Thursday, December 31, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272764300013
*Order Full Text [ ]

Title:
Possibility of driving water molecules along a single-walled carbon nanotube using methane molecules

Authors:
Yu, HQ; Li, H; Zhang, JX; Liu, XF; Liew, KM

Author Full Names:
Yu, H. Q.; Li, H.; Zhang, J. X.; Liu, X. F.; Liew, K. M.

Source:
CARBON 48 (2): 417-423 FEB 2010

Language:
English

Document Type:
Article

KeyWords Plus:
DYNAMICS SIMULATION; MASS-TRANSPORT; ADSORPTION; CHANNEL; MODEL

Abstract:
Molecular dynamics simulation is used to study the transport behavior of water molecules along an open-ended single-walled carbon nanotube (SWCNT) under the driving force of methane molecules. The methane molecules pull the water molecules from the inside of a SWCNT along the axial direction. The transport velocity of water molecules increases with increasing number of methane molecules, but decreases with increasing diameter of the SWCNT. (C) 2009 Elsevier Ltd. All rights reserved.

Reprint Address:
Li, H, Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China.

Research Institution addresses:
[Yu, H. Q.; Li, H.; Zhang, J. X.; Liu, X. F.] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China; [Liew, K. M.] City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China

E-mail Address:
lihuilmy@hotmail.com

Cited References:
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
GROOT BLD, 2005, CURR OPIN STRUC BIOL, V15, P176.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JEPPS OG, 2003, PHYS REV LETT, V4, UNSP 126102/1-126102/4.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KOGA K, 2001, NATURE, V412, P802.
LIU YC, 2005, LANGMUIR, V21, P12025, DOI 10.1021/la0517181.
LOZANOCASTELLO D, 2002, J PHYS CHEM B, V106, P9372, DOI 10.1021/jp0205564.
ROSSI MP, 2004, NANO LETT, V4, P989, DOI 10.1021/nl049688u.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
TANG DS, 2006, CARBON, V44, P2155, DOI 10.1016/j.carbon.2006.03.023.
TELEMAN O, 1987, MOL PHYS, V60, P193.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
VIDOSSICH P, 2004, PROTEINS, V55, P924.
WALTHER JH, 2004, CARBON, V42, P1185, DOI 10.1016/j.carbon.2003.12.071.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
ZAMBRANO HA, 2009, NANO LETT, V9, P66, DOI 10.1021/nl802429s.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.

Cited Reference Count:
22

Times Cited:
0

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0008-6223

DOI:
10.1016/j.carbon.2009.09.055

IDS Number:
532QK

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Zhao, Y

ISI Web of Knowledge Citation Alert

Cited Article: Zhao, Y. Individual water-filled single-walled carbon nanotubes as hydroelectric power converters
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272764300013
*Order Full Text [ ]

Title:
Possibility of driving water molecules along a single-walled carbon nanotube using methane molecules

Authors:
Yu, HQ; Li, H; Zhang, JX; Liu, XF; Liew, KM

Author Full Names:
Yu, H. Q.; Li, H.; Zhang, J. X.; Liu, X. F.; Liew, K. M.

Source:
CARBON 48 (2): 417-423 FEB 2010

Language:
English

Document Type:
Article

KeyWords Plus:
DYNAMICS SIMULATION; MASS-TRANSPORT; ADSORPTION; CHANNEL; MODEL

Abstract:
Molecular dynamics simulation is used to study the transport behavior of water molecules along an open-ended single-walled carbon nanotube (SWCNT) under the driving force of methane molecules. The methane molecules pull the water molecules from the inside of a SWCNT along the axial direction. The transport velocity of water molecules increases with increasing number of methane molecules, but decreases with increasing diameter of the SWCNT. (C) 2009 Elsevier Ltd. All rights reserved.

Reprint Address:
Li, H, Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China.

Research Institution addresses:
[Yu, H. Q.; Li, H.; Zhang, J. X.; Liu, X. F.] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China; [Liew, K. M.] City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China

E-mail Address:
lihuilmy@hotmail.com

Cited References:
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
GROOT BLD, 2005, CURR OPIN STRUC BIOL, V15, P176.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JEPPS OG, 2003, PHYS REV LETT, V4, UNSP 126102/1-126102/4.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KOGA K, 2001, NATURE, V412, P802.
LIU YC, 2005, LANGMUIR, V21, P12025, DOI 10.1021/la0517181.
LOZANOCASTELLO D, 2002, J PHYS CHEM B, V106, P9372, DOI 10.1021/jp0205564.
ROSSI MP, 2004, NANO LETT, V4, P989, DOI 10.1021/nl049688u.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
TANG DS, 2006, CARBON, V44, P2155, DOI 10.1016/j.carbon.2006.03.023.
TELEMAN O, 1987, MOL PHYS, V60, P193.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
VIDOSSICH P, 2004, PROTEINS, V55, P924.
WALTHER JH, 2004, CARBON, V42, P1185, DOI 10.1016/j.carbon.2003.12.071.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
ZAMBRANO HA, 2009, NANO LETT, V9, P66, DOI 10.1021/nl802429s.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.

Cited Reference Count:
22

Times Cited:
0

Publisher:
PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Subject Category:
Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0008-6223

DOI:
10.1016/j.carbon.2009.09.055

IDS Number:
532QK

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272830400001
*Order Full Text [ ]

Title:
FINITE ELEMENT SIMULATION OF A DROPLET IMPINGING A HORIZONTAL SURFACE

Authors:
Ganesan, S; Tobiska, L

Author Full Names:
Ganesan, Sashikumaar; Tobiska, Lutz

Source:
ALGORITMY 2005: 17TH CONFERENCE ON SCIENTIFIC COMPUTING, PROCEEDINGS : 1-11 2005

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Navier-Stokes equation; finite elements; ALE approach; Laplace-Beltrami operator

KeyWords Plus:
NAVIER-STOKES EQUATIONS; MOVING FLUID INTERFACE; BOUNDARY-CONDITION; CONTACT LINE; FLOW; SLIP

Abstract:
This paper presents the shape deformation of a single two dimensional spherical liquid droplet on a horizontal surface. The mathematical model can be defined by the time-dependent Navier-Stokes equations in a time-dependent domain. The model has to be completed by the free boundary condition on the fluid-gas interface and the Navier-slip boundary condition on the fluid-solid interface, respectively. A second order finite element discretization in space is combined with a fractional theta-scheme to solve this free surface problem. The Arbitrary Lagrangian Eulerian method is used to handle the time dependent domain. Replacing the curvature term on the free surface by the Laplace-Beltrami operator we are able to include the contact angle explicitly in the finite element formulation. The numerical results show that the shape deformation is influenced by the impact velocity, the droplet diameter, the surface tension and material properties.

Reprint Address:
Ganesan, S, Univ Magdeburg, Inst Anal & Numer, D-39106 Magdeburg, Germany.

Research Institution addresses:
[Ganesan, Sashikumaar; Tobiska, Lutz] Univ Magdeburg, Inst Anal & Numer, D-39106 Magdeburg, Germany

Cited References:
BANSCH E, 2001, NUMER MATH, V88, P203.
BANSCH E, 2001, NUMERICAL METHODS IN.
BEHR M, 2002, COMPUT METHOD APPL M, V191, P5467.
BRISTEAU MO, 1987, COMPUT PHYS REP, V6, P73.
BUTT HJ, 2003, PHYS CHEM INTERFACES.
CROUZEIX M, 1973, RAIRO R, V3, P33.
DUSSANV EB, 1976, J FLUID MECH, V77, P665.
EGGERS J, 2004, J FLUID MECH, V505, P309, DOI 10.1017/S0022112004008663.
FUKAI J, 1993, PHYS FLUIDS A-FLUID, V5, P2588.
GIRAULT V, 1986, FINITE ELEMENT METHO.
HOCKING LM, 1976, J FLUID MECH, V76, P801.
HOCKING LM, 1977, J FLUID MECH, V79, P209.
JOHN V, 2004, COMPUT VISUAL SCI, V6, P163.
KIKUCHI N, 1998, CONTACT PROBLEMS ELA.
MATTHIES G, 2002, THESIS O VONGUERICKE.
NOBILE F, 2001, THESIS ECOLE POLYTEC.
RANNACHER R, 2000, FUNDAMENTAL DIRECTIO, P191.
SETHIAN JA, 1996, LEVEL SET METHODS.
SILLIMAN WJ, 1980, J COMP PHYSIOL, V34, P287.
THOMPSON PA, 1997, NATURE, V389, P360.
TUREK S, 1999, EFFICIENT SOLVERS IN.

Cited Reference Count:
21

Times Cited:
0

Publisher:
SLOVAK UNIV TECHNOLOGY, BRATISLAVA; FACULTY CIVIL ENGINEERING, DEPT MATHEMATICS & DESCRIPTIVE GEOMETRY, RADLINSKEHO 11, BRATISLAVA, 813 68, SLOVAKIA

IDS Number:
BMM62

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272817500023
*Order Full Text [ ]

Title:
Effects of Surface Wettability on Bubbles in Nanochannels

Authors:
Xie, H; Liu, C

Author Full Names:
Xie Hui; Liu Chao

Source:
ACTA PHYSICO-CHIMICA SINICA 25 (12): 2537-2542 DEC 2009

Language:
Chinese

Document Type:
Article

Author Keywords:
Molecular dynamics; Surface wettability; Nanobubble; Nanoflow; Nanochannel

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATION; FLOW; TRANSITION; INTERFACE

Abstract:
Molecular dynamics simulations were carried out to study the distribution and movement of bubbles in nanochannels with different wettabilities when the fluids were driven by mass force. A method for calculating the velocity of a bubble in a nanochannel was presented. Results reveal that bubbles are present in the middle of nanochannels with hydrophilic surfaces and their velocities are close to but lower than the flow velocity in the middle of the nanochannel. At higher potential energies, the bubbles are larger because the surface absorbs more particles. Otherwise, the bubbles would be smaller. Two bubbles are symmetrical on both surfaces of the nanochannel when their surfaces are superhydrophobic and their velocities are close to but larger than the flow velocity at the edge of the nanochannel. The fluid flow speeds up as the interaction decreases between fluid molecules and wall particles while the slip velocity gradually changes from negative to positive.

Reprint Address:
Liu, C, Chongqing Univ, Coll Power Engn, Chongqing 400030, Peoples R China.

Research Institution addresses:
[Xie Hui; Liu Chao] Chongqing Univ, Coll Power Engn, Chongqing 400030, Peoples R China

E-mail Address:
liuchao@cqu.edu.cn

Cited References:
AGRAWAL A, 2005, NANO LETT, V5, P1751, DOI 10.1021/nl051103o.
ALLEN MP, 1989, COMPUTER SIMULATION, P22.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
CAHILL DG, 2003, J APPL PHYS, V93, P793, DOI 10.1063/1.1524305.
CAO BY, 2005, CHEM J CHINESE U, V26, P277.
COSGROVE JA, 2003, J PHYS A-MATH GEN, V36, P2609.
DIN XD, 1997, PHYS FLUIDS, V9, P3915.
FAN KN, 2005, PHYS CHEM, P217.
FU TT, 2009, CHEM ENG SCI, V64, P2392, DOI 10.1016/j.ces.2009.02.022.
GAO Z, 2008, ULTRASONICS, V48, P260, DOI 10.1016/j.ultras.2007.11.002.
GRANICK S, 1991, SCIENCE, V253, P1374.
HU GQ, 2007, CHEM ENG SCI, V62, P3443, DOI 10.1016/j.ces.2006.11.058.
LIU C, 2008, P MICR NAN HEAT TRAN, P649.
LIU C, 2008, P MICR NAN HEAT TRAN, P649.
LJUNGGREN S, 1997, COLLOID SURFACE A, V151, P129.
MARKVOORT AJ, 2005, PHYS REV E 2, V71, ARTN 066702.
NAGAYAMA G, 2006, INT J HEAT MASS TRAN, V49, P4437, DOI 10.1016/j.ijheatmasstransfer.2006.04.030.
OKUMURA H, 2003, PHYS REV E 2, V67, ARTN 045301.
RAPAPORT DC, 2004, ART MOL DYNAMICS SIM, P11.
ROTH R, 2008, BIOPHYS J, V94, P4282, DOI 10.1529/biophysj.107.120493.
SADUS RJ, 1999, MOL SIMULATION FLUID, P305.
SRIDHAR M, 2007, INT MECH ENG C EXP A, V11, P1087.
SRIDHAR M, 2007, INT MECH ENG C EXP A, V11, P1087.
SWOPE WC, 1982, J CHEM PHYS, V76, P637.
THOMAS JA, 2007, J CHEM PHYS, V126, ARTN 034707.
THOMPSON PA, 1997, NATURE, V389, P360.
TYRRELL JWG, 2001, PHYS REV LETT, V87, P4.
WANG XD, 2003, PROG NAT SCI, V13, P451.
XIE H, 2009, ACTA PHYS-CHIM SIN, V25, P994.
XU C, 2005, J ENG THERMOPHYSICS, V26, P912.
XU JL, 2007, INT J HEAT MASS TRAN, V50, P2571, DOI 10.1016/j.ijheatmasstransfer.2006.11.031.
YANG SC, 2006, MICROFLUID NANOFLUID, V2, P501, DOI 10.1007/s10404-006-0096-5.
ZHANG H, 2003, ACTA PHYS-CHIM SIN, V19, P352.
ZHANG LJ, 2007, SCI CHINA SER G, V37, P556.

Cited Reference Count:
34

Times Cited:
0

Publisher:
PEKING UNIV PRESS; PEKING UNIV, CHEMISTRY BUILDING, BEIJING 100871, PEOPLES R CHINA

Subject Category:
Chemistry, Physical

ISSN:
1000-6818

IDS Number:
533IQ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272681800004>
*Order Full Text [ ]
AU Maslov, VP
AF Maslov, V. P.
TI Similarity laws in thermodynamics: Monomers and dimers and their
relations to crises in society
SO RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS
LA English
DT Article
AB In the present paper, we consider unexplained experiments known for
centuries, which appear in reference books and were obtained both by
physicists-experimenters and with the help of a mathematical experiment.
C1 Russian Acad Sci, VA Steklov Math Inst, Moscow 117333, Russia.
RP Maslov, VP, Russian Acad Sci, VA Steklov Math Inst, Moscow 117333,
Russia.
CR BURSHTEIN AI, 1986, MOL PHYS
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
KUBO R, 1965, STAT MECH ADV COURSE
KVASNIKOV IA, 2002, THERMODYNAMICS STAT
LAMB H, 1993, HYDRODYNAMICS
LANDAU LD, 1958, COURSE THEORETICAL P, V3
LANDAU LD, 1980, STAT PHYS 2
MASLOV V, 2009, CONTEMP MATH, V495, P239
MASLOV VP, ARXIV09034783V2
MASLOV VP, 1976, COMPLEX MARKOV CHAIN
MASLOV VP, 2006, QUANTUM EC
MASLOV VP, 2009, RUSS J MATH PHYS, V16, P103, DOI
10.1134/S1061920809010087
MASLOV VP, 2009, RUSS J MATH PHYS, V16, P146, DOI
10.1134/S1061920809020022
MASLOV VP, 2009, RUSS J MATH PHYS, V16, P323, DOI
10.1134/S1061920809030017
MASLOV VP, 2009, TEOR MAT FIZ, V161, P224
ROMANES GJ, 1888, ANIMAL INTELLIGENCE
ROMANES GJ, 1981, ANIMAL INTELLIGENCE
SELYAKOV VI, 2006, PERCOLATION MODELS T
SHTRAUF EA, 1949, MOL PHYS
VAGNER VA, 2002, SELECTED WORKS ZOOPS
NR 20
TC 0
PU MAIK NAUKA/INTERPERIODICA/SPRINGER; 233 SPRING ST, NEW YORK, NY
10013-1578 USA
SN 1061-9208
DI 10.1134/S1061920809040049
PD DEC
VL 16
IS 4
BP 492
EP 507
SC Physics, Mathematical
GA 531QB
UT ISI:000272681800004
ER

PT J
*Record 2 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272795300008>
*Order Full Text [ ]
AU Vlassiouk, I
Apel, PY
Dmitriev, SN
Healy, K
Siwy, ZS
AF Vlassiouk, Ivan
Apel, Pavel Y.
Dmitriev, Sergey N.
Healy, Ken
Siwy, Zuzanna S.
TI Versatile ultrathin nanoporous silicon nitride membranes
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE ion track-etching; nanofluidics; filtration; SiN
ID SOLID-STATE NANOPORES; SELECTIVITY; NANOFILTRATION; NANOCHANNELS;
TECHNOLOGY; TRANSPORT; CHARGE; PORES; WATER; MASK
AB Single-and multiple-nanopore membranes are both highly interesting for
biosensing and separation processes, as well as their ability to mimic
biological membranes. The density of pores, their shape, and their
surface chemistry are the key factors that determine membrane transport
and separation capabilities. Here, we report silicon nitride (SiN)
membranes with fully controlled porosity, pore geometry, and pore
surface chemistry. An ultrathin freestanding SiN platform is described
with conical or double-conical nanopores of diameters as small as
several nanometers, prepared by the track-etching technique. This
technique allows the membrane porosity to be tuned from one to billions
of pores per square centimeter. We demonstrate the separation
capabilities of these membranes by discrimination of dye and protein
molecules based on their charge and size. This separation process is
based on an electrostatic mechanism and operates in physiological
electrolyte conditions. As we have also shown, the separation
capabilities can be tuned by chemically modifying the pore walls.
Compared with typical membranes with cylindrical pores, the conical and
double-conical pores reported here allow for higher fluxes, a critical
advantage in separation applications. In addition, the conical pore
shape results in a shorter effective length, which gives advantages for
single biomolecule detection applications such as nanopore-based DNA
analysis.
C1 [Vlassiouk, Ivan; Healy, Ken; Siwy, Zuzanna S.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Apel, Pavel Y.; Dmitriev, Sergey N.] Joint Inst Nucl Res, Flerov Lab Nucl React, Dubna 141980, Russia.
[Apel, Pavel Y.] Int Univ, Dubna 141980, Russia.
RP Vlassiouk, I, Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
EM vlassiouk@gmail.com
CR APEL P, 2001, RADIAT MEAS, V34, P559
APEL PY, 2001, NUCL INSTRUM METH B, V184, P337
BAKER RW, 2004, MEMBRANE TECHNOLOGY
BRANTON D, 2008, NAT BIOTECHNOL, V26, P1146, DOI 10.1038/nbt.1495
DEKKER C, 2007, NAT NANOTECHNOL, V2, P209, DOI 10.1038/nnano.2007.27
DESHMUKH MM, 1999, APPL PHYS LETT, V75, P1631
FLEISCHER RL, 1975, NUCL TRACKS SOLIDS P
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
10.1073/pnas.0710437105
FUJIKAWA S, 2009, LANGMUIR, V25, P11563, DOI 10.1021/la9014916
GRANT AW, 2004, NANOTECHNOLOGY, V15, P1175, DOI
10.1088/0957-4484/15/9/012
HAN JY, 2008, LAB CHIP, V8, P23, DOI 10.1039/b714128a
HASHIMOTO T, 1997, LANGMUIR, V13, P6869
HEALY K, 2007, NANOMEDICINE-UK, V2, P459, DOI 10.2217/17435889.2.4.459
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
KIM E, 2008, J AM CHEM SOC, V130, P4230, DOI 10.1021/ja711258w
KOHLI P, 2004, SCIENCE, V305, P984
LI J, 2001, NATURE, V412, P166
MASUDA H, 1997, APPL PHYS LETT, V71, P2770
MULDER M, 1996, BASIC PRINCIPLES MEM
MUSKET RG, 2002, J APPL PHYS, V91, P5760
NISHIZAWA M, 1995, SCIENCE, V268, P700
NUXOLL EE, 2009, ACS APPL MATER INTER, V1, P888, DOI 10.1021/am900013v
PENG XS, 2009, NAT NANOTECHNOL, V4, P353, DOI 10.1038/NNANO.2009.90
PETERSEN RJ, 1993, J MEMBRANE SCI, V83, P81
RAITERI R, 1998, SENSOR ACTUAT B-CHEM, V46, P126
RICE CL, 1965, J PHYS CHEM-US, V69, P4017
RIEDEL C, 1981, NUCL TRACKS, V5, P265
SAVARIAR EN, 2008, NAT NANOTECHNOL, V3, P112, DOI 10.1038/nnano.2008.6
SCHAFER AI, 2005, NANOFILTRATION PRINC
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
SPOHR R, 1983, 2951376, GE
SPOHR R, 1983, 4369370, US
STORM AJ, 2003, NAT MATER, V2, P537, DOI 10.1038/nmat941
STRIEMER CC, 2007, NATURE, V445, P749, DOI 10.1038/nature05532
TONG HD, 2004, NANO LETT, V4, P283, DOI 10.1021/nl0350175
UEHARA H, 2009, ACS NANO, V3, P924, DOI 10.1021/nn8008728
VANDEZANDE P, 2008, CHEM SOC REV, V37, P365, DOI 10.1039/b610848m
VANGELDER W, 1967, J ELECTROCHEM SOC, V114, P869
VENDAMME R, 2006, NAT MATER, V5, P494, DOI 10.1038/nmat1655
VLASSIOUK I, 2008, NANO LETT, V8, P1978, DOI 10.1021/nl800949k
VLASSIOUK I, 2009, BIOSENSING USING NAN, P459
WATANABE H, 2007, ADV MATER, V19, P909, DOI 10.1002/adma.200601630
YAN F, 2004, ADV MATER, V16, P911, DOI 10.1002/adma.200306419
ZINKLE SJ, 2002, NUCL INSTRUM METH B, V191, P758
NR 44
TC 0
PU NATL ACAD SCIENCES; 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
DI 10.1073/pnas.0911450106
PD DEC 15
VL 106
IS 50
BP 21039
EP 21044
SC Multidisciplinary Sciences
GA 533AW
UT ISI:000272795300008
ER

PT J
*Record 3 of 3.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272764300013>
*Order Full Text [ ]
AU Yu, HQ
Li, H
Zhang, JX
Liu, XF
Liew, KM
AF Yu, H. Q.
Li, H.
Zhang, J. X.
Liu, X. F.
Liew, K. M.
TI Possibility of driving water molecules along a single-walled carbon
nanotube using methane molecules
SO CARBON
LA English
DT Article
ID DYNAMICS SIMULATION; MASS-TRANSPORT; ADSORPTION; CHANNEL; MODEL
AB Molecular dynamics simulation is used to study the transport behavior
of water molecules along an open-ended single-walled carbon nanotube
(SWCNT) under the driving force of methane molecules. The methane
molecules pull the water molecules from the inside of a SWCNT along the
axial direction. The transport velocity of water molecules increases
with increasing number of methane molecules, but decreases with
increasing diameter of the SWCNT. (C) 2009 Elsevier Ltd. All rights
reserved.
C1 [Yu, H. Q.; Li, H.; Zhang, J. X.; Liu, X. F.] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China.
[Liew, K. M.] City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China.
RP Li, H, Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut &
Proc Mat, Jinan 250061, Peoples R China.
EM lihuilmy@hotmail.com
CR CICERO G, 2008, J AM CHEM SOC, V130, P1871
GROOT BLD, 2005, CURR OPIN STRUC BIOL, V15, P176
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
JEPPS OG, 2003, PHYS REV LETT, V4, UNSP 126102/1-126102/4
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
KOGA K, 2001, NATURE, V412, P802
LIU YC, 2005, LANGMUIR, V21, P12025, DOI 10.1021/la0517181
LOZANOCASTELLO D, 2002, J PHYS CHEM B, V106, P9372, DOI
10.1021/jp0205564
ROSSI MP, 2004, NANO LETT, V4, P989, DOI 10.1021/nl049688u
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501
TANG DS, 2006, CARBON, V44, P2155, DOI 10.1016/j.carbon.2006.03.023
TELEMAN O, 1987, MOL PHYS, V60, P193
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617
VIDOSSICH P, 2004, PROTEINS, V55, P924
WALTHER JH, 2004, CARBON, V42, P1185, DOI 10.1016/j.carbon.2003.12.071
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u
ZAMBRANO HA, 2009, NANO LETT, V9, P66, DOI 10.1021/nl802429s
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956
NR 22
TC 0
PU PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE,
KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0008-6223
DI 10.1016/j.carbon.2009.09.055
PD FEB
VL 48
IS 2
BP 417
EP 423
SC Chemistry, Physical; Materials Science, Multidisciplinary
GA 532QK
UT ISI:000272764300013
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Thursday, December 24, 2009

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272591400009
*Order Full Text [ ]

Title:
SLIP BOUNDARY CONDITION FOR VISCOUS FLOW OVER SOLID SURFACES

Authors:
Yang, FQ

Author Full Names:
Yang, Fuqian

Source:
CHEMICAL ENGINEERING COMMUNICATIONS 197 (4): 544-550 2010

Language:
English

Document Type:
Article

Author Keywords:
Slip flow; Rate theory

Abstract:
A slip boundary condition is derived for the flow of a viscous fluid over a solid surface, using the theory of thermal activation process. The slip velocity is proportional to the hyperbolic sine of the shear stress on the solid surface, and the slip boundary condition reduces to Navier's slip boundary condition for the flow of Newtonian fluids under small shear stresses. There exists a critical shear stress determining the onset of the slip flow.

Reprint Address:
Yang, FQ, Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA.

Research Institution addresses:
Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA

E-mail Address:
fyang0@engr.uky.edu

Cited References:
EU BC, 1992, KINETIC THEORY IRREV.
EYRING H, 1936, J CHEM PHYS, V4, P283.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
LICHTER S, 2007, PHYS REV LETT, V98, ARTN 226001.
MYONG RS, 1999, PHYS FLUIDS, V11, P2788.
NAVIER CLM, 1823, MEMOIRES ACAD ROYALE, V6, P389.
PAN LS, 2000, J MICROMECH MICROENG, V10, P21.
REESE JM, 2003, PHILOS T R SOC A, V361, P2967, DOI 10.1098/rsta.2003.1281.
THOMPSON PA, 1997, NATURE, V389, P360.
ULMANELLA U, 2003, THESIS U CALIFORNIA.
YANG FQ, 2007, APPL PHYS LETT, V90, ARTN 133105.

Cited Reference Count:
11

Times Cited:
0

Publisher:
TAYLOR & FRANCIS INC; 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA

Subject Category:
Engineering, Chemical

ISSN:
0098-6445

DOI:
10.1080/00986440903245948

IDS Number:
530KX

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 2.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272561100002>
*Order Full Text [ ]
AU Chu, B
Hsiao, BS
AF Chu, Benjamin
Hsiao, Benjamin S.
TI The Role of Polymers in Breakthrough Technologies for Water Purification
SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS
LA English
DT Editorial Material
DE fibers; membranes; nanofiber; nanotechnology; separation techniques;
water purification
ID MEMBRANES
C1 [Chu, Benjamin; Hsiao, Benjamin S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
RP Chu, B, SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
EM bchu@notes.cc.sunysb.edu
bhsiao@notes.cc.sunysb.edu
CR *UN DEP EC SOC AFF, WORLD POP 2300
*US GEOL SURV, WAT SCI SCH
BURGER C, 2006, ANNU REV MATER RES, V36, P333, DOI
10.1146/annurev.matsci.36.011205.123537
CHEREMISINOFF NP, 2002, HDB WATER WASTEWATER
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI
10.1016/j.memsci.2007.02.025
KESTING RE, 1971, SYNTHETIC POLYM MEMB
KUMAR M, 2007, P NATL ACAD SCI USA, V104, P20719, DOI
10.1073/pnas.0708762104
PINNAU I, 2004, ACS S SERIES
TANG ZH, 2009, J MEMBRANE SCI, V328, P1, DOI
10.1016/j.memsci.2008.11.054
WANG XF, 2005, ENVIRON SCI TECHNOL, V39, P7684, DOI 10.1021/es050512j
WANG XF, 2006, J MEMBRANE SCI, V278, P261, DOI
10.1016/j.memsci.2005.11.009
YOON K, 2006, POLYMER, V47, P2434, DOI 10.1016/j.polymer.2006.01.042
YOON K, 2008, J MATER CHEM, V18, P5326, DOI 10.1039/b804128h
YOON K, 2008, J MEMBRANE SCI, V326, P484
NR 15
TC 0
PU JOHN WILEY & SONS INC; 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0887-6266
DI 10.1002/polb.21854
PD DEC 15
VL 47
IS 24
SI Sp. Iss. SI
BP 2431
EP 2435
SC Polymer Science
GA 530AK
UT ISI:000272561100002
ER

PT J
*Record 2 of 2.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272591400009>
*Order Full Text [ ]
AU Yang, FQ
AF Yang, Fuqian
TI SLIP BOUNDARY CONDITION FOR VISCOUS FLOW OVER SOLID SURFACES
SO CHEMICAL ENGINEERING COMMUNICATIONS
LA English
DT Article
DE Slip flow; Rate theory
AB A slip boundary condition is derived for the flow of a viscous fluid
over a solid surface, using the theory of thermal activation process.
The slip velocity is proportional to the hyperbolic sine of the shear
stress on the solid surface, and the slip boundary condition reduces to
Navier's slip boundary condition for the flow of Newtonian fluids under
small shear stresses. There exists a critical shear stress determining
the onset of the slip flow.
C1 Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA.
RP Yang, FQ, Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA.
EM fyang0@engr.uky.edu
CR EU BC, 1992, KINETIC THEORY IRREV
EYRING H, 1936, J CHEM PHYS, V4, P283
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
LICHTER S, 2007, PHYS REV LETT, V98, ARTN 226001
MYONG RS, 1999, PHYS FLUIDS, V11, P2788
NAVIER CLM, 1823, MEMOIRES ACAD ROYALE, V6, P389
PAN LS, 2000, J MICROMECH MICROENG, V10, P21
REESE JM, 2003, PHILOS T R SOC A, V361, P2967, DOI
10.1098/rsta.2003.1281
THOMPSON PA, 1997, NATURE, V389, P360
ULMANELLA U, 2003, THESIS U CALIFORNIA
YANG FQ, 2007, APPL PHYS LETT, V90, ARTN 133105
NR 11
TC 0
PU TAYLOR & FRANCIS INC; 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA
19106 USA
SN 0098-6445
DI 10.1080/00986440903245948
VL 197
IS 4
BP 544
EP 550
SC Engineering, Chemical
GA 530KX
UT ISI:000272591400009
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

Thursday, December 17, 2009

ISI Web of Knowledge Alert - Maibaum, L

ISI Web of Knowledge Citation Alert

Cited Article: Maibaum, L. A coarse-grained model of water confined in a hydrophobic tube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 1 new records this week (1 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 1.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272454500026
*Order Full Text [ ]

Title:
An efficient tool for modeling and predicting fluid flow in nanochannels

Authors:
Ahadian, S; Mizuseki, H; Kawazoe, Y

Author Full Names:
Ahadian, Samad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

Source:
JOURNAL OF CHEMICAL PHYSICS 131 (18): Art. No. 184506 NOV 14 2009

Language:
English

Document Type:
Article

KeyWords Plus:
ARTIFICIAL NEURAL-NETWORKS; CARBON NANOTUBES; MOLECULAR-DYNAMICS; CAPILLARY RISE; TRANSPORT; LIQUIDS; SURFACE; NANOFLUIDICS; IMBIBITION; NANOPORES

Abstract:
Molecular dynamics simulations were performed to evaluate the penetration of two different fluids (i.e., a Lennard-Jones fluid and a polymer) through a designed nanochannel. For both fluids, the length of permeation as a function of time was recorded for various wall-fluid interactions. A novel methodology, namely, the artificial neural network (ANN) approach was then employed for modeling and prediction of the length of imbibition as a function of influencing parameters (i.e., time, the surface tension and the viscosity of fluids, and the wall-fluid interaction). It was demonstrated that the designed ANN is capable of modeling and predicting the length of penetration with superior accuracy. Moreover, the importance of variables in the designed ANN, i.e., time, the surface tension and the viscosity of fluids, and the wall-fluid interaction, was demonstrated with the aid of the so-called connection weight approach, by which all parameters are simultaneously considered. It was!
revealed that the wall-fluid interaction plays a significant role in such transport phenomena, namely, fluid flow in nanochannels. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3253701]

Reprint Address:
Ahadian, S, Tohoku Univ, IMR, Sendai, Miyagi 9808577, Japan.

Research Institution addresses:
[Ahadian, Samad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki] Tohoku Univ, IMR, Sendai, Miyagi 9808577, Japan

E-mail Address:
ahadian@imr.edu

Cited References:
ABGRALL P, 2008, ANAL CHEM, V80, P2326, DOI 10.1021/ac702296u.
AHADIAN S, 2007, COLLOID SURFACE A, V302, P280, DOI 10.1016/j.colsurfa.2007.02.041.
AHADIAN S, 2008, CHEM ENG COMMUN, V195, P435, DOI 10.1080/00986440701707735.
AHADIAN S, 2009, COLLOID POLYM SCI, V287, P961, DOI 10.1007/s00396-009-2052-x.
AHADIAN S, 2009, MATER TRANS, V50, P1157, DOI 10.2320/matertrans.MRA2008405.
AHADIAN S, 2009, NANOSCALE RES LETT, V4, P1054, DOI 10.1007/s11671-009-9361-3.
ALLEN MP, 1987, COMPUTER SIMULATION.
BACKER JA, 2005, J CHEM PHYS, V122, ARTN 154503.
BATCHELOR GK, 2000, INTRO FLUID DYNAMICS.
BISHOP CM, 1995, NEURAL NETWORKS PATT.
BLAKE TD, 1969, J COLLOID INTERF SCI, V30, P421.
BOSANQUET CH, 1923, PHILOS MAG, V45, P525.
COX RG, 1986, J FLUID MECH, V168, P169.
DEGENNES PG, 1985, REV MOD PHYS, V57, P827.
DEMUTH H, 2002, NEURAL NETWORK TOOLB.
DIMITROV DI, 2007, PHYS REV LETT, V99, ARTN 054501.
DRAPER NR, 1998, APPL REGRESSION ANAL.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
GREST GS, 1986, PHYS REV A, V33, P3628.
HAN AJ, 2008, J APPL PHYS, V104, ARTN 124908.
HASTIE T, 2001, ELEMENTS STAT LEARNI.
HAYKIN S, 1999, NEURAL NETWORKS COMP.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HORNIK K, 1989, NEURAL NETWORKS, V2, P359.
JOLLIFFE IT, 1986, PRINCIPAL COMPONENT.
KARNIADAKIS G, 2005, MICROFLOWS NANOFLOWS.
KEMP SJ, 2007, ECOL MODEL, V204, P326, DOI 10.1016/j.ecolmodel.2007.01.009.
KIM T, 2008, J APPL PHYS, V104, ARTN 034304.
LUCAS R, 1918, KOLLOID Z, V23, P15.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MARTIC G, 2005, LANGMUIR, V21, P11201, DOI 10.1021/la0513149.
MCCULLOCH S, 1943, B MATH BIOPHYS, V5, P115.
NOY A, 2007, NANO TODAY, V2, P22.
OLDEN JD, 2004, ECOL MODEL, V178, P389, DOI 10.1016/j.ecolmodel.2004.03.013.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
QIAO Y, 2009, NANO LETT, V9, P984, DOI 10.1021/nl8030136.
RIDEAL EK, 1922, PHILOS MAG, V44, P1152.
ROWLINSON JS, 1982, MOL THEORY CAPILLARI.
RUMELHART DE, 1986, NATURE, V323, P533.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SHIKHMURZAEV YD, 1997, J FLUID MECH, V334, P211.
SODDEMANN T, 2003, PHYS REV E 2, V68, ARTN 046702.
SUNG AH, 1998, P IEEE WORLD C COMP, V1, P316.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
SUPPLE S, 2005, J CHEM PHYS, V122, ARTN 104706.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
WASHBURN EW, 1921, PHYS REV, V17, P273.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
ZURADA JM, 1997, NEUROCOMPUTING, V14, P177.

