Friday, May 15, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265677400045
*Order Full Text [ ]

Title:
Molecular dynamics simulations on the ionic current through charged nanopores

Authors:
Xue, JM; Zou, XQ; Xie, YB; Wang, YG

Author Full Names:
Xue, J. M.; Zou, X. Q.; Xie, Y. B.; Wang, Y. G.

Source:
JOURNAL OF PHYSICS D-APPLIED PHYSICS 42 (10): Art. No. 105308 MAY 21 2009

Language:
English

Document Type:
Article

KeyWords Plus:
PRIMITIVE MODEL ELECTROLYTE; CONTINUUM-THEORIES; BROWNIAN DYNAMICS; CARBON NANOTUBE; SURFACE-CHARGE; TRANSPORT; CONDUCTIVITY; DIFFUSIVITY; CONDUCTANCE; CHANNELS

Abstract:
Molecular dynamics (MD) simulation was performed to investigate the ionic current through charged nanopores, and the results were compared with the calculation of Poisson-Nernst-Planck (PNP) equations based on the continuum theory. Results show that the current obtained by MD simulation is lower than the current calculated by PNP equations, and the discrepancy depends on the surface charge density of the nanopores. Also, MD simulation shows that the contribution of the electro-osmotic flow effect on ionic current could be 10% higher than the results obtained by solving PNP equations. Since the PNP equations do not take the effect of the pore wall into consideration, we suggest that adjusting the diffusion coefficient in the PNP equations can obtain more accurate results when calculating the ionic current through charged nanopores.

Reprint Address:
Xue, JM, Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China.

Research Institution addresses:
[Xue, J. M.; Zou, X. Q.; Xie, Y. B.; Wang, Y. G.] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China; [Xue, J. M.] Peking Univ, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China

E-mail Address:
jmxue@pku.edu.cn

Cited References:
NAMD USERS GUIDE SEC.
ALEXANDRA H, 2007, J SEP SCI, V30, P1389.
ALLEN MP, 1991, COMPUTER SIMULATION.
BEREZKIN VV, 2003, ADV COLLOID INTERFAC, V104, P325, DOI 10.1016/S0001-8686(03)00054-X.
CERVERA J, 2006, J CHEM PHYS, V124, ARTN 104706.
CHENG J, 2007, NANO LETT, V7, P3165.
CORRY B, 2000, BIOPHYS J, V78, P2364.
CORRY B, 2000, CHEM PHYS LETT, V320, P35.
COZMUTA I, 2005, MOL SIMULAT, V31, P79, DOI 10.1080/08927020412331308467.
CUI ST, 2005, J CHEM PHYS, V123, ARTN 054706.
DAIGUJI H, 2005, NANO LETT, V5, P2274, DOI 10.1021/nl051646y.
DELUCA G, 2007, BBA-BIOMEMBRANES, V1768, P264, DOI 10.1016/j.bbamem.2006.08.015.
DUAN C, 1997, BIOPHYS J, V72, P97.
HARRISON DE, 1969, J MATH PHYS, V10, P1179.
HEYDEN FHJ, 2005, PHYS REV LETT, V95, UNSP 116104.
HUMMER G, 2001, NATURE, V414, P188.
HWANG H, 2007, J CHEM PHYS, V127, ARTN 024706.
HWANG H, 2007, J PHYS CHEM A, V111, P12506, DOI 10.1021/jp075838o.
IM W, 2002, J MOL BIOL, V322, P851, DOI 10.1016/S0022-2836(02)00778-7.
KARNIK R, 2005, NANO LETT, V5, P1638, DOI 10.1021/nl050966e.
LI JL, 2003, NAT MATER, V2, P611, DOI 10.1038/nmat965.
LIU Q, 2007, PHYS REV E 1, V75, ARTN 051201.
LO WY, 1998, J ELECTROANAL CHEM, V450, P265.
QIAO R, 2003, NANO LETT, V3, P1013, DOI 10.1021/nl034236n.
QIAO R, 2005, APPL PHYS LETT, V86, ARTN 143105.
SCHOCHA BR, 2005, APPL PHYS LETT, V86, UNSP 253111.
SIWY ZS, 2006, NANO LETT, V6, P1729, DOI 10.1021/nl061114x.
STEIN D, 2004, PHYS REV LETT, V93, ARTN 035901.
TANG YW, 2001, J PHYS CHEM A, V105, P9616.
TANG YW, 2001, MOL PHYS, V99, P309.
TANG YW, 2004, J PHYS CHEM B, V108, P18204, DOI 10.1021/jp0465985.
WANG XW, 2007, J PHYS D APPL PHYS, V40, P7077, DOI 10.1088/0022-3727/40/22/032.
WOLF A, 1995, NUCL INSTRUM METH B, V105, P291.

Cited Reference Count:
33

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Applied

ISSN:
0022-3727

DOI:
10.1088/0022-3727/42/10/105308

IDS Number:
440CW

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265617200022
*Order Full Text [ ]

Title:
An exploration of electronic structure and nuclear dynamics in tropolone: II. The A B-1(2) (pi(*)pi) excited state

Authors:
Burns, LA; Murdock, D; Vaccaro, PH

Author Full Names:
Burns, Lori A.; Murdock, Daniel; Vaccaro, Patrick H.

Source:
JOURNAL OF CHEMICAL PHYSICS 130 (14): Art. No. 144304 APR 14 2009

Language:
English

Document Type:
Article

Author Keywords:
bond lengths; chemical exchanges; configuration interactions; coupled cluster calculations; density functional theory; excited states; HF calculations; hydrogen bonds; molecular force constants; organic compounds; perturbation theory; potential energy surfaces; rotational states; vibrational states

KeyWords Plus:
DENSITY-FUNCTIONAL THEORY; COUPLED-CLUSTER METHOD; POTENTIAL-ENERGY SURFACES; PROTON-TRANSFER REACTIONS; JET-COOLED TROPOLONE; GAUSSIAN-BASIS SETS; EXCITATION-ENERGIES; CONFIGURATION-INTERACTION; VIBRATIONAL-EXCITATION; TUNNELING SPLITTINGS

Abstract:
The first excited singlet state of tropolone (A B-1(2)) and the attendant pi(*)<-pi electronic transition have been examined computationally by applying several quantum chemical treatments built upon the aug-cc-pVDZ basis set, including time-dependent density functional theory (TDDFT/B3LYP), configuration interaction singles with perturbative corrections [CIS and CIS(D)], and equation-of-motion coupled-cluster schemes [EOM-CCSD and CR-EOMCCSD(T)]. As in the case of the X (1)A(1) ground state [L. A. Burns, D. Murdock, and P. H. Vaccaro, J. Chem. Phys. 124, 204307 (2006)], geometry optimization procedures and harmonic force-field calculations predict the electronically excited potential surface to support a global minimum-energy configuration of rigorously planar (C-s) symmetry. Minimal Hartree-Fock (HF/CIS) and density-functional (DFT/TDDFT) approaches yield inconsistent results for the X (1)A(1) and A B-1(2) manifolds; however, coupled-cluster (CCSD/EOM-CCSD) methods give fu!
lly relaxed proton-transfer barrier heights of Delta E-pt(X)=3296.1 cm(-1) and Delta E-pt(A)=1270.6 cm(-1) that are in accordance with the experimentally observed increase in vibrationless tunneling splitting upon electronic excitation. Detailed analyses show that this reduction in Delta E-pt stems from a variety of complementary factors, most notably an overall contraction of the proton-transfer reaction site (whereby the equilibrium O center dot O donor-acceptor distance decreases from 2.53 to 2.46 A) and a concomitant shortening of the intramolecular hydrogen bond. Further refinement of A B-1(2) energies through single-point perturbative triples corrections [CR-EOMCCSD(T)] leads to 1316.1 cm(-1) as the best current estimate for Delta E-pt(A). Direct comparison of the lowest-lying out-of-plane torsional mode [nu(39)(a(2))] for X (1)A(1) and A B-1(2) tropolone reveals that its disparate nature (cf. nu(X)(39)=101.2 cm(-1) and nu(A)(39)=42.0 cm(-1)) mediates vibrational-aver!
aging effects which can account for inertial defects extracted!
by rota
tionally resolved spectroscopic measurements.

Reprint Address:
Burns, LA, Yale Univ, Dept Chem, POB 208107, New Haven, CT 06520 USA.

Research Institution addresses:
[Burns, Lori A.; Murdock, Daniel; Vaccaro, Patrick H.] Yale Univ, Dept Chem, New Haven, CT 06520 USA

E-mail Address:
patrick.vaccaro@yale.edu

Cited References:
*EPAPS, EJCPSA6130001911 EPA.
ALVES ACP, 1972, MOL PHYS, V23, P927.
ALVES ACP, 1973, MOL PHYS, V25, P1305.
ARNAUT LG, 1993, J PHOTOCH PHOTOBIO A, V75, P1.
BARTLETT RJ, 1995, MODERN ELECT STRUC 1, P1047.
BAUERNSCHMITT R, 1996, CHEM PHYS LETT, V256, P454.
BECKE AD, 1993, J CHEM PHYS, V98, P5648.
BRACAMONTE AE, 2004, J CHEM PHYS, V120, P4638, DOI 10.1063/1.1645774.
BUNKER PR, 1998, MOL SYMMETRY SPECTRO.
BURNS LA, 2006, J CHEM PHYS, V124, ARTN 204307.
CASADESUS R, 2005, CHEM PHYS LETT, V405, P187, DOI 10.1016/j.cplett.2005.02.025.
CLARK T, 1983, J COMPUT CHEM, V4, P294.
DELBENE JE, 1997, J CHEM PHYS, V106, P6051.
DENNINGTON R, 2003, GAUSSVIEW VERSION 3.
DUNNING TH, 1989, J CHEM PHYS, V90, P1007.
FLUKIGER P, 2000, CHIMIA, V54, P766.
FORESMAN JB, 1992, J PHYS CHEM-US, V96, P135.
FORMOSINHO SJ, 1993, J PHOTOCH PHOTOBIO A, V75, P21.
FRISCH MJ, 2004, GAUSSIAN03 REVISION.
FROST RK, 1996, J CHEM PHYS, V105, P2595.
FURCHE F, 2002, J CHEM PHYS, V117, P7433, DOI 10.1063/1.1508368.
GIESE K, 2005, J CHEM PHYS, V123, ARTN 054315.
GORDY W, 1984, MICROWAVE MOL SPECTR.
GUO Y, 1998, J PHYS CHEM A, V102, P5040.
GUTMAN M, 1990, BIOCHIM BIOPHYS ACTA, V1015, P391.
GWALTNEY SR, 1999, J CHEM PHYS, V110, P62.
HEADGORDON M, 1994, CHEM PHYS LETT, V219, P21.
HERSCHBACH DR, 1964, J CHEM PHYS, V40, P3142.
HIBBERT F, 1990, ADV PHYS ORG CHEM, V26, P255.
HUMMER G, 2001, NATURE, V414, P188.
HYNES JT, 2007, HYDROGEN TRANSFER RE.
ISHIKAWA N, 1995, INT J QUANTUM CH S29, P421.
KENDALL RA, 1992, J CHEM PHYS, V96, P6796.
KESKE JC, 2006, J CHEM PHYS, V124, ARTN 074309.
KOWALSKI K, 2004, J CHEM PHYS, V120, P1715, DOI 10.1063/1.1632474.
KRISHNAN R, 1980, J CHEM PHYS, V72, P650.
LEE C, 1988, PHYS REV B, V37, P785.
MACKENZIE VJ, 1999, CHEM PHYS LETT, V302, P1, DOI 10.1016/S0009-2614(99)00349-8.
MARTIN JML, 2001, COMPUT PHYS COMMUN, V133, P189.
MORAN D, 2006, J AM CHEM SOC, V128, P9342, DOI 10.1021/ja0630285.
MURDOCK D, UNPUB.
MURDOCK D, 2007, J CHEM PHYS, V127, ARTN 081101.
OKA T, 1961, J MOL SPECTROSC, V6, P472.
OKA T, 1995, J MOL STRUCT, V352, P225.
OZEKI H, 1993, J CHEM PHYS, V99, P56.
PAZ JJ, 1995, J CHEM PHYS, V103, P353.
PETTERSEN EF, 2004, J COMPUT CHEM, V25, P1605, DOI 10.1002/jcc.20084.
PIECUCH P, 2002, COMPUT PHYS COMMUN, V149, P71.
REDINGTON RL, 1988, J CHEM PHYS, V88, P627.
REDINGTON RL, 1990, J CHEM PHYS, V92, P6447.
REDINGTON RL, 1990, J CHEM PHYS, V92, P6456.
REDINGTON RL, 2000, J CHEM PHYS, V113, P2304.
REDINGTON RL, 2000, J CHEM PHYS, V113, P2319.
REDINGTON RL, 2002, J PHYS CHEM A, V106, P7494, DOI 10.1021/jp0122631.
REDINGTON RL, 2005, J CHEM PHYS, V122, ARTN 124304.
REDINGTON RL, 2006, J PHYS CHEM A, V110, P9633, DOI 10.1021/jp062068s.
REDINGTON RL, 2007, HYDROGEN TRANSFER RE, V1, P3.
REDINGTON RL, 2008, J PHYS CHEM A, V112, P1480, DOI 10.1021/jp0757255.
RUNGE E, 1984, PHYS REV LETT, V52, P997.
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347.
SEKIYA H, 1990, J CHEM PHYS, V92, P5761.
SEKIYA H, 1991, J PHYS CHEM-US, V95, P10311.
SMEDARCHINA Z, 1996, J CHEM PHYS, V104, P1203.
STANTON JF, 1993, J CHEM PHYS, V98, P7029.
STANTON JF, 1993, J CHEM PHYS, V99, P8840.
STANTON JF, 1994, J CHEM PHYS, V100, P4695.
STANTON JF, 1995, J CHEM PHYS, V103, P4160.
STANTON JF, 2005, ACES 2 IS PROGRAM PR.
STOCKTON WB, 1997, MACROMOLECULES, V30, P2717.
STRATMANN RE, 1998, J CHEM PHYS, V109, P8218.
TAKADA S, 1995, J CHEM PHYS, V102, P3977.
TANAKA K, 1999, J CHEM PHYS, V110, P1969.
TAYLOR MS, 2006, ANGEW CHEM INT EDIT, V45, P1520, DOI 10.1002/anie.200503132.
TOMIOKA Y, 1983, J PHYS CHEM-US, V87, P4401.
VENER MV, 1994, J CHEM PHYS, V101, P9755.
WANG YG, UNPUB.
WATSON JKG, 1993, J CHEM PHYS, V98, P5302.
WIBERG KB, 1992, J PHYS CHEM-US, V96, P10756.
WIBERG KB, 2005, J PHYS CHEM A, V109, P466, DOI 10.1021/jp040558j.
WLOCH M, 2005, J CHEM PHYS, V122, ARTN 214107.
WOJCIK MJ, 2000, J CHEM PHYS, V112, P6322.

Cited Reference Count:
81

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3089722

IDS Number:
439HC

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265486300013
*Order Full Text [ ]

Title:
A one-dimensional dipole lattice model for water in narrow nanopores

Authors:
Kofinger, J; Hummer, G; Dellago, C

Author Full Names:
Koefinger, Juergen; Hummer, Gerhard; Dellago, Christoph

Source:
JOURNAL OF CHEMICAL PHYSICS 130 (15): Art. No. 154110 APR 21 2009

Language:
English

Document Type:
Article

Author Keywords:
chemical potential; lattice theory; liquid structure; Monte Carlo methods; nanoporous materials; water

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; PROTON CONDUCTION; MASS-TRANSPORT; ION-TRANSPORT; SIMULATIONS; PROTEINS; CHANNELS; BEHAVIOR

Abstract:
We present a recently developed one-dimensional dipole lattice model that accurately captures the key properties of water in narrow nanopores. For this model, we derive three equivalent representations of the Hamiltonian that together yield a transparent physical picture of the energetics of the water chain and permit efficient computer simulations. In the charge representation, the Hamiltonian consists of nearest-neighbor interactions and Coulomb-like interactions of effective charges at the ends of dipole ordered segments. Approximations based on the charge picture shed light on the influence of the Coulomb-like interactions on the structure of nanopore water. We use Monte Carlo simulations to study the system behavior of the full Hamiltonian and its approximations as a function of chemical potential and system size and investigate the bimodal character of the density distribution occurring at small system sizes.

Reprint Address:
Kofinger, J, Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria.

Research Institution addresses:
[Koefinger, Juergen; Dellago, Christoph] Univ Vienna, Fac Phys, A-1090 Vienna, Austria; [Hummer, Gerhard] NIDDKD, Phys Chem Lab, NIH, Bethesda, MD 20892 USA

E-mail Address:
christoph.dellago@univie.ac.at

Cited References:
ABRAMOWITZ M, 1965, HDB MATH FUNCTIONS.
ANTAL T, 2004, J PHYS A-MATH GEN, V37, P1465.
BUTTER K, 2003, NAT MATER, V2, P88.
CHOU T, 2002, J PHYS A-MATH GEN, V35, P4515.
CHOU T, 2004, BIOPHYS J, V86, P2827.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
ERNE BH, 2007, J MAGN MAGN MATER, V311, P145, DOI 10.1016/j.jmmm.2006.11.169.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
HILLE B, 2001, ION CHANNELS EXCITAB.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KREUER KD, 2004, CHEM REV, V104, P4637, DOI 10.1021/cr020715f.
LIU X, 2006, J PHYS CHEM B, V110, P20102, DOI 10.1021/jp0647378.
LUIJTEN E, 1997, PHYS REV B, V56, P8945.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946.
PUNTES VF, 2001, APPL PHYS LETT, V78, P2187.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
RUELLE D, 1968, COMMUN MATH PHYS, V9, P267.
SHEVCHENKO EV, 2006, NATURE, V439, P55, DOI 10.1038/nature04414.
WANG FG, 2001, PHYS REV E 2, V64, ARTN 056101.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
32

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3106223

IDS Number:
437KL

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: