theory study with dispersion corrections
SO NANOTECHNOLOGY
LA English
DT Article
ID MEMBRANES; FLUX
AB An ab initio density functional theory (DFT) study with correction for
dispersive interactions was performed to study the adsorption of N-2
and CO2 inside an (8, 8) single-walled carbon nanotube. We find that
the approach of combining DFT and van der Waals correction is very
effective for describing the long-range interaction between N-2/CO2 and
the carbon nanotube (CNT). Surprisingly, exohedral doping of an Fe atom
onto the CNT surface will only affect the adsorption energy of the
quadrupolar CO2 molecule inside the CNT (20-30%), and not that of
molecular N-2. Our results suggest the feasibility of enhancement of
CO2/N-2 separation in CNT-based membranes by using exohedral doping of
metal atoms.
C1 [Du, A. J.; Sun, C. H.; Smith, Sean C.] Univ Queensland, AIBN, Ctr Computat Mol Sci, Brisbane, Qld 4072, Australia.
[Du, A. J.; Sun, C. H.; Lu, G. Q.; Smith, Sean C.] Univ Queensland, AIBN, ARC Ctr Funct Nanomat, Brisbane, Qld 4072, Australia.
[Zhu, Z. H.; Rudolph, V.] Univ Queensland, Sch Engn, Div Chem Engn, Brisbane, Qld 4072, Australia.
RP Du, AJ, Univ Queensland, AIBN, Ctr Computat Mol Sci, Bldg 75, Brisbane,
Qld 4072, Australia.
EM a.du@uq.edu.au
z.zhu@uq.edu.au
s.smith@uq.edu.au
CR *IBM CORP, 1990, CPMD V3 13 2
ARORA G, 2007, NANO LETT, V7, P565, DOI 10.1021/nl062201s
CARR R, 1985, PHYS REV LETT, V55, P2471
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI
10.1016/j.memsci.2005.06.030
DU AJ, 2005, NANOTECHNOLOGY, V16, P2118, DOI 10.1088/0957-4484/16/10/024
FAGAN SB, 2003, PHYS REV B, V67, ARTN 205414
FREEMAN BD, 1999, MACROMOLECULES, V32, P375
GRIMME S, 2006, J COMPUT CHEM, V27, P1787, DOI 10.1002/jcc.20495
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HSIEH HP, 1996, INORGANIC MEMBRANES
HUMMER G, 2001, NATURE, V414, P188
MAJUMDER M, 2005, NATURE, V438, P7064
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
PERDEW JP, 1996, PHYS REV LETT, V77, P865
PRESS WH, 1992, NUMERICAL RECIPES
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901
VIDALI G, 1991, SURF SCI REP, V12, P133
ZHANG ZQ, 2008, PHYS REV B, V78, ARTN 035439
ZHAO JJ, 2002, NANOTECHNOLOGY, V13, P195
ZHU ZH, 2004, CARBON, V42, P2509, DOI 10.1016/j.carbon.2004.05.019
NR 22
TC 0
PU IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
DI 10.1088/0957-4484/20/37/375701
PD SEP 16
VL 20
IS 37
AR 375701
SC Engineering, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied
GA 488GR
UT ISI:000269337800016
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================