Cited Reference Count:
51

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3253701

IDS Number:
528NY

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272169900030
*Order Full Text [ ]

Title:
Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube Membranes

Authors:
Fornasiero, F; Park, HG; Holt, JK; Stadermann, M; Kim, S; In, JB; Grigoropoulos, CP; Noy, A; Bakajin, O

Author Full Names:
Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Kim, Sangil; In, Jung Bin; Grigoropoulos, Costas P.; Noy, Aleksandr; Bakajin, Olgica

Source:
NSTI NANOTECH 2008, VOL 2, TECHNICAL PROCEEDINGS : 106-109 2008

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
carbon nanotube; membrane; ion exclusion; fast flow

KeyWords Plus:
WATER; TRANSPORT; GROWTH

Abstract:
Both MD simulations and experimental studies have shown that liquid and gas flow through carbon nanotubes with nanometer size diameter is exceptionally fast. For applications in separation technology, selectivity is required together with fast flow. In this work, we use pressure-driven filtration experiments to study ion exclusion in silicon nitride/sub-2-nm CNT composite membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion at low salt concentration. Our results support a rejection mechanism dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

Reprint Address:
Fornasiero, F, Lawrence Livermore Natl Lab, CMELS, Biosci & Biotechnol Div, Livermore, CA 94550 USA.

Research Institution addresses:
[Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Noy, Aleksandr; Bakajin, Olgica] Lawrence Livermore Natl Lab, CMELS, Biosci & Biotechnol Div, Livermore, CA 94550 USA

Cited References:
CHEUNG CL, 2002, J PHYS CHEM B, V106, P2429.
FORNASIERO F, 2008, PNAS IN PRESS.
FRANKLIN NR, 2002, APPL PHYS LETT, V81, P913.
FUTABA DN, 2006, NAT MATER, V5, P987, DOI 10.1038/nmat1782.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, P5503.
LOISEAU A, 2006, LECT NOTE PHYS, V677, P49.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAMONTOV E, 2006, J CHEM PHYS, V124, P94703.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NOY A, 2007, NANO TODAY, V2, P22.
PURETZKY AA, 2005, APPL PHYS A-MATER, V81, P223, DOI 10.1007/s00339-005-3256-7.
YAMADA T, 2006, NAT NANOTECHNOL, V1, P131, DOI 10.1038/nnano.2006.95.

Cited Reference Count:
17

Times Cited:
0

Publisher:
CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA

IDS Number:
BMF49

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272169500012
*Order Full Text [ ]

Title:
A High-Flux, Flexible Membrane with Parylene-encapsulated Carbon Nanotubes

Authors:
Park, HG; In, J; Kim, S; Fornasiero, F; Holt, JK; Grigoropoulos, CP; Noy, A; Bakajin, O

Author Full Names:
Park, H. G.; In, J.; Kim, S.; Fornasiero, F.; Holt, J. K.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O.

Source:
NSTI NANOTECH 2008, VOL 1, TECHNICAL PROCEEDINGS : 43-46 2008

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
membrane; carbon nanotube; parylene; high-flux

KeyWords Plus:
BOUNDARY-CONDITIONS; MASS-TRANSPORT; WATER; NANOPORES; FABRICATION; FLOW; ARRAYS

Abstract:
We present fabrication and characterization of a membrane based on carbon nanotubes (CNTs) and parylene. Carbon nanotubes have shown orders of magnitude enhancement in gas and water permeability compared to estimates generated by conventional theories [1, 2]. Large area membranes that exhibit flux enhancement characteristics of carbon nanotubes may provide an economical solution to a variety of technologies including water desalination [3] and gas sequestration [4]. We report a novel method of making carbon nanotube-based, robust membranes with large areas. A vertically aligned dense carbon nanotube array is infiltrated with parylene. Parylene polymer creates a pinhole free transparent film by exhibiting high surface conformity and excellent crevice penetration. Using this moisture-, chemical- and solvent-resistant polymer creates carbon nanotube membranes that promise to exhibit high stability and biocompatibility. CNT membranes are formed by releasing a free-standing film !
that consists of parylene-infiltrated CNTs, followed by CNT uncapping on both sides of the composite material. Thus fabricated membranes show flexibility and ductility due to the parylene matrix material. These membranes have a potential for applications that may require high flux, flexibility and durability.

Reprint Address:
Park, HG, LLNS LLC, Livermore, CA USA.

Research Institution addresses:
[Park, H. G.; Fornasiero, F.; Holt, J. K.; Noy, A.; Bakajin, O.] LLNS LLC, Livermore, CA USA

Cited References:
ALLEN R, 2003, J CHEM PHYS, V119, P3905, DOI 10.1063/1.1590956.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
CHE G, 1998, CHEM MATER, V10, P260.
CHEN HB, 2006, J PHYS CHEM B, V110, P1971, DOI 10.1021/jp056911i.
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI 10.1140/epje/i2002-10112-9.
CRAIG VSJ, 2001, PHYS REV LETT, V87, P54504.
FAN R, 2003, J AM CHEM SOC, V125, P5254, DOI 10.1021/ja034163.
FORNASIERO F, 2008, P NATL ACAD IN PRESS.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, P5503.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MISERENDINO S, 2006, NANOTECHNOLOGY, V17, S23, DOI 10.1088/0957-4484/17/4/005.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NOY A, 2007, NANO TODAY, V2, P22.
SHOLL DS, 2006, SCIENCE, V312, P1033.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, P5901.
SKOULIDAS AI, 2006, J CHEM PHYS, V124, P54708.
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.

Cited Reference Count:
27

Times Cited:
0

Publisher:
CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA

IDS Number:
BMF46

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272413500011>
*Order Full Text [ ]
AU Sparreboom, W
van den Berg, A
Eijkel, JCT
AF Sparreboom, W.
van den Berg, A.
Eijkel, J. C. T.
TI Principles and applications of nanofluidic transport
SO NATURE NANOTECHNOLOGY
LA English
DT Review
ID ELECTROKINETIC ENERGY-CONVERSION; PRESSURE-DRIVEN TRANSPORT;
HYDRODYNAMIC CHROMATOGRAPHY; CONCENTRATION POLARIZATION; HYDROPHOBIC
SURFACES; SILICA-NANOCHANNELS; CARBON NANOTUBES; POWER-GENERATION;
DNA-MOLECULES; ION-TRANSPORT
AB The evolution from microfluidic to nanofluidic systems has been
accompanied by the emergence of new fluid phenomena and the potential
for new nanofluidic devices. This review provides an introduction to
the theory of nanofluidic transport, focusing on the various forces
that influence the movement of both solvents and solutes through
nanochannels,and reviews the applications of nanofluidic devices in
separation science and energy conversion.
C1 [Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T.] Univ Twente, MESA Inst Nanotechnol, BIOS Lab Chip Grp, NL-7500 AE Enschede, Netherlands.
RP Sparreboom, W, Univ Twente, MESA Inst Nanotechnol, BIOS Lab Chip Grp,
POB 217, NL-7500 AE Enschede, Netherlands.
EM w.sparreboom@utwente.nl
CR ABGRALL P, 2008, ANAL CHEM, V80, P2326, DOI 10.1021/ac702296u
AJDARI A, 2006, PHYS REV LETT, V96, ARTN 186102
ALCARAZ A, 2006, J PHYS CHEM B, V110, P21205, DOI 10.1021/jp063204w
ALI M, 2009, ACS NANO, V3, P603, DOI 10.1021/nn900039f
ANDERSON JL, 1987, CHEM ENG COMMUN, V55, P211
AUSTIN R, 2007, NAT NANOTECHNOL, V2, P79, DOI 10.1038/nnano.2007.18
BLOM MT, 2003, ANAL CHEM, V75, P6761, DOI 10.1021/ac034663I
BOUZIGUES CI, 2008, PHYS REV LETT, V101, ARTN 114503
BOWEN WR, 1996, J MEMBRANE SCI, V112, P263
BURGREEN D, 1964, J PHYS CHEM-US, V68, P1084
BURGREEN D, 1965, J APPL MECH, V32, P675
CHENG LJ, 2007, NANO LETT, V7, P3165, DOI 10.1021/nl071770c
CHRISTENSON HK, 2001, ADV COLLOID INTERFAC, V91, P391
COTTINBIZONNE C, 2005, PHYS REV LETT, V94, ARTN 056102
CRANK J, 1975, MATH DIFFUSION
CROSS JD, 2007, J APPL PHYS, V102, ARTN 024514
DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945
DAVIDSON C, 2008, ELECTROPHORESIS, V29, P1125, DOI
10.1002/elps.200700549
DAVIDSON C, 2008, J POWER SOURCES, V179, P297, DOI
10.1016/j.jpowsour.2007.12.050
DEEN WM, 1987, AICHE J, V33, P1409
DELAMARCHE E, 1997, SCIENCE, V276, P779
DURAND NFY, 2007, APPL PHYS LETT, V91, ARTN 203106
EIJKEL JCT, 2005, APPL PHYS LETT, V87, ARTN 114103
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI
10.1007/s10404-004-0012-9
EIJKEL JCT, 2007, LAB CHIP, V7, P1630, DOI 10.1039/b716545p
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607
FAN R, 2008, NAT MATER, V7, P303, DOI 10.1038/nmat2127
FU JP, 2007, NAT NANOTECHNOL, V2, P121, DOI 10.1038/nnano.2006.206
GADELHAK M, 1999, T ASME, V121, P5
GARCIAGIMENEZ E, 2009, J MEMBRANE SCI, V331, P137, DOI
10.1016/j.memsci.2009.01.026
GIDDINGS JC, 1968, J PHYS CHEM-US, V72, P4397
GIJS MAM, 2007, NAT NANOTECHNOL, V2, P268, DOI 10.1038/nnano.2007.116
GOEDECKE N, 2002, LAB CHIP, V2, P219, DOI 10.1039/b208031c
HAN AP, 2006, NANOTECHNOLOGY, V17, P2498, DOI
10.1088/0957-4484/17/10/010
HAN J, 2000, SCIENCE, V288, P1026
HAN JY, 2008, LAB CHIP, V8, P23, DOI 10.1039/b714128a
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUH D, 2007, NAT MATER, V6, P424, DOI 10.1038/nmat1907
JOLY L, 2006, J CHEM PHYS, V125, ARTN 204716
KARLSSON R, 2002, LANGMUIR, V18, P4186
KARNIK R, 2005, NANO LETT, V5, P943, DOI 10.1021/nl050493b
KARNIK R, 2006, APPL PHYS LETT, V88, ARTN 123114
KARNIK R, 2006, NANO LETT, V6, P1735, DOI 10.1021/nl061159y
KARNIK R, 2007, NANO LETT, V7, P547, DOI 10.1021/nl062806o
KEH HJ, 2002, J COLLOID INTERF SCI, V252, P354, DOI
10.1006/jcis.2002.8483
KIEVSKY YY, 2008, J CHEM PHYS, V128, ARTN 151102
KUO TC, 2001, LANGMUIR, V17, P6298
KUO TC, 2003, ANAL CHEM, V75, P1861
LEVINE S, 1975, J COLLOID INTERF SCI, V52, P136
LI ZR, 2008, ELECTROPHORESIS, V29, P329, DOI 10.1002/elps.200700679
LYKLEMA J, 2000, FUNDAMENTALS INTERFA
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MANI A, 2009, LANGMUIR, V25, P3898, DOI 10.1021/1a803317p
MANNION JT, 2006, BIOPHYS J, V90, P4538, DOI 10.1529/biophysj.105.074732
MEYER EE, 2006, P NATL ACAD SCI USA, V103, P15739, DOI
10.1073/pnas.0606422103
MIEDEMA H, 2007, NANO LETT, V7, P2886, DOI 10.1021/nl0716808
MIJATOVIC D, 2005, LAB CHIP, V5, P492, DOI 10.1039/b416951d
MULLER VM, 1986, COLLOID J USSR, V48, P606
NINHAM BW, 1997, LANGMUIR, V13, P2097
NORDE W, 2000, PHYS CHEM BIOL INTER, P115
OGSTON AG, 1958, T FARADAY SOC, V54, P1754
OSTERLE JF, 1964, APPL SCI RES, V12, P425
PENNATHUR S, 2005, ANAL CHEM, V77, P6772, UNSP AC050835Y
PENNATHUR S, 2005, ANAL CHEM, V77, P6782, DOI 10.1021/ac0508346
PENNATHUR S, 2007, ANAL CHEM, V79, P8316, DOI 10.1021/ac0710580
PENNATHUR S, 2007, LAB CHIP, V7, P1234, DOI 10.1039/b712893m
PERRY JL, 2006, MICROFLUID NANOFLUID, V2, P185, DOI
10.1007/s10404-005-0068-1
PIERRET RF, 1996, SEMICONDUCTOR DEVICE
PLECIS A, 2008, ANAL CHEM, V80, P9542, DOI 10.1021/ac8017907
POPPE H, 1997, J CHROMATOGR A, V778, P3
PRIEVE DC, 1978, J COLLOID INTERF SCI, V64, P201
PRIEVE DC, 1984, J FLUID MECH, V148, P247
PROBSTEIN RF, 1994, PHYSICOCHEMICAL HYDR
PU QS, 2004, NANO LETT, V4, P1099, DOI 10.1021/nl0494811
QIAN SZ, 2007, J COLLOID INTERF SCI, V315, P721, DOI
10.1016/j.jcis.2007.06.075
QUAKE SR, 2000, SCIENCE, V290, P1536
REN YQ, 2008, NANOTECHNOLOGY, V19, ARTN 195707
RUCKENSTEIN E, 1976, AICHE J, V22, P276
SALIEBBEUGELAAR GB, 2008, NANO LETT, V8, P1785
SCHOCH RB, 2006, NANO LETT, V6, P543, DOI 10.1021/nl052372h
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839
SOARE MA, 2006, J INTEL MAT SYST STR, V17, P231, DOI
10.1177/1045389X06056861
STEIN D, 2006, P NATL ACAD SCI USA, V103, P15853, DOI
10.1073/pnas.0605900103
SUCCI S, 2007, INT J MOD PHYS C, V18, P667
TAS NR, 2002, ANAL CHEM, V74, P2224
TEGENFELDT JO, 2004, ANAL BIOANAL CHEM, V378, P1678, DOI
10.1007/s00216-004-2526-0
TERAOKA I, 1996, PROG POLYM SCI, V21, P89
TURNER SW, 1998, J VAC SCI TECHNOL B, V16, P3835
TURNER SWP, 2002, PHYS REV LETT, V88, ARTN 128103
VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h
VANOSS CJ, 2003, J MOL RECOGNIT, V16, P177, DOI 10.1002/jmr.618
VERMESH U, 2009, NANO LETT, V9, P1315, DOI 10.1021/nl802931r
VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31
VLASSIOUK I, 2007, NANO LETT, V7, P552, DOI 10.1021/nl062924b
WANG XY, 2008, J CHROMATOGR A, V1200, P108, DOI
10.1016/j.chroma.2008.05.088
WANG YC, 2005, ANAL CHEM, V77, P4293, DOI 10.1021/ac050321z
WHEELER TD, 2008, NATURE, V455, P208, DOI 10.1038/nature07226
WIJMANS JG, 1995, J MEMBRANE SCI, V107, P1
XUAN XC, 2008, ELECTROPHORESIS, V29, P3737, DOI 10.1002/elps.200800098
YAMAGUCHI A, 2006, ANAL SCI, V22, P1501
YAMAGUCHI A, 2008, J PHYS CHEM B, V112, P2024, DOI 10.1021/jp0767516
YUAN Z, 2007, ELECTROPHORESIS, V28, P595, DOI 10.1002/elps.200600612
ZANGLE TA, 2009, LANGMUIR, V25, P3909, DOI 10.1021/1a803318e
NR 103
TC 0
PU NATURE PUBLISHING GROUP; MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1
9XW, ENGLAND
SN 1748-3387
DI 10.1038/NNANO.2009.332
PD NOV
VL 4
IS 11
BP 713
EP 720
SC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
GA 528AW
UT ISI:000272413500011
ER

PT J
*Record 2 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272454500026>
*Order Full Text [ ]
AU Ahadian, S
Mizuseki, H
Kawazoe, Y
AF Ahadian, Samad
Mizuseki, Hiroshi
Kawazoe, Yoshiyuki
TI An efficient tool for modeling and predicting fluid flow in nanochannels
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID ARTIFICIAL NEURAL-NETWORKS; CARBON NANOTUBES; MOLECULAR-DYNAMICS;
CAPILLARY RISE; TRANSPORT; LIQUIDS; SURFACE; NANOFLUIDICS; IMBIBITION;
NANOPORES
AB Molecular dynamics simulations were performed to evaluate the
penetration of two different fluids (i.e., a Lennard-Jones fluid and a
polymer) through a designed nanochannel. For both fluids, the length of
permeation as a function of time was recorded for various wall-fluid
interactions. A novel methodology, namely, the artificial neural
network (ANN) approach was then employed for modeling and prediction of
the length of imbibition as a function of influencing parameters (i.e.,
time, the surface tension and the viscosity of fluids, and the
wall-fluid interaction). It was demonstrated that the designed ANN is
capable of modeling and predicting the length of penetration with
superior accuracy. Moreover, the importance of variables in the
designed ANN, i.e., time, the surface tension and the viscosity of
fluids, and the wall-fluid interaction, was demonstrated with the aid
of the so-called connection weight approach, by which all parameters
are simultaneously considered. It was revealed that the wall-fluid
interaction plays a significant role in such transport phenomena,
namely, fluid flow in nanochannels. (C) 2009 American Institute of
Physics. [doi: 10.1063/1.3253701]
C1 [Ahadian, Samad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki] Tohoku Univ, IMR, Sendai, Miyagi 9808577, Japan.
RP Ahadian, S, Tohoku Univ, IMR, Sendai, Miyagi 9808577, Japan.
EM ahadian@imr.edu
CR ABGRALL P, 2008, ANAL CHEM, V80, P2326, DOI 10.1021/ac702296u
AHADIAN S, 2007, COLLOID SURFACE A, V302, P280, DOI
10.1016/j.colsurfa.2007.02.041
AHADIAN S, 2008, CHEM ENG COMMUN, V195, P435, DOI
10.1080/00986440701707735
AHADIAN S, 2009, COLLOID POLYM SCI, V287, P961, DOI
10.1007/s00396-009-2052-x
AHADIAN S, 2009, MATER TRANS, V50, P1157, DOI
10.2320/matertrans.MRA2008405
AHADIAN S, 2009, NANOSCALE RES LETT, V4, P1054, DOI
10.1007/s11671-009-9361-3
ALLEN MP, 1987, COMPUTER SIMULATION
BACKER JA, 2005, J CHEM PHYS, V122, ARTN 154503
BATCHELOR GK, 2000, INTRO FLUID DYNAMICS
BISHOP CM, 1995, NEURAL NETWORKS PATT
BLAKE TD, 1969, J COLLOID INTERF SCI, V30, P421
BOSANQUET CH, 1923, PHILOS MAG, V45, P525
COX RG, 1986, J FLUID MECH, V168, P169
DEGENNES PG, 1985, REV MOD PHYS, V57, P827
DEMUTH H, 2002, NEURAL NETWORK TOOLB
DIMITROV DI, 2007, PHYS REV LETT, V99, ARTN 054501
DRAPER NR, 1998, APPL REGRESSION ANAL
FRENKEL D, 2002, UNDERSTANDING MOL SI
GREST GS, 1986, PHYS REV A, V33, P3628
HAN AJ, 2008, J APPL PHYS, V104, ARTN 124908
HASTIE T, 2001, ELEMENTS STAT LEARNI
HAYKIN S, 1999, NEURAL NETWORKS COMP
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HORNIK K, 1989, NEURAL NETWORKS, V2, P359
JOLLIFFE IT, 1986, PRINCIPAL COMPONENT
KARNIADAKIS G, 2005, MICROFLOWS NANOFLOWS
KEMP SJ, 2007, ECOL MODEL, V204, P326, DOI
10.1016/j.ecolmodel.2007.01.009
KIM T, 2008, J APPL PHYS, V104, ARTN 034304
LUCAS R, 1918, KOLLOID Z, V23, P15
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MARTIC G, 2005, LANGMUIR, V21, P11201, DOI 10.1021/la0513149
MCCULLOCH S, 1943, B MATH BIOPHYS, V5, P115
NOY A, 2007, NANO TODAY, V2, P22
OLDEN JD, 2004, ECOL MODEL, V178, P389, DOI
10.1016/j.ecolmodel.2004.03.013
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f
QIAO Y, 2009, NANO LETT, V9, P984, DOI 10.1021/nl8030136
RIDEAL EK, 1922, PHILOS MAG, V44, P1152
ROWLINSON JS, 1982, MOL THEORY CAPILLARI
RUMELHART DE, 1986, NATURE, V323, P533
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839
SHIKHMURZAEV YD, 1997, J FLUID MECH, V334, P211
SODDEMANN T, 2003, PHYS REV E 2, V68, ARTN 046702
SUNG AH, 1998, P IEEE WORLD C COMP, V1, P316
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501
SUPPLE S, 2005, J CHEM PHYS, V122, ARTN 104706
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617
WASHBURN EW, 1921, PHYS REV, V17, P273
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f
ZURADA JM, 1997, NEUROCOMPUTING, V14, P177
NR 51
TC 0
PU AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON
QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
DI 10.1063/1.3253701
PD NOV 14
VL 131
IS 18
AR 184506
SC Physics, Atomic, Molecular & Chemical
GA 528NY
UT ISI:000272454500026
ER

PT B
*Record 3 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272170200096>
*Order Full Text [ ]
AU Whitby, M
Thanou, M
Quirke, N
AF Whitby, M.
Thanou, M.
Quirke, N.
TI Enhanced Fluid Transport Through Carbon Nanopipes
SO NSTI NANOTECH 2008, VOL 3, TECHNICAL PROCEEDINGS
LA English
DT Proceedings Paper
DE nanopipes; nanotubes; carbon; nanofluidics; flow; plasma
ID NANOTUBES; ALUMINA; FLOW
AB Experimental measurement of fluid flow and diffusion through nanoscale
channels is important both for determining how classical theories of
fluid dynamics apply at very small length scales and with a view to
constructing practical nanofluidic devices. In this study, we observe
water flow enhancement of more than 250% in relatively large 271 +/- 31
nm diameter carbon nanopipes with plasma induced surface modification
of the carbon walls. Our findings have application in the development
of biomedical devices both for sensing and for delivery of therapeutic
drugs.
C1 [Whitby, M.; Thanou, M.; Quirke, N.] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England.
RP Whitby, M, Univ London Imperial Coll Sci Technol & Med, Dept Chem,
London SW7 2AZ, England.
CR CHE G, 1998, CHEM MATER, V10, P260
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
JOSEPH S, 2008, NANOLETT
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MASUDA H, 1995, SCIENCE, V268, P1466
NIELSCH K, 2002, NANO LETTERS, V2, P677
SUPPLE S, 2003, PHYS REV LETT, V90
WHITBY M, UNPUB
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
NR 9
TC 0
PU CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE
300, BOCA RATON, FL 33487-2742 USA
BP 367
EP 369
GA BMF51
UT ISI:000272170200096
ER

PT B
*Record 4 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272169900030>
*Order Full Text [ ]
AU Fornasiero, F
Park, HG
Holt, JK
Stadermann, M
Kim, S
In, JB
Grigoropoulos, CP
Noy, A
Bakajin, O
AF Fornasiero, Francesco
Park, Hyung Gyu
Holt, Jason K.
Stadermann, Michael
Kim, Sangil
In, Jung Bin
Grigoropoulos, Costas P.
Noy, Aleksandr
Bakajin, Olgica
TI Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube
Membranes
SO NSTI NANOTECH 2008, VOL 2, TECHNICAL PROCEEDINGS
LA English
DT Proceedings Paper
DE carbon nanotube; membrane; ion exclusion; fast flow
ID WATER; TRANSPORT; GROWTH
AB Both MD simulations and experimental studies have shown that liquid and
gas flow through carbon nanotubes with nanometer size diameter is
exceptionally fast. For applications in separation technology,
selectivity is required together with fast flow. In this work, we use
pressure-driven filtration experiments to study ion exclusion in
silicon nitride/sub-2-nm CNT composite membranes as a function of
solution ionic strength, pH, and ion valence. We show that carbon
nanotube membranes exhibit significant ion exclusion at low salt
concentration. Our results support a rejection mechanism dominated by
electrostatic interactions between fixed membrane charges and mobile
ions, while steric and hydrodynamic effects appear to be less
important. Comparison with commercial nanofiltration membranes for
water softening reveals that our carbon nanotube membranes provides far
superior water fluxes for similar ion rejection capabilities.
C1 [Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Noy, Aleksandr; Bakajin, Olgica] Lawrence Livermore Natl Lab, CMELS, Biosci & Biotechnol Div, Livermore, CA 94550 USA.
RP Fornasiero, F, Lawrence Livermore Natl Lab, CMELS, Biosci & Biotechnol
Div, Livermore, CA 94550 USA.
CR CHEUNG CL, 2002, J PHYS CHEM B, V106, P2429
FORNASIERO F, 2008, PNAS IN PRESS
FRANKLIN NR, 2002, APPL PHYS LETT, V81, P913
FUTABA DN, 2006, NAT MATER, V5, P987, DOI 10.1038/nmat1782
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, P5503
LOISEAU A, 2006, LECT NOTE PHYS, V677, P49
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MAMONTOV E, 2006, J CHEM PHYS, V124, P94703
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907
NOY A, 2007, NANO TODAY, V2, P22
PURETZKY AA, 2005, APPL PHYS A-MATER, V81, P223, DOI
10.1007/s00339-005-3256-7
YAMADA T, 2006, NAT NANOTECHNOL, V1, P131, DOI 10.1038/nnano.2006.95
NR 17
TC 0
PU CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE
300, BOCA RATON, FL 33487-2742 USA
BP 106
EP 109
GA BMF49
UT ISI:000272169900030
ER

PT B
*Record 5 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272169500012>
*Order Full Text [ ]
AU Park, HG
In, J
Kim, S
Fornasiero, F
Holt, JK
Grigoropoulos, CP
Noy, A
Bakajin, O
AF Park, H. G.
In, J.
Kim, S.
Fornasiero, F.
Holt, J. K.
Grigoropoulos, C. P.
Noy, A.
Bakajin, O.
TI A High-Flux, Flexible Membrane with Parylene-encapsulated Carbon
Nanotubes
SO NSTI NANOTECH 2008, VOL 1, TECHNICAL PROCEEDINGS
LA English
DT Proceedings Paper
DE membrane; carbon nanotube; parylene; high-flux
ID BOUNDARY-CONDITIONS; MASS-TRANSPORT; WATER; NANOPORES; FABRICATION;
FLOW; ARRAYS
AB We present fabrication and characterization of a membrane based on
carbon nanotubes (CNTs) and parylene. Carbon nanotubes have shown
orders of magnitude enhancement in gas and water permeability compared
to estimates generated by conventional theories [1, 2]. Large area
membranes that exhibit flux enhancement characteristics of carbon
nanotubes may provide an economical solution to a variety of
technologies including water desalination [3] and gas sequestration
[4]. We report a novel method of making carbon nanotube-based, robust
membranes with large areas. A vertically aligned dense carbon nanotube
array is infiltrated with parylene. Parylene polymer creates a pinhole
free transparent film by exhibiting high surface conformity and
excellent crevice penetration. Using this moisture-, chemical- and
solvent-resistant polymer creates carbon nanotube membranes that
promise to exhibit high stability and biocompatibility. CNT membranes
are formed by releasing a free-standing film that consists of
parylene-infiltrated CNTs, followed by CNT uncapping on both sides of
the composite material. Thus fabricated membranes show flexibility and
ductility due to the parylene matrix material. These membranes have a
potential for applications that may require high flux, flexibility and
durability.
C1 [Park, H. G.; Fornasiero, F.; Holt, J. K.; Noy, A.; Bakajin, O.] LLNS LLC, Livermore, CA USA.
RP Park, HG, LLNS LLC, Livermore, CA USA.
CR ALLEN R, 2003, J CHEM PHYS, V119, P3905, DOI 10.1063/1.1590956
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI
10.1073/pnas.1136844100
CHE G, 1998, CHEM MATER, V10, P260
CHEN HB, 2006, J PHYS CHEM B, V110, P1971, DOI 10.1021/jp056911i
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI
10.1140/epje/i2002-10112-9
CRAIG VSJ, 2001, PHYS REV LETT, V87, P54504
FAN R, 2003, J AM CHEM SOC, V125, P5254, DOI 10.1021/ja034163
FORNASIERO F, 2008, P NATL ACAD IN PRESS
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, P5503
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MISERENDINO S, 2006, NANOTECHNOLOGY, V17, S23, DOI
10.1088/0957-4484/17/4/005
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907
NOY A, 2007, NANO TODAY, V2, P22
SHOLL DS, 2006, SCIENCE, V312, P1033
SKOULIDAS AI, 2002, PHYS REV LETT, V89, P5901
SKOULIDAS AI, 2006, J CHEM PHYS, V124, P54708
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861
NR 27
TC 0
PU CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE
300, BOCA RATON, FL 33487-2742 USA
BP 43
EP 46
GA BMF46
UT ISI:000272169500012
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272413500011
*Order Full Text [ ]

Title:
Principles and applications of nanofluidic transport

Authors:
Sparreboom, W; van den Berg, A; Eijkel, JCT

Author Full Names:
Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T.

Source:
NATURE NANOTECHNOLOGY 4 (11): 713-720 NOV 2009

Language:
English

Document Type:
Review

KeyWords Plus:
ELECTROKINETIC ENERGY-CONVERSION; PRESSURE-DRIVEN TRANSPORT; HYDRODYNAMIC CHROMATOGRAPHY; CONCENTRATION POLARIZATION; HYDROPHOBIC SURFACES; SILICA-NANOCHANNELS; CARBON NANOTUBES; POWER-GENERATION; DNA-MOLECULES; ION-TRANSPORT

Abstract:
The evolution from microfluidic to nanofluidic systems has been accompanied by the emergence of new fluid phenomena and the potential for new nanofluidic devices. This review provides an introduction to the theory of nanofluidic transport, focusing on the various forces that influence the movement of both solvents and solutes through nanochannels,and reviews the applications of nanofluidic devices in separation science and energy conversion.

Reprint Address:
Sparreboom, W, Univ Twente, MESA Inst Nanotechnol, BIOS Lab Chip Grp, POB 217, NL-7500 AE Enschede, Netherlands.

Research Institution addresses:
[Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T.] Univ Twente, MESA Inst Nanotechnol, BIOS Lab Chip Grp, NL-7500 AE Enschede, Netherlands

E-mail Address:
w.sparreboom@utwente.nl

Cited References:
ABGRALL P, 2008, ANAL CHEM, V80, P2326, DOI 10.1021/ac702296u.
AJDARI A, 2006, PHYS REV LETT, V96, ARTN 186102.
ALCARAZ A, 2006, J PHYS CHEM B, V110, P21205, DOI 10.1021/jp063204w.
ALI M, 2009, ACS NANO, V3, P603, DOI 10.1021/nn900039f.
ANDERSON JL, 1987, CHEM ENG COMMUN, V55, P211.
AUSTIN R, 2007, NAT NANOTECHNOL, V2, P79, DOI 10.1038/nnano.2007.18.
BLOM MT, 2003, ANAL CHEM, V75, P6761, DOI 10.1021/ac034663I.
BOUZIGUES CI, 2008, PHYS REV LETT, V101, ARTN 114503.
BOWEN WR, 1996, J MEMBRANE SCI, V112, P263.
BURGREEN D, 1964, J PHYS CHEM-US, V68, P1084.
BURGREEN D, 1965, J APPL MECH, V32, P675.
CHENG LJ, 2007, NANO LETT, V7, P3165, DOI 10.1021/nl071770c.
CHRISTENSON HK, 2001, ADV COLLOID INTERFAC, V91, P391.
COTTINBIZONNE C, 2005, PHYS REV LETT, V94, ARTN 056102.
CRANK J, 1975, MATH DIFFUSION.
CROSS JD, 2007, J APPL PHYS, V102, ARTN 024514.
DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945.
DAVIDSON C, 2008, ELECTROPHORESIS, V29, P1125, DOI 10.1002/elps.200700549.
DAVIDSON C, 2008, J POWER SOURCES, V179, P297, DOI 10.1016/j.jpowsour.2007.12.050.
DEEN WM, 1987, AICHE J, V33, P1409.
DELAMARCHE E, 1997, SCIENCE, V276, P779.
DURAND NFY, 2007, APPL PHYS LETT, V91, ARTN 203106.
EIJKEL JCT, 2005, APPL PHYS LETT, V87, ARTN 114103.
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI 10.1007/s10404-004-0012-9.
EIJKEL JCT, 2007, LAB CHIP, V7, P1630, DOI 10.1039/b716545p.
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607.
FAN R, 2008, NAT MATER, V7, P303, DOI 10.1038/nmat2127.
FU JP, 2007, NAT NANOTECHNOL, V2, P121, DOI 10.1038/nnano.2006.206.
GADELHAK M, 1999, T ASME, V121, P5.
GARCIAGIMENEZ E, 2009, J MEMBRANE SCI, V331, P137, DOI 10.1016/j.memsci.2009.01.026.
GIDDINGS JC, 1968, J PHYS CHEM-US, V72, P4397.
GIJS MAM, 2007, NAT NANOTECHNOL, V2, P268, DOI 10.1038/nnano.2007.116.
GOEDECKE N, 2002, LAB CHIP, V2, P219, DOI 10.1039/b208031c.
HAN AP, 2006, NANOTECHNOLOGY, V17, P2498, DOI 10.1088/0957-4484/17/10/010.
HAN J, 2000, SCIENCE, V288, P1026.
HAN JY, 2008, LAB CHIP, V8, P23, DOI 10.1039/b714128a.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUH D, 2007, NAT MATER, V6, P424, DOI 10.1038/nmat1907.
JOLY L, 2006, J CHEM PHYS, V125, ARTN 204716.
KARLSSON R, 2002, LANGMUIR, V18, P4186.
KARNIK R, 2005, NANO LETT, V5, P943, DOI 10.1021/nl050493b.
KARNIK R, 2006, APPL PHYS LETT, V88, ARTN 123114.
KARNIK R, 2006, NANO LETT, V6, P1735, DOI 10.1021/nl061159y.
KARNIK R, 2007, NANO LETT, V7, P547, DOI 10.1021/nl062806o.
KEH HJ, 2002, J COLLOID INTERF SCI, V252, P354, DOI 10.1006/jcis.2002.8483.
KIEVSKY YY, 2008, J CHEM PHYS, V128, ARTN 151102.
KUO TC, 2001, LANGMUIR, V17, P6298.
KUO TC, 2003, ANAL CHEM, V75, P1861.
LEVINE S, 1975, J COLLOID INTERF SCI, V52, P136.
LI ZR, 2008, ELECTROPHORESIS, V29, P329, DOI 10.1002/elps.200700679.
LYKLEMA J, 2000, FUNDAMENTALS INTERFA.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANI A, 2009, LANGMUIR, V25, P3898, DOI 10.1021/1a803317p.
MANNION JT, 2006, BIOPHYS J, V90, P4538, DOI 10.1529/biophysj.105.074732.
MEYER EE, 2006, P NATL ACAD SCI USA, V103, P15739, DOI 10.1073/pnas.0606422103.
MIEDEMA H, 2007, NANO LETT, V7, P2886, DOI 10.1021/nl0716808.
MIJATOVIC D, 2005, LAB CHIP, V5, P492, DOI 10.1039/b416951d.
MULLER VM, 1986, COLLOID J USSR, V48, P606.
NINHAM BW, 1997, LANGMUIR, V13, P2097.
NORDE W, 2000, PHYS CHEM BIOL INTER, P115.
OGSTON AG, 1958, T FARADAY SOC, V54, P1754.
OSTERLE JF, 1964, APPL SCI RES, V12, P425.
PENNATHUR S, 2005, ANAL CHEM, V77, P6772, UNSP AC050835Y.
PENNATHUR S, 2005, ANAL CHEM, V77, P6782, DOI 10.1021/ac0508346.
PENNATHUR S, 2007, ANAL CHEM, V79, P8316, DOI 10.1021/ac0710580.
PENNATHUR S, 2007, LAB CHIP, V7, P1234, DOI 10.1039/b712893m.
PERRY JL, 2006, MICROFLUID NANOFLUID, V2, P185, DOI 10.1007/s10404-005-0068-1.
PIERRET RF, 1996, SEMICONDUCTOR DEVICE.
PLECIS A, 2008, ANAL CHEM, V80, P9542, DOI 10.1021/ac8017907.
POPPE H, 1997, J CHROMATOGR A, V778, P3.
PRIEVE DC, 1978, J COLLOID INTERF SCI, V64, P201.
PRIEVE DC, 1984, J FLUID MECH, V148, P247.
PROBSTEIN RF, 1994, PHYSICOCHEMICAL HYDR.
PU QS, 2004, NANO LETT, V4, P1099, DOI 10.1021/nl0494811.
QIAN SZ, 2007, J COLLOID INTERF SCI, V315, P721, DOI 10.1016/j.jcis.2007.06.075.
QUAKE SR, 2000, SCIENCE, V290, P1536.
REN YQ, 2008, NANOTECHNOLOGY, V19, ARTN 195707.
RUCKENSTEIN E, 1976, AICHE J, V22, P276.
SALIEBBEUGELAAR GB, 2008, NANO LETT, V8, P1785.
SCHOCH RB, 2006, NANO LETT, V6, P543, DOI 10.1021/nl052372h.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SOARE MA, 2006, J INTEL MAT SYST STR, V17, P231, DOI 10.1177/1045389X06056861.
STEIN D, 2006, P NATL ACAD SCI USA, V103, P15853, DOI 10.1073/pnas.0605900103.
SUCCI S, 2007, INT J MOD PHYS C, V18, P667.
TAS NR, 2002, ANAL CHEM, V74, P2224.
TEGENFELDT JO, 2004, ANAL BIOANAL CHEM, V378, P1678, DOI 10.1007/s00216-004-2526-0.
TERAOKA I, 1996, PROG POLYM SCI, V21, P89.
TURNER SW, 1998, J VAC SCI TECHNOL B, V16, P3835.
TURNER SWP, 2002, PHYS REV LETT, V88, ARTN 128103.
VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h.
VANOSS CJ, 2003, J MOL RECOGNIT, V16, P177, DOI 10.1002/jmr.618.
VERMESH U, 2009, NANO LETT, V9, P1315, DOI 10.1021/nl802931r.
VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31.
VLASSIOUK I, 2007, NANO LETT, V7, P552, DOI 10.1021/nl062924b.
WANG XY, 2008, J CHROMATOGR A, V1200, P108, DOI 10.1016/j.chroma.2008.05.088.
WANG YC, 2005, ANAL CHEM, V77, P4293, DOI 10.1021/ac050321z.
WHEELER TD, 2008, NATURE, V455, P208, DOI 10.1038/nature07226.
WIJMANS JG, 1995, J MEMBRANE SCI, V107, P1.
XUAN XC, 2008, ELECTROPHORESIS, V29, P3737, DOI 10.1002/elps.200800098.
YAMAGUCHI A, 2006, ANAL SCI, V22, P1501.
YAMAGUCHI A, 2008, J PHYS CHEM B, V112, P2024, DOI 10.1021/jp0767516.
YUAN Z, 2007, ELECTROPHORESIS, V28, P595, DOI 10.1002/elps.200600612.
ZANGLE TA, 2009, LANGMUIR, V25, P3909, DOI 10.1021/1a803318e.

Cited Reference Count:
103

Times Cited:
0

Publisher:
NATURE PUBLISHING GROUP; MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND

Subject Category:
Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1748-3387

DOI:
10.1038/NNANO.2009.332

IDS Number:
528AW

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272454500026
*Order Full Text [ ]

Title:
An efficient tool for modeling and predicting fluid flow in nanochannels

Authors:
Ahadian, S; Mizuseki, H; Kawazoe, Y

Author Full Names:
Ahadian, Samad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

Source:
JOURNAL OF CHEMICAL PHYSICS 131 (18): Art. No. 184506 NOV 14 2009

Language:
English

Document Type:
Article

KeyWords Plus:
ARTIFICIAL NEURAL-NETWORKS; CARBON NANOTUBES; MOLECULAR-DYNAMICS; CAPILLARY RISE; TRANSPORT; LIQUIDS; SURFACE; NANOFLUIDICS; IMBIBITION; NANOPORES

Abstract:
Molecular dynamics simulations were performed to evaluate the penetration of two different fluids (i.e., a Lennard-Jones fluid and a polymer) through a designed nanochannel. For both fluids, the length of permeation as a function of time was recorded for various wall-fluid interactions. A novel methodology, namely, the artificial neural network (ANN) approach was then employed for modeling and prediction of the length of imbibition as a function of influencing parameters (i.e., time, the surface tension and the viscosity of fluids, and the wall-fluid interaction). It was demonstrated that the designed ANN is capable of modeling and predicting the length of penetration with superior accuracy. Moreover, the importance of variables in the designed ANN, i.e., time, the surface tension and the viscosity of fluids, and the wall-fluid interaction, was demonstrated with the aid of the so-called connection weight approach, by which all parameters are simultaneously considered. It was!
revealed that the wall-fluid interaction plays a significant role in such transport phenomena, namely, fluid flow in nanochannels. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3253701]

Reprint Address:
Ahadian, S, Tohoku Univ, IMR, Sendai, Miyagi 9808577, Japan.

Research Institution addresses:
[Ahadian, Samad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki] Tohoku Univ, IMR, Sendai, Miyagi 9808577, Japan

E-mail Address:
ahadian@imr.edu

Cited References:
ABGRALL P, 2008, ANAL CHEM, V80, P2326, DOI 10.1021/ac702296u.
AHADIAN S, 2007, COLLOID SURFACE A, V302, P280, DOI 10.1016/j.colsurfa.2007.02.041.
AHADIAN S, 2008, CHEM ENG COMMUN, V195, P435, DOI 10.1080/00986440701707735.
AHADIAN S, 2009, COLLOID POLYM SCI, V287, P961, DOI 10.1007/s00396-009-2052-x.
AHADIAN S, 2009, MATER TRANS, V50, P1157, DOI 10.2320/matertrans.MRA2008405.
AHADIAN S, 2009, NANOSCALE RES LETT, V4, P1054, DOI 10.1007/s11671-009-9361-3.
ALLEN MP, 1987, COMPUTER SIMULATION.
BACKER JA, 2005, J CHEM PHYS, V122, ARTN 154503.
BATCHELOR GK, 2000, INTRO FLUID DYNAMICS.
BISHOP CM, 1995, NEURAL NETWORKS PATT.
BLAKE TD, 1969, J COLLOID INTERF SCI, V30, P421.
BOSANQUET CH, 1923, PHILOS MAG, V45, P525.
COX RG, 1986, J FLUID MECH, V168, P169.
DEGENNES PG, 1985, REV MOD PHYS, V57, P827.
DEMUTH H, 2002, NEURAL NETWORK TOOLB.
DIMITROV DI, 2007, PHYS REV LETT, V99, ARTN 054501.
DRAPER NR, 1998, APPL REGRESSION ANAL.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
GREST GS, 1986, PHYS REV A, V33, P3628.
HAN AJ, 2008, J APPL PHYS, V104, ARTN 124908.
HASTIE T, 2001, ELEMENTS STAT LEARNI.
HAYKIN S, 1999, NEURAL NETWORKS COMP.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HORNIK K, 1989, NEURAL NETWORKS, V2, P359.
JOLLIFFE IT, 1986, PRINCIPAL COMPONENT.
KARNIADAKIS G, 2005, MICROFLOWS NANOFLOWS.
KEMP SJ, 2007, ECOL MODEL, V204, P326, DOI 10.1016/j.ecolmodel.2007.01.009.
KIM T, 2008, J APPL PHYS, V104, ARTN 034304.
LUCAS R, 1918, KOLLOID Z, V23, P15.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MARTIC G, 2005, LANGMUIR, V21, P11201, DOI 10.1021/la0513149.
MCCULLOCH S, 1943, B MATH BIOPHYS, V5, P115.
NOY A, 2007, NANO TODAY, V2, P22.
OLDEN JD, 2004, ECOL MODEL, V178, P389, DOI 10.1016/j.ecolmodel.2004.03.013.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
QIAO Y, 2009, NANO LETT, V9, P984, DOI 10.1021/nl8030136.
RIDEAL EK, 1922, PHILOS MAG, V44, P1152.
ROWLINSON JS, 1982, MOL THEORY CAPILLARI.
RUMELHART DE, 1986, NATURE, V323, P533.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SHIKHMURZAEV YD, 1997, J FLUID MECH, V334, P211.
SODDEMANN T, 2003, PHYS REV E 2, V68, ARTN 046702.
SUNG AH, 1998, P IEEE WORLD C COMP, V1, P316.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
SUPPLE S, 2005, J CHEM PHYS, V122, ARTN 104706.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
WASHBURN EW, 1921, PHYS REV, V17, P273.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
ZURADA JM, 1997, NEUROCOMPUTING, V14, P177.

Cited Reference Count:
51

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3253701

IDS Number:
528NY

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272170200096
*Order Full Text [ ]

Title:
Enhanced Fluid Transport Through Carbon Nanopipes

Authors:
Whitby, M; Thanou, M; Quirke, N

Author Full Names:
Whitby, M.; Thanou, M.; Quirke, N.

Source:
NSTI NANOTECH 2008, VOL 3, TECHNICAL PROCEEDINGS : 367-369 2008

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
nanopipes; nanotubes; carbon; nanofluidics; flow; plasma

KeyWords Plus:
NANOTUBES; ALUMINA; FLOW

Abstract:
Experimental measurement of fluid flow and diffusion through nanoscale channels is important both for determining how classical theories of fluid dynamics apply at very small length scales and with a view to constructing practical nanofluidic devices. In this study, we observe water flow enhancement of more than 250% in relatively large 271 +/- 31 nm diameter carbon nanopipes with plasma induced surface modification of the carbon walls. Our findings have application in the development of biomedical devices both for sensing and for delivery of therapeutic drugs.

Reprint Address:
Whitby, M, Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England.

Research Institution addresses:
[Whitby, M.; Thanou, M.; Quirke, N.] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England

Cited References:
CHE G, 1998, CHEM MATER, V10, P260.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
JOSEPH S, 2008, NANOLETT.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MASUDA H, 1995, SCIENCE, V268, P1466.
NIELSCH K, 2002, NANO LETTERS, V2, P677.
SUPPLE S, 2003, PHYS REV LETT, V90.
WHITBY M, UNPUB.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.

Cited Reference Count:
9

Times Cited:
0

Publisher:
CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA

IDS Number:
BMF51

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272169900030
*Order Full Text [ ]

Title:
Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube Membranes

Authors:
Fornasiero, F; Park, HG; Holt, JK; Stadermann, M; Kim, S; In, JB; Grigoropoulos, CP; Noy, A; Bakajin, O

Author Full Names:
Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Kim, Sangil; In, Jung Bin; Grigoropoulos, Costas P.; Noy, Aleksandr; Bakajin, Olgica

Source:
NSTI NANOTECH 2008, VOL 2, TECHNICAL PROCEEDINGS : 106-109 2008

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
carbon nanotube; membrane; ion exclusion; fast flow

KeyWords Plus:
WATER; TRANSPORT; GROWTH

Abstract:
Both MD simulations and experimental studies have shown that liquid and gas flow through carbon nanotubes with nanometer size diameter is exceptionally fast. For applications in separation technology, selectivity is required together with fast flow. In this work, we use pressure-driven filtration experiments to study ion exclusion in silicon nitride/sub-2-nm CNT composite membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion at low salt concentration. Our results support a rejection mechanism dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

Reprint Address:
Fornasiero, F, Lawrence Livermore Natl Lab, CMELS, Biosci & Biotechnol Div, Livermore, CA 94550 USA.

Research Institution addresses:
[Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Noy, Aleksandr; Bakajin, Olgica] Lawrence Livermore Natl Lab, CMELS, Biosci & Biotechnol Div, Livermore, CA 94550 USA

Cited References:
CHEUNG CL, 2002, J PHYS CHEM B, V106, P2429.
FORNASIERO F, 2008, PNAS IN PRESS.
FRANKLIN NR, 2002, APPL PHYS LETT, V81, P913.
FUTABA DN, 2006, NAT MATER, V5, P987, DOI 10.1038/nmat1782.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, P5503.
LOISEAU A, 2006, LECT NOTE PHYS, V677, P49.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAMONTOV E, 2006, J CHEM PHYS, V124, P94703.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NOY A, 2007, NANO TODAY, V2, P22.
PURETZKY AA, 2005, APPL PHYS A-MATER, V81, P223, DOI 10.1007/s00339-005-3256-7.
YAMADA T, 2006, NAT NANOTECHNOL, V1, P131, DOI 10.1038/nnano.2006.95.

Cited Reference Count:
17

Times Cited:
0

Publisher:
CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA

IDS Number:
BMF49

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272169500012
*Order Full Text [ ]

Title:
A High-Flux, Flexible Membrane with Parylene-encapsulated Carbon Nanotubes

Authors:
Park, HG; In, J; Kim, S; Fornasiero, F; Holt, JK; Grigoropoulos, CP; Noy, A; Bakajin, O

Author Full Names:
Park, H. G.; In, J.; Kim, S.; Fornasiero, F.; Holt, J. K.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O.

Source:
NSTI NANOTECH 2008, VOL 1, TECHNICAL PROCEEDINGS : 43-46 2008

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
membrane; carbon nanotube; parylene; high-flux

KeyWords Plus:
BOUNDARY-CONDITIONS; MASS-TRANSPORT; WATER; NANOPORES; FABRICATION; FLOW; ARRAYS

Abstract:
We present fabrication and characterization of a membrane based on carbon nanotubes (CNTs) and parylene. Carbon nanotubes have shown orders of magnitude enhancement in gas and water permeability compared to estimates generated by conventional theories [1, 2]. Large area membranes that exhibit flux enhancement characteristics of carbon nanotubes may provide an economical solution to a variety of technologies including water desalination [3] and gas sequestration [4]. We report a novel method of making carbon nanotube-based, robust membranes with large areas. A vertically aligned dense carbon nanotube array is infiltrated with parylene. Parylene polymer creates a pinhole free transparent film by exhibiting high surface conformity and excellent crevice penetration. Using this moisture-, chemical- and solvent-resistant polymer creates carbon nanotube membranes that promise to exhibit high stability and biocompatibility. CNT membranes are formed by releasing a free-standing film !
that consists of parylene-infiltrated CNTs, followed by CNT uncapping on both sides of the composite material. Thus fabricated membranes show flexibility and ductility due to the parylene matrix material. These membranes have a potential for applications that may require high flux, flexibility and durability.

Reprint Address:
Park, HG, LLNS LLC, Livermore, CA USA.

Research Institution addresses:
[Park, H. G.; Fornasiero, F.; Holt, J. K.; Noy, A.; Bakajin, O.] LLNS LLC, Livermore, CA USA

Cited References:
ALLEN R, 2003, J CHEM PHYS, V119, P3905, DOI 10.1063/1.1590956.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
CHE G, 1998, CHEM MATER, V10, P260.
CHEN HB, 2006, J PHYS CHEM B, V110, P1971, DOI 10.1021/jp056911i.
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI 10.1140/epje/i2002-10112-9.
CRAIG VSJ, 2001, PHYS REV LETT, V87, P54504.
FAN R, 2003, J AM CHEM SOC, V125, P5254, DOI 10.1021/ja034163.
FORNASIERO F, 2008, P NATL ACAD IN PRESS.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, P5503.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MISERENDINO S, 2006, NANOTECHNOLOGY, V17, S23, DOI 10.1088/0957-4484/17/4/005.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NOY A, 2007, NANO TODAY, V2, P22.
SHOLL DS, 2006, SCIENCE, V312, P1033.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, P5901.
SKOULIDAS AI, 2006, J CHEM PHYS, V124, P54708.
SOKHAN VP, 2001, J CHEM PHYS, V115, P3878.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.

Cited Reference Count:
27

Times Cited:
0

Publisher:
CRC PRESS-TAYLOR & FRANCIS GROUP; 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA

IDS Number:
BMF46

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272254800056
*Order Full Text [ ]

Title:
Performance Augmentation of a Water Chiller System Using Nanofluids

Authors:
Liu, MS; Hu, R; Lin, MCC; Wang, CC; Liaw, JS

Author Full Names:
Liu, M. S.; Hu, R.; Lin, M. C. C.; Wang, C. C.; Liaw, J. S.

Source:
ASHRAE TRANSACTIONS 2009, VOL 115, PT 1 115: 581-586 Part 1 2009

Language:
English

Document Type:
Proceedings Paper

KeyWords Plus:
THERMAL-CONDUCTIVITY; CARBON NANOTUBE; HEAT-TRANSFER; ENHANCEMENT; FLOW

Abstract:
This study examined the overall system performance of a water chiller that is subject to the influence of nanofluids. The system performance of a 10 R T water chiller (air conditioner) located in a well-controlled chamber was observed. Multiwalled carbon nanotubes (MWCNTs) were used as the heat transfer medium in the evaporator The system performance was tested at the standard water chiller rating condition in the range of the flow rate (60 L/min to 140 L/min). The static measurement of the thermal conductivity of the nanofluids showed only a 1.3% marginal increase relative to the base fluid, so it was surprising to find that a 4.2% increase in cooling capacity and a slight decrease of about 0.8% in power consumption occurred in the nanofluids system at a flow rate of 100 L/min. In summary, with the introduction of nanofluids, the coefficient of performance (COP) of the water chiller is increased by 5.15% relative to that without nanofluids.

Reprint Address:
Liu, MS, Ind Technol Res Inst, Energy & Environm Res Labs, Hsinchu, Taiwan.

Research Institution addresses:
[Liu, M. S.; Hu, R.; Lin, M. C. C.; Wang, C. C.; Liaw, J. S.] Ind Technol Res Inst, Energy & Environm Res Labs, Hsinchu, Taiwan

Cited References:
BEHZADMEHR A, 2007, INT J HEAT FLUID FL, V28, P211, DOI 10.1016/j.ijheatfluidflow.2006.04.006.
CHOI SUS, 1995, DEV APPL NONNEWTONIA, V231, P99.
CHOI SUS, 2001, APPL PHYS LETT, V79, P2252.
DAUNGTHONGSUK W, 2007, RENEW SUST ENERG REV, V11, P797, DOI 10.1016/j.rser.2005.06.005.
DING Y, 2005, INT J HEAT MASS TRAN, V49, P240.
GAO L, 2007, CHEM PHYS LETT, V434, P297, DOI 10.1016/j.cplett.2006.12.036.
LIU MS, 2005, INT COMMUN HEAT MASS, V32, P1202, DOI 10.1016/j.icheatmasstransfer.2005.05.005.
LIU MS, 2006, P 2 INT S MICR NAN, P345.
LU HF, 2007, CARBON, V45, P936, DOI 10.1016/j.carbon.2007.01.001.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
WANG XQ, 2007, INT J THERM SCI, V46, P1, DOI 10.1016/j.ijthermalsci.2006.06.010.
XIE HQ, 2003, J APPL PHYS, V94, P4967, DOI 10.1063/1.1613374.
XUAN Y, 2003, ASME, V125, P151.
YANG Y, 2005, INT J HEAT MASS TRAN, V48, P1107, DOI 10.1016/j.ijheatmasstransfer.2004.09.038.
ZHANG X, 2007, EXP THERM FLUID SCI, V31, P593, DOI 10.1016/j.expthermflusci.2006.06.009.

Cited Reference Count:
15

Times Cited:
0

Publisher:
AMER SOC HEATING, REFRIGERATING AND AIR-CONDITIONING ENGS; 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA

ISSN:
0001-2505

IDS Number:
BMG17

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================