Friday, August 20, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280586200010
*Order Full Text [ ]

Title:
Proton transport in water confined in carbon nanotubes: a reactive molecular dynamics study

Authors:
Selvan, ME; Keffer, DJ; Cui, S; Paddison, SJ

Author Full Names:
Selvan, M. Esai; Keffer, D. J.; Cui, S.; Paddison, S. J.

Source:
MOLECULAR SIMULATION 36 (7-8): 568-578 Sp. Iss. SI 2010

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
proton transport; structural diffusion; carbon nanotubes; confinement

KeyWords Plus:
POLYMER ELECTROLYTE MEMBRANES; LIQUID WATER; HYDRATED NAFION(R); EXCESS PROTON; FUEL-CELLS; SIMULATION; SOLVATION; MODEL; INTERFACE; CONDUCTION

Abstract:
The effects on the structural and transport properties of a proton in water confined in carbon nanotubes of radii ranging from 5.42 to 10.85 angstrom were studied by employing a recently devised reactive molecular dynamics (RMD) scheme. The formation of distinct layers was observed in the computed radial density profile of water. Affinity of hydronium ions towards the tube-water interface and its preferential orientation with the oxygen atom protruding towards the wall was observed. The axial water diffusivity was observed to decrease with increasing confinement of water. Analysis of the axial charge diffusivity and its two components (structural and vehicular) was also performed. Confinement was found to have a more significant effect on structural diffusion than on vehicular diffusion. The axial vehicular component of the charge diffusivity in the nanotube of radius 10.85 angstrom was found to be equal to the value computed in bulk water while structural component was 12% !
of the value observed in bulk water, which resulted in a total charge diffusivity of 42% of the diffusion in bulk water. The confined geometry affects the system energetically and perturbs the solvation structure around the proton from that found in bulk water. The RMD algorithm, which defines the occurrence of a proton transfer reaction based on the satisfaction of a set of triggers, identified the energetic factor to be greatly responsible for the decreased structural diffusion of a proton.

Reprint Address:
Keffer, DJ, Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.

Research Institution addresses:
[Selvan, M. Esai; Keffer, D. J.; Cui, S.; Paddison, S. J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA

E-mail Address:
dkeffer@utk.edu

Cited References:
AGMON N, 1995, CHEM PHYS LETT, V244, P456.
ALEXIADIS A, 2008, CHEM ENG SCI, V63, P2047, DOI 10.1016/j.ces.2007.12.035.
BILLETER SR, 1998, J PHYS CHEM A, V102, P4669.
BREWER ML, 2001, BIOPHYS J, V80, P1691.
CAR R, 1985, PHYS REV LETT, V55, P2471.
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
CUI ST, 2007, J PHYS CHEM B, V111, P2208, DOI 10.1021/jp066388n.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
EIKERLING M, 2003, CHEM PHYS LETT, V368, P108.
FLYVBJERG H, 1989, J CHEM PHYS, V91, P461.
GALLO P, 2002, J CHEM PHYS, V116, P342.
GOPALAKRISHNAN S, 2006, CHEM REV, V106, P1155, DOI 10.1021/cr040361n.
GORDILLO MC, 2000, CHEM PHYS LETT, V329, P341.
HAYES RL, 2009, J PHYS CHEM B, V113, P16574, DOI 10.1021/jp907853p.
HIRUNSIT P, 2007, J PHYS CHEM C, V111, P1709, DOI 10.1021/jp063718v.
HOLT JK, 2009, ADV MATER, V21, P3542, DOI 10.1002/adma.200900867.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HUMMER G, 1992, MOL PHYS, V77, P769.
HUMMER G, 2001, NATURE, V414, P188.
INTHARATHEP P, 2006, J COMPUT CHEM, V27, P1723, DOI 10.1002/jcc.20503.
JIANG BW, 2009, J PHYS CHEM B, V113, P13670, DOI 10.1021/jp811151m.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KEFFER D, 1996, MOL PHYS, V87, P367.
KELL GS, 1975, J CHEM ENG DATA, V20, P97.
KREUER KD, 1997, SOLID STATE IONICS, V97, P1.
KREUER KD, 2000, SOLID STATE IONICS, V149, P136.
KREUER KD, 2001, J MEMBRANE SCI, V185, P29.
KREUER KD, 2004, CHEM REV, V104, P4637, DOI 10.1021/cr020715f.
KREUER KD, 2008, J POWER SOURCES, V178, P499, DOI 10.1016/j.jpowsour.2007.11.011.
LEE HS, 2009, J PHYS CHEM A, V113, P2144, DOI 10.1021/jp809236c.
LEE SH, 2009, B KOREAN CHEM SOC, V30, P700.
LILL MA, 2001, J CHEM PHYS, V115, P7993.
LIU Y, 2005, J CHEM PHYS, V123, UNSP 234701-1-7.
LU ZJ, 2009, J PHYS CHEM B, V113, P13551, DOI 10.1021/jp9057115.
LUZ Z, 1964, J AM CHEM SOC, V86, P4768.
LYNDENBELL RM, 1996, J CHEM PHYS, V105, P9266.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MARKOVITCH O, 2008, J PHYS CHEM B, V112, P9456, DOI 10.1021/jp804018y.
MARX D, 1999, NATURE, V397, P601.
MASHL RJ, 2003, BIOPHYS J S 2, V84, A488.
MCCALLUM CL, 1999, LANGMUIR, V15, P533.
MIRANDA PB, 1999, J PHYS CHEM B, V103, P3292.
NERIA E, 1996, J CHEM PHYS, V105, P1902.
NOSE S, 1984, J CHEM PHYS, V81, P511.
NOSE S, 1984, MOL PHYS, V52, P255.
PADDISON SJ, 2000, J NEW MAT ELECTR SYS, V3, P291.
PADDISON SJ, 2002, PHYS CHEM CHEM PHYS, V4, P1158, DOI 10.1039/b109792j.
PADDISON SJ, 2003, ANNU REV MATER RES, V33, P289, DOI 10.1146/annurev.matsei.33.022702.155102.
PAUL R, 2001, J CHEM PHYS, V115, P7762.
PAUL R, 2004, J PHYS CHEM B, V108, P13231, DOI 10.1021/jp048501k.
PETERSEN MK, 2004, J PHYS CHEM B, V108, P14804, DOI 10.1021/jp046716o.
PETERSEN MK, 2005, J PHYS CHEM B, V109, P3727, DOI 10.1021/jp044535g.
PETERSEN MK, 2006, J PHYS CHEM B, V110, P18594, DOI 10.1021/jp062719k.
PETERSON BK, 1986, J CHEM SOC FARAD T 2, V82, P1789.
ROBISON RA, 1959, ELECTROLYTE SOLUTION.
SCHMIDT RG, 1997, BER BUNSEN PHYS CHEM, V101, P1816.
SCHMITT UW, 1999, J CHEM PHYS, V111, P9361.
SELVAN ME, J CHEM PH C IN PRESS.
SELVAN ME, 2008, J PHYS CHEM C, V112, P1975, DOI 10.1021/jp075611t.
STEELE WA, 1974, INTERACTION GASES SO.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
TIAN CS, 2008, J AM CHEM SOC, V130, P13033, DOI 10.1021/ja8021297.
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990.
TUCKERMAN M, 1995, J CHEM PHYS, V103, P150.
URATA S, 2005, J PHYS CHEM B, V109, P4269, DOI 10.1021/jp046434o.
VACHA R, 2008, PHYS CHEM CHEM PHYS, V10, P4975, DOI 10.1039/b806432f.
WANG F, 2005, J CHEM PHYS, V122, UNSP 144105-1-9.
WARSHEL A, 1980, J AM CHEM SOC, V102, P6218.
WICKE E, 1954, Z PHYS CHEM FRANKFUR, V1, P340.
WU YJ, 2008, J PHYS CHEM B, V112, P467, DOI 10.1021/jp076658h.
ZAWODZINSKI TA, 1993, J ELECTROCHEM SOC, V140, P1981.
ZUNDEL G, 1968, Z PHYS CHEM FRANKFUR, V58, P225.

Cited Reference Count:
72

Times Cited:
0

Publisher:
TAYLOR & FRANCIS LTD; 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
0892-7022

DOI:
10.1080/08927021003752887

IDS Number:
634MN

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280523700022
*Order Full Text [ ]

Title:
Ion Rejection Properties of Nanopores with Bipolar Fixed Charge Distributions

Authors:
Szymczyk, A; Zhu, HC; Balannec, B

Author Full Names:
Szymczyk, Anthony; Zhu, Haochen; Balannec, Beatrice

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (31): 10143-10150 AUG 12 2010

Language:
English

Document Type:
Article

KeyWords Plus:
ULTRAFINE CAPILLARIES; NANOFLUIDIC CHANNELS; TRANSPORT-PROPERTIES; ELECTROOSMOTIC FLOW; CONICAL NANOPORES; ENERGY-CONVERSION; REGULATION MODEL; CARBON NANOTUBE; SALT REJECTION; WATER CHANNEL

Abstract:
Ion rejection properties of cylindrical nanopores with bipolar fixed charge distributions have been investigated theoretically by means of an approximate model based on the Poisson-Nernst-Planck (PNP) theory and accounting for the electroosmosis phenomenon The approximate model has been shown to give results that are in good agreement with the full 2D PNP approach for the narrow and weakly charged pores considered in this work Pressure-induced rectification of salt flux has been put in evidence as a result of the broken symmetry of the fixed charge distribution on the pore walls. The model also elucidates that pressure-induced transport is controlled by different pore regions depending on the magnitude of the pressure difference across the nanopore The existence of an optimal pressure difference (i.e., leading to the highest salt rejection) has been put in evidence when there is a region within the nanopore that is more repulsive than the pore entrance with respect to a give!
n electrolyte. For moderate pressure differences, our results show that nanopores with bipolar charge distributions can lead to close rejections for both 2-1 and 1-2 asymmetric electrolytes. This is a specific property of bipolar nanopores because these performances cannot be obtained with homogeneously charged nanopores, which strongly reject electrolytes with divalent co-ions but are much more permeable to electrolytes with divalent counterions. This work benefits the design of nanoporous systems with targeted distribution of ionizable surface groups for advanced membrane separations.

Reprint Address:
Szymczyk, A, Univ Europeenne Bretagne, 5 Blvd Laennec, F-35000 Rennes, France.

Research Institution addresses:
[Szymczyk, Anthony; Zhu, Haochen] Univ Europeenne Bretagne, F-35000 Rennes, France; [Szymczyk, Anthony; Zhu, Haochen; Balannec, Beatrice] Univ Rennes 1, CNRS, UMR 6226, ENSCR, F-35042 Rennes, France

Cited References:
ALI M, 2009, LANGMUIR, V25, P11993, DOI 10.1021/la902792f.
APEL PY, 2001, NUCL INSTRUM METH B, V184, P337.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BIESHEUVEL PM, 2001, J COLLOID INTERF SCI, V241, P422.
CERVERA J, 2005, EUROPHYS LETT, V71, P35, DOI 10.1209/epl/i2005-10054-x.
CERVERA J, 2006, J CHEM PHYS, V124, ARTN 104706.
CERVERA J, 2008, SURFACE ELECT PHENOM, P173.
CHEN YF, 2008, NANO LETT, V8, P42, DOI 10.1021/nI0718566.
CHENG LJ, 2007, NANO LETT, V7, P3165, DOI 10.1021/nl071770c.
CONSTANTIN D, 2007, PHYS REV E 1, V76, ARTN 041202.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945.
DAVENPORT M, 2009, NANO LETT, V9, P2125, DOI 10.1021/nl900630z.
DEEN WM, 1987, AICHE J, V33, P1409.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DELINT WBS, 2002, J COLLOID INTERF SCI, V251, P131.
DESAI TA, 1999, BIOMED MICRODEVICES, V2, P11.
FAIR JC, 1971, J CHEM PHYS, V54, P3307.
FULINSKI A, 2004, EUROPHYS LETT, V67, P683, DOI 10.1209/epl/i2003-10304-y.
GOLDSMITH J, 2010, J PHYS CHEM LETT, V1, P528, DOI 10.1021/jz900173w.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GROSS RJ, 1968, J CHEM PHYS, V49, P228.
HAN JH, 2009, ANGEW CHEM INT EDIT, V48, P3830, DOI 10.1002/anie.200900045.
HE Y, 2009, J AM CHEM SOC, V131, P5194, DOI 10.1021/ja808717u.
HUMMER G, 2001, NATURE, V414, P188.
JIN P, 2010, J AM CHEM SOC, V132, P2118, DOI 10.1021/ja909335r.
KOVARIK ML, 2009, J PHYS CHEM B, V113, P15960, DOI 10.1021/jp9076189.
KUEHL SA, 1988, J PHYS CHEM-US, V92, P517.
LEFEBVRE X, 2004, J PHYS CHEM B, V108, P16811, DOI 10.1021/jp048631t.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
MACRAE MX, 2010, J AM CHEM SOC, V132, P1766, DOI 10.1021/ja909876h.
MORRISON FA, 1965, J CHEM PHYS, V43, P2111.
NAM SW, 2009, NANO LETT, V9, P2044, DOI 10.1021/nl900309s.
PALMERI J, 2006, HDB THEORETICAL COMP, V5, P93.
PLECIS A, 2005, NANO LETT, V5, P1147, DOI 10.1021/nl050265h.
RAMIREZ P, 2003, PHYS REV E 1, V68, ARTN 011910.
RAMIREZ P, 2007, J CHEM PHYS, V126, ARTN 194703.
SCRUGGS NR, 2009, NANO LETT, V9, P3853, DOI 10.1021/nl9020683.
SIWY Z, 2002, PHYS REV LETT, V89, ARTN 198103.
SIWY Z, 2005, PHYS REV LETT, V94, ARTN 048102.
SIWY ZS, 2006, ADV FUNCT MATER, V16, P735, DOI 10.1002/adfm.200500471.
SONG C, 2009, J PHYS CHEM B, V113, P7642, DOI 10.1021/jp810102u.
SZYMCZYK A, 1999, J COLLOID INTERF SCI, V216, P285.
SZYMCZYK A, 1999, J MEMBRANE SCI, V161, P275.
SZYMCZYK A, 2003, ADV COLLOID INTERFAC, V103, P77.
SZYMCZYK A, 2006, LANGMUIR, V22, P3910, DOI 10.1021/la051888d.
SZYMCZYK A, 2010, LANGMUIR, V26, P1214, DOI 10.1021/la902355x.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h.
VLASSIOUK I, 2007, NANO LETT, V7, P552, DOI 10.1021/nl062924b.
VLASSIOUK I, 2008, NANO LETT, V8, P1978, DOI 10.1021/nl800949k.
VLASSIOUK I, 2009, J AM CHEM SOC, V131, P8211, DOI 10.1021/ja901120f.
XIE YB, 2009, LANGMUIR, V25, P8870, DOI 10.1021/la9017213.
YAMEEN B, 2009, J AM CHEM SOC, V131, P2070, DOI 10.1021/ja8086104.
YAROSHCHUK A, 2009, LANGMUIR, V25, P9605, DOI 10.1021/la900737q.
YAROSHCHUK AE, 2000, ADV COLLOID INTERFAC, V85, P193.

Cited Reference Count:
56

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp1025575

IDS Number:
633RX

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280596900042
*Order Full Text [ ]

Title:
Water filling of hydrophilic nanopores

Authors:
de la Llave, E; Molinero, V; Scherlis, DA

Author Full Names:
de la Llave, Ezequiel; Molinero, Valeria; Scherlis, Damian A.

Source:
JOURNAL OF CHEMICAL PHYSICS 133 (3): Art. No. 034513 JUL 21 2010

Language:
English

Document Type:
Article

KeyWords Plus:
LIQUID-VAPOR OSCILLATIONS; ADSORPTION HYSTERESIS; MOLECULAR-DYNAMICS; MESOPOROUS SILICA; NEUTRON-SCATTERING; PHASE-EQUILIBRIA; MCM-41; SIMULATION; SORPTION; CARBON

Abstract:
Molecular dynamics simulations of water in cylindrical hydrophilic pores with diameters of 1.5 and 3 nm were performed to explore the phase behavior and the nucleation dynamics of the confined fluid as a function of the percentage of volume filled f. The interactions of water with the pore wall were considered to be identical to the interactions between water molecules. At low water contents, all the water is adsorbed to the surface of the pore. A second phase consisting of a liquid plug appears at the onset filling for capillary condensation, f(onset) =27% and 34% for the narrow and wide pores, respectively. In agreement with experimental results for silica pores, the liquid phase appears close to the equilibrium filling f(eq) in the 1.5 nm pore and under conditions of strong surface supersaturations for the 3 nm pore. After condensation, two phases, a liquid plug and a surface-adsorbed phase, coexist in equilibrium. Under conditions of phase coexistence, the water surface !
density Gamma(coex) was found to be independent of the water content and the diameter of the pore. The value of Gamma(coex) found in the simulations (similar to 3 nm(-2)) is in good agreement with experimental results for silica pores, suggesting that the interactions of water with silica and with itself are comparable. The surface-adsorbed phase at coexistence is a sparse monolayer with a structure dominated by small water clusters. We characterize the density and structure of the liquid and surface phases, the nucleation mechanism of the water plug, and the effect of surface hydrophilicity on the two-phase equilibrium and hysteresis. The results are discussed in light of experiments and previous simulations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3462964]

Reprint Address:
Molinero, V, Univ Utah, Dept Chem, 315 South 1400 East, Salt Lake City, UT 84112 USA.

Research Institution addresses:
[Molinero, Valeria] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA; [de la Llave, Ezequiel; Scherlis, Damian A.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, INQUIMAE, Dept Quim Inorgan Anal & Quim Fis, Buenos Aires, DF, Argentina

E-mail Address:
valeria.molinero@utah.edu; damian@qi.fcen.uba.ar

Cited References:
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BINDER K, 2004, J PHYS-CONDENS MAT, V16, S429.
BRANTON PJ, 1995, J CHEM SOC FARADAY T, V91, P2041.
BROVCHENKO I, 2004, J CHEM PHYS, V120, P1958, DOI 10.1063/1.1631919.
DAVIS ME, 2002, NATURE, V417, P813.
DEMILLE RC, 2009, J CHEM PHYS, V131, ARTN 034107.
FEREY G, 2008, CHEM SOC REV, V37, P191, DOI 10.1039/b618320b.
GALLO P, 2010, J PHYS CHEM LETT, V1, P729, DOI 10.1021/jz9003125.
GREGG J, 1988, ADSORPTION GAS SOLID.
GRUNBERG B, 2004, CHEM-EUR J, V10, P5689, DOI 10.1002/chem.200400351.
HEFFELFINGER GS, 1988, J CHEM PHYS, V89, P5202.
HUMMER G, 2001, NATURE, V414, P188.
INAGAKI S, 1998, MICROPOR MESOPOR MAT, V21, P667.
ISHIKAWA T, 1996, J CHEM SOC FARADAY T, V92, P1985.
JACOBSON LC, 2009, J PHYS CHEM B, V113, P10298, DOI 10.1021/jp903439a.
JAHNERT S, 2008, PHYS CHEM CHEM PHYS, V10, P6039, DOI 10.1039/b809438c.
KASTELOWITZ N, 2010, J CHEM PHYS, V132, ARTN 124511.
KIERLIK E, 2009, J PHYS-CONDENS MAT, V21, ARTN 155102.
KOCHERBITOV V, 2007, J PHYS CHEM C, V111, P12906, DOI 10.1021/jp072474r.
KRESGE CT, 1992, NATURE, V359, P710.
LEE J, 2008, NAT MATER, V7, P222, DOI 10.1038/nmat2111.
LLEWELLYN PL, 1994, MICROPOROUS MATER, V3, P345.
LLEWELLYN PL, 1995, LANGMUIR, V11, P574.
MAMONTOV E, 2008, J PHYS CHEM C, V112, P12334, DOI 10.1021/jp711965x.
MANCINELLI R, 2009, J PHYS CHEM B, V113, P16169, DOI 10.1021/jp9062109.
MARCONI UMB, 1989, PHYS REV A, V39, P4109.
MOLINERO V, 2009, J PHYS CHEM B, V113, P4008, DOI 10.1021/jp805227c.
MOORE EB, 2009, J CHEM PHYS, V130, ARTN 244505.
MOORE EB, 2010, PHYS CHEM CHEM PHYS, V12, P4124, DOI 10.1039/b919724a.
MORISHIGE K, 2002, J CHEM PHYS, V117, P8036, DOI 10.1063/1.1510440.
NEIMARK AV, 2000, PHYS REV E A, V62, R1493.
NG EP, 2008, MICROPOR MESOPOR MAT, V114, P1, DOI 10.1016/j.micromeso.2007.12.022.
OH JS, 2003, J CHEM ENG DATA, V48, P1458, DOI 10.1021/je0301390.
PAPADOPOULOU A, 1992, J CHEM PHYS, V97, P6942.
PELMENSCHIKOV A, 2002, J PHYS CHEM A, V106, P1695.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
PUIBASSET J, 2009, J CHEM PHYS, V131, ARTN 124123.
SHENDEROVICH IG, 2007, J PHYS CHEM B, V111, P12088, DOI 10.1021/jp073682m.
SHIRONO K, 2007, J PHYS CHEM C, V111, P7938, DOI 10.1021/jp067380g.
SMIRNOV P, 2000, J PHYS CHEM B, V104, P5498.
SOLERILLIA GJD, 2002, CHEM REV, V102, P4093, DOI 10.1021/cr0200062.
TAKAHARA S, 1999, J PHYS CHEM B, V103, P5814.
TAKAHARA S, 2005, J PHYS CHEM B, V109, P11231, DOI 10.1021/jp046036l.
TARAZONA P, 1987, MOL PHYS, V60, P573.
VISHNYAKOV A, 2001, J PHYS CHEM B, V105, P7009, DOI 10.1021/jp003994o.
XU LM, 2010, J PHYS CHEM B, V114, P7320, DOI 10.1021/jp102443m.

Cited Reference Count:
46

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3462964

IDS Number:
634QB

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000280577200031
*Order Full Text [ ]

Title:
Effect of Center-of-Mass Motion Removal in the Molecular Dynamics Simulations

Authors:
Wan, RZ; Li, SY; Fang, HP

Author Full Names:
Wan Rong-Zheng; Li Song-Yan; Fang Hai-Ping

Source:
CHINESE PHYSICS LETTERS 27 (8): Art. No. 084702 AUG 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; WATER TRANSPORT; CHANNEL; CONDUCTION; SYSTEMS

Abstract:
Molecule dynamics simulation is now widely used in the study of nano pores, proteins and nano-scale devices. The limited friction in such a system requires the method of center-of-mass motion removal to be applied. We test the effect of different time period.. of this method under osmotic pressure difference, and find that the impact on the net flux is very small together with the effective reduction of the accumulated numerical error when the period.. is above 0.1 ps. The simulation results also show that the change of this time period of method has very little effect on the potential of mean force of the water inside the carbon nanotubes.

Reprint Address:
Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204, Shanghai 201800, Peoples R China.

Research Institution addresses:
[Wan Rong-Zheng; Li Song-Yan; Fang Hai-Ping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Fang Hai-Ping] Chinese Acad Sci, TPCSF, Beijing 100049, Peoples R China

E-mail Address:
fanghaiping@sinap.ac.cn

Cited References:
AJAYAN PM, 1995, NATURE, V375, P564.
ANISHKIN A, 2004, BIOPHYS J, V86, P2883.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
BERNE BJ, 2009, ANNU REV PHYS CHEM, V60, P85, DOI 10.1146/annurev.physchem.58.032806.104445.
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211.
BRENNER DW, 1990, PHYS REV B, V42, P9458.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HUMMER G, 2001, NATURE, V414, P188.
JENSEN MO, 2002, P NATL ACAD SCI USA, V99, P6731.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU J, 1998, SCIENCE, V280, P1253.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
POMES R, 1998, BIOPHYS J, V75, P33.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
TERSOFF J, 1988, PHYS REV LETT, V61, P2879.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WAN RZ, 2009, PHYS CHEM CHEM PHYS, V11, P9898, DOI 10.1039/b907926m.
WANG CL, 2009, PHYS REV LETT, V103, ARTN 137801.
WANG Y, 2007, CHINESE PHYS LETT, V24, P3276.
XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w.
ZHENG M, 2003, NAT MATER, V2, P338, DOI 10.1038/nmat877.
ZHU FQ, 2002, BIOPHYS J, V83, P154.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.

Cited Reference Count:
29

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Multidisciplinary

ISSN:
0256-307X

DOI:
10.1088/0256-307X/27/8/084702

IDS Number:
634JN

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: