Friday, May 29, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 OCT 2009
Number of Citing Articles: 8 new records this week (8 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266051400022
*Order Full Text [ ]

Title:
Diffusion in quasi-one-dimensional structures with a periodic sharp narrowing of the cross section

Authors:
Makhnovskii, YA; Zitserman, VY; Berezhkovskii, AM

Author Full Names:
Makhnovskii, Yu. A.; Zitserman, V. Yu.; Berezhkovskii, A. M.

Source:
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 3 (2): 313-319 APR 2009

Language:
English

Document Type:
Article

KeyWords Plus:
ENTROPY BARRIER; TRANSPORT; KINETICS

Abstract:
The problem of diffusion of particles in a tube with periodically positioned partitions with circular orifices at the center of each was considered. Using an approach based on the methods and results of the theory of diffusion-controlled reactions and the idea of homogenization of the permeability of partitions, we derived a formula for the effective diffusion coefficient for the steady-state regime of the process. The accuracy and applicability domain of the formula were determined by comparing its predictions with computer simulation results.

Reprint Address:
Makhnovskii, YA, Russian Acad Sci, AV Topchiev Petrochem Synth Inst, Leninskii Pr 29, Moscow 117912, Russia.

Research Institution addresses:
[Makhnovskii, Yu. A.] Russian Acad Sci, AV Topchiev Petrochem Synth Inst, Moscow 117912, Russia; [Zitserman, V. Yu.] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia; [Berezhkovskii, A. M.] NIH, Math & Stat Comp Lab, Div Computat Biosci, Ctr Informat Technol, Bethesda, MD 20892 USA

E-mail Address:
yuam@ips.ac.ru

Cited References:
BEREZHKOVSKII AM, 2003, J CHEM PHYS, V118, P7146, DOI 10.1063/1.1561615.
BEREZHKOVSKII AM, 2003, J CHEM PHYS, V119, P6991, DOI 10.1063/1.1615758.
BEREZHKOVSKII AM, 2004, J CHEM PHYS, V121, P11390, DOI 10.1063/1.1814351.
BEREZHKOVSKII AM, 2006, J CHEM PHYS, V124, ARTN 036103.
BEREZHKOVSKII AM, 2006, J CHEM PHYS, V125, ARTN 194501.
BEREZHKOVSKII AM, 2007, J CHEM PHYS, V126, ARTN 134706.
BEREZHKOVSKII AM, 2008, KHIM FIZ, V27, P84.
BURADA PS, 2007, PHYS REV E 1, V75, ARTN 051111.
BURADA PS, 2008, BIOSYSTEMS, V93, P16, DOI 10.1016/j.biosystems.2008.03.006.
CRICK F, 1970, NATURE, V225, P420.
DAGDUG L, 2007, J CHEM PHYS, V127, ARTN 224712.
DELVECCHIO T, 1987, ANN MAT PUR APPL, V147, P363.
DUDKO OK, 2004, J CHEM PHYS, V121, P11283, DOI 10.1063/1.1814055.
DYDKO OK, 2005, J PHYS CHEM B, V109, P21296.
FULINSKI A, 2005, NEW J PHYS, V7, ARTN 132.
GRIGORIEV IV, 2002, J CHEM PHYS, V116, P9574.
GUO L, 2007, J PHYS CHEM B, V111, P14244, DOI 10.1021/jp076562n.
HILLE B, 2001, ION CHANNELS EXCITAB.
HUMMER G, 2001, NATURE, V414, P188.
JACOBS MH, 1967, DIFFUSION PROCESSES.
KALINAY P, 2005, J CHEM PHYS, V122, ARTN 204701.
KARGER J, 1992, DIFFUSION ZEOLITES O.
KOSINSKA ID, 2007, ACTA PHYS POL B, V38, P1631.
MAKHNOVSKII YA, 2005, J CHEM PHYS, V122, ARTN 236102.
MAKHNOVSKII YA, 2006, RUSS J PHYS CHEM, V80, P1129.
OVCHINNIKOV AA, 1986, KINETICS DIFFUSION C.
REGUERA D, 2001, PHYS REV E 1, V64, ARTN 061106.
REGUERA D, 2006, PHYS REV LETT, V96, ARTN 130603.
SHOUP D, 1982, BIOPHYS J, V40, P33.
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 158101.
TANNER JE, 1978, J CHEM PHYS, V69, P1748.
TIMASHEV SF, 1991, PHYS CHEM MEMBRANE P.
VAZGUEZ MV, 2008, J CHEM PHYS, V129, UNSP 046101.
ZITSERMAN VY, 2006, RUSS J PHYS CHEM, V80, P77.
ZITSERMAN VY, 2008, RUSS J PHYS CHEM A+, V82, P2039, DOI 10.1134/S0036024408120121.
ZWANZIG R, 1992, J PHYS CHEM-US, V96, P3926.

Cited Reference Count:
36

Times Cited:
0

Publisher:
MAIK NAUKA/INTERPERIODICA/SPRINGER; 233 SPRING ST, NEW YORK, NY 10013-1578 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
1990-7931

DOI:
10.1134/S1990793109020225

IDS Number:
445LD

========================================================================

*Record 2 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265948600031
*Order Full Text [ ]

Title:
Infiltration of Electrolytes in Molecular-Sized Nanopores

Authors:
Liu, L; Chen, X; Lu, WY; Han, AJ; Qiao, Y

Author Full Names:
Liu, Ling; Chen, Xi; Lu, Weiyi; Han, Aijie; Qiao, Yu

Source:
PHYSICAL REVIEW LETTERS 102 (18): Art. No. 184501 MAY 8 2009

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; ION-TRANSPORT; NANOFLUIDICS; PRESSURE; LIQUID; WATER

Abstract:
In both experiment and molecular simulation, it is found that a higher pressure is required to sustain the infiltration of smaller ions in a molecular-sized nanochannel. Simulations indicate that the effective ion solubility of the infiltrated liquid is reduced to nearly zero. Because of the strong interactions between the ion couples and the solid or liquid phases, an external force is required to continuously advance the confined liquid segment. The competition between the probability of ion entry and ion-couple formation causes the observed ion-size-dependent characteristics.

Reprint Address:
Qiao, Y, Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA.

Research Institution addresses:
[Lu, Weiyi; Han, Aijie; Qiao, Yu] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA; [Liu, Ling; Chen, Xi] Columbia Univ, Sch Engn & Appl Sci, New York, NY 10027 USA

E-mail Address:
yqiao@ucsd.edu

Cited References:
*EPAPS, EPRLTAO102040920 EPA.
AUERBACH SM, 2003, HDB ZEOLITE SCI TECH.
CARRILLOTRIPP M, 2004, PHYS REV LETT, V93, ARTN 168104.
CHAN KY, 2004, MOL SIMULAT, V30, P81, DOI 10.1080/0892702031000152235.
DAIGUJI H, 2004, NANO LETT, V4, P137, DOI 10.1021/nl0348185.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GUENES S, 2008, INORG CHIM ACTA, V361, P581, DOI 10.1016/j.ica.2007.06.042.
HAMANN CH, 2007, ELECTROCHEMISTRY.
HAN A, 2007, APPL PHYS LETT, V91, UNSP 173 123.
HAN A, 2007, J MATER RES, V22, P644, DOI 10.1557/JMR.2007.0088.
HAN AJ, 2006, J AM CHEM SOC, V128, P10348, DOI 10.1021/ja062037a.
HEALY K, 2007, NANOMEDICINE-UK, V2, P875, DOI 10.2217/17435889.2.6.875.
HOLTZEL A, 2007, J SEP SCI, V30, P1398, DOI 10.1002/jssc.200600427.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KHAZAEI M, 2004, J PHYS CHEM B, V108, P15529, DOI 10.1021/jp0481557.
KONG X, 2005, APPL PHYS LETT, V86, P51919, ARTN 151919.
KONG XG, 2006, J APPL PHYS, V99, P64313, ARTN 064313.
LU W, 2009, APPL PHYS LETT, V94, UNSP 023 106.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
QIAO Y, 2009, NANO LETT, V9, P984, DOI 10.1021/nl8030136.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SHAO Q, 2008, PHYS CHEM CHEM PHYS, V10, P1896, DOI 10.1039/b719033f.
TANG YW, 2003, NANO LETT, V3, P217, DOI 10.1021/nl025868x.
WASAN DT, 2003, NATURE, V423, P156, DOI 10.1038/nature01591.
YANG L, 2007, J CHEM PHYS, V126, UNSP 084 706.

Cited Reference Count:
28

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Multidisciplinary

ISSN:
0031-9007

DOI:
10.1103/PhysRevLett.102.184501

IDS Number:
443ZF

========================================================================

*Record 3 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265941300062
*Order Full Text [ ]

Title:
Hydrogen-bond dynamics of water in a quasi-two-dimensional hydrophobic nanopore slit

Authors:
Han, SH; Kumar, P; Stanley, HE

Author Full Names:
Han, Sungho; Kumar, Pradeep; Stanley, H. Eugene

Source:
PHYSICAL REVIEW E 79 (4): Art. No. 041202 Part 1 APR 2009

Language:
English

Document Type:
Article

Author Keywords:
hydrogen bonds; interface phenomena; liquid theory; molecular dynamics method; potential energy functions; water

KeyWords Plus:
DEPOLARIZED RAYLEIGH-SCATTERING; LIQUID WATER; CONFINED WATER; SUPERCOOLED WATER; WIDOM LINE; SPECTROSCOPY; TRANSITION; SIMULATION; CROSSOVER; KINETICS

Abstract:
We perform molecular dynamics simulations to investigate hydrogen-bond dynamics of the TIP5P (transferable intermolecular potential with five points) model of water confined in a quasi-two-dimensional hydrophobic nanopore slit. We find that even if the average number and the lifetime of hydrogen bonds are affected by nanoconfinement, the characteristics of hydrogen-bond dynamics in hydrophobic confined water are the same as in bulk water-such as an Arrhenius temperature dependence of average hydrogen-bond lifetime and a nonexponential behavior of lifetime distributions at short time scales. The different physical properties of water in hydrophobic confinement compared to bulk water-such as similar to 40 K temperature shift-may be primarily due to the reduction of the lifetime of hydrogen bonds in confined environments. We also find that the hydrogen-bond autocorrelation function exhibits a power-law tail following a stretched exponential behavior. The relaxation time of hydr!
ogen bonds in confined water is smaller than in bulk water. Further, we find that the temperature dependence of the relaxation time follows a power-law behavior, and the exponents for bulk and confined water are similar to each other.

Reprint Address:
Han, SH, Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.

Research Institution addresses:
[Han, Sungho; Stanley, H. Eugene] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA; [Han, Sungho; Stanley, H. Eugene] Boston Univ, Dept Phys, Boston, MA 02215 USA; [Kumar, Pradeep] Rockefeller Univ, Ctr Studies Phys & Biol, New York, NY 10021 USA

Cited References:
BALASUBRAMANIAN S, 2002, PHYS REV LETT, V89, P5505.
CHU XQ, 2007, PHYS REV E 1, V76, ARTN 021505.
CONDE O, 1984, MOL PHYS, V53, P951.
DANNINGER W, 1981, J CHEM PHYS, V74, P2769.
DOKTER AM, 2005, PHYS REV LETT, V94, ARTN 178301.
DOKTER AM, 2006, P NATL ACAD SCI USA, V103, P15355, DOI 10.1073/pnas.0603239103.
EISENBERG D, 1969, STRUCTURE PROPERTIES.
FECKO CJ, 2003, SCIENCE, V301, P1698.
FRANZESE G, 2007, J PHYS-CONDENS MAT, V19, ARTN 205126.
FRANZESE G, 2008, J PHYS-CONDENS MAT, V20, ARTN 494210.
GALLO P, 2000, J CHEM PHYS, V113, P11324.
GALLO P, 2000, PHYS REV LETT, V85, P4317.
GALLO P, 2007, PHYS REV E 1, V76, ARTN 061202.
HAN SH, 2008, PHYS REV E 1, V77.
HANASAKI I, 2006, J CHEM PHYS, V124, P74714, ARTN 174714.
HUMMER G, 2001, NATURE, V414, P188.
KUMAR P, 2005, PHYS REV E 1, V72, ARTN 051503.
KUMAR P, 2006, PHYS REV LETT, V97, ARTN 177802.
KUMAR P, 2007, P NATL ACAD SCI USA, V104, P9575, DOI 10.1073/pnas.0702608104.
KUMAR P, 2007, PHYS REV E 1, V75, ARTN 011202.
KUMAR P, 2008, J PHYS CONDENS MATT, V20, P44114, DOI 10.1088/0953-8984/20/24/244114.
KUMAR P, 2008, PHYS REV LETT, V100, ARTN 105701.
LATIMER WM, 1920, J AM CHEM SOC, V42, P1419.
LAWRENCE CP, 2003, J CHEM PHYS, V118, P264, DOI 10.1063/1.1525802.
LEE HS, 2007, J CHEM PHYS, V126, P64501, ARTN 164501.
LIU L, 2005, PHYS REV LETT, V95, ARTN 117802.
LUZAR A, 1993, J CHEM PHYS, V98, P8160.
LUZAR A, 1996, NATURE, V379, P55.
LUZAR A, 1996, PHYS REV LETT, V76, P928.
LUZAR A, 2000, J CHEM PHYS, V113, P10663.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MARKOVITCH O, 2008, J CHEM PHYS, V129, P84505, ARTN 084505.
MARTI J, 1996, J CHEM PHYS, V105, P639.
MATSUMOTO M, 1996, J CHEM PHYS, V104, P2705.
MONTROSE CJ, 1974, J CHEM PHYS, V60, P5025.
PAOLANTONI M, 2007, J CHEM PHYS, V127, P24504, ARTN 024504.
PAUL S, 2004, CHEM PHYS LETT, V386, P218, DOI 10.1016/j.cplett.2003.12.120.
POOLE PH, 1992, NATURE, V360, P324.
RAITERI P, 2004, PHYS REV LETT, V93, ARTN 087801.
SCIORTINO F, 1989, J CHEM PHYS, V90, P2786.
SCIORTINO F, 1990, PHYS REV LETT, V64, P1686.
STARR FW, 1999, PHYS REV LETT, V82, P2294.
STARR FW, 2000, PHYS REV E A, V62, P579.
XU HF, 2001, J PHYS CHEM B, V105, P11929.
XU LM, 2005, P NATL ACAD SCI USA, V102, P16558, DOI 10.1073/pnas.0507870102.
YAMADA M, 2002, PHYS REV LETT, V88, ARTN 195701.
YEREMENKO S, 2003, CHEM PHYS LETT, V369, P107, DOI 10.1016/S0009-2614(02)02001-8.

Cited Reference Count:
47

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Fluids & Plasmas; Physics, Mathematical

ISSN:
1539-3755

DOI:
10.1103/PhysRevE.79.041202

IDS Number:
443WK

========================================================================

*Record 4 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265941400049
*Order Full Text [ ]

Title:
Molecular dynamics of a water jet from a carbon nanotube

Authors:
Hanasaki, I; Yonebayashi, T; Kawano, S

Author Full Names:
Hanasaki, Itsuo; Yonebayashi, Toru; Kawano, Satoyuki

Source:
PHYSICAL REVIEW E 79 (4): Art. No. 046307 Part 2 APR 2009

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; flow simulation; jets; molecular dynamics method; nanofluidics; nozzles; pipe flow; water

KeyWords Plus:
NANOJET; SIMULATIONS; CONDUCTION; CURVATURE; DROPLETS; DIAMETER; RUPTURE; MODEL; FLOW

Abstract:
A carbon nanotube (CNT) can be viewed as a molecular nozzle. It has a cylindrical shape of atomistic regularity, and the diameter can be even less than 1 nm. We have conducted molecular-dynamics simulations of water jet from a (6,6) CNT that confines water in a form of single-file molecular chain. The results show that the water forms nanoscale clusters at the outlet and they are released intermittently. The jet breakup is dominated by the thermal fluctuations, which leads to the strong dependence on the temperature. The cluster size n decreases and the release frequency f increases at higher temperatures. The f roughly follows the reaction kinetics by the transition state theory. The speed of a cluster is proportional to the 1/root n because of the central limit theorem. These properties make great contrast with the macroscopic liquid jets.

Reprint Address:
Hanasaki, I, Osaka Univ, Grad Sch Engn Sci, Dept Mech Sci & Bioengn, Machikaneyama Cho 1-3, Osaka 5608531, Japan.

Research Institution addresses:
[Hanasaki, Itsuo; Yonebayashi, Toru; Kawano, Satoyuki] Osaka Univ, Grad Sch Engn Sci, Dept Mech Sci & Bioengn, Osaka 5608531, Japan

E-mail Address:
hanasaki@me.es.osaka-u.ac.jp; kawano@me.es.osaka-u.ac.jp

Cited References:
ANDERSEN HC, 1983, J COMPUT PHYS, V52, P24.
ANDREEV S, 2005, J CHEM PHYS, V123, P94502, ARTN 194502.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
CHOI YS, 2006, PHYS REV E 2, V73, ARTN 016309.
EGGERS J, 2002, PHYS REV LETT, V89, ARTN 084502.
FANG TH, 2003, J PHYS-CONDENS MAT, V15, P8263.
FRISCH MJ, 2004, GAUSSIAN 03 REVISION.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
HANASAKI I, 2006, J CHEM PHYS, V124, P44708.
HANASAKI I, 2006, J CHEM PHYS, V124, P74714, ARTN 174714.
HANASAKI I, 2006, MODEL SIMUL MATER SC, V14, S9, DOI 10.1088/0965-0393/14/5/S02.
HANASAKI I, 2006, NANOTECHNOLOGY, V17, P2794, DOI 10.1088/0957-4484/17/11/012.
HANASAKI I, 2008, J PHYS-CONDENS MAT, V20, P15213, ARTN 015213.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
IIJIMA S, 1991, NATURE, V354, P56.
IIJIMA S, 1992, NATURE, V356, P776.
IIJIMA S, 1993, NATURE, V363, P603.
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, ARTN 044501.
KASSINOS SC, 2004, LECT NOTES COMPUT SC, V39, P215.
KAWANO S, 1998, PHYS REV E, V58, P4468.
KOGA K, 2001, NATURE, V412, P802.
KOPLIK J, 1993, PHYS FLUIDS A-FLUID, V5, P521.
MARTI J, 1999, J CHEM PHYS, V110, P6876.
MARTI J, 2001, J CHEM PHYS, V114, P10486.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MIN DH, 2006, PHYS FLUIDS, V18, P24103, ARTN 024103.
MOSELER M, 2000, SCIENCE, V289, P1165.
RANGELOW IW, 2001, J VAC SCI TECHNOL B, V19, P2723.
RIVERA JL, 2002, NANO LETT, V2, P1427, DOI 10.1021/nl0257566.
SAITO R, 1996, PHYS REV B, V53, P2044.
SONG F, 2005, PHYS REV LETT, V94, ARTN 093401.
VOIGT J, 1999, J VAC SCI TECHNOL B, V17, P2764.
VOIGT J, 2000, J VAC SCI TECHNOL B, V18, P3525.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WALTHER JH, 2004, PHYS REV E 1, V69, ARTN 062201.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
40

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Fluids & Plasmas; Physics, Mathematical

ISSN:
1539-3755

DOI:
10.1103/PhysRevE.79.046307

IDS Number:
443WL

========================================================================

*Record 5 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265687500034
*Order Full Text [ ]

Title:
Nanofluidic Transport in Branching Nanochannels: A Molecular Sieve Based on Y-Junction Nanotubes

Authors:
Liu, L; Chen, X

Author Full Names:
Liu, Ling; Chen, Xi

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 113 (18): 6468-6472 MAY 7 2009

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; FLOW-CONTROL; FORCE-FIELD; FLUID-FLOW; NANOPORES; NETWORKS; DYNAMICS; SURFACE; LIQUID; WATER

Abstract:
Using molecular dynamics (MD) simulations, we study the fundamental partitioning and screening behaviors of nanofluids confined in Y-junction nanochannels, and demonstrate their feasibility as efficient molecular sieves. A flow of gas or liquid molecules is partitioned at the junction and separated into the two side branches with different volume fractions. The opening-gaps of the side branches are manipulated, and the sieve characteristics are explored as the gas phase, mixture composition/ratio, and opening dimensions are varied. The studies provide design principles for a molecular sieve with maximum probability passing one type of molecule into a screening branch, and meanwhile maximizing the rejection rate of other types of molecules.

Reprint Address:
Chen, X, Columbia Univ, Columbia Nanomech Res Ctr, Sch Engn & Appl Sci, Mail Code 4709, New York, NY 10027 USA.

Research Institution addresses:
[Liu, Ling; Chen, Xi] Columbia Univ, Columbia Nanomech Res Ctr, Sch Engn & Appl Sci, New York, NY 10027 USA

E-mail Address:
xichen@civil.columbia.edu

Cited References:
ANASTASIOS IS, 2006, J CHEM PHYS, V124, UNSP 054708.
ARORA G, 2006, LANGMUIR, V22, P4620, DOI 10.1021/la053062h.
ARORA G, 2007, NANO LETT, V7, P565, DOI 10.1021/nl062201s.
BANDARU PR, 2005, NAT MATER, V4, P663, DOI 10.1038/nmat1450.
BHATIA SK, 2008, J CHEM PHYS, V129, P12.
BUCH V, 1994, J CHEM PHYS, V100, P7610.
CERVELLERA VR, 2008, INT J QUANTUM CHEM, V108, P1714, DOI 10.1002/qua.21590.
CHEN X, 2006, APPL PHYS LETT, V89, ARTN 241918.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
CHEN YF, 2008, NANO LETT, V8, P42, DOI 10.1021/nI0718566.
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179.
DERTINGER SKW, 2001, ANAL CHEM, V73, P1240.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GABRIEL A, 2004, AICHE J, V50, P596.
GAURAV A, 2005, J CHEM PHYS, V123, UNSP 044705.
GAURAV A, 2006, J CHEM PHYS, V124, UNSP 084702.
GRUJICIC M, 2005, MAT SCI ENG B-SOLID, V117, P53, DOI 10.1016/j.mseb.2004.10.020.
GUENES S, 2008, INORG CHIM ACTA, V361, P581, DOI 10.1016/j.ica.2007.06.042.
GYURCSANYI RE, 2008, TRAC-TREND ANAL CHEM, V27, P627, DOI 10.1016/j.trac.2008.06.002.
HAN A, 2008, LANGMUIR, V24, P7044, DOI 10.1021/la800446z.
HARRIS JG, 1995, J PHYS CHEM-US, V99, P12021.
HEALY K, 2007, NANOMEDICINE-UK, V2, P875, DOI 10.2217/17435889.2.6.875.
HOLTZEL A, 2007, J SEP SCI, V30, P1398, DOI 10.1002/jssc.200600427.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KLAUDA JB, 2004, J PHYS CHEM B, V108, P9842, DOI 10.1021/jp037897h.
LAI ZP, 2003, SCIENCE, V300, P456, DOI 10.1126/science.1082169.
LIU L, 2008, APPL PHYS LETT, V92, ARTN 101927.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
MERKEL TC, 2002, SCIENCE, V296, P519.
NEWSOME DA, 2006, NANO LETT, V6, P2150, DOI 10.1021/nl061181r.
NGUYEN TD, 2005, P NATL ACAD SCI USA, V102, P10029, DOI 10.1073/pnas.0504109102.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
PIASECKI J, 2004, PHYS REV E 1, V70, ARTN 021105.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
QIAO Y, 2009, NANO LETT, V9, P984, DOI 10.1021/nl8030136.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
SATISHKUMAR BC, 2000, APPL PHYS LETT, V77, P2530.
SCHASFOORT RBM, 1999, SCIENCE, V286, P942.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SIVAKUMAR RC, 2002, J CHEM PHYS, V116, P814.
TAKAYAMA S, 1999, P NATL ACAD SCI USA, V96, P5545.
TANIMURA A, 2007, LANGMUIR, V23, P1507.
TERRONES M, 2003, ANNU REV MATER RES, V33, P419, DOI 10.1146/annurev.matsei.33.012802.100255.
WANG SC, 1980, J LOW TEMP PHYS, V41, P611.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
ZHANG ZQ, 2008, PHYS REV B, V78, ARTN 035439.

Cited Reference Count:
48

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp900721h

IDS Number:
440FZ

========================================================================

*Record 6 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265888100039
*Order Full Text [ ]

Title:
Molecular Insight into Protein Conformational Transition in Hydrophobic Charge Induction Chromatography: A Molecular Dynamics Simulation

Authors:
Zhang, L; Zhao, GF; Sun, Y

Author Full Names:
Zhang, Lin; Zhao, Guofeng; Sun, Yan

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 113 (19): 6873-6880 MAY 14 2009

Language:
English

Document Type:
Article

KeyWords Plus:
PHASE LIQUID-CHROMATOGRAPHY; FOLDING KINETICS; PURIFICATION; MODEL; ANTIBODIES; SEPARATION; FRAGMENTS; PATHWAYS; SURFACE; MOBILE

Abstract:
Hydrophobic charge induction chromatography (HCIC) is an adsorption chromatography combining hydrophobic interaction in adsorption with electrostatic repulsion in elution. The method has been successfully applied in the separation and purification of antibodies and other proteins. However, little is understood about protein conformational transition and the dynamic process within adsorbent pores. In the present study, a pore model is established to represent the realistic porous adsorbent composed of matrix and immobilized HCIC ligands. Protein adsorption, desorption, and conformational transition in the HCIC pore and its implications to the separation performance are shown by a molecular dynamics simulation of a 46-bead beta-barrel coarse-grained model protein in the adsorbent pore. Repeated adjustment of both protein position and orientation is observed before reaching a stable adsorption. Once the protein is adsorbed, there is a dynamic equilibrium between unfolding and r!
efolding. The effect of hydrophobic interaction strength between protein and ligands on adsorption phenomena is then examined. Strong hydrophobic interaction, representing the presence of high-concentration lyotropic salt in mobile phase, can speed up the adsorption but cause protein unfolding more significantly. On the contrary, weak hydrophobic interaction, representing the absence of a lyotropic salt or the presence of a chaotropic agent, can reserve native protein conformation but does not lead to stable adsorption. In the elution, protein unfolding occurs due to simultaneous hydrophobic adsorption and electrostatic repulsion in the opposite directions. When the protein has been desorbed, the conformational transition between unfolded and native protein is still observed due to the long-range nature of electrostatic interaction. The simulation has provided molecular insight into protein conformational transition in the whole HCIC process, and it would be beneficial to t!
he rational design of ligands and parameter optimizations for !
high-per
formance HCIC.

Reprint Address:
Sun, Y, Tianjin Univ, Dept Biochem Engn, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China.

Research Institution addresses:
[Zhang, Lin; Zhao, Guofeng; Sun, Yan] Tianjin Univ, Dept Biochem Engn, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China

E-mail Address:
ysun@tju.edu.cn

Cited References:
ALLEN MP, 1989, COMPUTER SIMULATION, P385.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BOND PJ, 2006, J AM CHEM SOC, V128, P2697, DOI 10.1021/ja0569104.
BOSCHETTI E, 2002, TRENDS BIOTECHNOL, V20, P333.
BURTON SC, 1997, BIOTECHNOL BIOENG, V56, P45.
BURTON SC, 1998, J CHROMATOGR A, V814, P71.
CELLMER T, 2005, BIOTECHNOL BIOENG, V89, P78, DOI 10.1002/bit.20302.
COULON D, 2004, J CHROMATOGR B, V808, P111, DOI 10.1016/j.jchromb.2004.03.025.
DAGGETT V, 2006, CHEM REV, V106, P1898, DOI 10.1021/cr0404242.
DRESSELHAUS MS, 2001, TOP APPL PHYS, V80, P1.
DUX MP, 2006, PROTEIN EXPRES PURIF, V45, P359, DOI 10.1016/j.pep.2005.08.015.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
GHOSE S, 2005, BIOTECHNOL PROGR, V21, P498, DOI 10.1021/bp049712+.
GHOSE S, 2006, J CHROMATOGR A, V1122, P144, DOI 10.1016/j.chroma.2006.04.083.
GUERRIER L, 2000, BIOSEPARATION, V9, P211.
GUERRIER L, 2001, J CHROMATOGR B, V755, P37.
GUN Z, 1995, BIOPOLYMERS, V36, P83.
GUO ZY, 1992, J CHEM PHYS, V97, P525.
HONEYCUTT JD, 1990, P NATL ACAD SCI USA, V87, P3526.
HUMMER G, 2001, NATURE, V414, P188.
JANG HB, 2004, BIOPHYS J 1, V86, P31.
JANSON J, 1998, PROTEIN PURIFICATION.
KARPLUS M, 2002, NAT STRUCT BIOL, V9, P646.
KARPLUS M, 2003, BIOPOLYMERS, V68, P350, DOI 10.1002/bip.10266.
KLIMOV DK, 1998, FOLD DES, V3, P481.
KLIMOV DK, 2002, P NATL ACAD SCI USA, V99, P8019.
LIENQUEO ME, 2007, J CHROMATOGR B, V849, P53, DOI 10.1016/j.jchromb.2006.11.019.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LU DN, 2006, BIOPHYS J, V90, P3224, DOI 10.1529/biophysj.105.071761.
LU DN, 2008, J PHYS CHEM B, V112, P2686, DOI 10.1021/jp076940o.
MARRINK SJ, 2004, J PHYS CHEM B, V108, P750, DOI 10.1021/jp036508g.
MCNAY JL, 1999, J CHROMATOGR A, V849, P135.
MCNAY JLM, 2001, BIOTECHNOL BIOENG, V76, P224.
SAYLE RA, 1995, TRENDS BIOCHEM SCI, V20, P374.
SCHWARTZ W, 2001, J CHROMATOGR A, V908, P251.
SHALTIEL S, 1984, METHOD ENZYMOL, V104, P69.
SHEA JE, 1998, J CHEM PHYS, V109, P2895.
SOKOL JM, 2003, J CHROMATOGR A, V1007, P55, DOI 10.1016/S0021-9673(03)00979-8.
VEITSHANS T, 1997, FOLD DES, V2, P1.
WEATHERLY GT, 2002, J CHROMATOGR A, V952, P99.
WU SL, 1986, J CHROMATOGR, V371, P3.
XIA F, 2004, BIOTECHNOL BIOENG, V87, P354, DOI 10.1002/bit.20120.
XIAO YZ, 2007, BIOTECHNOL BIOENG, V96, P80, DOI 10.1002/bit.21186.
ZHANG L, 2009, J CHROMATOGR A, V1216, P2483, DOI 10.1016/j.chroma.2009.01.038.
ZHAO GF, 2007, J CHROMATOGR A, V1165, P109, DOI 10.1016/j.chroma.2007.07.067.

Cited Reference Count:
45

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp809754k

IDS Number:
443CP

========================================================================

*Record 7 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000266093800025
*Order Full Text [ ]

Title:
Water Confined in Carbon Nanotubes: Magnetic Response and Proton Chemical Shieldings

Authors:
Huang, P; Schwegler, E; Galli, G

Author Full Names:
Huang, Patrick; Schwegler, Eric; Galli, Giulia

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 113 (20): 8696-8700 MAY 21 2009

Language:
English

Document Type:
Article

KeyWords Plus:
1ST PRINCIPLES SIMULATIONS; DENSITY-FUNCTIONAL THEORY; LIQUID WATER; AB-INITIO; NMR; SHIFTS; ACCURACY

Abstract:
We study the proton nuclear magnetic resonance of a model system consisting of liquid water confined in carbon nanotubes (CNTs). Chemical shieldings are evaluated from linear response theory, where the electronic structure is derived from density functional theory with plane-wave basis sets and periodic boundary conditions. The shieldings are sampled from trajectories generated via first-principles molecular dynamics simulations at ambient conditions for water confined in (14,0) and (19,0) CNTs with diameters d = 11 and 14.9 angstrom, respectively. We find that confinement within the CNT leads to a large (ca. -23 ppm) upfield shift relative to bulk liquid water. This shift is a consequence of strongly anisotropic magnetic fields induced in the CNT by an applied magnetic field.

Reprint Address:
Huang, P, Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 E Ave, Livermore, CA 94551 USA.

Research Institution addresses:
[Huang, Patrick; Schwegler, Eric] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA; [Galli, Giulia] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA

E-mail Address:
huang26@llnl.gov

Cited References:
BESLEY NA, 2008, J CHEM PHYS, V128, ARTN 101102.
CHEN Q, 2008, NANO LETT, V8, P1902, DOI 10.1021/nl080569e.
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
DITCHFIELD R, 1976, J CHEM PHYS, V65, P3123.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9.
GROSSMAN JC, 2004, J CHEM PHYS, V120, P300, DOI 10.1063/1.1630560.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
MARQUES MAL, 2006, PHYS REV B, V73, ARTN 125433.
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415.
MAURI F, 1996, PHYS REV LETT, V76, P4246.
MAURI F, 1996, PHYS REV LETT, V77, P5300.
MODIG K, 2002, J AM CHEM SOC, V124, P12031, DOI 10.1021/ja026981s.
MODIG K, 2003, PHYS REV LETT, V90, ARTN 075502.
PERDEW JP, 1996, PHYS REV LETT, V77, P3865.
PFROMMER BG, 2000, J AM CHEM SOC, V122, P123.
PICKARD CJ, 2001, PHYS REV B, V63, ARTN 245101.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
SCHWEGLER E, 2004, J CHEM PHYS, V121, P5400, DOI 10.1063/1.1782074.
SEBASTIANI D, 2002, CHEMPHYSCHEM, V3, P675.
SEBASTIANI D, 2006, CHEMPHYSCHEM, V7, P164, DOI 10.1002/cphc.200500438.
SEBASTIANI D, 2008, ACS NANO, V2, P661, DOI 10.1021/nn700147w.
SEKHANEH W, 2006, CHEM PHYS LETT, V428, P143, DOI 10.1016/j.cplett.2006.06.105.
SILVESTRELLI PL, 1997, CHEM PHYS LETT, V277, P478.
SPRIK M, 1996, J CHEM PHYS, V105, P1142.
STONE AJ, 1986, CHEM PHYS LETT, V128, P501.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
ZUREK E, 2006, J PHYS CHEM A, V110, P11995, DOI 10.1021/jp064540f.

Cited Reference Count:
29

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp811060y

IDS Number:
446AY

========================================================================

*Record 8 of 8.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000265964800022
*Order Full Text [ ]

Title:
Water nanodroplets confined in zeolite pores

Authors:
Coudert, FX; Cailliez, F; Vuilleuinier, R; Fuchs, AH; Boutin, A

Author Full Names:
Coudert, Francois-Xavier; Cailliez, Fabien; Vuilleuinier, Rodolphe; Fuchs, Alain H.; Boutin, Anne

Source:
FARADAY DISCUSSIONS 141: 377-398 2009

Language:
English

Document Type:
Article

KeyWords Plus:
FREQUENCY VIBRATIONAL SPECTROSCOPY; INITIO MOLECULAR-DYNAMICS; MONTE-CARLO SIMULATIONS; FAUJASITE-TYPE ZEOLITES; HYDROPHOBIC NANOPORES; SILICALITE-1 ZEOLITE; LIQUID WATER; RANDOM-WALK; ADSORPTION; DENSITY

Abstract:
We provide a comprehensive depiction of the behaviour of a nanodroplet of 20 water molecules confined in the pores of a series of 3D-connected isostructural zeolites with varying acidity, by means of molecular simulations. Both grand canonical Monte Carlo simulations using classical interatomic forcefields and first-principles Car-Parrinello molecular dynamics were used in order to characterise the behaviour of confined water by computing it range of properties, front thermodynamic quantities to electronic properties such its dipole moment, including structural and dynamical information. From the thermodynamic point of vie x, we have identified the all-silica zeolite as hydrophobic, and the cationic zeolites its hydrophilic; the condensation transition in the first case was demonstrated to be of first order. Furthermore. in-depth analysis of the dynamical and electronic properties of water showed that water in the hydrophobic zeolite behaves as a nanodroplet trying to close !
its hydrogen-bond network onto itself, with I few short-lived dangling Oil groups. while water in hydrophilic zeolites "opens up" to form weak hydrogen bonds with the zeolite oxygen atoms. Finally, the dipole moment of confined Water is studied and the contributions of water self-polarisation and the zeolite electric field are discussed.

Reprint Address:
Boutin, A, Univ Paris 11, Chim Phys Lab, F-91405 Orsay, France.

Research Institution addresses:
[Coudert, Francois-Xavier; Boutin, Anne] Univ Paris 11, Chim Phys Lab, F-91405 Orsay, France; [Vuilleuinier, Rodolphe] Univ Paris 06, Lab Phys Theor Mat Condensee, F-75005 Paris, France; [Cailliez, Fabien; Fuchs, Alain H.] Ecole Natl Super Chim Paris Chim ParisTech, F-75005 Paris, France

E-mail Address:
anne.boutin@lep.u-psud.fr

Cited References:
BAERLOCHER C, 2001, ATLAS ZEOLITE FRAMEW.
BAIN CD, 1995, J CHEM SOC FARADAY T, V91, P1281.
BEAUVAIS C, 2004, CHEMPHYSCHEM, V5, P1791, DOI 10.1002/cphc.2004000195.
BEAUVAIS C, 2004, J PHYS CHEM B, V108, P399, DOI 10.1021/jp036085i.
BECKE AD, 1988, PHYS REV A, V38, P309.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BODDENBERG B, 2002, PHYS CHEM CHEM PHYS, V4, P4172, DOI 10.1039/b203088h.
BOUGEARD D, 2007, PHYS CHEM CHEM PHYS, V9, P226, DOI 10.1039/b614463m.
BROOKS CL, 2001, SCIENCE, V293, P612.
BUSSAI C, 2003, J PHYS CHEM B, V107, P12444, DOI 10.1021/jp035151d.
CAILLIEZ F, 2008, J PHYS CHEM C, V112, P10435, DOI 10.1021/jp710746b.
CAILLIEZ F, 2008, STUD SURF SCI CATAL, V174, P683.
CAR R, 1985, PHYS REV LETT, V55, P2471.
CAULLET P, 2005, CR CHIM, V8, P245, DOI 10.1016/j.crci.2005.02.001.
CERIANI C, 2004, AM MINERAL, V89, P102.
CHANDLER D, 2002, NATURE, V417, P491.
CHOPRA M, 2006, J CHEM PHYS, V124, UNSP 134102.
CORMA A, 2004, NATURE, V431, P287, DOI 10.1038/nature02909.
COUDERT FX, 2006, CHEMPHYSCHEM, V7, P2464, DOI 10.1002/cphc.200600561.
CRACKNELL RF, 1990, MOL PHYS, V71, P931.
DELEEUW NH, 1999, J AM CERAM SOC, V82, P3209.
DEMONTIS P, 1997, CHEM REV, V97, P2845.
DESBIENS N, 2005, ANGEW CHEM INT EDIT, V44, P5310, DOI 10.1002/anie.200501250.
DESBIENS N, 2005, J PHYS CHEM B, V109, P24071, DOI 10.1021/jp054168o.
DILELLA A, 2006, PHYS CHEM CHEM PHYS, V8, P5396, DOI 10.1039/b610621h.
DILL KA, 1990, BIOCHEMISTRY-US, V29, P7155.
DOBSON CM, 1998, ANGEW CHEM INT EDIT, V37, P868.
DZUBIELLA J, 2005, J CHEM PHYS, V122, ARTN 234706.
EROSHENKO V, 2001, J AM CHEM SOC, V123, P8129.
FOIS E, 2001, J PHYS CHEM B, V105, P3012.
FOIS E, 2001, PHYS CHEM CHEM PHYS, V3, P4158.
FOIS E, 2002, J PHYS CHEM B, V106, P4806.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
FUCHS AH, 2001, J PHYS CHEM B, V105, P7375.
FYFE CA, 1984, J CHEM SOC CHEM COMM, P1093.
GAIGEOT MP, 2003, J PHYS CHEM B, V107, P10344, DOI 10.1021/jp034788u.
GAIGEOT MP, 2005, J CHEM THEORY COMPUT, V1, P772, DOI 10.1021/ct050029z.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
GONZE X, 1997, PHYS REV B, V55, P10337.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HUANG YN, 1997, MICROPOROUS MATER, V12, P341.
HUMMER G, 2001, NATURE, V414, P188.
IFTIMIE R, 2005, J CHEM PHYS, V122, ARTN 214508.
JACKSON RA, 1988, MOL SIMULAT, V1, P207.
JARAMILLO E, 1999, J PHYS CHEM B, V103, P9589.
JORGENSEN WL, 1985, MOL PHYS, V56, P1381.
KAUZMANN W, 1959, ADV PROTEIN CHEM, V14, P1.
KIM EB, 2002, J CHEM PHYS, V117, P7781, DOI 10.1063/1.1508365.
LAAGE D, UNPUB.
LACHET V, 1998, J PHYS CHEM B, V102, P9224.
LEE C, 1988, PHYS REV B, V37, P785.
LOEWENSTEIN W, 1954, AM MINERAL, V39, P92.
LUZAR A, 1996, NATURE, V379, P55.
MACKIE AD, 1997, MOL SIMULAT, V19, P1.
MANONHIGGINS F, 2002, J MATER CHEM, V12, P124.
MARZARI N, 1997, PHYS REV B, V56, P12847.
MAURIN G, 2004, J PHYS CHEM B, V108, P3739, DOI 10.1021/jp034151a.
MIRANDA PB, 1999, J PHYS CHEM B, V103, P3292.
MOISE JC, 2001, MICROPOR MESOPOR MAT, V43, P91.
NICHOLSON D, 1982, COMPUTER SIMULATION.
NOSE S, 1984, MOL PHYS, V52, P255.
OHBA T, 2004, J AM CHEM SOC, V126, P1560, DOI 10.1021/ja038842w.
OTTEN A, 2004, LANGMUIR, V20, P2405, DOI 10.1021/la034961d.
PATARIN J, 2006, COMMUNICATION.
POULAIN P, 2006, PHYS REV E 2, V73, ARTN 056704.
PUTRINO A, 2000, J CHEM PHYS, V113, P7102.
RAMACHANDRAN CE, 2006, MICROPOR MESOPOR MAT, V90, P293, DOI 10.1016/j.micromeso.2005.10.021.
RAMREZ R, 2004, J CHEM PHYS, V121, P3973.
RAMSAHYE NA, 2005, J PHYS CHEM B, V109, P4728.
RATHORE N, 2002, ABSTR PAP AM CHEM 1, V224, U485.
RATHORE N, 2004, J CHEM PHYS, V120, P5781, DOI 10.1063/1.1649314.
RESTA R, 1998, PHYS REV LETT, V80, P1800.
ROUGUEROL F, 1999, ADSORPTION POWDERS P.
RUIZSALVADOR R, 1998, J PHYS CHEM B, V100, P6722.
SANDERS MJ, 1984, J CHEM SOC CHEM COMM, P1271.
SCATENA LF, 2001, SCIENCE, V292, P908.
SHARMA M, 2005, PHYS REV LETT, V95, ARTN 187401.
SHELL M, 2002, PHYS REV E, V60, UNSP 056703.
SHEN YR, 2006, CHEM REV, V106, P1140, DOI 10.1021/cr040377d.
SHIRONO K, 2005, J PHYS CHEM B, V109, P3446, DOI 10.1021/jp047293t.
SHIRONO K, 2006, CHEM PHYS LETT, V417, P251, DOI 10.1016/j.cplett.2005.09.130.
SIANTAR DP, 1995, ZEOLITES, V15, P556.
SILVESTRELLI PL, 1999, J CHEM PHYS, V111, P3572.
SMIRNOV KS, 2003, CHEM PHYS, V292, P53, DOI 10.1016/S0301-0104(03)00275-1.
STEITZ R, 2003, LANGMUIR, V19, P2409, DOI 10.1021/la026731p.
TRZPIT M, 2007, LANGMUIR, V23, P10131, DOI 10.1021/la7011205.
TYRELL JWG, 2001, PHYS REV LETT, V87, ARTN 176104.
VUILLEUMIER R, LIQUID WATER D UNPUB.
WALES DJ, CAMBRIDGE CLUSTER DA.
WANG F, 2001, PHYS REV E, V64, UNSP O56101.
WANG FG, 2001, PHYS REV LETT, V86, P2050.
YANAGIDA RY, 1973, J PHYS CHEM-US, V77, P805.
ZHOU CG, 2005, PHYS REV E 2, V72, ARTN 025701.

Cited Reference Count:
93

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical

ISSN:
1364-5498

DOI:
10.1039/b804992k

IDS Number:
444EZ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: