Thursday, May 6, 2010

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000276896000025>
*Order Full Text [ ]
AU Tawfick, S
Deng, XP
Hart, AJ
Lahann, J
AF Tawfick, Sameh
Deng, Xiaopei
Hart, A. John
Lahann, Joerg
TI Nanocomposite microstructures with tunable mechanical and chemical
properties
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID ALIGNED CARBON NANOTUBES; VAPOR-DEPOSITION POLYMERIZATION;
POLY-P-XYLYLENES; AREAL DENSITY; COATINGS; FABRICATION; COMPOSITES;
ARRAYS; MORPHOLOGY; SURFACES
AB We report a two-step chemical vapor deposition (CVD) method for
fabrication of hierarchical polymer-coated carbon nanotube (CNT)
microstructures having tunable mechanical properties and accessible
chemical functionality. Diverse geometries of vertically aligned CNTs
were grown from lithographically patterned catalyst films, and the CNT
microstructures were chemically functionalized via
poly[4-trifluoroacetyl-p-xylylene-co-p-xylylene] made by chemical vapor
deposition polymerization. The polymer coating conformally coated the
individual CNTs and CNT bundles within the CNT "forest''. The chemical
structure of the polymer films was verified by X-ray photoelectron
spectroscopy (XPS) and Fourier transform infrared spectroscopy ( FTIR).
Simple control of the mechanical properties of the nanocomposite
structures can be achieved by adjusting the deposition times during CVD
polymerization. Increasing the polymer film thickness from 10 nm to 27
nm resulted in a change of the Young's modulus from 65 to 80 MPa. These
values are substantially higher than the 36 MPa measured for the
as-grown CNTs without polymer coating. The effect of the polymer
coating in reinforcing the connectivity among CNTs within the
structures has been understood using an analytical model. Finally,
chemical functionality of the CNT composite structures after CVD
polymerization was verified by a 4-fold fluorescence enhancement after
binding of a dye to the coated CNT microstructures. This technique can
be adapted to a wide variety of reactive coatings and facilitates
attachment of chemical groups and functional nanostructures on the
surfaces of the CNTs; therefore, this material could serve as a tunable
platform for coupling mechanical and chemical responses in materials
for environmental and biological sensing.
C1 [Tawfick, Sameh; Hart, A. John] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA.
[Deng, Xiaopei; Lahann, Joerg] Univ Michigan, Dept Macromol Sci & Engn, Ann Arbor, MI 48109 USA.
[Lahann, Joerg] Univ Michigan, Dept Chem Engn Mat Sci & Engn, Ann Arbor, MI 48109 USA.
RP Hart, AJ, Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA.
EM ajohnh@umich.edu
lahann@umich.edu
CR AWANO Y, 2006, PHYS STATUS SOLIDI A, V203, P3611, DOI
10.1002/pssa.200622415
BARONE PW, 2005, NAT MATER, V4, P86, DOI 10.1038/nmat1276
BAUGHMAN RH, 2002, SCIENCE, V297, P787
BENNETT RD, 2006, ADV MATER, V18, P2274, DOI 10.1002/adma.200600975
BLAIR PJ, 2004, J CLIN MICROBIOL, V42, P4961, DOI
10.1128/JCM.42.114961-4967.2004
CAO AY, 2005, SCIENCE, V310, P1307, DOI 10.1126/science.1118957
CHEN HY, 2005, ANAL CHEM, V77, P6909, DOI 10.1021/ac050964e
CHEN HY, 2006, J AM CHEM SOC, V128, P374, DOI 10.1021/ja057082h
CHEN HY, 2007, ADV MATER, V19, P3801, DOI 10.1002/adma.200602830
CHEN HY, 2007, P NATL ACAD SCI USA, V104, P11173, DOI
10.1073/pnas.0702749104
COLEMAN JN, 2006, CARBON, V44, P1624, DOI 10.1016/j.carbon.2006.02.038
DRESSELHAUS MS, 2001, CARBON NANOTUBES SYN
EKLUND PC, 2007, INT ASSESSMENT RES D
ELKASABI Y, 2006, ADV MATER, V18, P1521, DOI 10.1002/adma.200502454
ELKASABI Y, 2008, MACROMOL RAPID COMM, V29, P855, DOI
10.1002/marc.200800101
ELKASABI Y, 2009, CHEM VAPOR DEPOS, V15, P142, DOI
10.1002/cvde.200806749
FAN SS, 1999, SCIENCE, V283, P512
FANG WL, 2005, ADV MATER, V17, P2987, DOI 10.1002/adma.200501305
GARCIA EJ, 2007, ADV MATER, V19, P2151, DOI 10.1002/adma.200700237
GARCIA EJ, 2008, COMPOS PART A-APPL S, V39, P1065, DOI
10.1016/j.compositesa.2008.03.011
GORHAM WF, 1966, J POLYM SCI, V4, P3027
HAYAMIZU Y, 2008, NAT NANOTECHNOL, V3, P289, DOI 10.1038/nnano.2008.98
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HU WW, 2009, BIOMATERIALS, V30, P5785, DOI
10.1016/j.biomaterials.2009.06.041
JIANG XW, 2008, ADV FUNCT MATER, V18, P27, DOI 10.1002/adfm.200700789
JUNEJA JS, 2005, J VAC SCI TECHNOL B, V23, P2232, DOI 10.1116/1.2040427
JUNG YJ, 2006, NANO LETT, V6, P413, DOI 10.1021/nl052238x
KATAGIRI M, 2008, JPN J APPL PHYS 1, V47, P2024, DOI
10.1143/JJAP.47.2024
KATRAGADDA R, 2007, APPL PHYS LETT, V91, ARTN 083505
KHANG DY, 2008, NANO LETT, V8, P124, DOI 10.1021/nlo72203s
KIM KH, 2005, SENSOR ACTUAT A-PHYS, V117, P8, DOI
10.1016/j.sna.2003.10.079
KIM YA, 2006, J BIOMED NANOTECHNOL, V2, P106, DOI 10.1166/jbn.2006.018
LAHANN J, 1998, MACROMOL RAPID COMM, V19, P441
LAHANN J, 2003, ANAL CHEM, V75, P2117, DOI 10.1021/ac020557s
LAHANN J, 2006, POLYM INT, V55, P1361, DOI 10.1002/pi.2098
LAU KKS, 2003, NANO LETT, V3, P1701, DOI 10.1021/nl034704t
LI J, 2002, APPL PHYS LETT, V81, P910
LIN CM, 2009, BIOSENS BIOELECTRON, V24, P2791, DOI
10.1016/j.bios.2009.02.005
LINVIEN D, 1991, HDB INFRARED RAMAN C
MISERENDINO S, 2006, NANOTECHNOLOGY, V17, S23, DOI
10.1088/0957-4484/17/4/005
NESSIM GD, 2008, NANO LETT, V8, P3587, DOI 10.1021/nl801437c
NESSIM GD, 2009, NANO LETT, V9, P3398, DOI 10.1021/nl900675d
SALVETAT JP, 1999, APPL PHYS A-MATER, V69, P255
STRANO MS, 2003, SCIENCE, V301, P1519
SUH KY, 2003, APPL PHYS LETT, V83, P4250, DOI 10.1063/1.1628392
TALAPATRA S, 2006, NAT NANOTECHNOL, V1, P112, DOI 10.1038/nnano.2006.56
TASIS D, 2006, CHEM REV, V106, P1105, DOI 10.1021/cr050569o
TAWFICK S, 2009, SMALL, V5, P2467, DOI 10.1002/smll.200900741
THEVENET S, 2007, ADV MATER, V19, P4333, DOI 10.1002/adma.200701439
TONG T, 2008, NANO LETT, V8, P511, DOI 10.1021/nl072709a
VADDIRAJU S, 2009, ACS APPL MATER INTER, V1, P2565, DOI
10.1021/am900487z
WEGENHART B, 2006, NANOSCALE RES LETT, V1, P154, DOI
10.1007/s11671-006-9006-8
YAMAMOTO N, 2009, CARBON, V47, P551, DOI 10.1016/j.carbon.2008.10.030
YOSHIDA M, 2006, POLYM REV, V46, P347, DOI 10.1080/15583720600945394
YURDUMAKAN B, 2005, CHEM COMMUN, P3799, DOI 10.1039/b506047h
NR 55
TC 0
PU ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,
CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
DI 10.1039/c000304m
VL 12
IS 17
BP 4446
EP 4451
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 586HB
UT ISI:000276896000025
ER

PT J
*Record 2 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000276889100028>
*Order Full Text [ ]
AU Das, P
Zhou, RH
AF Das, Payel
Zhou, Ruhong
TI Urea-Induced Drying of Carbon Nanotubes Suggests Existence of a Dry
Globule-like Transient State During Chemical Denaturation of Proteins
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID DISPERSION INTERACTIONS; HYDROPHOBIC COLLAPSE; WATER; GUANIDINIUM;
TRANSPORT; MECHANISM; CHANNEL; MODEL
AB Atomistic dynamics simulations of purely hydrophobic carbon nanotubes
in 8 M urea are performed to dissect the role of dispersion
interactions in the denaturing power of urea. The enhanced population
of urea and a paucity of water in proximity of nanotubes suggest that
the stronger dispersion interaction of urea than water with nanotube
triggers drying of its interior. The preferential intrusion of urea
over water within nanotube interiors irrespective of their diameters
directly implies a "dry globule"-like transient intermediate formation
in the initial stage of protein unfolding in urea.
C1 [Das, Payel; Zhou, Ruhong] IBM Corp, Thomas J Watson Res Ctr, Computat Biol Ctr, Yorktown Hts, NY 10598 USA.
RP Zhou, RH, IBM Corp, Thomas J Watson Res Ctr, Computat Biol Ctr, 1101
Kitchawan Rd, Yorktown Hts, NY 10598 USA.
EM ruhongz@us.ibm.com
CR ALONSO DOV, 1991, BIOCHEMISTRY-US, V30, P5974
AUTON M, 2007, P NATL ACAD SCI USA, V104, P15317, DOI
10.1073/pnas.0706251104
BENNION BJ, 2003, P NATL ACAD SCI USA, V100, P5142, DOI
10.1073/pnas.0930122100
FRANK HS, 1968, J CHEM PHYS, V48, P4746
HAMMES GG, 1967, J AM CHEM SOC, V89, P442
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUA L, 2008, P NATL ACAD SCI USA, V105, P16928, DOI
10.1073/pnas.0808427105
HUMMER G, 2001, NATURE, V414, P188
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KLIMOV DK, 2004, P NATL ACAD SCI USA, V101, P14760, DOI
10.1073/pnas.0404570101
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI
10.1073/pnas.0604541104
LIM WK, 2009, P NATL ACAD SCI USA, V106, P2595, DOI
10.1073/pnas.0812588106
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MAKHATADZE GI, 1999, J PHYS CHEM B, V103, P4781
OBRIEN EP, 2007, J AM CHEM SOC, V129, P7346, DOI 10.1021/ja069232+
PACE CN, 1986, METHOD ENZYMOL, V131, P266
RANA M, 2007, J CHEM SCI, V119, P367
ROBINSON DR, 1965, J AM CHEM SOC, V87, P2462
SCHOLTZ JM, 1995, P NATL ACAD SCI USA, V92, P185
STUMPE MC, 2009, BIOPHYS J, V96, P3744, DOI 10.1016/j.bpj.2009.01.051
TANFORD C, 1970, ADV PROTEIN CHEM, V24, P1
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861
WALLQVIST A, 1998, J AM CHEM SOC, V120, P427
WETLAUFER DB, 1964, J AM CHEM SOC, V86, P508
YANG L, J AM CHEM SOC, V132, P842
ZHOU RH, 2004, SCIENCE, V305, P1605
ZHOU RH, 2007, P NATL ACAD SCI USA, V104, P5824, DOI
10.1073/pnas.0701249104
NR 27
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
DI 10.1021/jp911444q
PD APR 29
VL 114
IS 16
BP 5427
EP 5430
SC Chemistry, Physical
GA 586FO
UT ISI:000276889100028
ER

PT J
*Record 3 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000277040000015>
*Order Full Text [ ]
AU Goldsmith, J
Martens, CC
AF Goldsmith, Jacob
Martens, Craig C.
TI Molecular Dynamics Simulation of Salt Rejection in Model
Surface-Modified Nanopores
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID CARBON NANOTUBE MEMBRANES; WATER PERMEATION; BROWNIAN MOTORS;
TRANSPORT; CHANNEL; FUNCTIONALIZATION; NANOFILTRATION; AQUAPORIN-1;
ENERGETICS; MECHANISM
AB This Letter describes molecular dynamics simulations of pressure
induced flow of water and aqueous salt solutions through model
nanopores. The systems studied are comprised of (n,n) carbon nanotubes
(CNT) that span a membrane constructed of parallel graphene walls
separating two solutions reserviors. We emply this system as an
idealized model of surface modified nanoporous membranes and thus, both
native hydrophobic CNT and nanotubes with artificial surface partial
charge patterns are considered. The dependence of the fluxes of water
and ions on the nanopore size, nanopore charge patterns, and pressure
difference are explored using nonequilibrium molecular dynamics
simulation. We demonstrate size-and structure-dependent salt rejection
and show evidence of salt flux rectification for our asymmetric
nanopore model.
C1 [Goldsmith, Jacob; Martens, Craig C.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA.
RP Martens, CC, Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA.
EM cmartens@uci.edu
CR ALLEN MP, 1987, COMPUTER SIMULATION
BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y
BOWEN WR, 2002, CHEM ENG SCI, V57, P1121
BOWEN WR, 2002, CHEM ENG SCI, V57, P1393
CICCOTTI G, 1987, SIMULATION LIQUIDS S
DEGROOT BL, 2001, SCIENCE, V294, P2353
DRESSELHAUS MS, 2001, CARBON NANOTUBES SYN
DZUBIELLA J, 2004, J CHEM PHYS, V120, P5001, DOI 10.1063/1.1665656
FEBLES M, 2006, J AM CHEM SOC, V128, P10008, ARTN JA063223J
FEYNMAN R, 1963, FEYNMAN LECT PHYS
GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1323, DOI
10.1021/jp065419b
GOLDSMITH J, 2009, PHYS CHEM CHEM PHYS, V11, P528, DOI 10.1039/b807823h
GRACHEVA ME, 2008, ACS NANO, V2, P2349, DOI 10.1021/nn8004679
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
KALE L, 1999, J COMPUT PHYS, V151, P283
LU DY, 2005, J PHYS CHEM B, V109, P11461, DOI 10.1021/jp050420g
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI
10.1016/j.cplett.2004.11.112
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907
NOON WH, 2002, CHEM PHYS LETT, V355, P445
PARRONDO JMR, 1996, AM J PHYS, V64, P1125
PARRONDO JMR, 2002, APPL PHYS A-MATER, V75, P179
PENG Q, 2008, ACS NANO, V2, P1833, DOI 10.1021/nn8002532
REIMANN P, 2002, PHYS REP, V361, P57
SAVARIAR EN, 2008, NAT NANOTECHNOL, V3, P112, DOI 10.1038/nnano.2008.6
SIWY ZS, 2006, ADV FUNCT MATER, V16, P735, DOI 10.1002/adfm.200500471
SUN TL, 2005, ACCOUNTS CHEM RES, V38, P644, DOI 10.1021/ar040224c
TAJKHORSHID E, 2002, SCIENCE, V296, P525
TAKABA H, 2007, J CHEM PHYS, V127, ARTN 054703
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI
10.1073/pnas.0707917105
TOMBARI E, 2005, J CHEM PHYS, V122, ARTN 104712
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI
10.1073/pnas.0407968101
VIDOSSICH P, 2004, PROTEINS, V55, P924
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
WON CY, 2006, J CHEM PHYS, V125, ARTN 114701
YANG L, 2007, J CHEM PHYS, V126, ARTN 084706
ZHU FQ, 2004, BIOPHYS J 1, V86, P50
NR 43
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
DI 10.1021/jz900173w
PD JAN 21
VL 1
IS 2
BP 528
EP 535
GA 588BC
UT ISI:000277040000015
ER

PT J
*Record 4 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000276920900001>
*Order Full Text [ ]
AU Kazachkin, DV
Nishimura, Y
Irle, S
Feng, X
Vidic, R
Borguet, E
AF Kazachkin, Dmitry V.
Nishimura, Yoshifumi
Irle, Stephan
Feng, Xue
Vidic, Radisav
Borguet, Eric
TI Temperature and pressure dependence of molecular adsorption on single
wall carbon nanotubes and the existence of an "adsorption/desorption
pressure gap"
SO CARBON
LA English
DT Article
ID PORE STRUCTURE; SENSORS; ACETONE; VAPORS; DESORPTION; DEFECTS; GASES
AB The interaction of acetone with single wall carbon nanotubes (SWCNTs)
was studied by temperature programmed desorption with mass spectrometry
(TPD-MS), after reflux, sonication, or exposure to 7.6 Torr of acetone
vapors at room temperature. Acetone molecules adsorb strongly on SWCNTs
desorbing at similar to 400-900 K, corresponding to desorption energies
of similar to 100-225 kJ/mol, as intact molecules. Exchange of intact
adsorbed molecules with gas phase species was observed in successive
dosing of hydrogenated and deuterated acetone molecules. The desorption
energies reported here are in stark contrast to the desorption energies
(similar to 75 kJ/mol) reported earlier for SWCNTs interacting with
acetone under high vacuum at cryogenic temperatures. This result
suggests activated adsorption/desorption, and is also observed for
adsorption of ethanol, methane, n-butane and 1,3-butadiene on SWCNTs
and on carbon black. Quantum chemical calculations suggest that
adsorption in interstitial channels of bundles formed of large-diameter
SWCNTs is possible and can account for high desorption barriers, a
result of strong dispersion interactions between neighboring SWCNTs.
(C) 2009 Elsevier Ltd. All rights reserved.
C1 [Kazachkin, Dmitry V.; Feng, Xue; Borguet, Eric] Temple Univ, Dept Chem, Philadelphia, PA 19122 USA.
[Kazachkin, Dmitry V.] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA.
[Nishimura, Yoshifumi; Irle, Stephan] Nagoya Univ, Dept Chem, Nagoya, Aichi 4648602, Japan.
[Nishimura, Yoshifumi; Irle, Stephan] Nagoya Univ, Inst Adv Res, Nagoya, Aichi 4648602, Japan.
[Feng, Xue; Vidic, Radisav] Univ Pittsburgh, Dept Civil & Environm Engn, Pittsburgh, PA 15261 USA.
RP Borguet, E, Temple Univ, Dept Chem, Philadelphia, PA 19122 USA.
EM eborguet@temple.edu
CR BRADLEY RH, 1996, J COLLOID INTERF SCI, V179, P561
BRUKH R, 2008, CHEM PHYS LETT, V459, P149, DOI
10.1016/j.cplett.2008.05.026
CHAKRAPANI N, 2003, J PHYS CHEM B, V107, P9308, DOI 10.1021/jp034970v
CINKE M, 2002, CHEM PHYS LETT, V365, P69
DONNET JB, 1993, CARBON BLACK SCI TEC
ELSTNER M, 1998, PHYS REV B, V58, P7260
ELSTNER M, 2001, J CHEM PHYS, V114, P5149
GUIRADOLOPEZ RA, 2007, J PHYS CHEM C, V111, P57, DOI 10.1021/kp064651e
HASHIMOTO A, 2004, NATURE, V430, P870, DOI 10.1038/nature02817
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUANG WJ, 2002, NANO LETTERS, V2, P231
KAZACHKIN D, 2008, LANGMUIR, V24, P7848, DOI 10.1021/la800030y
KONDRATYUK P, 2007, ACCOUNTS CHEM RES, V40, P995, DOI 10.1021/ar700013c
KOSHIO A, 2001, NANO LETTERS, V1, P361
KWON S, 2002, ENVIRON SCI TECHNOL, V36, P4162, DOI 10.1021/es0256818
LABROSSE MR, 2008, LANGMUIR, V24, P9430
LU YJ, 2006, J ELECTROANAL CHEM, V593, P105, DOI
10.1016/j.jelechem.2006.03.056
NIKOLAEV P, 1999, CHEM PHYS LETT, V313, P91
NOY A, 2007, NANO TODAY, V2, P22
OWENS FJ, 2006, COMPOS SCI TECHNOL, V66, P1280, DOI
10.1016/j.compscitech.2005.10.027
PARIKH K, 2006, SENSOR ACTUAT B-CHEM, V113, P55, DOI
10.1016/j.snb.2005.02.021
PENZA M, 2005, CHEM PHYS LETT, V409, P349, DOI
10.1016/j.cplett.2005.05.005
ROBINSON JA, 2006, NANO LETT, V6, P1747, DOI 10.1021/nl0612289
SHI W, 2003, PHYS REV LETT, V91, P15504, UNSP 015504-1-4
SHIH YH, 2008, J HAZARD MATER, V154, P21, DOI
10.1016/j.jhazmat.2007.09.095
SNOW ES, 2005, NANO LETT, V5, P2414, DOI 10.1021/nl051669c
SUSLICK KS, 1990, SCIENCE, V247, P4949
SZABADOS A, 2006, PHYS REV B, V73, ARTN 195404
TAYLOR HS, 1931, J AM CHEM SOC, V53, P578
ULBRICHT H, 2006, CARBON, V44, P2931, DOI 10.1016/j.carbon.2006.05.040
YANG CM, 2002, J PHYS CHEM B, V106, P8994, DOI 10.1021/jp025767n
YANG CM, 2002, NANO LETTERS, V2, P385
NR 32
TC 0
PU PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE,
KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0008-6223
DI 10.1016/j.carbon.2009.11.018
PD JUN
VL 48
IS 7
BP 1867
EP 1875
SC Chemistry, Physical; Materials Science, Multidisciplinary
GA 586OT
UT ISI:000276920900001
ER

PT J
*Record 5 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000276956800069>
*Order Full Text [ ]
AU Duan, WH
Wang, Q
AF Duan, Wen Hui
Wang, Quan
TI Water Transport with a Carbon Nanotube Pump
SO ACS NANO
LA English
DT Article
DE water transportation; carbon nanotubes; van der Waals energy; energy
pump; molecular dynamics simulations
ID FORCE-FIELD; MOLECULES
AB Transportation of water molecules in a carbon nanotube based on an
energy pump concept is investigated by molecular dynamics simulations.
A small portion of the initially twisted wall of a carbon nanotube is
employed to function as an energy pump for possible smooth
transportation of water molecules. The momentum and resultant force on
a water molecule and the corresponding displacement and velocity of the
molecule are particularly studied to disclose the transportation
process. The efficiency of the transportation is found to be dependent
on the size of the energy pump. Once the process for the transportation
of one molecule is elucidated, transportations of 20 water molecules
are simulated to investigate the effect of the environmental
temperature and fluctuations in the nanotube channel on the
transportation. It is revealed that the accelerated period of multiple
water molecules is longer than that in the transportation of a single
water molecule. In addition, the fluctuations in the nanotube wall due
to the buckling propagation and a higher environmental temperature will
all lead to obvious decreases in the water velocity and hence retard
the transportation process.
C1 [Wang, Quan] Univ Manitoba, Dept Mech & Mfg Engn, Winnipeg, MB R3T 5V6, Canada.
[Duan, Wen Hui] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia.
RP Wang, Q, Univ Manitoba, Dept Mech & Mfg Engn, Winnipeg, MB R3T 5V6,
Canada.
EM q_wang@umanitoba.ca
CR BALL P, 2001, NATURE, V414, P142
BANHART F, 2005, PHYS REV B, V71, ARTN 241408
DARHUBER AA, 2005, ANNU REV FLUID MECH, V37, P425, DOI
10.1146/annurev.fluid.36.050802.122052
DONG LX, 2007, NANO LETT, V7, P58, DOI 10.1021/nl061980+
DUAN WH, 2007, CARBON, V45, P1769, DOI 10.1016/j.carbon.2007.05.009
GAN YJ, 2008, NEW J PHYS, V10
HANASAKI I, 2009, PHYS REV E 2, V79, ARTN 046307
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
JONES JE, 1924, P R SOC LOND A-CONTA, V106, P463
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502
KAM NWS, 2006, PHYS STATUS SOLIDI B, V243, P3561, DOI
10.1002/pssb.200669226
KRAL P, 1999, PHYS REV LETT, V82, P5373
LIJIMA S, 1991, NATURE, V354, P56
MEYER JC, 2005, SCIENCE, V309, P1539, DOI 10.1126/science.1115067
NI B, 2002, PHYS REV LETT, V88, ARTN 205505
RIGBY D, 1997, POLYM INT, V44, P311
SUN H, 1998, J PHYS CHEM B, V102, P7338
SVENSSON K, 2004, PHYS REV LETT, V93, ARTN 145901
THOMAS JA, 2008, J CHEM PHYS, V128
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502
THORSEN T, 2002, SCIENCE, V298, P580, DOI 10.1126/science.1076996
VERLET L, 1967, PHYS REV, V159, P98
WANG Q, 2007, APPL PHYS LETT, V90, ARTN 033110
WANG Q, 2009, NANO LETT, V9, P245, DOI 10.1021/nl802829z
WEI DC, 2008, ADV MATER, V20, P2815, DOI 10.1002/adma.200800589
WILDOER JWG, 1998, NATURE, V391, P59
WILSON NR, 2009, NAT NANOTECHNOL, V4, P483, DOI 10.1038/NNANO.2009.154
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w
NR 28
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
DI 10.1021/nn1001694
PD APR
VL 4
IS 4
BP 2338
EP 2344
SC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary
GA 586ZX
UT ISI:000276956800069
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: