Thursday, May 6, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276889100028
*Order Full Text [ ]

Title:
Urea-Induced Drying of Carbon Nanotubes Suggests Existence of a Dry Globule-like Transient State During Chemical Denaturation of Proteins

Authors:
Das, P; Zhou, RH

Author Full Names:
Das, Payel; Zhou, Ruhong

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (16): 5427-5430 APR 29 2010

Language:
English

Document Type:
Article

KeyWords Plus:
DISPERSION INTERACTIONS; HYDROPHOBIC COLLAPSE; WATER; GUANIDINIUM; TRANSPORT; MECHANISM; CHANNEL; MODEL

Abstract:
Atomistic dynamics simulations of purely hydrophobic carbon nanotubes in 8 M urea are performed to dissect the role of dispersion interactions in the denaturing power of urea. The enhanced population of urea and a paucity of water in proximity of nanotubes suggest that the stronger dispersion interaction of urea than water with nanotube triggers drying of its interior. The preferential intrusion of urea over water within nanotube interiors irrespective of their diameters directly implies a "dry globule"-like transient intermediate formation in the initial stage of protein unfolding in urea.

Reprint Address:
Zhou, RH, IBM Corp, Thomas J Watson Res Ctr, Computat Biol Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA.

Research Institution addresses:
[Das, Payel; Zhou, Ruhong] IBM Corp, Thomas J Watson Res Ctr, Computat Biol Ctr, Yorktown Hts, NY 10598 USA

E-mail Address:
ruhongz@us.ibm.com

Cited References:
ALONSO DOV, 1991, BIOCHEMISTRY-US, V30, P5974.
AUTON M, 2007, P NATL ACAD SCI USA, V104, P15317, DOI 10.1073/pnas.0706251104.
BENNION BJ, 2003, P NATL ACAD SCI USA, V100, P5142, DOI 10.1073/pnas.0930122100.
FRANK HS, 1968, J CHEM PHYS, V48, P4746.
HAMMES GG, 1967, J AM CHEM SOC, V89, P442.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUA L, 2008, P NATL ACAD SCI USA, V105, P16928, DOI 10.1073/pnas.0808427105.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KLIMOV DK, 2004, P NATL ACAD SCI USA, V101, P14760, DOI 10.1073/pnas.0404570101.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIM WK, 2009, P NATL ACAD SCI USA, V106, P2595, DOI 10.1073/pnas.0812588106.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAKHATADZE GI, 1999, J PHYS CHEM B, V103, P4781.
OBRIEN EP, 2007, J AM CHEM SOC, V129, P7346, DOI 10.1021/ja069232+.
PACE CN, 1986, METHOD ENZYMOL, V131, P266.
RANA M, 2007, J CHEM SCI, V119, P367.
ROBINSON DR, 1965, J AM CHEM SOC, V87, P2462.
SCHOLTZ JM, 1995, P NATL ACAD SCI USA, V92, P185.
STUMPE MC, 2009, BIOPHYS J, V96, P3744, DOI 10.1016/j.bpj.2009.01.051.
TANFORD C, 1970, ADV PROTEIN CHEM, V24, P1.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WALLQVIST A, 1998, J AM CHEM SOC, V120, P427.
WETLAUFER DB, 1964, J AM CHEM SOC, V86, P508.
YANG L, J AM CHEM SOC, V132, P842.
ZHOU RH, 2004, SCIENCE, V305, P1605.
ZHOU RH, 2007, P NATL ACAD SCI USA, V104, P5824, DOI 10.1073/pnas.0701249104.

Cited Reference Count:
27

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp911444q

IDS Number:
586FO

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000277053900007
*Order Full Text [ ]

Title:
Temperature-Induced Water Release and Uptake in Organic Porous Networks

Authors:
Perez-Hernandez, N; Falcao, EHL; Perez, C; Fort, D; Martin, JD; Eckert, J

Author Full Names:
Perez-Hernandez, Natalia; Falcao, Eduardo H. L.; Perez, Cirilo; Fort, Diego; Martin, Julio D.; Eckert, Juergen

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (17): 5694-5699 MAY 6 2010

Language:
English

Document Type:
Article

KeyWords Plus:
BORON-NITRIDE NANOTUBE; CARBON NANOTUBES; DYNAMICS; LIQUID; PERMEATION; MOLECULES; CLUSTERS; CHANNELS; HEXAMER; PROTEIN

Abstract:
The behavior of water confined near nonpolar surfaces has important implications for a number of biological phenomena. In this type of confined environment the properties of "hydrophobicity" and "hydrophilicity" are closely related to the structure of the interfacial water, which in turn can depend on temperature in a very subtle way. Although the physical-chemical consequences of this fact have been theoretically addressed to a great extent, the underlying thermodynamic question is still widely discussed. Accordingly we performed thermogravimetric analysis and variable-temperature powder X-ray diffraction studies on representative hydrogen bonding organic pores occupied by water. The results indicate that a hydrophilic-to-hydrophobic transition of the inner surface of the pores occurs upon increasing temperature, which may be attributed to a strong influence of the dynamics and thermodynamics of local water molecules on the surface affinity of the pores. The relevance of ou!
r findings to the understanding of the phenomenon of water transport in natural pores is discussed.

Reprint Address:
Perez-Hernandez, N, Inst Invest Quim, Avda Amer Vespucio 49, Seville 41092, Spain.

Research Institution addresses:
[Perez-Hernandez, Natalia; Fort, Diego; Martin, Julio D.] Inst Invest Quim, Seville 41092, Spain; [Falcao, Eduardo H. L.; Eckert, Juergen] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA; [Perez, Cirilo] Univ La Laguna, Inst Bioorgan, CSIC, E-38206 Tenerife, Spain

E-mail Address:
natalia.perez@iiq.csic.es; juergen.eckert@mrl.ucsb.edu

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ANDREEV S, 2005, J CHEM PHYS, V123, UNSP 194502/1-9.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
BUCKLE AM, 1996, BIOCHEMISTRY-US, V35, P4298.
CARRASCO H, 2001, J AM CHEM SOC, V123, P11970.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHOU CC, 2008, NANO LETT, V8, P437, DOI 10.1021/nl0723634.
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
CRUZAN JD, 1996, SCIENCE, V271, P59.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
FANG H, 2008, J PHYS D, V41, P1.
FEBLES M, 2004, ORG LETT, V6, P877, DOI 10.1021/ol036335d.
FEBLES M, 2006, J AM CHEM SOC, V128, P10008, ARTN JA063223J.
FISICARO E, 2004, PHYS CHEM CHEM PHYS, V6, P4156, DOI 10.1039/b404327h.
GRANICK S, 2008, SCIENCE, V322, P1477, DOI 10.1126/science.1167219.
GRUENLOH CJ, 1997, SCIENCE, V276, P1678.
HOFFMANN R, 2008, ANGEW CHEM INT EDIT, V47, P7164, DOI 10.1002/anie.200801206.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KEUTSCH FN, 2001, P NATL ACAD SCI USA, V98, P10533.
KIM J, 1998, J CHEM PHYS, V109, P5886.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOGA K, 2000, NATURE, V408, P564.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LIU K, 1996, NATURE, V381, P501.
LIU K, 1996, SCIENCE, V271, P62.
LIU K, 1996, SCIENCE, V271, P929.
LIU Y, 2005, J CHEM PHYS, V123, UNSP 234701-234707.
LIU Y, 2005, PHYS REV B, V72, P1.
LIU YC, 2005, LANGMUIR, V21, P12025, DOI 10.1021/la0517181.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MURATA K, 2000, NATURE, V407, P599.
NANOK T, 2009, J PHYS CHEM A, V113, P2103, DOI 10.1021/jp8088676.
NAUTA K, 2000, SCIENCE, V287, P293.
OCONNELL MJ, 2006, CARBON NANOTUBES PRO.
OHBA T, 2005, CHEM-EUR J, V11, P4890, DOI 10.1002/chem.200400918.
PEREZ C, 2000, ORG LETT, V2, P1185.
PEREZ C, 2003, ORG LETT, V5, P641, DOI 10.1021/ol027332o.
PEREZHERNANDEZ N, 2008, Z PHYS CHEM, V322, P1477.
PRESTON GM, 1992, SCIENCE, V256, P385, DOI 10.1126/SCIENCE.256.5055.385.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
REN G, 2001, P NATL ACAD SCI USA, V98, P1398.
SUI HX, 2001, NATURE, V414, P872.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, UNSP 170112-17005.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
WON CY, 2008, J PHYS CHEM C, V112, P1812, DOI 10.1021/jp076747u.
YU B, 1999, P NATL ACAD SCI USA, V96, P103.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
54

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp911930k

IDS Number:
588FR

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000277040000015
*Order Full Text [ ]

Title:
Molecular Dynamics Simulation of Salt Rejection in Model Surface-Modified Nanopores

Authors:
Goldsmith, J; Martens, CC

Author Full Names:
Goldsmith, Jacob; Martens, Craig C.

Source:
JOURNAL OF PHYSICAL CHEMISTRY LETTERS 1 (2): 528-535 JAN 21 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; WATER PERMEATION; BROWNIAN MOTORS; TRANSPORT; CHANNEL; FUNCTIONALIZATION; NANOFILTRATION; AQUAPORIN-1; ENERGETICS; MECHANISM

Abstract:
This Letter describes molecular dynamics simulations of pressure induced flow of water and aqueous salt solutions through model nanopores. The systems studied are comprised of (n,n) carbon nanotubes (CNT) that span a membrane constructed of parallel graphene walls separating two solutions reserviors. We emply this system as an idealized model of surface modified nanoporous membranes and thus, both native hydrophobic CNT and nanotubes with artificial surface partial charge patterns are considered. The dependence of the fluxes of water and ions on the nanopore size, nanopore charge patterns, and pressure difference are explored using nonequilibrium molecular dynamics simulation. We demonstrate size-and structure-dependent salt rejection and show evidence of salt flux rectification for our asymmetric nanopore model.

Reprint Address:
Martens, CC, Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA.

Research Institution addresses:
[Goldsmith, Jacob; Martens, Craig C.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA

E-mail Address:
cmartens@uci.edu

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y.
BOWEN WR, 2002, CHEM ENG SCI, V57, P1121.
BOWEN WR, 2002, CHEM ENG SCI, V57, P1393.
CICCOTTI G, 1987, SIMULATION LIQUIDS S.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DRESSELHAUS MS, 2001, CARBON NANOTUBES SYN.
DZUBIELLA J, 2004, J CHEM PHYS, V120, P5001, DOI 10.1063/1.1665656.
FEBLES M, 2006, J AM CHEM SOC, V128, P10008, ARTN JA063223J.
FEYNMAN R, 1963, FEYNMAN LECT PHYS.
GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1323, DOI 10.1021/jp065419b.
GOLDSMITH J, 2009, PHYS CHEM CHEM PHYS, V11, P528, DOI 10.1039/b807823h.
GRACHEVA ME, 2008, ACS NANO, V2, P2349, DOI 10.1021/nn8004679.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALE L, 1999, J COMPUT PHYS, V151, P283.
LU DY, 2005, J PHYS CHEM B, V109, P11461, DOI 10.1021/jp050420g.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
PARRONDO JMR, 1996, AM J PHYS, V64, P1125.
PARRONDO JMR, 2002, APPL PHYS A-MATER, V75, P179.
PENG Q, 2008, ACS NANO, V2, P1833, DOI 10.1021/nn8002532.
REIMANN P, 2002, PHYS REP, V361, P57.
SAVARIAR EN, 2008, NAT NANOTECHNOL, V3, P112, DOI 10.1038/nnano.2008.6.
SIWY ZS, 2006, ADV FUNCT MATER, V16, P735, DOI 10.1002/adfm.200500471.
SUN TL, 2005, ACCOUNTS CHEM RES, V38, P644, DOI 10.1021/ar040224c.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TAKABA H, 2007, J CHEM PHYS, V127, ARTN 054703.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TOMBARI E, 2005, J CHEM PHYS, V122, ARTN 104712.
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI 10.1073/pnas.0407968101.
VIDOSSICH P, 2004, PROTEINS, V55, P924.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WON CY, 2006, J CHEM PHYS, V125, ARTN 114701.
YANG L, 2007, J CHEM PHYS, V126, ARTN 084706.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.

Cited Reference Count:
43

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

ISSN:
1948-7185

DOI:
10.1021/jz900173w

IDS Number:
588BC

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276695600002
*Order Full Text [ ]

Title:
Flow-induced instability and bifurcation of carbon nanotubes

Authors:
He, XQ; Yan, Y; Zhang, LX

Author Full Names:
He, X. Q.; Yan, Y.; Zhang, L. X.

Source:
FMA '09: PROCEEDINGS OF THE 7TH IASME / WSEAS INTERNATIONAL CONFERENCE ON FLUID MECHANICS AND AERODYNAMICS : 21-27 2009

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Carbon nanotubes; Instability; Critical flow velocities; Elastic beam model; Pitchfork bifurcation; Hopf bifurcation

KeyWords Plus:
FLUID-FLOW; NETWORKS; STRENGTH

Abstract:
Carbon nanotubes (CNTs) show great potential for use in nanofluidic devices. Based on an elastic beam model, this paper studies the flow-induced structural instability and bifurcations of CNTs conveying fluids. Explicit formulas have been obtained for the solution of dynamic description of CNTs in which fluids flow. Based on the obtained solutions, the critical flow velocities for Pitchfork bifurcation and Hopf bifurcation have been determined by using the elastic beam model. The results indicate that the critical flow velocities for the structural instability are inversely proportional to the aspect ratio (L/R-out) of the CNT. The effect of the size of CNTs and the surrounding elastic matrix on the instability and divergence of CNT-fluid system has been discussed in detail.

Reprint Address:
He, XQ, City Univ Hong Kong, Dept Bldg & Construct, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China.

Research Institution addresses:
[He, X. Q.] City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China

E-mail Address:
bcxqhe@cityu.edu.hk

Cited References:
CHE GL, 1998, NATURE, V393, P346.
EVANS E, 1996, SCIENCE, V273, P933.
GADD GE, 1997, SCIENCE, V277, P933.
GALANOV BA, 2002, J NANOPART RES, V4, P207.
GAO YH, 2002, NATURE, V415, P599.
GIRIFALCO LA, 1991, J PHYS CHEM-US, V95, P5370.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
HUMMER G, 2001, NATURE, V414, P188.
KARLSSON A, 2001, NATURE, V409, P150.
LI CY, 2004, APPL PHYS LETT, V84, P121, DOI 10.1063/1.1638623.
LIU J, 1998, SCIENCE, V280, P1253.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
MEIROVITCH L, 1967, ANAL METHODS VIBRATI.
MUSTER J, 1998, J VAC SCI TECHNOL B, V16, P2796.
PAIDOUSSIS MP, 1998, FLUID STRUCTURE INTE, V1.
PONCHARAL P, 1999, SCIENCE, V283, P1513.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
TREACY MMJ, 1996, NATURE, V381, P678.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
WONG EW, 1997, SCIENCE, V277, P1971.
YOON J, 2002, PHYS REV B, V66, ARTN 233402.
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI 10.1016/j.compscitech.2004.12.002.
YOON J, 2006, INT J SOLIDS STRUCT, V43, P3337, DOI 10.1016/j.ijsolstr.2005.04.039.
YU MF, 2000, SCIENCE, V287, P637.
ZHANG LX, 2001, J HYDRODYNAMICS B, P96.
ZHANG LX, 2004, THEORY ITS APPL FLUI.
ZHAO Y, 2003, PHYS REV LETT, V91, ARTN 175504.

Cited Reference Count:
29

Times Cited:
0

Publisher:
WORLD SCIENTIFIC AND ENGINEERING ACAD AND SOC; AG LOANNOU THEOLOGOU 17-23, 15773 ZOGRAPHOU, ATHENS, GREECE

IDS Number:
BOI16

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000276956800070
*Order Full Text [ ]

Title:
Nanoporous Carbon Supercapacitors in an Ionic Liquid: A Computer Simulation Study

Authors:
Shim, Y; Kim, HJ

Author Full Names:
Shim, Youngseon; Kim, Hyung J.

Source:
ACS NANO 4 (4): 2345-2355 APR 2010

Language:
English

Document Type:
Article

Author Keywords:
supercapacitor; electric double layer; ionic liquid; imidazolium ion; carbon nanotube; micropore; molecular dynamics simulations; specific capacitance

KeyWords Plus:
ELECTRICAL DOUBLE-LAYER; MOLECULAR-DYNAMICS SIMULATION; TEMPERATURE MOLTEN-SALTS; ELECTROCHEMICAL CAPACITORS; DIFFERENTIAL CAPACITANCE; SOLVATION DYNAMICS; ELECTROLYTES; CONDUCTIVITY; RELAXATION; INTERFACES

Abstract:
Supercapacitors composed of carbon nanotube (CNT) micropores in the room-temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) are studied via molecular dynamics (MD) computer simulations. It is found that the distribution of RTIL ions inside the micropore varies significantly with the pore size. Internal solvation of small (6,6) and (7,7) CNTs with an electrified interior wall is effected almost exclusively via counterions. Surprisingly, these counterions, even though they all have the same charge, lead to a charge density characterized by multiple layers with alternating signs. This intriguing feature is attributed to the extended nature of RTIL ion charge distributions, which result in charge separation through preferential orientation inside the electrified nanotubes. In the case of larger (10,10) and (15,15) CNTs, counterions and co-ions develop multilayer solvation structures. The specific capacitance normalized to the pore surface ar!
ea is found to increase as the CNT diameter decreases from (15,15) to (7,7). As the pore site further reduces from (6,6)10 (5,5), however, the specific capacitance diminishes rapidly. These findings are in excellent agreement with recent experiments with carbon-based materials. A theoretical model based on multiple charge layers is proposed to understand both the MD and experimental results.

Reprint Address:
Kim, HJ, Carnegie Mellon Univ, Dept Chem, 4400 5th Ave, Pittsburgh, PA 15213 USA.

Research Institution addresses:
[Shim, Youngseon; Kim, Hyung J.] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA; [Shim, Youngseon] Seoul Natl Univ, Dept Chem, Seoul 151747, South Korea; [Kim, Hyung J.] Korea Inst Adv Study, Sch Computat Sci, Seoul 130722, South Korea

E-mail Address:
hjkim@cmu.edu

Cited References:
ALAM MT, 2008, J PHYS CHEM C, V112, P16600, DOI 10.1021/jp804620m.
ANNAPUREDDY HVR, 2009, J PHYS CHEM B, V113, P12005, DOI 10.1021/jp905144n.
BONHOTE P, 1996, INORG CHEM, V35, P1168.
BURSULAYA BD, 1998, J CHEM PHYS, V109, P4911.
CANONGIALOPES JN, 2004, J PHYS CHEM B, V108, P2038.
CHMIOLA J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science.1132195.
CONWAY BE, 1997, J POWER SOURCES, V66, P1.
CONWAY BE, 1999, ELECTROCHEMICAL SUPE.
DAGUENET C, 2006, J PHYS CHEM B, V110, P12682, DOI 10.1021/jp0604903.
DEANDRADE J, 2002, J PHYS CHEM B, V106, P13344, DOI 10.1021/jp0216629.
FEDOROV MV, 2008, J PHYS CHEM B, V112, P11868, DOI 10.1021/jp803440q.
FORESTER TR, 2001, DL POLY USER MANUAL.
FRACKOWIAK E, 2005, APPL PHYS LETT, V86, UNSP 164194.
FRACKOWIAK E, 2007, PHYS CHEM CHEM PHYS, V9, P1774, DOI 10.1039/b618139m.
HALDER M, 2006, J PHYS CHEM A, V110, P8623, DOI 10.1021/jp0629361.
HEYES DM, 1981, J CHEM PHYS, V74, P1924.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HUANG JS, 2008, ANGEW CHEM INT EDIT, V47, P520, DOI 10.1002/anie.200703864.
HUANG JS, 2008, CHEM-EUR J, V14, P6614, DOI 10.1002/chem.200800639.
HUMMER G, 2001, NATURE, V414, P188.
JEON J, 2003, J CHEM PHYS, V119, P8626, DOI 10.1063/1.1605377.
KOTZ R, 2000, ELECTROCHIM ACTA, V45, P2483.
KUMAR A, 2008, J SOLUTION CHEM, V37, P203, DOI 10.1007/s10953-007-9231-5.
LARGEOT C, 2008, J AM CHEM SOC, V130, P2730, DOI 10.1021/ja7106178.
LEWANDOWSKI A, 2004, J PHYS CHEM SOLIDS, V65, P281, DOI 10.1016/j.jpcs.2003.09.009.
LOCKETT V, 2008, J PHYS CHEM C, V112, P7486, DOI 10.1021/jp7100732.
LOPES JNC, 2004, J PHYS CHEM B, V108, P11250.
LYNDENBELL RM, 2007, J PHYS CHEM B, V111, P10800, DOI 10.1021/jp074298s.
NANJUNDIAH C, 1997, J ELECTROCHEM SOC, V144, P3392.
NOSE S, 1984, J CHEM PHYS, V81, P511.
ODOM TW, 1998, NATURE, V391, P62.
PANDOLFO AG, 2006, J POWER SOURCES, V157, P11, DOI 10.1016/j.jpowsour.2006.02.065.
PARSONS R, 1990, CHEM REV, V90, P813.
PINILLA C, 2007, J PHYS CHEM B, V111, P4877, DOI 10.1021/jp067184+.
RAYMUNDOPINERO E, 2006, CARBON, V44, P2498, DOI 10.1016/j.carbon.2006.05.022.
SAITO R, 1998, PHYS PROPERTIES CARB.
SCHMICKLER W, 1996, CHEM REV, V96, P3177.
SHIM Y, 2007, J PHYS CHEM B, V111, P4510, DOI 10.1021/jp0703859.
SHIM Y, 2008, J PHYS CHEM B, V112, P11028, DOI 10.1021/jp802595r.
SHIM Y, 2009, ACS NANO, V3, P1693, DOI 10.1021/nn900195b.
SHIM Y, 2009, J PHYS CHEM B, V113, P12964, DOI 10.1021/jp9065407.
SIMON P, 2008, NAT MATER, V7, P845, DOI 10.1038/nmat2297.
STOLLER MD, 2008, NANO LETT, V8, P3498, DOI 10.1021/nl802558y.
STOPPA A, 2008, J PHYS CHEM B, V112, P4854, DOI 10.1021/jp800852z.
UE M, 2003, J ELECTROCHEM SOC, V150, A499, DOI 10.1149/1.1559069.
UE M, 2005, ELECTROCHEMICAL ASPE, CH17.
WAGNER M, 2004, PHYS CHEM CHEM PHYS, V6, P4421, DOI 10.1039/b404933k.
WEINGARTNER H, 2001, J PHYS CHEM A, V105, P8646.
WISHART JF, 2009, ENERG ENVIRON SCI, V2, P956, DOI 10.1039/b906273d.
YAN TY, 2004, J PHYS CHEM B, V108, P11877, DOI 10.1021/jp047619y.
YANG CM, 2007, J AM CHEM SOC, V129, P20, DOI 10.1021/ja065501k.

Cited Reference Count:
51

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn901916m

IDS Number:
586ZX

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000275084700037
*Order Full Text [ ]

Title:
Hydrophobic Peptide Channels and Encapsulated Water Wires

Authors:
Raghavender, US; Kantharaju; Aravinda, S; Shamala, N; Balaram, P

Author Full Names:
Raghavender, Upadhyayula S.; Kantharaju; Aravinda, Subrayashastry; Shamala, Narayanaswamy; Balaram, Padmanabhan

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (3): 1075-1086 JAN 27 2010

Language:
English

Document Type:
Article

KeyWords Plus:
ASSEMBLING ORGANIC NANOTUBES; TRANSMEMBRANE ION CHANNELS; M2 PROTON CHANNEL; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURES; RHODOBACTER-SPHAEROIDES; BIOMOLECULAR SYSTEMS; CARBONIC-ANHYDRASE; NAK CHANNEL; CHAIN

Abstract:
Peptide nanotubes with filled and empty pores and close-packed structures are formed in closely related pentapeptides. Enantiomorphic sequences, Boc-(D)Pro-Aib-Xxx-Aib-Val-OMe (Xxx = Leu, 1; Val, 2; Ala, 3; Phe, 4) and Boc-Pro-Aib-(D)Xxx-Aib-(D)Val-OMe ((XXX)-X-D = (D)Leu, 5; (D)Val, 6; (D)Ala, 7; (D)Phe, 8), yield molecular structures with a very similar backbone conformation but varied packing patterns in crystals. Peptides 1, 2, 5, and 6 show tubular structures with the molecules self-assembling along the crystallographic six-fold axis (c-axis) and revealing a honeycomb arrangement laterally (ab plane). Two forms of entrapped water wires have been characterized in 2: 2a with d(O center dot center dot center dot O) = 2.6 angstrom and 2b with d(O center dot center dot center dot O) = 3.5 angstrom. The latter is observed in 6 (6a) also. A polymorphic form of 6 (6b), grown from a solution of methanol-water, was observed to crystallize in a monoclinic system as a close-packed !
structure. Single-file water wire arrangements encapsulated inside hydrophobic channels formed by peptide nanotubes could be established by modeling the published structures in the cases of a cyclic peptide and a dipeptide. In all the entrapped water wires, each water molecule is involved in a hydrogen bond with a previous and succeeding water molecule. The O-H group of the water not involved in any hydrogen bond does not seem to be involved in an energetically significant interaction with the nanotube interior, a general feature of the one-dimensional water wires encapsulated in hydrophobic environements. Water wires in hydrophobic channels are contrasted with the single-file arrangements in amphipathic channels formed by aquaporins.

Reprint Address:
Shamala, N, Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India.

Research Institution addresses:
[Raghavender, Upadhyayula S.; Aravinda, Subrayashastry; Shamala, Narayanaswamy] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India; [Kantharaju; Balaram, Padmanabhan] Indian Inst Sci, Mol Biophys Unit, Bangalore 560012, Karnataka, India

E-mail Address:
shamala@physics.iisc.ernet.in; pb@mbu.iisc.ernet.in

Cited References:
AGMON N, 1995, CHEM PHYS LETT, V244, P456.
ALAM A, 2009, NAT STRUCT MOL BIOL, V16, P30, DOI 10.1038/nsmb.1531.
ALAM A, 2009, NAT STRUCT MOL BIOL, V16, P35, DOI 10.1038/nsmb.1537.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P380.
ARAVINDA S, 2003, J AM CHEM SOC, V125, P5308, DOI 10.1021/ja0341283.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BARBOUR LJ, 2000, CHEM COMMUN, P859.
BEREZHKOVSKII A, 2002, PHYS REV LETT, UNSP 89064503.
BERNSTEIN FC, 1977, J MOL BIOL, V112, P535.
BLANTON WB, 1999, J AM CHEM SOC, V121, P3551.
BONG DT, 2001, ANGEW CHEM INT EDIT, V40, P2163.
BONG DT, 2001, ANGEW CHEM INT EDIT, V40, P988.
BONIFAZI D, 2009, CHEM-EUR J, V15, P7004, DOI 10.1002/chem.200900900.
BREWER ML, 2001, BIOPHYS J, V80, P1691.
BURYKIN A, 2003, BIOPHYS J, V85, P3696.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CHAKRABARTI N, 2004, STRUCTURE, V12, P65, DOI 10.1016/j.str.2003.11.017.
CHATTERJEE B, 2008, CHEM-EUR J, V14, P6192, DOI 10.1002/chem.200702029.
CLARK TD, 1998, J AM CHEM SOC, V120, P651.
CUI Q, 2003, J PHYS CHEM B, V107, P1071, DOI 10.1021/jp021931v.
CUSTELCEAN R, 2000, ANGEW CHEM INT EDIT, V39, P3094.
DAY TJF, 2000, J AM CHEM SOC, V122, P12027.
DELANO WL, 2002, PYMOL MOL GRAPHICS S.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
DOEDENS RJ, 2002, CHEM COMMUN, P62.
ENGEL A, 2002, J PHYSL, V542, P3.
ENGELS M, 1995, J AM CHEM SOC, V117, P9151.
ERMLER U, 1994, STRUCTURE, V2, P925.
FERNANDEZLOPEZ S, 2001, NATURE, V412, P452.
FUJIYOSHI Y, 2002, CURR OPIN STRUC BIOL, V12, P509.
GHADIRI MR, 1993, NATURE, V366, P324.
GHADIRI MR, 1994, NATURE, V369, P301.
GHADIRI MR, 1995, ANGEW CHEM INT EDIT, V34, P93.
GHOSH SK, 2003, INORG CHEM, V42, P8250, DOI 10.1021/ic034976z.
GORBITZ CH, 1996, ACTA CRYSTALLOGR C 7, V52, P1764.
GORBITZ CH, 2001, CHEM-EUR J, V7, P5153.
GORBITZ CH, 2003, NEW J CHEM, V27, P1789, DOI 10.1039/b305984g.
GORBITZ CH, 2007, CHEM-EUR J, V13, P1022, DOI 10.1002/chem.200601427.
GORBITZ CH, 2008, J PEPT SCI, V14, P210, DOI 10.1002/psc.985.
HO JD, 2009, P NATL ACAD SCI USA, V106, P7437, DOI 10.1073/pnas.0902725106.
HORNE WS, 2003, J AM CHEM SOC, V125, P9372, DOI 10.1021/ja034358h.
HUMMER G, 2001, NATURE, V414, P188.
KARLE IL, 1975, ACTA CRYSTALLOGR B B, V31, P555.
KHALILIARAGHI F, 2009, CURR OPIN STRUC BIOL, V19, P128, DOI 10.1016/j.sbi.2009.02.011.
KHAZANOVICH N, 1994, J AM CHEM SOC, V116, P6011.
KHURANA E, 2009, P NATL ACAD SCI USA, V106, P1069, DOI 10.1073/pnas.0811720106.
KITAGAWA S, 2004, ANGEW CHEM INT EDIT, V43, P2334, DOI 10.1002/anie.200300610.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
LAMOUREUX G, 2007, BIOPHYS J, V92, L82, DOI 10.1529/biophysj.106.102756.
LU DS, 1998, J AM CHEM SOC, V120, P4006.
LUECKE H, 1999, J MOL BIOL, V291, P899.
MA BQ, 2004, ANGEW CHEM INT EDIT, V43, P1374.
MASCAL M, 2006, ANGEW CHEM INT EDIT, V45, P32, DOI 10.1002/anie.200501839.
MIYAZAWA T, 1961, J POLYM SCI, V55, P215.
MOORTHY JN, 2002, ANGEW CHEM INT EDIT, V41, P3417.
NIELSEN S, 2002, PHYSIOL REV, V82, P205.
PAL S, 2003, ANGEW CHEM INT EDIT, V42, P1741, DOI 10.1002/anie.200250444.
PARTHASARATHI R, 2009, J PHYS CHEM A, V113, P3744, DOI 10.1021/jp806793e.
POMES R, 1996, BIOPHYS J, V71, P19.
POMES R, 2002, BIOPHYS J, V82, P2304.
RAGHAVENDER US, 2009, J AM CHEM SOC, V131, P15130, DOI 10.1021/ja9038906.
SAHA I, 2008, BIOPOLYMERS, V90, P537, DOI 10.1002/bip.20982.
SANCHEZOUESADA J, 2002, J AM CHEM SOC, V124, P10004, DOI 10.1021/ja025983+.
SCANLON S, 2008, NANO TODAY, V3, P22.
SEIBOLD SA, 2005, BIOCHEMISTRY-US, V44, P10475, DOI 10.1021/bi0502902.
STOUFFER AL, 2008, NATURE, V451, P596, DOI 10.1038/nature06528.
STOYANOV ES, 2004, J AM CHEM SOC, V131, P17540.
SWANSON JMJ, 2007, J PHYS CHEM B, V111, P4300, DOI 10.1021/jp070104x.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TAKHASHI R, 2007, J PHYS CHEM B, V111, P9093.
VOTH GA, 2006, ACCOUNTS CHEM RES, V39, P143, DOI 10.1021/ar0402098.
YANG ZL, 2009, CHEM COMMUN, P2270, DOI 10.1039/b820539f.
YI MG, 2009, P NATL ACAD SCI USA, V106, P13311, DOI 10.1073/pnas.0906553106.

Cited Reference Count:
74

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja9083978

IDS Number:
562VZ

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: