Friday, August 6, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280068700005
*Order Full Text [ ]

Title:
Giant Electrorheological Effect: A Microscopic Mechanism

Authors:
Chen, SY; Huang, XX; Van der Vegt, NFA; Wen, WJ; Sheng, P

Author Full Names:
Chen, Shuyu; Huang, Xianxiang; van der Vegt, Nico F. A.; Wen, Weijia; Sheng, Ping

Source:
PHYSICAL REVIEW LETTERS 105 (4): Art. No. 046001 JUL 19 2010

Language:
English

Document Type:
Article

KeyWords Plus:
INDUCED TUNNELING CONDUCTION; MOLECULAR-DYNAMICS; FLUIDS; WATER; UREA; DENATURATION; SIMULATION

Abstract:
Electrorheological fluids constitute a type of colloids that can vary their rheological characteristics upon the application of an electric field. The recently discovered giant electrorheological (GER) effect breaks the upper bound of the traditional ER effect, but a microscopic explanation is still lacking. By using molecular dynamics to simulate the urea-silicone oil mixture trapped in a nanocontact between two polarizable particles, we demonstrate that the electric field can induce the formation of aligned (urea) dipolar filaments that bridge the two boundaries of the nanoscale confinement. This phenomenon is explainable on the basis of a 3D to 1D crossover in urea molecules' microgeometry, realized through the confinement effect provided by the oil chains. The resulting electrical energy density yields an excellent account of the observed GER yield stress variation as a function of the electric field.

Reprint Address:
Sheng, P, Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China.

Research Institution addresses:
[Chen, Shuyu; Huang, Xianxiang; Wen, Weijia; Sheng, Ping] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China; [Chen, Shuyu; Huang, Xianxiang; Wen, Weijia; Sheng, Ping] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Kowloon, Hong Kong, Peoples R China; [van der Vegt, Nico F. A.] Tech Univ Darmstadt, Ctr Smart Interfaces, D-64287 Darmstadt, Germany

E-mail Address:
sheng@ust.hk

Cited References:
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
GONG XQ, 2008, NANOTECHNOLOGY, V19, P65602, ARTN 165602.
HALSEY TC, 1992, SCIENCE, V258, P761.
HUA L, 2008, P NATL ACAD SCI USA, V105, P16928, DOI 10.1073/pnas.0808427105.
HUANG XX, 2006, SOLID STATE COMMUN, V139, P581, DOI 10.1016/j.ssc.2006.04.042.
HUMMER G, 2001, NATURE, V414, P188.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
MA HR, 1996, PHYS REV LETT, V77, P2499.
MA HR, 2003, ADV PHYS, V52, P343, DOI 10.1080/0001873021000059987.
RHINE WE, 1992, CHEM MATER, V4, P1208.
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327.
SHEN C, 2006, J APPL PHYS, V99, ARTN 106104.
SHEN R, 2009, ADV MATER, V21, P4631, DOI 10.1002/adma.200901062.
SHENG P, 1978, PHYS REV LETT, V40, P1197.
SHENG P, 1980, PHYS REV B, V21, P2180.
SOK RM, 1992, J CHEM PHYS, V96, P4699.
TAM WY, 1997, PHYS REV LETT, V78, P2987.
TAN P, 2009, J PHYS CHEM B, V113, P9092, DOI 10.1021/jp8115116.
TAO R, 1991, PHYS REV LETT, V67, P398.
WALLQVIST A, 1998, J AM CHEM SOC, V120, P427.
WANG R, 2005, J AM CHEM SOC, V127, P7166.
WEAST RC, 1981, HDB CHEM PHYS.
WEERASINGHE S, 2003, J PHYS CHEM B, V107, P3891, DOI 10.1021/jp022049s.
WEN WJ, 2003, NAT MATER, V2, P727, DOI 10.1038/nmat993.
WEN WJ, 2004, APPL PHYS LETT, V85, P299, DOI 10.1063/1.1772859.
WEN WJ, 2008, SOFT MATTER, V4, P200, DOI 10.1039/b710948m.
WHITTLE M, 1992, NATURE, V358, P373.
ZHANG JW, 2008, PHYS REV LETT, V101, ARTN 194503.

Cited Reference Count:
30

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Multidisciplinary

ISSN:
0031-9007

DOI:
10.1103/PhysRevLett.105.046001

IDS Number:
627UO

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280147200019
*Order Full Text [ ]

Title:
The effects of the hydrophobic environment on proton mobility in perfluorosulfonic acid systems: an ab initio molecular dynamics study

Authors:
Habenicht, BF; Paddison, SJ; Tuckerman, ME

Author Full Names:
Habenicht, Bradley F.; Paddison, Stephen J.; Tuckerman, Mark E.

Source:
JOURNAL OF MATERIALS CHEMISTRY 20 (30): 6342-6351 2010

Language:
English

Document Type:
Article

KeyWords Plus:
TRANSMISSION INFRARED-SPECTROSCOPY; POLYMER ELECTROLYTE MEMBRANES; FUEL-CELL APPLICATIONS; LIQUID WATER-SURFACE; VIBRATIONAL SPECTROSCOPY; HYDRATED MORPHOLOGIES; EXCHANGE MEMBRANES; NAFION MEMBRANE; TRANSPORT; SIMULATION

Abstract:
Model systems of perfluorosulfonic acid (PFSA) polymers exhibiting regular shaped and idealized channel morphologies were constructed by functionalizing single walled carbon nanotubes (CNTs) with -CF2SO3H groups and adding from 1 to 3H(2)O/SO3H to investigate structural and chemical factors affecting proton dissociation and transport. No a priori assumptions about either the dissociation or hydration of the protons were assumed and extensive ab initio molecular dynamics (AIMD) simulations were performed and subject to analysis. The importance of the hydrophobic environment was assessed by comparing the hydration of the protons both with and without fluorine atoms attached to the CNT walls. The AIMD trajectories showed that dissociation of the acidic proton increased with increasing density of sulfonic acid groups; however, greater densities also brought about trapping of the dissociated proton. The fluorine atoms accepted hydrogen bonds from the water molecules, stabilized h!
ydrogen bonding, and enhanced proton dissociation. The CNT systems without fluorination of the walls exhibited a propensity for the formation of Zundel cations (H5O2+), while the fluorinated systems favoured hydrated structures involving hydronium ions or hydrated H3O+ species depending on the amount of water in the system.

Reprint Address:
Paddison, SJ, Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37563 USA.

Research Institution addresses:
[Habenicht, Bradley F.; Paddison, Stephen J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37563 USA; [Tuckerman, Mark E.] NYU, Courant Inst Math Sci, Dept Chem, New York, NY 10003 USA

E-mail Address:
spaddison@utk.edu

Cited References:
AGMON N, 1995, CHEM PHYS LETT, V244, P456.
BASNAYAKE R, 2006, J PHYS CHEM B, V110, P23938, DOI 10.1021/jp064121i.
BERKELBACH TC, 2009, PHYS REV LETT, V103, ARTN 238302.
BLOCHL PE, 1994, PHYS REV B, V50, P17979.
BONN M, 2009, J AM CHEM SOC, V131, P17070, DOI 10.1021/ja9083094.
BUKOWSKI R, 2007, SCIENCE, V315, P1249, DOI 10.1126/science.1136371.
CHOE YK, 2007, J CHEM PHYS, V126, P9.
CHOE YK, 2009, PHYS CHEM CHEM PHYS, V11, P3892, DOI 10.1039/b819535h.
DEARAUJO CC, 2009, PHYS CHEM CHEM PHYS, V11, P3305, DOI 10.1039/b822069g.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
DEVANATHAN R, 2007, J PHYS CHEM B, V111, P13006, DOI 10.1021/jp0761057.
DEVANATHAN R, 2008, ENERG ENVIRON SCI, V1, P101, DOI 10.1039/b808149m.
DUNITZ JD, 1997, CHEM-EUR J, V3, P98.
EIKERLING M, 2003, CHEM PHYS LETT, V368, P108.
ELLIOTT JA, 2007, PHYS CHEM CHEM PHYS, V9, P2602, DOI 10.1039/b701234a.
GRANOVSKII M, 2006, INT J HYDROGEN ENERG, V31, P337, DOI 10.1016/j.ijhydene.2005.10.004.
HAMROCK SJ, 2006, POLYM REV, V46, P219, DOI 10.1080/15583720600796474.
HAYES RL, 2009, J PHYS CHEM B, V113, P16574, DOI 10.1021/jp907853p.
HUMMER G, 2001, NATURE, V414, P188.
JAMROZ D, 2005, J PHYS CHEM B, V109, P19664, DOI 10.1021/jp040730j.
JANG SS, 2004, J PHYS CHEM B, V108, P3149, DOI 10.1021/jp036842c.
KORZENIEWSKI C, 2006, APPL SPECTROSC, V60, P599.
KRESSE G, 1993, PHYS REV B, V47, P558.
KRESSE G, 1996, PHYS REV B, V54, P11169.
KRESSE G, 1999, PHYS REV B, V59, P1758.
KREUER KD, 1997, SOLID STATE IONICS, V97, P1.
KREUER KD, 2000, SOLID STATE IONICS, V149, P136.
KREUER KD, 2001, J MEMBRANE SCI, V185, P29.
KREUER KD, 2004, CHEM REV, V104, P4637, DOI 10.1021/cr020715f.
LAAGE D, 2006, SCIENCE, V311, P832, DOI 10.1126/science.1122154.
LAPID H, 2005, J CHEM PHYS, V122, ARTN 014506.
LAPORTA M, 1999, PHYS CHEM CHEM PHYS, V1, P4619.
LEE HS, 2006, J CHEM PHYS, V125, ARTN 154507.
LI QF, 2003, CHEM MATER, V15, P4896, DOI 10.1021/cm0310519.
MARX D, 1996, J CHEM PHYS, V104, P4077.
MARX D, 1999, NATURE, V397, P601.
MIRANDA PB, 1999, J PHYS CHEM B, V103, P3292.
MORRONE JA, 2006, J PHYS CHEM B, V110, P3712, DOI 10.1021/jp0554036.
OGDEN JM, 1999, ANNU REV ENERG ENV, V24, P227.
PADDISON SJ, 1998, J ELECTROANAL CHEM, V459, P91.
PADDISON SJ, 2000, J NEW MAT ELECTR SYS, V3, P291.
PADDISON SJ, 2003, ANNU REV MATER RES, V33, P289, DOI 10.1146/annurev.matsei.33.022702.155102.
PADDISON SJ, 2005, J PHYS CHEM A, V109, P7583, DOI 10.1021/jp0524734.
PADDISON SJ, 2006, PHYS CHEM CHEM PHYS, V8, P2193, DOI 10.1039/b602188c.
PADDISON SJ, 2009, TOP APPL PHYS, V113, P385, DOI 10.1007/978-0-387-78691-9_12.
PAL SK, 2002, J PHYS CHEM B, V106, P12376, DOI 10.1021/jp0213506.
PERDEW JP, 1996, PHYS REV LETT, V77, P3865.
PETERSEN MK, 2006, J PHYS CHEM B, V110, P18594, DOI 10.1021/jp062719k.
PETERSEN PB, 2005, J PHYS CHEM B, V109, P7976, DOI 10.1021/jp044479j.
PETERSEN PB, 2008, CHEM PHYS LETT, V458, P255, DOI 10.1016/j.cplett.2008.04.010.
RADUGE C, 1997, CHEM PHYS LETT, V274, P140.
RUBATAT L, 2002, MACROMOLECULES, V35, P4050.
SAITO R, 1998, PHYS PROPERTIES CARB.
SCHLAPBACH L, 2001, NATURE, V414, P353.
SCHMIDTROHR K, 2008, NAT MATER, V7, P75, DOI 10.1038/nmat2074.
TUCKERMAN M, 1995, J CHEM PHYS, V103, P150.
TUCKERMAN M, 1995, J PHYS CHEM-US, V99, P5749.
TUCKERMAN ME, 1996, J CHEM PHYS, V104, P5579.
URATA S, 2005, J PHYS CHEM B, V109, P17274, DOI 10.1021/jp052647h.
VONGROTTHUSS CJD, 1806, ANN CHIM, V58, P54.
WU DS, 2008, ENERG ENVIRON SCI, V1, P284, DOI 10.1039/b809600g.
WU DS, 2009, MACROMOLECULES, V42, P3358, DOI 10.1021/ma900016w.

Cited Reference Count:
62

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0959-9428

DOI:
10.1039/c0jm00253d

IDS Number:
628UE

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280033500010
*Order Full Text [ ]

Title:
Coarse-grained molecular dynamics of tetrameric transmembrane peptide bundles within a lipid bilayer

Authors:
Nguyen, THT; Rao, NZ; Schroeder, WM; Moore, PB

Author Full Names:
Nguyen, Thuy Hien T.; Rao, Niny Z.; Schroeder, William M.; Moore, Preston B.

Source:
CHEMISTRY AND PHYSICS OF LIPIDS 163 (6): 530-537 JUN 2010

Language:
English

Document Type:
Article

Author Keywords:
Ion-channel; LS2 peptide; All-atom; Tetramer bundle; WALP peptide; DMPC bilayer

KeyWords Plus:
SYNTHETIC ION-CHANNEL; INFLUENZA-A VIRUS; MEMBRANE-PROTEINS; COMPUTATIONAL DESIGN; M2 PROTEIN; SIMULATION; MODEL; WATER; DOMAIN; FORMS

Abstract:
The conformations of model transmembrane peptides are studied to understand the structural and dynamical aspects of tetrameric bundles using a series of coarse grain (CG) molecular dynamics (MD) simulations since membrane proteins play a crucial role in cell function. In this work, two different amphipathic models have been constructed using similar hydrophobic/hydrophilic characteristics with two structurally distinct morphologies to evaluate the effect of roughness and hydrophilic topology on the structure of tetrameric bundles, one class that forms an ion-channel and one class that does not. Free energy calculations of typical amphipathic peptide topologies show that using a relatively smooth surface morphology allows for a stable conformation of the tetramer bundle in a diamond formation. However, the model with side chains attached to the core in order to roughen the surface has a stable square tetramer bundle which is consistent with experimental data and all-atom (AA)!
MD simulations. Comparisons of the CG simulations with AA MD simulations are in reasonable agreement with the formation of tetrameric homo-oligomers, partitioning within the lipid bilayer and tilt angle with respect to the bilayer normal. We concluded that a square or diamond shape tetrameric homo-oligomers could be stabilized by rational design of the peptide morphology and topology of the surface, thus allowing us to tune the permeability of the bundle or channel. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Reprint Address:
Moore, PB, Univ Sci Philadelphia, Dept Chem & Biochem, 600 S 43rd St, Philadelphia, PA 19104 USA.

Research Institution addresses:
[Nguyen, Thuy Hien T.; Schroeder, William M.; Moore, Preston B.] Univ Sci Philadelphia, Dept Chem & Biochem, Philadelphia, PA 19104 USA; [Nguyen, Thuy Hien T.; Schroeder, William M.; Moore, Preston B.] Univ Sci Philadelphia, W Ctr Computat Chem & Drug Design, Philadelphia, PA 19104 USA; [Rao, Niny Z.] Philadelphia Univ, Philadelphia, PA 19144 USA

E-mail Address:
p.moore@usp.edu

Cited References:
BOND PJ, 2004, MOL MEMBR BIOL, V21, P151, DOI 10.1080/0968760410001699169.
BOND PJ, 2006, J AM CHEM SOC, V128, P2697, DOI 10.1021/ja0569104.
BOND PJ, 2007, J STRUCT BIOL, V157, P593, DOI 10.1016/j.jsb.2006.10.004.
CHANG R, 2005, J CHEM PHYS, V122, ARTN 244716.
DEGRADO WF, 1989, SCIENCE, V243, P622.
DEPLANQUE MRR, 2003, BIOCHEMISTRY-US, V42, P5341, DOI 10.1021/bi027000r.
DEVRIES AH, 2004, J PHYS CHEM B, V108, P2454, DOI 10.1021/jp0366926.
DUFF KC, 1992, VIROLOGY, V190, P485.
ENSING B, 2002, J PHYS CHEM A, V106, P7902, DOI 10.1021/jp0258331.
ENSING B, 2006, ACCOUNTS CHEM RES, V39, P73, DOI 10.1021/ar040198i.
ESTES DJ, 2008, ANAL CHEM, V80, P3728, DOI 10.1021/ac800164v.
EVANS DJ, 1985, J CHEM PHYS, V83, P4069.
FERNANDEZLOPEZ S, 2001, NATURE, V412, P452.
HORIA I, 2002, LANGMUIR, V18, P1340.
HOWARD KP, 2002, P NATL ACAD SCI USA, V99, P8568, DOI 10.1073/pnas.132266099.
HUMMER G, 2001, NATURE, V414, P188.
HUSSLEIN T, 1998, FARADAY DISCUS, P201.
JIANG YX, 2002, NATURE, V417, P523.
KILLIAN JA, 2003, FEBS LETT, V555, P134, DOI 10.1016/S0014-5793(03)01154-2.
KLEIN ML, 2008, SCIENCE, V321, P798, DOI 10.1126/science.1157834.
LAIO A, 2002, P NATL ACAD SCI USA, V99, P12562, DOI 10.1073/pnas.202427399.
LEAR JD, 2001, BIOCHEM SOC T 4, V29, P559.
LI RH, 2003, SCIENCE, V300, P795.
LOPEZ CF, 2002, BIOPHYS J, V83, P1259.
LOPEZ CF, 2002, COMPUT PHYS COMMUN, V147, P1.
LOPEZ CF, 2002, J PHYS-CONDENS MAT, V14, P9431.
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI 10.1073/pnas.0400352101.
LOPEZ CF, 2005, BIOPHYS J, V88, P3083, DOI 10.1529/biophysj.104.053769.
MAKOWSKI M, 2007, J PHYS CHEM B, V111, P2925, DOI 10.1021/jp065918c.
MARASSI FM, 1998, CURR OPIN STRUC BIOL, V8, P640.
MARRINK SJ, 2003, J AM CHEM SOC, V125, P15233, DOI 10.1021/ja0352092.
MOORE PB, 1998, FEBS LETT, V431, P143.
MOORE PB, 2005, CM3D.
NANIAS M, 2006, J CHEM THEORY COMPUT, V2, P513, DOI 10.1021/ct050253o.
NEWNS DM, 2000, PARALLEL COMPUT, V26, P965.
NICHOLS CG, 2009, ION CHANNELS.
NIELSEN SO, 2003, J PHYS CHEM B, V107, P13911, DOI 10.1021/jp035262c.
NIELSEN SO, 2004, BIOPHYS J, V87, P2107, DOI 10.1529/biophysj.104.040311.
NIELSEN SO, 2005, BIOPHYS J, V88, P3822, DOI 10.1529/biophysj.104.057703.
OIKI S, 1988, P NATL ACAD SCI USA, V85, P2393.
OIKI S, 1988, P NATL ACAD SCI USA, V85, P8703.
PALCZEWSKI K, 2000, SCIENCE, V289, P739.
ROSS RB, 2008, MULTISCALE SIMULATIO, V73.
SANSOM MSP, 2000, TRENDS BIOCHEM SCI, V25, P368.
SHELLEY JC, 2001, J PHYS CHEM B, V105, P9785.
SLOVIC AM, 2004, P NATL ACAD SCI USA, V101, P1828, DOI 10.1073/pnas.0306417101.
SMEIJERS AF, 2006, J PHYS CHEM B, V110, P13614, DOI 10.1021/jp062012y.
STEVENS RC, 2000, CURR OPIN STRUC BIOL, V10, P558.
SUGRUE RJ, 1991, VIROLOGY, V180, P617.
TAKAHASHI T, 2002, J CHEM PHYS, V116, P8232.
THOGERSEN L, 2008, BIOPHYS J, V95, P4337, DOI 10.1529/biophysj.108.133330.
TIELEMAN DP, 2001, Q REV BIOPHYS, V34, P473.
TORRES J, 2001, BIOPHYS J, V81, P2681.
UNGER VM, 2001, CURR OPIN STRUC BIOL, V11, P548.
WANG C, 1994, VIROLOGY, V205, P133.
YANG L, 2001, BIOPHYS J, V81, P1475.
YIN H, 2007, SCIENCE, V315, P1817, DOI 10.1126/science.1136782.
ZHONG Q, 1998, FEBS LETT, V427, P267.
ZHONG QF, 1998, ABSTR PAP AM CHEM 1, V215, U565.
ZHONG QF, 1998, BIOPHYS J, V74, P3.
ZHONG QF, 1998, FEBS LETT, V434, P265.

Cited Reference Count:
61

Times Cited:
0

Publisher:
ELSEVIER IRELAND LTD; ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND

Subject Category:
Biochemistry & Molecular Biology; Biophysics

ISSN:
0009-3084

DOI:
10.1016/j.chemphyslip.2010.04.007

IDS Number:
627IU

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280142700002
*Order Full Text [ ]

Title:
A REVIEW ON CARBON NANOTUBES IN AN ENVIRONMENTAL PROTECTION AND GREEN ENGINEERING PERSPECTIVE

Authors:
Ong, YT; Ahmad, AL; Zein, SHS; Tan, SH

Author Full Names:
Ong, Yit Thai; Ahmad, Abdul Latif; Zein, Sharif Hussein Sharif; Tan, Soon Huat

Source:
BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 27 (2): 227-242 APR-JUN 2010

Language:
English

Document Type:
Review

Author Keywords:
Carbon nanotubes; Environment; Waste water treatment; Air pollution monitoring; Biotechnologies; Renewable energy; Supercapacitors

KeyWords Plus:
MICROBIAL FUEL-CELLS; HETEROJUNCTION SOLAR-CELLS; HYDROGEN STORAGE CAPACITY; CHEMICAL-VAPOR-DEPOSITION; GLUCOSE/O-2 BIOFUEL CELL; SOLID-PHASE EXTRACTION; LARGE-SCALE PRODUCTION; GAS SENSOR; AQUEOUS-SOLUTION; ROOM-TEMPERATURE

Abstract:
Recent developments in nanotechnologies have helped to benchmark carbon nanotubes (CNTs) as one of the most studied nanomaterials. By taking advantages of CNTs extraordinary physical, chemical and electronic properties, a wide variety of applications has been proposed in various engineering fields. In this short review, the contribution of CNTs is addressed in terms of sustainable environment and green technologies perspective, such as waste water treatment, air pollution monitoring, biotechnologies, renewable energy technologies, supercapacitors and green nanocomposites. Consideration of CNTs for large scale application from the aspect of cost and potential hazards are also discussed. Based on the literature studied, CNTs pose a great potential as a promising material for application in various environmental fields.

Reprint Address:
Tan, SH, Univ Sains Malaysia, Sch Chem Engn, Engn Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia.

Research Institution addresses:
[Ong, Yit Thai; Ahmad, Abdul Latif; Zein, Sharif Hussein Sharif; Tan, Soon Huat] Univ Sains Malaysia, Sch Chem Engn, Nibong Tebal 14300, Pulau Pinang, Malaysia

E-mail Address:
chshtan@eng.usm.my

Cited References:
2007, CBC NEWS TORONTO.
*US DOE, 2007, MULT RES DEV DEM PLA.
*US DOE, 2007, USDOEEIA0484.
ABERLE AG, 2000, PROG PHOTOVOLTAICS, V8, P473.
ABRAHAM JK, 2004, SMART MATER STRUCT, V13, P1045, DOI 10.1088/0964-1726/13/5/010.
AGBOOLA AE, 2007, CLEAN TECHNOL ENVIR, V9, P289, DOI 10.1007/s10098-006-0083-2.
ASURI P, 2006, LANGMUIR, V22, P5833, DOI 10.1021/la0528450.
ASURI P, 2007, LANGMUIR, V23, P12318, DOI 10.1021/la702091c.
BAILLIE C, 2004, GREEN COMPOSITES POL.
BALASUBRAMANIAN K, 2005, SMALL, V1, P180, DOI 10.1002/smll.200400118.
BANERJEE S, 2008, NANOTECHNOLOGY, V19, ARTN 155702.
BETHUNE DS, 1993, NATURE, V363, P605.
BOEHM HP, 2002, CARBON, V40, P145.
BOGUE RW, 2004, SENSOR REV, V24, P253.
BOHONAK DM, 2005, J MEMBRANE SCI, V254, P71, DOI 10.1016/j.memsci.2004.12.035.
BONDAVALLI P, 2009, SENSOR ACTUAT B-CHEM, V140, P304, DOI 10.1016/j.snb.2009.04.025.
BRADYESTEVEZ AS, 2008, SMALL, V4, P481, DOI 10.1002/smll.200700863.
BROWN P, 2008, J PHYS CHEM C, V112, P4776, DOI 10.1021/jp7107472.
CANTALINI C, 2003, SENSOR ACTUAT B-CHEM, V93, P333, DOI 10.1016/S0925-4005(03)00224-7.
CAPEK I, 2009, ADV COLLOID INTERFAC, V150, P63, DOI 10.1016/j.cis.2009.05.006.
CHEN CH, 2008, MICROPOR MESOPOR MAT, V109, P549, DOI 10.1016/j.micromeso.2007.06.003.
CHENG HM, 2001, CARBON, V39, P1447.
CHO WS, 2006, SENSOR ACTUAT B-CHEM, V119, P180, DOI 10.1016/j.snb.2005.12.004.
CHOU SL, 2008, ELECTROCHEM COMMUN, V10, P1724, DOI 10.1016/j.elecom.2008.08.051.
COLOMER JF, 2000, CHEM PHYS LETT, V317, P83.
CORTES P, 2009, J SENSORS 2009.
DAI H, 1996, CHEM PHYS LETT, V260, P471.
DALTON AB, 2004, J MATER CHEM, V14, P1, DOI 10.1039/b312092a.
DANIEL S, 2007, SENSOR ACTUAT B-CHEM, V122, P672, DOI 10.1016/j.snb.2006.06.014.
DIFRANCIA G, 2009, J SENSORS 2009.
DODZIUK H, 2002, CHEM PHYS LETT, V356, P79.
DUMORTIER H, 2006, NANO LETT, V6, P1522, DOI 10.1021/nl061160x.
ENDO M, 2008, CARBON NANOTUBES ADV, P13.
ESPINOSA EH, 2007, SENSOR ACTUAT B-CHEM, V127, P137, DOI 10.1016/j.snb.2007.07.108.
FAGAN SB, 2007, CHEM PHYS LETT, V437, P79, DOI 10.1016/j.cplett.2007.01.071.
FISCHBACK MB, 2006, ELECTROANAL, V18, P2016, DOI 10.1002/elan.200603626.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FURUYA Y, 2004, CARBON, V42, P331, DOI 10.1016/j.carbon.2003.10.041.
GAO ZM, 2009, J HAZARD MATER, V167, P357, DOI 10.1016/j.jhazmat.2009.01.050.
GAYATHRI V, 2007, ADSORPTION, V13, P53, DOI 10.1007/s10450-007-9002-z.
GONG JW, 2008, SENSOR ACTUAT B-CHEM, V130, P829, DOI 10.1016/j.snb.2007.10.051.
GOVARDHAN CP, 1999, CURR OPIN BIOTECH, V10, P331.
GRATZEL M, 2003, J PHOTOCH PHOTOBIO C, V4, P145, DOI 10.1016/S1389-5567(03)00026-1.
GREEN MA, 2002, PHYSICA E, V14, P65.
GROSSIORD N, 2005, J MATER CHEM, V15, P2349, DOI 10.1039/b501805f.
GUO T, 1995, CHEM PHYS LETT, V243, P49.
HADJIPASCHALIS I, 2009, RENEW SUST ENERG REV, V13, P1513, DOI 10.1016/j.rser.2008.09.028.
HE HY, 2009, FRONT PHYS CHINA, V4, P297.
HOA ND, 2007, PHYS STATUS SOLIDI A, V204, P1820, DOI 10.1002/pssa.200675318.
HSIEH SH, 2007, J UNIV SCI TECHNOL B, V14, P77.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P6348.
IYAKUTTI K, 2009, INT J HYDROGEN ENERG, V34, P370, DOI 10.1016/j.ijhydene.2008.09.086.
JANSSEN RAJ, 2005, MRS BULL, V30, P33.
JIA Y, 2008, ADV MATER, V20, P4594, DOI 10.1002/adma.200801810.
JIN WZ, 2007, SCI TECHNOL ADV MAT, V8, P1, DOI 10.1016/j.stam.2006.12.001.
JOURNET C, 1997, NATURE, V388, P756.
KAMAT PV, 2007, J PHYS CHEM C, V111, P2834, DOI 10.1021/jp066952u.
KANG S, 2007, LANGMUIR, V23, P8670, DOI 10.1021/la701067r.
KANG S, 2008, LANGMUIR, V24, P6409, DOI 10.1021/la800951v.
KAYIRAN SB, 2004, J PHYS CHEM B, V108, P15211, DOI 10.1021/jp048169c.
KHATRI I, 2009, APPL PHYS LETT, V94.
KIM J, 2006, BIOTECHNOL ADV, V24, P296, DOI 10.1016/j.biotechadv.2005.11.006.
KONG J, 2000, SCIENCE, V287, P5453.
LAM CW, 2004, TOXICOL SCI, V77, P126, DOI 10.1093/toxsci/kfg243.
LANDI BJ, 2005, PROG PHOTOVOLTAICS, V13, P165, DOI 10.1002/pip.604.
LI QL, 2008, WATER RES, V42, P4591, DOI 10.1016/j.watres.2008.08.015.
LI XC, 2008, ELECTROCHEM COMMUN, V10, P851, DOI 10.1016/j.elecom.2008.03.019.
LI YH, 2002, CHEM PHYS LETT, V357, P263.
LIANG CW, 2008, NANO LETT, V8, P1809, DOI 10.1021/nl0802178.
LIN HF, 2002, SEP PURIF TECHNOL, V28, P87.
LIU XR, 2009, ELECTROCHIM ACTA, V54, P7141, DOI 10.1016/j.electacta.2009.07.044.
LIU Y, 2008, ADV FUNCT MATER, V18, P1536, DOI 10.1002/adfm.200701433.
LIU Y, 2009, NANOTECHNOLOGY, V20.
LOGAN BE, 2006, ENVIRON SCI TECHNOL, V40, P5181, DOI 10.1021/es0605016.
LONG RQ, 2001, J AM CHEM SOC, V123, P2058.
LU C, 2008, CHEM ENG J, V139, P462, DOI 10.1016/j.cej.2007.08.013.
LU CY, 2006, CHEM ENG SCI, V61, P1138, DOI 10.1016/j.ces.2005.08.007.
LU CY, 2008, J HAZARD MATER, V151, P239, DOI 10.1016/j.jhazmat.2007.05.078.
LU JB, 2009, SENSOR ACTUAT B-CHEM, V140, P451, DOI 10.1016/j.snb.2009.05.006.
MAGREZ A, 2006, NANO LETT, V6, P1121, DOI 10.1021/nl060162e.
MAUTER MS, 2008, ENVIRON SCI TECHNOL, V42, P5843, DOI 10.1021/es8006904.
MILLER RA, 1997, CLIN MICROBIOL REV, V1, P1.
MINTEER SD, 2007, CURR OPIN BIOTECH, V18, P228, DOI 10.1016/j.copbio.2007.03.007.
MOJUMDAR SC, 2005, J THERM ANAL CALORIM, V82, P89, DOI 10.1007/s10973-005-6837-y.
MOON SI, 2008, MATER LETT, V62, P2422, DOI 10.1016/j.matlet.2007.12.027.
MORONES JR, 2005, NANOTECHNOLOGY, V16, P2346, DOI 10.1088/0957-4484/16/10/059.
MOROZAN A, 2007, PHYS STATUS SOLIDI A, V204, P1797, DOI 10.1002/pssa.200675344.
MOSTAFAVI ST, 2009, DESALINATION, V238, P271, DOI 10.1016/j.desal.2008.02.018.
MULLER J, 2005, TOXICOL APPL PHARM, V207, P221, DOI 10.1016/j.taap.2005.01.008.
NEPAL D, 2008, NANO LETT, V8, P1896, DOI 10.1021/nl080522t.
NGUYEN HQ, 2006, SENSOR ACTUAT B-CHEM, V117, P426, DOI 10.1016/j.snb.2005.11.056.
NGUYEN LH, 2007, PHYSICA E, V37, P54, DOI 10.1016/j.physe.2006.12.006.
NOY A, 2007, NANO TODAY, V2, P22.
OREGAN B, 1991, NATURE, V353, P6346.
PALMORE GTR, 1994, ACS SYM SER, V566, P271.
PASQUIER AD, 2005, APPL PHYS LETT, V87, P1.
PENG XJ, 2003, CHEM PHYS LETT, V376, P154, DOI 10.1016/S0009-2614(03)00960-6.
PENZA M, 2009, SENSOR ACTUAT B-CHEM, V140, P176, DOI 10.1016/j.snb.2009.04.008.
PENZA M, 2009, THIN SOLID FILMS, V517, P6211, DOI 10.1016/j.tsf.2009.04.009.
QI P, 2003, NANO LETT, V3, P347.
QIAO Y, 2007, J POWER SOURCES, V170, P79, DOI 10.1016/j.jpowsour.2007.03.048.
QUANG NH, 2006, SENSOR ACTUAT B-CHEM, V113, P341, DOI 10.1016/j.snb.2005.03.089.
RAO GP, 2007, SEP PURIF TECHNOL, V58, P224, DOI 10.1016/j.seppur.2006.12.006.
RAY SS, 2006, J NANOSCI NANOTECHNO, V6, P2191, DOI 10.1166/jnn.2006.368.
REIJNDERS L, 2006, J CLEAN PROD, V14, P124, DOI 10.1016/j.jclepro.2005.03.018.
RITSCHEL M, 2002, APPL PHYS LETT, V80, P2985.
ROWELL MW, 2006, APPL PHYS LETT, V88.
SAVAGE N, 2005, J NANOPART RES, V7, P331, DOI 10.1007/s11051-005-7523-5.
SAYES CM, 2006, TOXICOL LETT, V161, P135, DOI 10.1016/j.toxlet.2005.08.011.
SCARSELLI M, 2009, SUPERLATTICE MICROST, V46, P340, DOI 10.1016/j.spmi.2009.01.014.
SCHALLER R, 2009, MAT SCI ENG A-STRUCT, V521, P147, DOI 10.1016/j.msea.2008.09.133.
SCHUR DV, 2002, INT J HYDROGEN ENERG, V27, P1063.
SHARMA T, 2008, INT J HYDROGEN ENERG, V33, P6749, DOI 10.1016/j.ijhydene.2008.05.112.
SHELDON RA, 2007, ADV SYNTH CATAL, V349, P1289, DOI 10.1002/adsc.200700082.
SIMON P, 2008, NAT MATER, V7, P845, DOI 10.1038/nmat2297.
SITHARAMAN B, 2008, BONE, V43, P362, DOI 10.1016/j.bone.2008.04.013.
SONG L, 2009, POLYM DEGRAD STABIL, V94, P632, DOI 10.1016/j.polymdegradstab.2009.01.009.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
STAFIEJ A, 2008, MICROCHEM J, V89, P29, DOI 10.1016/j.microc.2007.11.001.
SUEHIRO J, 2005, SENSOR ACTUAT B-CHEM, V105, P164, DOI 10.1016/j.snb.2004.05.050.
TAHAIKT M, 2007, DESALINATION, V212, P46, DOI 10.1016/j.desal.2006.10.003.
TIBBETTS GG, 2001, CARBON, V39, P2291.
TSAI HY, 2009, J POWER SOURCES, V194, P199, DOI 10.1016/j.jpowsour.2009.05.018.
TURKER AR, 2007, CLEAN-SOIL AIR WATER, V35, P548, DOI 10.1002/clen.200700130.
UEDA T, 2008, DIAM RELAT MATER, V17, P1586, DOI 10.1016/j.diamond.2008.03.009.
UEDA T, 2008, PHYSICA E, V40, P2272, DOI 10.1016/j.physe.2007.12.006.
ULBRICHT R, 2006, PHYS STATUS SOLIDI B, V243, P3528, DOI 10.1002/pssb.200669181.
ULBRICHT R, 2007, SOL ENERG MAT SOL C, V91, P416, DOI 10.1016/j.solmat.2006.10.002.
VALENCIAFLORES M, 2004, LUPUS, V13, P4, DOI 10.1191/0961203304lu480oa.
VANDUY N, 2008, PHYSICA E, V41, P258.
VANHIEU N, 2008, SENSOR ACTUAT B-CHEM, V129, P888, DOI 10.1016/j.snb.2007.09.088.
VAUDREUIL S, 2007, J NANOSCI NANOTECHNO, V7, P2349, DOI 10.1166/jnn.2007.419.
WANG HT, 2005, POLYM DEGRAD STABIL, V87, P319, DOI 10.1016/j.polymdegradstab.2004.08.015.
WANG J, 2008, SENSOR ACTUAT B-CHEM, V134, P1010, DOI 10.1016/j.snb.2008.07.010.
WANG QY, 1999, J PHYS CHEM B, V103, P4809.
WANG XL, 2008, ENVIRON SCI TECHNOL, V42, P3207, DOI 10.1021/es702971g.
WANG Y, 2009, INT J HYDROGEN ENERG, V34, P1437, DOI 10.1016/j.ijhydene.2008.11.085.
WATANABE K, 2008, J BIOSCI BIOENG, V106, P528, DOI 10.1263/jbb.106.528.
WEI BY, 2004, SENSOR ACTUAT B-CHEM, V101, P81, DOI 10.1016/j.snb.2004.02.028.
WEI C, 2006, J AM CHEM SOC, V128, P1412, DOI 10.1021/ja0570335.
WENG CH, 2004, COLLOID SURFACE A, V247, P137, DOI 10.1016/j.colsurfa.2004.08.050.
WICK P, 2007, TOXICOL LETT, V168, P121, DOI 10.1016/j.toxlet.2006.08.019.
XIE XL, 2005, MAT SCI ENG A, V49.
XU D, 2008, J HAZARD MATER, V154, P407, DOI 10.1016/j.jhazmat.2007.10.059.
YAN J, 2009, J POWER SOURCES, V194, P1202, DOI 10.1016/j.jpowsour.2009.06.006.
YANG FH, 2006, J PHYS CHEM B, V110, P6236, DOI 10.1021/jp056461u.
YANG K, 2006, ENVIRON SCI TECHNOL, V40, P1855, DOI 10.1021/es052208w.
YUAN W, 2008, J PHYS CHEM C, V112, P18754, DOI 10.1021/jp807133j.
ZACHARIA R, 2005, CHEM PHYS LETT, V412, P369, DOI 10.1016/j.cplett.2005.07.020.
ZACHARIA R, 2007, CHEM PHYS LETT, V434, P286, DOI 10.1016/j.cplett.2006.12.022.
ZHANG Q, 2007, CHINESE SCI BULL, V52, P2896, DOI 10.1007/s11434-007-0458-8.
ZHANG WD, 2009, J SENSORS 2009.
ZHAO HY, 2009, BIOSENS BIOELECTRON, V25, P463, DOI 10.1016/j.bios.2009.08.005.
ZHOU DM, 2004, CHINESE SOC ANTHROP, V36, P3.
ZHOU L, 2004, INT J HYDROGEN ENERG, V29, P319, DOI 10.1016/S0360-3199(03)00155-1.
ZHOU M, 2009, BIOSENS BIOELECTRON, V24, P2904, DOI 10.1016/j.bios.2009.02.028.
ZHU HW, 2008, NANOTECHNOLOGY, V19.
ZHU HW, 2009, SOL ENERG MAT SOL C, V93, P1461, DOI 10.1016/j.solmat.2009.04.006.

Cited Reference Count:
159

Times Cited:
0

Publisher:
BRAZILIAN SOC CHEMICAL ENG; RUA LIBERO BADARO 152-11 ANDAR, CEP 01008-90 SAO PAULO, BRAZIL

Subject Category:
Engineering, Chemical

ISSN:
0104-6632

IDS Number:
628ST

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: