Cited Article:    Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
 Alert Expires:    09 NOV 2010
 Number of Citing Articles:    5 new records this week (5 in this e-mail)
 Organization ID:  3b97d1bbc1878baed0ab183d8b03130b
========================================================================
 Note:  Instructions on how to purchase the full text of an article, import the records into an 
 ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================
FN ISI Export Format
VR 1.0
PT J
*Record 1 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000276896000025>
*Order Full Text [ ]
AU Tawfick, S
   Deng, XP
   Hart, AJ
   Lahann, J
AF Tawfick, Sameh
   Deng, Xiaopei
   Hart, A. John
   Lahann, Joerg
TI Nanocomposite microstructures with tunable mechanical and chemical
   properties
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID ALIGNED CARBON NANOTUBES; VAPOR-DEPOSITION POLYMERIZATION;
   POLY-P-XYLYLENES; AREAL DENSITY; COATINGS; FABRICATION; COMPOSITES;
   ARRAYS; MORPHOLOGY; SURFACES
AB We report a two-step chemical vapor deposition (CVD) method for
   fabrication of hierarchical polymer-coated carbon nanotube (CNT)
   microstructures having tunable mechanical properties and accessible
   chemical functionality. Diverse geometries of vertically aligned CNTs
   were grown from lithographically patterned catalyst films, and the CNT
   microstructures were chemically functionalized via
   poly[4-trifluoroacetyl-p-xylylene-co-p-xylylene] made by chemical vapor
   deposition polymerization. The polymer coating conformally coated the
   individual CNTs and CNT bundles within the CNT "forest''. The chemical
   structure of the polymer films was verified by X-ray photoelectron
   spectroscopy (XPS) and Fourier transform infrared spectroscopy ( FTIR).
   Simple control of the mechanical properties of the nanocomposite
   structures can be achieved by adjusting the deposition times during CVD
   polymerization. Increasing the polymer film thickness from 10 nm to 27
   nm resulted in a change of the Young's modulus from 65 to 80 MPa. These
   values are substantially higher than the 36 MPa measured for the
   as-grown CNTs without polymer coating. The effect of the polymer
   coating in reinforcing the connectivity among CNTs within the
   structures has been understood using an analytical model. Finally,
   chemical functionality of the CNT composite structures after CVD
   polymerization was verified by a 4-fold fluorescence enhancement after
   binding of a dye to the coated CNT microstructures. This technique can
   be adapted to a wide variety of reactive coatings and facilitates
   attachment of chemical groups and functional nanostructures on the
   surfaces of the CNTs; therefore, this material could serve as a tunable
   platform for coupling mechanical and chemical responses in materials
   for environmental and biological sensing.
C1 [Tawfick, Sameh; Hart, A. John] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA.
   [Deng, Xiaopei; Lahann, Joerg] Univ Michigan, Dept Macromol Sci & Engn, Ann Arbor, MI 48109 USA.
   [Lahann, Joerg] Univ Michigan, Dept Chem Engn Mat Sci & Engn, Ann Arbor, MI 48109 USA.
RP Hart, AJ, Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA.
EM ajohnh@umich.edu
   lahann@umich.edu
CR AWANO Y, 2006, PHYS STATUS SOLIDI A, V203, P3611, DOI
   10.1002/pssa.200622415
   BARONE PW, 2005, NAT MATER, V4, P86, DOI 10.1038/nmat1276
   BAUGHMAN RH, 2002, SCIENCE, V297, P787
   BENNETT RD, 2006, ADV MATER, V18, P2274, DOI 10.1002/adma.200600975
   BLAIR PJ, 2004, J CLIN MICROBIOL, V42, P4961, DOI
   10.1128/JCM.42.114961-4967.2004
   CAO AY, 2005, SCIENCE, V310, P1307, DOI 10.1126/science.1118957
   CHEN HY, 2005, ANAL CHEM, V77, P6909, DOI 10.1021/ac050964e
   CHEN HY, 2006, J AM CHEM SOC, V128, P374, DOI 10.1021/ja057082h
   CHEN HY, 2007, ADV MATER, V19, P3801, DOI 10.1002/adma.200602830
   CHEN HY, 2007, P NATL ACAD SCI USA, V104, P11173, DOI
   10.1073/pnas.0702749104
   COLEMAN JN, 2006, CARBON, V44, P1624, DOI 10.1016/j.carbon.2006.02.038
   DRESSELHAUS MS, 2001, CARBON NANOTUBES SYN
   EKLUND PC, 2007, INT ASSESSMENT RES D
   ELKASABI Y, 2006, ADV MATER, V18, P1521, DOI 10.1002/adma.200502454
   ELKASABI Y, 2008, MACROMOL RAPID COMM, V29, P855, DOI
   10.1002/marc.200800101
   ELKASABI Y, 2009, CHEM VAPOR DEPOS, V15, P142, DOI
   10.1002/cvde.200806749
   FAN SS, 1999, SCIENCE, V283, P512
   FANG WL, 2005, ADV MATER, V17, P2987, DOI 10.1002/adma.200501305
   GARCIA EJ, 2007, ADV MATER, V19, P2151, DOI 10.1002/adma.200700237
   GARCIA EJ, 2008, COMPOS PART A-APPL S, V39, P1065, DOI
   10.1016/j.compositesa.2008.03.011
   GORHAM WF, 1966, J POLYM SCI, V4, P3027
   HAYAMIZU Y, 2008, NAT NANOTECHNOL, V3, P289, DOI 10.1038/nnano.2008.98
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HU WW, 2009, BIOMATERIALS, V30, P5785, DOI
   10.1016/j.biomaterials.2009.06.041
   JIANG XW, 2008, ADV FUNCT MATER, V18, P27, DOI 10.1002/adfm.200700789
   JUNEJA JS, 2005, J VAC SCI TECHNOL B, V23, P2232, DOI 10.1116/1.2040427
   JUNG YJ, 2006, NANO LETT, V6, P413, DOI 10.1021/nl052238x
   KATAGIRI M, 2008, JPN J APPL PHYS 1, V47, P2024, DOI
   10.1143/JJAP.47.2024
   KATRAGADDA R, 2007, APPL PHYS LETT, V91, ARTN 083505
   KHANG DY, 2008, NANO LETT, V8, P124, DOI 10.1021/nlo72203s
   KIM KH, 2005, SENSOR ACTUAT A-PHYS, V117, P8, DOI
   10.1016/j.sna.2003.10.079
   KIM YA, 2006, J BIOMED NANOTECHNOL, V2, P106, DOI 10.1166/jbn.2006.018
   LAHANN J, 1998, MACROMOL RAPID COMM, V19, P441
   LAHANN J, 2003, ANAL CHEM, V75, P2117, DOI 10.1021/ac020557s
   LAHANN J, 2006, POLYM INT, V55, P1361, DOI 10.1002/pi.2098
   LAU KKS, 2003, NANO LETT, V3, P1701, DOI 10.1021/nl034704t
   LI J, 2002, APPL PHYS LETT, V81, P910
   LIN CM, 2009, BIOSENS BIOELECTRON, V24, P2791, DOI
   10.1016/j.bios.2009.02.005
   LINVIEN D, 1991, HDB INFRARED RAMAN C
   MISERENDINO S, 2006, NANOTECHNOLOGY, V17, S23, DOI
   10.1088/0957-4484/17/4/005
   NESSIM GD, 2008, NANO LETT, V8, P3587, DOI 10.1021/nl801437c
   NESSIM GD, 2009, NANO LETT, V9, P3398, DOI 10.1021/nl900675d
   SALVETAT JP, 1999, APPL PHYS A-MATER, V69, P255
   STRANO MS, 2003, SCIENCE, V301, P1519
   SUH KY, 2003, APPL PHYS LETT, V83, P4250, DOI 10.1063/1.1628392
   TALAPATRA S, 2006, NAT NANOTECHNOL, V1, P112, DOI 10.1038/nnano.2006.56
   TASIS D, 2006, CHEM REV, V106, P1105, DOI 10.1021/cr050569o
   TAWFICK S, 2009, SMALL, V5, P2467, DOI 10.1002/smll.200900741
   THEVENET S, 2007, ADV MATER, V19, P4333, DOI 10.1002/adma.200701439
   TONG T, 2008, NANO LETT, V8, P511, DOI 10.1021/nl072709a
   VADDIRAJU S, 2009, ACS APPL MATER INTER, V1, P2565, DOI
   10.1021/am900487z
   WEGENHART B, 2006, NANOSCALE RES LETT, V1, P154, DOI
   10.1007/s11671-006-9006-8
   YAMAMOTO N, 2009, CARBON, V47, P551, DOI 10.1016/j.carbon.2008.10.030
   YOSHIDA M, 2006, POLYM REV, V46, P347, DOI 10.1080/15583720600945394
   YURDUMAKAN B, 2005, CHEM COMMUN, P3799, DOI 10.1039/b506047h
NR 55
TC 0
PU ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,
   CAMBRIDGE CB4 0WF, CAMBS,
      ENGLAND
SN 1463-9076
DI 10.1039/c000304m
VL 12
IS 17
BP 4446
EP 4451
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 586HB
UT ISI:000276896000025
ER
PT J
*Record 2 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000276889100028>
*Order Full Text [ ]
AU Das, P
   Zhou, RH
AF Das, Payel
   Zhou, Ruhong
TI Urea-Induced Drying of Carbon Nanotubes Suggests Existence of a Dry
   Globule-like Transient State During Chemical Denaturation of Proteins
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID DISPERSION INTERACTIONS; HYDROPHOBIC COLLAPSE; WATER; GUANIDINIUM;
   TRANSPORT; MECHANISM; CHANNEL; MODEL
AB Atomistic dynamics simulations of purely hydrophobic carbon nanotubes
   in 8 M urea are performed to dissect the role of dispersion
   interactions in the denaturing power of urea. The enhanced population
   of urea and a paucity of water in proximity of nanotubes suggest that
   the stronger dispersion interaction of urea than water with nanotube
   triggers drying of its interior. The preferential intrusion of urea
   over water within nanotube interiors irrespective of their diameters
   directly implies a "dry globule"-like transient intermediate formation
   in the initial stage of protein unfolding in urea.
C1 [Das, Payel; Zhou, Ruhong] IBM Corp, Thomas J Watson Res Ctr, Computat Biol Ctr, Yorktown Hts, NY 10598 USA.
RP Zhou, RH, IBM Corp, Thomas J Watson Res Ctr, Computat Biol Ctr, 1101
   Kitchawan Rd, Yorktown Hts, NY 10598 USA.
EM ruhongz@us.ibm.com
CR ALONSO DOV, 1991, BIOCHEMISTRY-US, V30, P5974
   AUTON M, 2007, P NATL ACAD SCI USA, V104, P15317, DOI
   10.1073/pnas.0706251104
   BENNION BJ, 2003, P NATL ACAD SCI USA, V100, P5142, DOI
   10.1073/pnas.0930122100
   FRANK HS, 1968, J CHEM PHYS, V48, P4746
   HAMMES GG, 1967, J AM CHEM SOC, V89, P442
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUA L, 2008, P NATL ACAD SCI USA, V105, P16928, DOI
   10.1073/pnas.0808427105
   HUMMER G, 2001, NATURE, V414, P188
   KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
   KLIMOV DK, 2004, P NATL ACAD SCI USA, V101, P14760, DOI
   10.1073/pnas.0404570101
   LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI
   10.1073/pnas.0604541104
   LIM WK, 2009, P NATL ACAD SCI USA, V106, P2595, DOI
   10.1073/pnas.0812588106
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MAKHATADZE GI, 1999, J PHYS CHEM B, V103, P4781
   OBRIEN EP, 2007, J AM CHEM SOC, V129, P7346, DOI 10.1021/ja069232+
   PACE CN, 1986, METHOD ENZYMOL, V131, P266
   RANA M, 2007, J CHEM SCI, V119, P367
   ROBINSON DR, 1965, J AM CHEM SOC, V87, P2462
   SCHOLTZ JM, 1995, P NATL ACAD SCI USA, V92, P185
   STUMPE MC, 2009, BIOPHYS J, V96, P3744, DOI 10.1016/j.bpj.2009.01.051
   TANFORD C, 1970, ADV PROTEIN CHEM, V24, P1
   WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861
   WALLQVIST A, 1998, J AM CHEM SOC, V120, P427
   WETLAUFER DB, 1964, J AM CHEM SOC, V86, P508
   YANG L, J AM CHEM SOC, V132, P842
   ZHOU RH, 2004, SCIENCE, V305, P1605
   ZHOU RH, 2007, P NATL ACAD SCI USA, V104, P5824, DOI
   10.1073/pnas.0701249104
NR 27
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
DI 10.1021/jp911444q
PD APR 29
VL 114
IS 16
BP 5427
EP 5430
SC Chemistry, Physical
GA 586FO
UT ISI:000276889100028
ER
PT J
*Record 3 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000277040000015>
*Order Full Text [ ]
AU Goldsmith, J
   Martens, CC
AF Goldsmith, Jacob
   Martens, Craig C.
TI Molecular Dynamics Simulation of Salt Rejection in Model
   Surface-Modified Nanopores
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID CARBON NANOTUBE MEMBRANES; WATER PERMEATION; BROWNIAN MOTORS;
   TRANSPORT; CHANNEL; FUNCTIONALIZATION; NANOFILTRATION; AQUAPORIN-1;
   ENERGETICS; MECHANISM
AB This Letter describes molecular dynamics simulations of pressure
   induced flow of water and aqueous salt solutions through model
   nanopores. The systems studied are comprised of (n,n) carbon nanotubes
   (CNT) that span a membrane constructed of parallel graphene walls
   separating two solutions reserviors. We emply this system as an
   idealized model of surface modified nanoporous membranes and thus, both
   native hydrophobic CNT and nanotubes with artificial surface partial
   charge patterns are considered. The dependence of the fluxes of water
   and ions on the nanopore size, nanopore charge patterns, and pressure
   difference are explored using nonequilibrium molecular dynamics
   simulation. We demonstrate size-and structure-dependent salt rejection
   and show evidence of salt flux rectification for our asymmetric
   nanopore model.
C1 [Goldsmith, Jacob; Martens, Craig C.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA.
RP Martens, CC, Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA.
EM cmartens@uci.edu
CR ALLEN MP, 1987, COMPUTER SIMULATION
   BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y
   BOWEN WR, 2002, CHEM ENG SCI, V57, P1121
   BOWEN WR, 2002, CHEM ENG SCI, V57, P1393
   CICCOTTI G, 1987, SIMULATION LIQUIDS S
   DEGROOT BL, 2001, SCIENCE, V294, P2353
   DRESSELHAUS MS, 2001, CARBON NANOTUBES SYN
   DZUBIELLA J, 2004, J CHEM PHYS, V120, P5001, DOI 10.1063/1.1665656
   FEBLES M, 2006, J AM CHEM SOC, V128, P10008, ARTN JA063223J
   FEYNMAN R, 1963, FEYNMAN LECT PHYS
   GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1323, DOI
   10.1021/jp065419b
   GOLDSMITH J, 2009, PHYS CHEM CHEM PHYS, V11, P528, DOI 10.1039/b807823h
   GRACHEVA ME, 2008, ACS NANO, V2, P2349, DOI 10.1021/nn8004679
   HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708
   HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUMMER G, 2001, NATURE, V414, P188
   HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33
   JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326
   JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q
   KALE L, 1999, J COMPUT PHYS, V151, P283
   LU DY, 2005, J PHYS CHEM B, V109, P11461, DOI 10.1021/jp050420g
   MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b
   MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI
   10.1016/j.cplett.2004.11.112
   NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907
   NOON WH, 2002, CHEM PHYS LETT, V355, P445
   PARRONDO JMR, 1996, AM J PHYS, V64, P1125
   PARRONDO JMR, 2002, APPL PHYS A-MATER, V75, P179
   PENG Q, 2008, ACS NANO, V2, P1833, DOI 10.1021/nn8002532
   REIMANN P, 2002, PHYS REP, V361, P57
   SAVARIAR EN, 2008, NAT NANOTECHNOL, V3, P112, DOI 10.1038/nnano.2008.6
   SIWY ZS, 2006, ADV FUNCT MATER, V16, P735, DOI 10.1002/adfm.200500471
   SUN TL, 2005, ACCOUNTS CHEM RES, V38, P644, DOI 10.1021/ar040224c
   TAJKHORSHID E, 2002, SCIENCE, V296, P525
   TAKABA H, 2007, J CHEM PHYS, V127, ARTN 054703
   TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI
   10.1073/pnas.0707917105
   TOMBARI E, 2005, J CHEM PHYS, V122, ARTN 104712
   VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI
   10.1073/pnas.0407968101
   VIDOSSICH P, 2004, PROTEINS, V55, P924
   WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
   WON CY, 2006, J CHEM PHYS, V125, ARTN 114701
   YANG L, 2007, J CHEM PHYS, V126, ARTN 084706
   ZHU FQ, 2004, BIOPHYS J 1, V86, P50
NR 43
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
DI 10.1021/jz900173w
PD JAN 21
VL 1
IS 2
BP 528
EP 535
GA 588BC
UT ISI:000277040000015
ER
PT J
*Record 4 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000276920900001>
*Order Full Text [ ]
AU Kazachkin, DV
   Nishimura, Y
   Irle, S
   Feng, X
   Vidic, R
   Borguet, E
AF Kazachkin, Dmitry V.
   Nishimura, Yoshifumi
   Irle, Stephan
   Feng, Xue
   Vidic, Radisav
   Borguet, Eric
TI Temperature and pressure dependence of molecular adsorption on single
   wall carbon nanotubes and the existence of an "adsorption/desorption
   pressure gap"
SO CARBON
LA English
DT Article
ID PORE STRUCTURE; SENSORS; ACETONE; VAPORS; DESORPTION; DEFECTS; GASES
AB The interaction of acetone with single wall carbon nanotubes (SWCNTs)
   was studied by temperature programmed desorption with mass spectrometry
   (TPD-MS), after reflux, sonication, or exposure to 7.6 Torr of acetone
   vapors at room temperature. Acetone molecules adsorb strongly on SWCNTs
   desorbing at similar to 400-900 K, corresponding to desorption energies
   of similar to 100-225 kJ/mol, as intact molecules. Exchange of intact
   adsorbed molecules with gas phase species was observed in successive
   dosing of hydrogenated and deuterated acetone molecules. The desorption
   energies reported here are in stark contrast to the desorption energies
   (similar to 75 kJ/mol) reported earlier for SWCNTs interacting with
   acetone under high vacuum at cryogenic temperatures. This result
   suggests activated adsorption/desorption, and is also observed for
   adsorption of ethanol, methane, n-butane and 1,3-butadiene on SWCNTs
   and on carbon black. Quantum chemical calculations suggest that
   adsorption in interstitial channels of bundles formed of large-diameter
   SWCNTs is possible and can account for high desorption barriers, a
   result of strong dispersion interactions between neighboring SWCNTs.
   (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Kazachkin, Dmitry V.; Feng, Xue; Borguet, Eric] Temple Univ, Dept Chem, Philadelphia, PA 19122 USA.
   [Kazachkin, Dmitry V.] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA.
   [Nishimura, Yoshifumi; Irle, Stephan] Nagoya Univ, Dept Chem, Nagoya, Aichi 4648602, Japan.
   [Nishimura, Yoshifumi; Irle, Stephan] Nagoya Univ, Inst Adv Res, Nagoya, Aichi 4648602, Japan.
   [Feng, Xue; Vidic, Radisav] Univ Pittsburgh, Dept Civil & Environm Engn, Pittsburgh, PA 15261 USA.
RP Borguet, E, Temple Univ, Dept Chem, Philadelphia, PA 19122 USA.
EM eborguet@temple.edu
CR BRADLEY RH, 1996, J COLLOID INTERF SCI, V179, P561
   BRUKH R, 2008, CHEM PHYS LETT, V459, P149, DOI
   10.1016/j.cplett.2008.05.026
   CHAKRAPANI N, 2003, J PHYS CHEM B, V107, P9308, DOI 10.1021/jp034970v
   CINKE M, 2002, CHEM PHYS LETT, V365, P69
   DONNET JB, 1993, CARBON BLACK SCI TEC
   ELSTNER M, 1998, PHYS REV B, V58, P7260
   ELSTNER M, 2001, J CHEM PHYS, V114, P5149
   GUIRADOLOPEZ RA, 2007, J PHYS CHEM C, V111, P57, DOI 10.1021/kp064651e
   HASHIMOTO A, 2004, NATURE, V430, P870, DOI 10.1038/nature02817
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUANG WJ, 2002, NANO LETTERS, V2, P231
   KAZACHKIN D, 2008, LANGMUIR, V24, P7848, DOI 10.1021/la800030y
   KONDRATYUK P, 2007, ACCOUNTS CHEM RES, V40, P995, DOI 10.1021/ar700013c
   KOSHIO A, 2001, NANO LETTERS, V1, P361
   KWON S, 2002, ENVIRON SCI TECHNOL, V36, P4162, DOI 10.1021/es0256818
   LABROSSE MR, 2008, LANGMUIR, V24, P9430
   LU YJ, 2006, J ELECTROANAL CHEM, V593, P105, DOI
   10.1016/j.jelechem.2006.03.056
   NIKOLAEV P, 1999, CHEM PHYS LETT, V313, P91
   NOY A, 2007, NANO TODAY, V2, P22
   OWENS FJ, 2006, COMPOS SCI TECHNOL, V66, P1280, DOI
   10.1016/j.compscitech.2005.10.027
   PARIKH K, 2006, SENSOR ACTUAT B-CHEM, V113, P55, DOI
   10.1016/j.snb.2005.02.021
   PENZA M, 2005, CHEM PHYS LETT, V409, P349, DOI
   10.1016/j.cplett.2005.05.005
   ROBINSON JA, 2006, NANO LETT, V6, P1747, DOI 10.1021/nl0612289
   SHI W, 2003, PHYS REV LETT, V91, P15504, UNSP 015504-1-4
   SHIH YH, 2008, J HAZARD MATER, V154, P21, DOI
   10.1016/j.jhazmat.2007.09.095
   SNOW ES, 2005, NANO LETT, V5, P2414, DOI 10.1021/nl051669c
   SUSLICK KS, 1990, SCIENCE, V247, P4949
   SZABADOS A, 2006, PHYS REV B, V73, ARTN 195404
   TAYLOR HS, 1931, J AM CHEM SOC, V53, P578
   ULBRICHT H, 2006, CARBON, V44, P2931, DOI 10.1016/j.carbon.2006.05.040
   YANG CM, 2002, J PHYS CHEM B, V106, P8994, DOI 10.1021/jp025767n
   YANG CM, 2002, NANO LETTERS, V2, P385
NR 32
TC 0
PU PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE,
   KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0008-6223
DI 10.1016/j.carbon.2009.11.018
PD JUN
VL 48
IS 7
BP 1867
EP 1875
SC Chemistry, Physical; Materials Science, Multidisciplinary
GA 586OT
UT ISI:000276920900001
ER
PT J
*Record 5 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000276956800069>
*Order Full Text [ ]
AU Duan, WH
   Wang, Q
AF Duan, Wen Hui
   Wang, Quan
TI Water Transport with a Carbon Nanotube Pump
SO ACS NANO
LA English
DT Article
DE water transportation; carbon nanotubes; van der Waals energy; energy
   pump; molecular dynamics simulations
ID FORCE-FIELD; MOLECULES
AB Transportation of water molecules in a carbon nanotube based on an
   energy pump concept is investigated by molecular dynamics simulations.
   A small portion of the initially twisted wall of a carbon nanotube is
   employed to function as an energy pump for possible smooth
   transportation of water molecules. The momentum and resultant force on
   a water molecule and the corresponding displacement and velocity of the
   molecule are particularly studied to disclose the transportation
   process. The efficiency of the transportation is found to be dependent
   on the size of the energy pump. Once the process for the transportation
   of one molecule is elucidated, transportations of 20 water molecules
   are simulated to investigate the effect of the environmental
   temperature and fluctuations in the nanotube channel on the
   transportation. It is revealed that the accelerated period of multiple
   water molecules is longer than that in the transportation of a single
   water molecule. In addition, the fluctuations in the nanotube wall due
   to the buckling propagation and a higher environmental temperature will
   all lead to obvious decreases in the water velocity and hence retard
   the transportation process.
C1 [Wang, Quan] Univ Manitoba, Dept Mech & Mfg Engn, Winnipeg, MB R3T 5V6, Canada.
   [Duan, Wen Hui] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia.
RP Wang, Q, Univ Manitoba, Dept Mech & Mfg Engn, Winnipeg, MB R3T 5V6,
   Canada.
EM q_wang@umanitoba.ca
CR BALL P, 2001, NATURE, V414, P142
   BANHART F, 2005, PHYS REV B, V71, ARTN 241408
   DARHUBER AA, 2005, ANNU REV FLUID MECH, V37, P425, DOI
   10.1146/annurev.fluid.36.050802.122052
   DONG LX, 2007, NANO LETT, V7, P58, DOI 10.1021/nl061980+
   DUAN WH, 2007, CARBON, V45, P1769, DOI 10.1016/j.carbon.2007.05.009
   GAN YJ, 2008, NEW J PHYS, V10
   HANASAKI I, 2009, PHYS REV E 2, V79, ARTN 046307
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   JONES JE, 1924, P R SOC LOND A-CONTA, V106, P463
   JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502
   KAM NWS, 2006, PHYS STATUS SOLIDI B, V243, P3561, DOI
   10.1002/pssb.200669226
   KRAL P, 1999, PHYS REV LETT, V82, P5373
   LIJIMA S, 1991, NATURE, V354, P56
   MEYER JC, 2005, SCIENCE, V309, P1539, DOI 10.1126/science.1115067
   NI B, 2002, PHYS REV LETT, V88, ARTN 205505
   RIGBY D, 1997, POLYM INT, V44, P311
   SUN H, 1998, J PHYS CHEM B, V102, P7338
   SVENSSON K, 2004, PHYS REV LETT, V93, ARTN 145901
   THOMAS JA, 2008, J CHEM PHYS, V128
   THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502
   THORSEN T, 2002, SCIENCE, V298, P580, DOI 10.1126/science.1076996
   VERLET L, 1967, PHYS REV, V159, P98
   WANG Q, 2007, APPL PHYS LETT, V90, ARTN 033110
   WANG Q, 2009, NANO LETT, V9, P245, DOI 10.1021/nl802829z
   WEI DC, 2008, ADV MATER, V20, P2815, DOI 10.1002/adma.200800589
   WILDOER JWG, 1998, NATURE, V391, P59
   WILSON NR, 2009, NAT NANOTECHNOL, V4, P483, DOI 10.1038/NNANO.2009.154
   ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w
NR 28
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
DI 10.1021/nn1001694
PD APR
VL 4
IS 4
BP 2338
EP 2344
SC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
   Science, Multidisciplinary
GA 586ZX
UT ISI:000276956800069
ER
EF
========================================================================
 *Order Full Text* 
 All Customers
--------------
    Please contact your library administrator, or person(s) responsible for 
    document delivery, to find out more about your organization's policy for 
    obtaining the full text of the above articles. If your organization does 
    not have a current document delivery provider, your administrator can 
    contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 
    or 734-459-8565.
 IDS Customers
--------------
    IDS customers can purchase the full text of an article (having page number, 
    volume, and issue information) by returning this ENTIRE message as a Reply 
    to Sender or Forward to orders@isidoc.com. Mark your choices with an X in 
    the "Order Full Text: []" brackets for each item. For example, [X].
Please enter your account number here:
========================================================================
 *Import Records into an ISI ResearchSoft product*
 1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
 2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
 *Help Desk Contact Information*
 If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================
 
No comments:
Post a Comment