Cited Article:    Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
 Alert Expires:    09 NOV 2010
 Number of Citing Articles:    5 new records this week (5 in this e-mail)
 Organization ID:  3b97d1bbc1878baed0ab183d8b03130b
========================================================================
 Note:  Instructions on how to purchase the full text of an article, import the records into an 
 ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================
FN ISI Export Format
VR 1.0
PT J
*Record 1 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281992800031>
*Order Full Text [ ]
AU Kumar, S
   Sharma, A
   Tripathi, B
   Srivastava, S
   Agrawal, S
   Singh, M
   Awasthi, K
   Vijay, YK
AF Kumar, Sumit
   Sharma, Anshu
   Tripathi, Balram
   Srivastava, Subodh
   Agrawal, Shweta
   Singh, M.
   Awasthi, Kamlendra
   Vijay, Y. K.
TI Enhancement of hydrogen gas permeability in electrically aligned
   MWCNT-PMMA composite membranes
SO MICRON
LA English
DT Review
DE MWCNT; PM MA; Membrane; Electrical field alignment; Gas permeation;
   Raman spectroscopy; XRD
ID WALL CARBON NANOTUBES; FAST MASS-TRANSPORT; SEPARATION MEMBRANES;
   POLYMER COMPOSITES; FIELD; PERMEATION; STORAGE; ADSORPTION
AB The multi-walled carbon nanotube (MWCNT) dispersed
   polymethylmethacrylate (PMMA) composite membranes have been prepared
   for hydrogen gas permeation application. Composite membranes are
   characterized by Raman spectroscopy, optical microscopy, X-ray
   diffraction, electrical measurements and gas permeability measurements.
   The effect of electric field alignment of MWCNT in PMMA matrix on gas
   permeation has been studied for hydrogen gas. The permeability
   measurements indicated that the electrically aligned MWCNT in PMMA has
   shown almost 2 times higher permeability for hydrogen gas as compare to
   randomly dispersed MWCNT in PMMA. The enhancement in permeability is
   explained on the basis of well aligned easy channel provided by MWCNT
   in electrically aligned sample. The effect of thickness of membrane on
   the gas permeability also studied and thickness of about 30 mu m found
   to be optimum thickness for fast hydrogen gas permeates. (C) 2010
   Elsevier Ltd. All rights reserved.
C1 [Kumar, Sumit; Sharma, Anshu; Tripathi, Balram; Srivastava, Subodh; Agrawal, Shweta; Singh, M.; Vijay, Y. K.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India.
   [Awasthi, Kamlendra] Indian Inst Technol, Dept Chem Engn, DST Unit Nanosci, Kanpur 208016, Uttar Pradesh, India.
RP Kumar, S, Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India.
EM sumitphy11@gmail.com
   yk_vijay@sancharnet.in
CR ACHARYA NK, 2008, INT J HYDROGEN ENERG, V33, P327, DOI
   10.1016/j.ijhydene.2007.07.030
   ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI
   10.1080/0892702031000103239
   AJAYAN PM, 1999, CHEM REV, V99, P1787
   ANSON A, 2004, CARBON, V42, P1243, DOI 10.1016/j.carbon.2004.01.038
   BAKER RW, 1991, MEMBRANE SEPARATION
   BAO QL, 2006, NANOTECHNOLOGY, V17, P1016, DOI 10.1088/0957-4484/17/4/028
   BLIZNYUK VN, 2006, POLYMER, V47, P3915, DOI
   10.1016/j.polymer.2006.03.072
   CHENG HM, 2001, CARBON, V39, P1447
   DILLON AC, 1997, NATURE, V386, P377
   EKLUND PC, 1995, CARBON, V33, P959
   FERON P, 1992, IEA GREENHOUSE GAS R
   FREEMAN BD, 1999, MACROMOLECULES, V32, P375
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUMMER G, 2001, NATURE, V414, P188
   KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
   KATAURA H, 1999, SYNTHETIC MET, V103, P2555
   KIMURA T, 2002, ADV MATER, V14, P1380
   KOROS WJ, 2000, J MEMBRANE SCI, V175, P181
   KOROS WJ, 2002, MACROMOL SYMP, V188, P13
   KULSHRESTHA V, 2006, INT J HYDROGEN ENERG, V31, P1266, DOI
   10.1016/j.ijhydene.2005.1.2.004
   KULSHRESTHA V, 2006, POLYM BULL, V56, P427, DOI
   10.1007/s00289-006-0509-3
   KULSHRESTHA V, 2007, INT J HYDROGEN ENERG, V32, P3105, DOI
   10.1016/j.ijhydene.2007.01.014
   KULSHRESTHA V, 2010, MICRON, V41, P390, DOI 10.1016/j.micron.2009.12.003
   LEE SM, 2001, J AM CHEM SOC, V123, P5059, DOI 10.1021/ja003751+
   LIJIMA S, 1991, NATURE, V354, P56
   MARTIN CA, 2005, POLYMER, V46, P877, DOI 10.1016/j.polymer.2004.11.081
   PAN W, 2009, J MATER SCI TECHNOL, V25, P247
   PARK C, 2006, J POLYM SCI POL PHYS, V44, P1751, DOI 10.1002/polb.20823
   PAUL DR, 1994, POLYM GAS SEPARATION
   SHARMA A, 2009, INT J HYDROGEN ENERG, V34, P3977, DOI
   10.1016/j.ijhydene.2009.02.068
   SHEN K, 2004, CARBON, V42, P2315, DOI 10.1016/j.carbon.2004.005.014
   SIDOROV AN, 2008, NANOTECHNOLOGY, V19, UNSP 195708-195714
   SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901
   STEPHAN C, 2000, SYNTHETIC MET, V108, P139
   STERN SA, 1994, J MEMBRANE SCI, V94, P1
   SUER MG, 1994, J MEMBRANE SCI, V91, P77
   VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368
   VIJAY YK, 2006, J POLYM RES, V13, P357, DOI 10.1007/s10965-006-9051-0
NR 38
TC 0
PU PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE,
   KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0968-4328
DI 10.1016/j.micron.2010.05.016
PD OCT
VL 41
IS 7
BP 909
EP 914
SC Microscopy
GA 652GX
UT ISI:000281992800031
ER
PT J
*Record 2 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281690600068>
*Order Full Text [ ]
AU Fornasiero, F
   Bin In, J
   Kim, S
   Park, HG
   Wang, Y
   Grigoropoulos, CP
   Noy, A
   Bakajin, O
AF Fornasiero, Francesco
   Bin In, Jung
   Kim, Sangil
   Park, Hyung Gyu
   Wang, Yinmin
   Grigoropoulos, Costas P.
   Noy, Aleksandr
   Bakajin, Olgica
TI pH-Tunable Ion Selectivity in Carbon Nanotube Pores
SO LANGMUIR
LA English
DT Article
ID FILLED NANOFILTRATION MEMBRANES; NANOFLUIDIC CHANNELS; ELECTROLYTIC
   TRANSPORT; REVERSE-OSMOSIS; SILICON-NITRIDE; SALT REJECTION;
   PERMEATION; SEPARATION; SURFACE; WATER
AB The selectivity of ion transport in nanochannels is of pi Unary
   importance for a number of physical, chemical, and biological processes
   ranging from fluid separation to ion-channel-regulated cellular
   processes Fundamental understanding of these phenomena requires model
   nanochannels with well-defined and controllable structural properties
   Carbon nanotubes provide an ideal choice for nanofluidic studies
   because of their simple chemistry and structure, the atomic scale
   smoothness and chemical inertness of the graphitic walls, and the
   tunability of their diameter and length Here, we investigate the
   selectivity of single and, for the first time, binary salt mixtures
   transport through nail ow carbon nanotubes that act as the only pores
   in a silicon nitride membrane. We demonstrate that negatively charged
   carboxylic groups are responsible for the ion rejection performance of
   carbon nanotube pores and that ion permeation of small salts can be
   tuned by varying solution Investigation of the effect of solution
   composition and ion valences for binary electrolytes with common cation
   m a pressure-driven flow reveals that the addition of slower diffusing
   multivalent anions to a solution of faster diffusing monovalent anions
   favors permeation of the monovalent anion Larger fractions and valences
   of the added multivalent anions lower the rejection of the monovalent
   anion. In some cases, we observe negative rejection at low monovalent
   ion content
C1 [Kim, Sangil; Bakajin, Olgica] Porifera Inc, Hayward, CA 94545 USA.
   [Fornasiero, Francesco; Wang, Yinmin; Noy, Aleksandr] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
   [Bin In, Jung; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
   [Park, Hyung Gyu] ETH, Inst Energy Technol, Dept Mech & Proc Engn, Zurich, Switzerland.
   [Noy, Aleksandr] Univ Calif Merced, Sch Nat Sci, Merced, CA 95344 USA.
   [Bakajin, Olgica] Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA.
RP Bakajin, O, Porifera Inc, Hayward, CA 94545 USA.
CR ABGRALL P, 2008, ANAL CHEM, V80, P2326, DOI 10.1021/ac702296u
   BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e
   BECKSTEIN O, 2004, PHYS BIOL, V1, P42, DOI 10.1088/1478-3967/1/1/005
   BOWEN WR, 1996, J MEMBRANE SCI, V112, P263
   CARRILLOTRIPP M, 2004, PHYS REV LETT, V93
   CARRILLOTRIPP M, 2005, ION HYDRATION NANOPO, P243
   CEROVIC LS, 2002, COLLOID SURFACE A, V197, P147
   CORRY C, 2008, J PHYS CHEM B, V112, P1427
   DAIGUJI H, 2004, NANO LETT, V4, P137, DOI 10.1021/nl0348185
   DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945
   DEY TK, 2000, DESALINATION, V127, P165
   FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
   10.1073/pnas.0710437105
   GARCIAALEMAN J, 2004, J MEMBRANE SCI, V239, P163, DOI
   10.1016/j.memsci.2004.02.036
   GARCIAALEMAN J, 2004, J MEMBRANE SCI, V240, P237, DOI
   10.1016/j.memsci.2004.05.009
   GILRON J, 2001, J MEMBRANE SCI, V185, P223
   GOLDBERGER J, 2006, ACCOUNTS CHEM RES, V39, P239
   HAGMEYER G, 1999, SEP PURIF TECHNOL, V15, P19
   HILDER TA, 2009, SMALL, V5, P2183, DOI 10.1002/smll.200900349
   HILLE B, 2001, CHANNEL EXCITABLE ME, P814
   HO C, 2005, P NATL ACAD SCI USA, V102, P10445, DOI
   10.1073/pnas.0500796102
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HOLT JK, 2009, ADV MATER, V21, P1
   HOWORKA S, 2009, CHEM SOC REV, V38, P2360, DOI 10.1039/b813796j
   HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784
   JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326
   KARNIK R, 2005, NANO LETT, V5, P943, DOI 10.1021/nl050493b
   LEUNG K, 2006, PHYS REV LETT, V96, P4
   LIU HM, 2006, J CHEM PHYS, V125, P14
   LIU HM, 2007, MOL DYNAMICS SIMULAT, P169
   LIU HT, 2010, SCIENCE, V327, P64, DOI 10.1126/science.1181799
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k
   MARUN CR, 2001, ADV MATER, V13, P1351
   NAGAI Y, 2006, J CONTROL RELEASE, V115, P18, DOI
   10.1016/j.jconrel.2006.06.031
   NAKAMATSU T, 1998, J EUR CERAM SOC, V18, P1273
   NEDNOOR P, 2005, CHEM MATER, V17, P3595, DOI 10.1021/cm047844s
   NEDNOOR P, 2007, J MATER CHEM, V17, P1755, DOI 10.1039/b703365f
   NEWMAN J, 2004, ELECTROCHEMICAL SYST, P647
   NICHOLSON D, 2003, MOL SIMULAT, V29, P287, DOI
   10.1080/0892702031000078427
   NISHIZAWA M, 1995, SCIENCE, V268, P700
   NOY A, 2007, NANO TODAY, V2, P22
   OSADA Y, 1992, MEMBRANE SCI TECHNOL
   PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046
   PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946
   SCHAEP J, 1998, SEP PURIF TECHNOL, V14, P155
   SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839
   SCHRLAU MG, 2008, NANOTECHNOLOGY, V19
   SCRUGGS NR, 2009, NANO LETT, V9, P3853, DOI 10.1021/nl9020683
   SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
   SHAO Q, 2008, PHYS CHEM CHEM PHYS, V10, P1896, DOI 10.1039/b719033f
   SHAO Q, 2009, NANO LETT, V9, P989, DOI 10.1021/nl803044k
   SONG C, 2009, J PHYS CHEM B, V113, P7642, DOI 10.1021/jp810102u
   SPARREBOOM W, 2009, NAT NANOTECHNOL, V4, P713, DOI
   10.1038/NNANO.2009.332
   SUMIKAMA T, 2006, J PHYS CHEM B, V110, P20671, DOI 10.1021/jp062547r
   TANG YW, 2004, J PHYS CHEM B, V108, P18204, DOI 10.1021/jp0465985
   TSURU T, 1991, DESALINATION, V81, P219
   TSURU T, 1991, J CHEM ENG JPN, V24, P518
   VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h
   WANG KY, 2005, J MEMBRANE SCI, V247, P37, DOI
   10.1016/j.memsci.2004.09.007
   WEI JQ, 2003, CHEM PHYS LETT, V376, P753, DOI
   10.1016/S0009-2614(03)01076-5
   WEI JQ, 2003, J MATER CHEM, V13, P1340, DOI 10.1039/b300484h
   WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
   WON CY, 2009, CHEM PHYS LETT, V478, P185, DOI
   10.1016/j.cplett.2009.07.064
   WONG SS, 1998, J AM CHEM SOC, V120, P8557
   WONG SS, 1998, NATURE, V394, P52
   YANG L, 2007, J CHEM PHYS, V126
   YAROSHCHUK AE, 2007, NEGATIVE REJECTION I, P150
NR 67
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
DI 10.1021/la101943h
PD SEP 21
VL 26
IS 18
BP 14848
EP 14853
SC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
   Multidisciplinary
GA 648JV
UT ISI:000281690600068
ER
PT J
*Record 3 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281690600087>
*Order Full Text [ ]
AU Brady-Estevez, AS
   Schnoor, MH
   Vecitis, CD
   Saleh, NB
   Ehmelech, M
AF Brady-Estevez, Anna S.
   Schnoor, Mary H.
   Vecitis, Chad D.
   Saleh, Navid B.
   Ehmelech, Menachem
TI Multiwalled Carbon Nanotube Filter: Improving Viral Removal at Low
   Pressure
SO LANGMUIR
LA English
DT Article
ID FULLERENE C-60 NANOPARTICLES; SOIL COLUMNS; POROUS-MEDIA; DEPOSITION
   KINETICS; ENVIRONMENTAL IMPLICATIONS; AGGREGATION KINETICS; BACTERIAL
   PATHOGENS; CERIA NANOPARTICLES; ORGANIC-MATTER; TRANSPORT
AB The effective removal of viruses by a multiwalled carbon nanotube
   (MWNT) filter is demonstrated over a range of solution chemistries MS2
   bacteriophage viral removal by the MWNT filter was between 1 5 and 3
   log higher than that observed with a recently reported single-walled
   carbon nanotube (SWNT) filter when examined under similar, loadings (0
   3 mg/cm(2)) of carbon nanotubes (CNTs). The greater removal of viruses
   by the M W NT filter is attributed to a more uniform CNT-filter matrix
   that allows effective removal of viruses by physicochemical (depth)
   filtration Viral removal by the MWNT filter was examined under a broad
   range of water compositions (ionic strength, monovalent and divalent
   salts, solution pH. natural organic matter, alginate, phosphate. and
   bicarbonate) and filter approach velocities (0 0016, 0.0044, and 0 0072
   cm/s) Log viral removal increased as the fluid approach velocity
   decreased, exhibiting a dependence on approach velocity in agreement
   with colloid filtration theory for Brownian particles Viral removal
   improved with increasing ionic strength (NaCl), from 5 06 log removal
   at 1 mM NaCl to greater than 6.56 log removal at 100 mM NaCl Addition
   of calcium ions also enhanced viral removal, but the presence of
   magnesium ions resulted in a decrease in viral removal Solution pH also
   played an important role in viral removal, with log removals of 8 13,
   538, and 4 00 being documented at solution pH values of 3 0, 55, and 9
   0, respectively Dissolved natural organic matter (NOM) had a negligible
   effect on viral removal at low concentration (1 mg/L), but higher
   concentrations of NOM significantly reduced the viral removal by the
   MWNT filter, likely due to steric repulsion Addition of alginate (model
   polysaccharide) also caused a marked decrease in viral removal by the
   MWNT filter This highly scalable MWNT-filter technology at
   gravity-driven pressures presents new, cost-effective options for
   point-of-use filters for viral removal
C1 [Brady-Estevez, Anna S.; Schnoor, Mary H.; Vecitis, Chad D.; Saleh, Navid B.; Ehmelech, Menachem] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520 USA.
RP Ehmelech, M, Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520
   USA.
CR AJAYAN PM, 2001, CARBON NANOTUBES, V80, P391
   ARIAS LR, 2009, LANGMUIR, V25, P3003, DOI 10.1021/la802769m
   BALES RC, 1993, WATER RESOUR RES, V29, P957
   BARKER DJ, 1999, WATER RES, V33, P3063
   BAUGHMAN RH, 2002, SCIENCE, V297, P787
   BRADFORD SA, 2006, J ENVIRON QUAL, V35, P1692
   BRADYESTEVEZ AS, 2008, SMALL, V4, P481, DOI 10.1002/smll.200700863
   BRADYESTEVEZ AS, 2010, WATER RES, V44, P3773, DOI
   10.1016/j.watres.2010.04.023
   CHEN KL, 2006, LANGMUIR, V22, P10994, DOI 10.1021/la062072v
   CHEN KL, 2008, ENVIRON SCI TECHNOL, V42, P7607, DOI 10.1021/es8012062
   DI ZC, 2006, CHEMOSPHERE, V62, P861, DOI
   10.1016/j.chemosphere.2004.06.044
   ELIMELECH M, 1992, WATER RES, V26, P1
   ELIMELECH M, 1995, PARTICLE DEPOSITION
   FUNDERBURG SW, 1981, WATER RES, V15, P703
   GRANT SB, 1993, WATER RESOUR RES, V29, P2067
   GUTIERREZ L, 2010, ENVIRON SCI TECHNOL, V44, P4552, DOI
   10.1021/es100120k
   HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   ISRAELACHVILI JN, 1992, INTERMOLECULAR SURFA
   JIANG LQ, 2003, J COLLOID INTERF SCI, V260, P89, DOI
   10.1016/S0021-9797(02)00176-5
   KANG S, 2007, LANGMUIR, V23, P8670, DOI 10.1021/la701067r
   KANG S, 2008, ENVIRON SCI TECHNOL, V42, P7528, DOI 10.1021/es8010173
   KANG S, 2008, LANGMUIR, V24, P6409, DOI 10.1021/la800951v
   KANG S, 2009, ENVIRON SCI TECHNOL, V43, P2648, DOI 10.1021/es8031506
   KIM YA, 2004, CHEM PHYS LETT, V398, P87, DOI
   10.1016/j.cplett.2004.09.024
   KRISHNA V, 2005, PROCESS SAF ENVIRON, V83, P393, DOI 10.1205/psep.04387
   LANCE JC, 1982, J ENVIRON QUAL, V11, P347
   LEE PC, 2006, INT ZOO YEARB, V40, P9
   LIU SB, 2009, ACS NANO, V3, P3891, DOI 10.1021/nn901252r
   MANKA J, 1974, ENVIRON SCI TECHNOL, V8, P1017
   MAUTER MS, 2008, ENVIRON SCI TECHNOL, V42, P5843, DOI 10.1021/es8006904
   MOREL FMM, 1993, PRINCIPLES APPL AQUA
   OTTEWILL RH, 1972, J ELECTROANAL CHEM, V37, P133
   PEIGNEY A, 2001, CARBON, V39, P507
   PENG FB, 2007, J MEMBRANE SCI, V297, P236, DOI
   10.1016/j.memsci.2007.03.048
   PENG XJ, 2005, MATER LETT, V59, P399, DOI 10.1016/j.matlet.2004.05.090
   PENROD SL, 1996, LANGMUIR, V12, P5576
   PHAM M, 2009, J COLLOID INTERF SCI, V338, P1, DOI
   10.1016/j.jcis.2009.06.025
   PIEPER AP, 1997, ENVIRON SCI TECHNOL, V31, P1163
   POWELSON DK, 1990, J ENVIRON QUAL, V19, P396
   REDMAN JA, 1999, WATER RES, V33, P43
   REDMAN JA, 2004, ENVIRON SCI TECHNOL, V38, P1777, DOI 10.1021/es0348871
   RODRIGUES DF, 2010, ENVIRON SCI TECHNOL, V44, P4583, DOI
   10.1021/es1005785
   RYAN JN, 1996, COLLOID SURFACE A, V107, P1
   SALEH NB, 2008, ENVIRON SCI TECHNOL, V42, P7963, DOI 10.1021/es801251c
   SALEH NB, 2009, ENVIRON SCI TECHNOL, V44, P2412
   SANO M, 2001, LANGMUIR, V17, P7172
   SAVAGE N, 2005, J NANOPART RES, V7, P331, DOI 10.1007/s11051-005-7523-5
   SCHIJVEN JF, 2000, CRIT REV ENV SCI TEC, V30, P49
   SOBSEY MD, 1995, WATER SCI TECHNOL, V31, P203
   SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192
   TAYLOR DH, 1981, APPL ENVIRON MICROB, V42, P976
   TUFENKJI N, 2004, ENVIRON SCI TECHNOL, V38, P529, DOI 10.1021/es034049r
   WANG DS, 1981, APPL ENVIRON MICROB, V42, P83
   WANG XF, 2005, ENVIRON SCI TECHNOL, V39, P7684, DOI 10.1021/es050512j
   YAO KM, 1971, ENVIRON SCI TECHNOL, V5, P1105
   YE Y, 1999, APPL PHYS LETT, V74, P2307
   YUAN BL, 2008, ENVIRON SCI TECHNOL, V42, P7628, DOI 10.1021/es801003s
   YUAN W, 2008, J PHYS CHEM C, V112, P18754, DOI 10.1021/jp807133j
   ZHANG J, 2003, J PHYS CHEM B, V107, P3712, DOI 10.1021/jp027500u
NR 60
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
DI 10.1021/la102783v
PD SEP 21
VL 26
IS 18
BP 14975
EP 14982
SC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
   Multidisciplinary
GA 648JV
UT ISI:000281690600087
ER
PT J
*Record 4 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000282018100008>
*Order Full Text [ ]
AU Cannon, JJ
   Tang, D
   Hur, N
   Kim, D
AF Cannon, James J.
   Tang, Dai
   Hur, Nahmkeon
   Kim, Daejoong
TI Competitive Entry of Sodium and Potassium into Nanoscale Pores
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; CARBON NANOTUBE MEMBRANES;
   ELECTROOSMOTIC FLOWS; WATER; TRANSPORT; SELECTIVITY; NANOPORES;
   HYDRATION; CHANNELS; NA+
AB We have studied the competitive entry of potassium and sodium into
   carbon nanotubes using molecular dynamics simulations. Our results
   demonstrate how a combination of strong sodium hydration coupled with
   strong potassium chlorine interaction leads to enhanced potassium
   selectivity at certain diameters. We detail the reasons behind this,
   and show how variation of nanotube diameter can cause a switch to
   sodium selectivity, or even cause a decrease in overall ion entry
   despite an increase in diameter. These results demonstrate the
   importance of considering inter-ion dependence in the theoretical study
   of pore selectivity and show that, with careful design, the practical
   separation of sodium and potassium is possible using diameter variation
   alone.
C1 [Cannon, James J.; Tang, Dai; Hur, Nahmkeon; Kim, Daejoong] Sogang Univ, Dept Mech Engn, Seoul 121742, South Korea.
   [Cannon, James J.; Hur, Nahmkeon; Kim, Daejoong] Sogang Univ, Multiphenomena CFD ERC, Seoul 121742, South Korea.
RP Kim, D, Sogang Univ, Dept Mech Engn, 1 Shinsu Dong, Seoul 121742, South
   Korea.
EM Daejoong@sogang.ac.kr
CR BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y
   BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
   CARRILLOTRIPP M, 2004, PHYS REV LETT, V93, ARTN 168104
   CARRILLOTRIPP M, 2006, BIOPHYS CHEM, V124, P243, DOI
   10.1016/j.bpc.2006.04.012
   CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u
   DANG LX, 1991, J AM CHEM SOC, V113, P2481
   DANG LX, 1995, J PHYS CHEM-US, V99, P55
   DUAN Y, 1998, SCIENCE, V282, P740
   EWALD P, 1921, ANN PHYS, V369, P253
   FREDDOLINO PL, 2006, STRUCTURE, V14, P437
   GE YY, 2009, PHYS REV E 1, V80, ARTN 021918
   GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320
   GONG XJ, 2010, J AM CHEM SOC, V132, P1873, DOI 10.1021/ja905753p
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HOOVER WG, 1985, PHYS REV A, V31, P1695
   ITANO T, 2008, J PHYS SOC JPN, V77, ARTN 064605
   JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326
   KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
   KANG MS, 2001, LANGMUIR, V17, P2753
   KARPLUS M, 2002, NAT STRUCT BIOL, V9, P646
   KIM D, 2009, J COLLOID INTERF SCI, V330, P194, DOI
   10.1016/j.jcis.2008.10.029
   LIU ZT, 2008, CERAM INT, V34, P69, DOI 10.1016/j.ceramint.2006.08.006
   MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b
   QIAO R, 2003, J CHEM PHYS, V118, P4692, DOI 10.1063/1.1543140
   RAGHUNATHAN AV, 2006, PHYS REV LETT, V97, ARTN 024501
   SHAO Q, 2009, NANO LETT, V9, P989, DOI 10.1021/nl803044k
   SHINODA W, 1997, J CHEM PHYS, V106, P5731
   SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261
   SMITH W, 1996, J MOL GRAPH MODEL, V14, P136
   SMITH W, 2002, MOL SIMULAT, V28, P385, DOI 10.1080/08927020290018769
   SONG C, 2009, J PHYS CHEM B, V113, P7642, DOI 10.1021/jp810102u
   WARD JM, 2009, ANNU REV PHYSIOL, V71, P59, DOI
   10.1146/annurev.physiol.010908.163204
   WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112
   YELLEN G, 2002, NATURE, V419, P35, DOI 10.1038/nature00978
NR 34
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
DI 10.1021/jp104609d
PD SEP 30
VL 114
IS 38
BP 12252
EP 12256
SC Chemistry, Physical
GA 652OV
UT ISI:000282018100008
ER
PT J
*Record 5 of 5. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281857100119>
*Order Full Text [ ]
AU Lee, J
   Karnik, R
AF Lee, Jongho
   Karnik, Rohit
TI Desalination-of water by vapor-phase transport through hydrophobic
   nanopores
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID REVERSE-OSMOSIS MEMBRANES; CONDENSATION COEFFICIENT; EVAPORATION
   COEFFICIENT; CARBON NANOTUBE; SEAWATER DESALINATION; FUEL-CELLS;
   DISTILLATION; REDUCTION; SURFACE; MACROMOLECULES
AB We propose a new approach to desalination of water whereby a pressure
   difference across a vapor-trapping nanopore induces selective transport
   of water by isothermal evaporation and condensation across the pore.
   Transport of water through a nanopore with saline water on one side and
   pure water on the other side under a pressure difference was
   theoretically analyzed under the rarefied gas assumption using a
   probabilistic framework that accounts for diffuse scattering from the
   pore walls as well as reflection from the menisci. The analysis
   revealed that in addition to salinity, temperature, and pressure
   difference, the nanopore aspect ratio and the probability of
   condensation of a water molecule incident on a meniscus from the vapor
   phase, known as the condensation coefficient, are key determinants of
   flux. The effect of condensation coefficient on mass flux becomes
   critical when the aspect ratio is small. However, the mass flux becomes
   independent of the condensation coefficient as the pore aspect ratio
   increases, converging to the Knudsen flux for long nanopores. For
   design of a nanopore membrane that can trap vapor, a minimum aspect
   ratio is derived for which coalescence of the two interfaces on either
   side of the nanopore remains energetically unfavorable. Based on this
   design criterion, the analysis suggests that mass flux in the range of
   20-70 g/m(2) s may be feasible if the system is operated at
   temperatures in the range of 30-50 degrees C. The proposed approach
   further decouples transport properties from material properties of the
   membrane, which opens the possibility of engineering membranes with
   appropriate materials that may lead to reverse osmosis membranes with
   improved flux, better selectivity, and high chlorine resistance. (C)
   2010 American Institute of Physics. [doi:10.1063/1.3419751]
C1 [Lee, Jongho; Karnik, Rohit] MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
RP Karnik, R, MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
EM karnik@mit.edu
CR ALTY T, 1931, P R SOC LOND A-CONTA, V131, P554
   ALTY T, 1935, PROC R SOC LON SER-A, V149, P104
   ANISIMOV SI, 1999, J CHEM PHYS, V110, P8722
   BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI
   10.1073/pnas.1136844100
   BERMAN AS, 1965, J APPL PHYS, V36, P3356
   BONACCI JC, 1976, CHEM ENG SCI, V31, P609
   CADOTTE J, 1981, 4277344, US
   CAILLIEZ F, 2008, J PHYS CHEM C, V112, P10435, DOI 10.1021/jp710746b
   CARDEW PT, 1999, MEMBRANE PROCESSES
   CINCOTTA RP, 2003, SECURITY DEMOGRAPHIC
   CLAUSING P, 1971, J VAC SCI TECHNOL, V8, P636
   CUNNINGHAM RE, 1980, DIFFUSION GASES PORO
   EAMES IW, 1997, INT J HEAT MASS TRAN, V40, P2963
   ENGEHIMN R, 2000, PEOPLE BALANCE POPUL
   FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
   10.1073/pnas.0710437105
   FRITZMANN C, 2007, DESALINATION, V216, P1, DOI
   10.1016/i.desal.2006.12.009
   GIAYA A, 2002, J CHEM PHYS, V117, P3464
   GLATER J, 1994, DESALINATION, V95, P325
   GREGG SJ, 1967, ADSORPTION SURFACE A
   HALL C, 1981, POLYM MAT INTRO TECH
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUMMER G, 2001, NATURE, V414, P188
   JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI
   10.1016/j.memsci.2007.02.025
   KHAYET M, 2003, J APPL POLYM SCI, V89, P2902, DOI 10.1002/app.12231
   KIM HI, 2001, J MEMBRANE SCI, V190, P21
   KLAUK H, 2007, NATURE, V445, P745, DOI 10.1038/nature05533
   KULKARNI A, 1996, J MEMBRANE SCI, V114, P39
   LAWSON KW, 1996, J MEMBRANE SCI, V120, P123
   LAWSON KW, 1997, J MEMBRANE SCI, V124, P1
   LEFEVRE B, 2004, J CHEM PHYS, V120, P4927, DOI 10.1063/1.1643728
   LIU C, 2000, COMMUN THEOR PHYS, V33, P457
   LIU ZL, 2002, LANGMUIR, V18, P4054
   LOEB S, 1964, 3133132, US
   LUM K, 1997, PHYS REV E, V56, R6283
   MAA JR, 1967, IND ENG CHEM FUND, V6, P504
   MAGARA Y, 1998, DESALINATION, V118, P25
   MAREK R, 2001, INT J HEAT MASS TRAN, V44, P39
   MASON EA, 1983, GAS TRANSPORT POROUS
   MCCOOL BA, 2003, J MEMBRANE SCI, V218, P55, DOI
   10.1016/S0376-7388(03)00136-4
   MICKOLS WE, 2005, INT DES ASS WORLD C
   MILLER JE, 2003, SAND20030800 SAND NA
   MILLS AF, 1967, INT J HEAT MASS TRAN, V10, P1815
   MILLS AF, 1998, HEAT TRANSFER
   NABAVIAN K, 1963, CHEM ENG SCI, V18, P651
   PARKHILL AL, 2006, INT IMMUNOPHARMACOL, V6, P1013, DOI
   10.1016/j.intimp.2006.01.012
   PETERSEN RJ, 1993, J MEMBRANE SCI, V83, P81
   PHILLIP WA, 2006, J MEMBRANE SCI, V286, P144, DOI
   10.1016/j.memsci.2006.09.028
   RAMACHANDRAN CE, 2006, MICROPOR MESOPOR MAT, V90, P293, DOI
   10.1016/j.micromeso.2005.10.021
   RAO AP, 2003, J MEMBRANE SCI, V211, P13
   SANDLER SI, 2006, CHEM BIOCH ENG THERM
   SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
   SOLTANIEH M, 1981, CHEM ENG COMMUN, V12, P279
   SRISURICHAN S, 2006, J MEMBRANE SCI, V277, P186, DOI
   10.1016/j.memsci.2005.10.028
   STELZER J, 1998, MICROPOR MESOPOR MAT, V22, P1
   STRIEMER CC, 2007, NATURE, V445, P749, DOI 10.1038/nature05532
   TANIGUCHI M, 2000, AICHE J, V46, P1967
   TANIGUCHI M, 2001, J MEMBRANE SCI, V183, P259
   VARANASI KK, 2009, APPL PHYS LETT, V95, ARTN 094101
   WANG C, 2004, NANO LETT, V4, P345, DOI 10.1021/nl034952p
   WILF M, 2007, GUIDEBOOK MEMBRANE D
   WOLF PH, 2004, P INT C DES COST LIM, P55
   WYLLIE G, 1949, P ROY SOC LOND A MAT, V197, P383
   YAMAGUCHI A, 2004, NAT MATER, V3, P337, DOI 10.1038/nmat1107
   YUAN ZH, 2002, ADV MATER, V14, P303
NR 64
TC 0
PU AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON
   QUADRANGLE, STE 1 N O 1,
      MELVILLE, NY 11747-4501 USA
SN 0021-8979
DI 10.1063/1.3419751
PD AUG 15
VL 108
IS 4
AR 044315
SC Physics, Applied
GA 650NV
UT ISI:000281857100119
ER
EF
========================================================================
 *Order Full Text* 
 All Customers
--------------
    Please contact your library administrator, or person(s) responsible for 
    document delivery, to find out more about your organization's policy for 
    obtaining the full text of the above articles. If your organization does 
    not have a current document delivery provider, your administrator can 
    contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 
    or 734-459-8565.
 IDS Customers
--------------
    IDS customers can purchase the full text of an article (having page number, 
    volume, and issue information) by returning this ENTIRE message as a Reply 
    to Sender or Forward to orders@isidoc.com. Mark your choices with an X in 
    the "Order Full Text: []" brackets for each item. For example, [X].
Please enter your account number here:
========================================================================
 *Import Records into an ISI ResearchSoft product*
 1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
 2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
 *Help Desk Contact Information*
 If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================
 
No comments:
Post a Comment