Friday, October 8, 2010

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281992800031>
*Order Full Text [ ]
AU Kumar, S
Sharma, A
Tripathi, B
Srivastava, S
Agrawal, S
Singh, M
Awasthi, K
Vijay, YK
AF Kumar, Sumit
Sharma, Anshu
Tripathi, Balram
Srivastava, Subodh
Agrawal, Shweta
Singh, M.
Awasthi, Kamlendra
Vijay, Y. K.
TI Enhancement of hydrogen gas permeability in electrically aligned
MWCNT-PMMA composite membranes
SO MICRON
LA English
DT Review
DE MWCNT; PM MA; Membrane; Electrical field alignment; Gas permeation;
Raman spectroscopy; XRD
ID WALL CARBON NANOTUBES; FAST MASS-TRANSPORT; SEPARATION MEMBRANES;
POLYMER COMPOSITES; FIELD; PERMEATION; STORAGE; ADSORPTION
AB The multi-walled carbon nanotube (MWCNT) dispersed
polymethylmethacrylate (PMMA) composite membranes have been prepared
for hydrogen gas permeation application. Composite membranes are
characterized by Raman spectroscopy, optical microscopy, X-ray
diffraction, electrical measurements and gas permeability measurements.
The effect of electric field alignment of MWCNT in PMMA matrix on gas
permeation has been studied for hydrogen gas. The permeability
measurements indicated that the electrically aligned MWCNT in PMMA has
shown almost 2 times higher permeability for hydrogen gas as compare to
randomly dispersed MWCNT in PMMA. The enhancement in permeability is
explained on the basis of well aligned easy channel provided by MWCNT
in electrically aligned sample. The effect of thickness of membrane on
the gas permeability also studied and thickness of about 30 mu m found
to be optimum thickness for fast hydrogen gas permeates. (C) 2010
Elsevier Ltd. All rights reserved.
C1 [Kumar, Sumit; Sharma, Anshu; Tripathi, Balram; Srivastava, Subodh; Agrawal, Shweta; Singh, M.; Vijay, Y. K.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India.
[Awasthi, Kamlendra] Indian Inst Technol, Dept Chem Engn, DST Unit Nanosci, Kanpur 208016, Uttar Pradesh, India.
RP Kumar, S, Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India.
EM sumitphy11@gmail.com
yk_vijay@sancharnet.in
CR ACHARYA NK, 2008, INT J HYDROGEN ENERG, V33, P327, DOI
10.1016/j.ijhydene.2007.07.030
ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI
10.1080/0892702031000103239
AJAYAN PM, 1999, CHEM REV, V99, P1787
ANSON A, 2004, CARBON, V42, P1243, DOI 10.1016/j.carbon.2004.01.038
BAKER RW, 1991, MEMBRANE SEPARATION
BAO QL, 2006, NANOTECHNOLOGY, V17, P1016, DOI 10.1088/0957-4484/17/4/028
BLIZNYUK VN, 2006, POLYMER, V47, P3915, DOI
10.1016/j.polymer.2006.03.072
CHENG HM, 2001, CARBON, V39, P1447
DILLON AC, 1997, NATURE, V386, P377
EKLUND PC, 1995, CARBON, V33, P959
FERON P, 1992, IEA GREENHOUSE GAS R
FREEMAN BD, 1999, MACROMOLECULES, V32, P375
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KATAURA H, 1999, SYNTHETIC MET, V103, P2555
KIMURA T, 2002, ADV MATER, V14, P1380
KOROS WJ, 2000, J MEMBRANE SCI, V175, P181
KOROS WJ, 2002, MACROMOL SYMP, V188, P13
KULSHRESTHA V, 2006, INT J HYDROGEN ENERG, V31, P1266, DOI
10.1016/j.ijhydene.2005.1.2.004
KULSHRESTHA V, 2006, POLYM BULL, V56, P427, DOI
10.1007/s00289-006-0509-3
KULSHRESTHA V, 2007, INT J HYDROGEN ENERG, V32, P3105, DOI
10.1016/j.ijhydene.2007.01.014
KULSHRESTHA V, 2010, MICRON, V41, P390, DOI 10.1016/j.micron.2009.12.003
LEE SM, 2001, J AM CHEM SOC, V123, P5059, DOI 10.1021/ja003751+
LIJIMA S, 1991, NATURE, V354, P56
MARTIN CA, 2005, POLYMER, V46, P877, DOI 10.1016/j.polymer.2004.11.081
PAN W, 2009, J MATER SCI TECHNOL, V25, P247
PARK C, 2006, J POLYM SCI POL PHYS, V44, P1751, DOI 10.1002/polb.20823
PAUL DR, 1994, POLYM GAS SEPARATION
SHARMA A, 2009, INT J HYDROGEN ENERG, V34, P3977, DOI
10.1016/j.ijhydene.2009.02.068
SHEN K, 2004, CARBON, V42, P2315, DOI 10.1016/j.carbon.2004.005.014
SIDOROV AN, 2008, NANOTECHNOLOGY, V19, UNSP 195708-195714
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901
STEPHAN C, 2000, SYNTHETIC MET, V108, P139
STERN SA, 1994, J MEMBRANE SCI, V94, P1
SUER MG, 1994, J MEMBRANE SCI, V91, P77
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368
VIJAY YK, 2006, J POLYM RES, V13, P357, DOI 10.1007/s10965-006-9051-0
NR 38
TC 0
PU PERGAMON-ELSEVIER SCIENCE LTD; THE BOULEVARD, LANGFORD LANE,
KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0968-4328
DI 10.1016/j.micron.2010.05.016
PD OCT
VL 41
IS 7
BP 909
EP 914
SC Microscopy
GA 652GX
UT ISI:000281992800031
ER

PT J
*Record 2 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281690600068>
*Order Full Text [ ]
AU Fornasiero, F
Bin In, J
Kim, S
Park, HG
Wang, Y
Grigoropoulos, CP
Noy, A
Bakajin, O
AF Fornasiero, Francesco
Bin In, Jung
Kim, Sangil
Park, Hyung Gyu
Wang, Yinmin
Grigoropoulos, Costas P.
Noy, Aleksandr
Bakajin, Olgica
TI pH-Tunable Ion Selectivity in Carbon Nanotube Pores
SO LANGMUIR
LA English
DT Article
ID FILLED NANOFILTRATION MEMBRANES; NANOFLUIDIC CHANNELS; ELECTROLYTIC
TRANSPORT; REVERSE-OSMOSIS; SILICON-NITRIDE; SALT REJECTION;
PERMEATION; SEPARATION; SURFACE; WATER
AB The selectivity of ion transport in nanochannels is of pi Unary
importance for a number of physical, chemical, and biological processes
ranging from fluid separation to ion-channel-regulated cellular
processes Fundamental understanding of these phenomena requires model
nanochannels with well-defined and controllable structural properties
Carbon nanotubes provide an ideal choice for nanofluidic studies
because of their simple chemistry and structure, the atomic scale
smoothness and chemical inertness of the graphitic walls, and the
tunability of their diameter and length Here, we investigate the
selectivity of single and, for the first time, binary salt mixtures
transport through nail ow carbon nanotubes that act as the only pores
in a silicon nitride membrane. We demonstrate that negatively charged
carboxylic groups are responsible for the ion rejection performance of
carbon nanotube pores and that ion permeation of small salts can be
tuned by varying solution Investigation of the effect of solution
composition and ion valences for binary electrolytes with common cation
m a pressure-driven flow reveals that the addition of slower diffusing
multivalent anions to a solution of faster diffusing monovalent anions
favors permeation of the monovalent anion Larger fractions and valences
of the added multivalent anions lower the rejection of the monovalent
anion. In some cases, we observe negative rejection at low monovalent
ion content
C1 [Kim, Sangil; Bakajin, Olgica] Porifera Inc, Hayward, CA 94545 USA.
[Fornasiero, Francesco; Wang, Yinmin; Noy, Aleksandr] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Bin In, Jung; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Park, Hyung Gyu] ETH, Inst Energy Technol, Dept Mech & Proc Engn, Zurich, Switzerland.
[Noy, Aleksandr] Univ Calif Merced, Sch Nat Sci, Merced, CA 95344 USA.
[Bakajin, Olgica] Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA.
RP Bakajin, O, Porifera Inc, Hayward, CA 94545 USA.
CR ABGRALL P, 2008, ANAL CHEM, V80, P2326, DOI 10.1021/ac702296u
BECKSTEIN O, 2004, J AM CHEM SOC, V126, P14694, DOI 10.1021/ja045271e
BECKSTEIN O, 2004, PHYS BIOL, V1, P42, DOI 10.1088/1478-3967/1/1/005
BOWEN WR, 1996, J MEMBRANE SCI, V112, P263
CARRILLOTRIPP M, 2004, PHYS REV LETT, V93
CARRILLOTRIPP M, 2005, ION HYDRATION NANOPO, P243
CEROVIC LS, 2002, COLLOID SURFACE A, V197, P147
CORRY C, 2008, J PHYS CHEM B, V112, P1427
DAIGUJI H, 2004, NANO LETT, V4, P137, DOI 10.1021/nl0348185
DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945
DEY TK, 2000, DESALINATION, V127, P165
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
10.1073/pnas.0710437105
GARCIAALEMAN J, 2004, J MEMBRANE SCI, V239, P163, DOI
10.1016/j.memsci.2004.02.036
GARCIAALEMAN J, 2004, J MEMBRANE SCI, V240, P237, DOI
10.1016/j.memsci.2004.05.009
GILRON J, 2001, J MEMBRANE SCI, V185, P223
GOLDBERGER J, 2006, ACCOUNTS CHEM RES, V39, P239
HAGMEYER G, 1999, SEP PURIF TECHNOL, V15, P19
HILDER TA, 2009, SMALL, V5, P2183, DOI 10.1002/smll.200900349
HILLE B, 2001, CHANNEL EXCITABLE ME, P814
HO C, 2005, P NATL ACAD SCI USA, V102, P10445, DOI
10.1073/pnas.0500796102
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HOLT JK, 2009, ADV MATER, V21, P1
HOWORKA S, 2009, CHEM SOC REV, V38, P2360, DOI 10.1039/b813796j
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326
KARNIK R, 2005, NANO LETT, V5, P943, DOI 10.1021/nl050493b
LEUNG K, 2006, PHYS REV LETT, V96, P4
LIU HM, 2006, J CHEM PHYS, V125, P14
LIU HM, 2007, MOL DYNAMICS SIMULAT, P169
LIU HT, 2010, SCIENCE, V327, P64, DOI 10.1126/science.1181799
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k
MARUN CR, 2001, ADV MATER, V13, P1351
NAGAI Y, 2006, J CONTROL RELEASE, V115, P18, DOI
10.1016/j.jconrel.2006.06.031
NAKAMATSU T, 1998, J EUR CERAM SOC, V18, P1273
NEDNOOR P, 2005, CHEM MATER, V17, P3595, DOI 10.1021/cm047844s
NEDNOOR P, 2007, J MATER CHEM, V17, P1755, DOI 10.1039/b703365f
NEWMAN J, 2004, ELECTROCHEMICAL SYST, P647
NICHOLSON D, 2003, MOL SIMULAT, V29, P287, DOI
10.1080/0892702031000078427
NISHIZAWA M, 1995, SCIENCE, V268, P700
NOY A, 2007, NANO TODAY, V2, P22
OSADA Y, 1992, MEMBRANE SCI TECHNOL
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946
SCHAEP J, 1998, SEP PURIF TECHNOL, V14, P155
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839
SCHRLAU MG, 2008, NANOTECHNOLOGY, V19
SCRUGGS NR, 2009, NANO LETT, V9, P3853, DOI 10.1021/nl9020683
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
SHAO Q, 2008, PHYS CHEM CHEM PHYS, V10, P1896, DOI 10.1039/b719033f
SHAO Q, 2009, NANO LETT, V9, P989, DOI 10.1021/nl803044k
SONG C, 2009, J PHYS CHEM B, V113, P7642, DOI 10.1021/jp810102u
SPARREBOOM W, 2009, NAT NANOTECHNOL, V4, P713, DOI
10.1038/NNANO.2009.332
SUMIKAMA T, 2006, J PHYS CHEM B, V110, P20671, DOI 10.1021/jp062547r
TANG YW, 2004, J PHYS CHEM B, V108, P18204, DOI 10.1021/jp0465985
TSURU T, 1991, DESALINATION, V81, P219
TSURU T, 1991, J CHEM ENG JPN, V24, P518
VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h
WANG KY, 2005, J MEMBRANE SCI, V247, P37, DOI
10.1016/j.memsci.2004.09.007
WEI JQ, 2003, CHEM PHYS LETT, V376, P753, DOI
10.1016/S0009-2614(03)01076-5
WEI JQ, 2003, J MATER CHEM, V13, P1340, DOI 10.1039/b300484h
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
WON CY, 2009, CHEM PHYS LETT, V478, P185, DOI
10.1016/j.cplett.2009.07.064
WONG SS, 1998, J AM CHEM SOC, V120, P8557
WONG SS, 1998, NATURE, V394, P52
YANG L, 2007, J CHEM PHYS, V126
YAROSHCHUK AE, 2007, NEGATIVE REJECTION I, P150
NR 67
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
DI 10.1021/la101943h
PD SEP 21
VL 26
IS 18
BP 14848
EP 14853
SC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
GA 648JV
UT ISI:000281690600068
ER

PT J
*Record 3 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281690600087>
*Order Full Text [ ]
AU Brady-Estevez, AS
Schnoor, MH
Vecitis, CD
Saleh, NB
Ehmelech, M
AF Brady-Estevez, Anna S.
Schnoor, Mary H.
Vecitis, Chad D.
Saleh, Navid B.
Ehmelech, Menachem
TI Multiwalled Carbon Nanotube Filter: Improving Viral Removal at Low
Pressure
SO LANGMUIR
LA English
DT Article
ID FULLERENE C-60 NANOPARTICLES; SOIL COLUMNS; POROUS-MEDIA; DEPOSITION
KINETICS; ENVIRONMENTAL IMPLICATIONS; AGGREGATION KINETICS; BACTERIAL
PATHOGENS; CERIA NANOPARTICLES; ORGANIC-MATTER; TRANSPORT
AB The effective removal of viruses by a multiwalled carbon nanotube
(MWNT) filter is demonstrated over a range of solution chemistries MS2
bacteriophage viral removal by the MWNT filter was between 1 5 and 3
log higher than that observed with a recently reported single-walled
carbon nanotube (SWNT) filter when examined under similar, loadings (0
3 mg/cm(2)) of carbon nanotubes (CNTs). The greater removal of viruses
by the M W NT filter is attributed to a more uniform CNT-filter matrix
that allows effective removal of viruses by physicochemical (depth)
filtration Viral removal by the MWNT filter was examined under a broad
range of water compositions (ionic strength, monovalent and divalent
salts, solution pH. natural organic matter, alginate, phosphate. and
bicarbonate) and filter approach velocities (0 0016, 0.0044, and 0 0072
cm/s) Log viral removal increased as the fluid approach velocity
decreased, exhibiting a dependence on approach velocity in agreement
with colloid filtration theory for Brownian particles Viral removal
improved with increasing ionic strength (NaCl), from 5 06 log removal
at 1 mM NaCl to greater than 6.56 log removal at 100 mM NaCl Addition
of calcium ions also enhanced viral removal, but the presence of
magnesium ions resulted in a decrease in viral removal Solution pH also
played an important role in viral removal, with log removals of 8 13,
538, and 4 00 being documented at solution pH values of 3 0, 55, and 9
0, respectively Dissolved natural organic matter (NOM) had a negligible
effect on viral removal at low concentration (1 mg/L), but higher
concentrations of NOM significantly reduced the viral removal by the
MWNT filter, likely due to steric repulsion Addition of alginate (model
polysaccharide) also caused a marked decrease in viral removal by the
MWNT filter This highly scalable MWNT-filter technology at
gravity-driven pressures presents new, cost-effective options for
point-of-use filters for viral removal
C1 [Brady-Estevez, Anna S.; Schnoor, Mary H.; Vecitis, Chad D.; Saleh, Navid B.; Ehmelech, Menachem] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520 USA.
RP Ehmelech, M, Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520
USA.
CR AJAYAN PM, 2001, CARBON NANOTUBES, V80, P391
ARIAS LR, 2009, LANGMUIR, V25, P3003, DOI 10.1021/la802769m
BALES RC, 1993, WATER RESOUR RES, V29, P957
BARKER DJ, 1999, WATER RES, V33, P3063
BAUGHMAN RH, 2002, SCIENCE, V297, P787
BRADFORD SA, 2006, J ENVIRON QUAL, V35, P1692
BRADYESTEVEZ AS, 2008, SMALL, V4, P481, DOI 10.1002/smll.200700863
BRADYESTEVEZ AS, 2010, WATER RES, V44, P3773, DOI
10.1016/j.watres.2010.04.023
CHEN KL, 2006, LANGMUIR, V22, P10994, DOI 10.1021/la062072v
CHEN KL, 2008, ENVIRON SCI TECHNOL, V42, P7607, DOI 10.1021/es8012062
DI ZC, 2006, CHEMOSPHERE, V62, P861, DOI
10.1016/j.chemosphere.2004.06.044
ELIMELECH M, 1992, WATER RES, V26, P1
ELIMELECH M, 1995, PARTICLE DEPOSITION
FUNDERBURG SW, 1981, WATER RES, V15, P703
GRANT SB, 1993, WATER RESOUR RES, V29, P2067
GUTIERREZ L, 2010, ENVIRON SCI TECHNOL, V44, P4552, DOI
10.1021/es100120k
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
ISRAELACHVILI JN, 1992, INTERMOLECULAR SURFA
JIANG LQ, 2003, J COLLOID INTERF SCI, V260, P89, DOI
10.1016/S0021-9797(02)00176-5
KANG S, 2007, LANGMUIR, V23, P8670, DOI 10.1021/la701067r
KANG S, 2008, ENVIRON SCI TECHNOL, V42, P7528, DOI 10.1021/es8010173
KANG S, 2008, LANGMUIR, V24, P6409, DOI 10.1021/la800951v
KANG S, 2009, ENVIRON SCI TECHNOL, V43, P2648, DOI 10.1021/es8031506
KIM YA, 2004, CHEM PHYS LETT, V398, P87, DOI
10.1016/j.cplett.2004.09.024
KRISHNA V, 2005, PROCESS SAF ENVIRON, V83, P393, DOI 10.1205/psep.04387
LANCE JC, 1982, J ENVIRON QUAL, V11, P347
LEE PC, 2006, INT ZOO YEARB, V40, P9
LIU SB, 2009, ACS NANO, V3, P3891, DOI 10.1021/nn901252r
MANKA J, 1974, ENVIRON SCI TECHNOL, V8, P1017
MAUTER MS, 2008, ENVIRON SCI TECHNOL, V42, P5843, DOI 10.1021/es8006904
MOREL FMM, 1993, PRINCIPLES APPL AQUA
OTTEWILL RH, 1972, J ELECTROANAL CHEM, V37, P133
PEIGNEY A, 2001, CARBON, V39, P507
PENG FB, 2007, J MEMBRANE SCI, V297, P236, DOI
10.1016/j.memsci.2007.03.048
PENG XJ, 2005, MATER LETT, V59, P399, DOI 10.1016/j.matlet.2004.05.090
PENROD SL, 1996, LANGMUIR, V12, P5576
PHAM M, 2009, J COLLOID INTERF SCI, V338, P1, DOI
10.1016/j.jcis.2009.06.025
PIEPER AP, 1997, ENVIRON SCI TECHNOL, V31, P1163
POWELSON DK, 1990, J ENVIRON QUAL, V19, P396
REDMAN JA, 1999, WATER RES, V33, P43
REDMAN JA, 2004, ENVIRON SCI TECHNOL, V38, P1777, DOI 10.1021/es0348871
RODRIGUES DF, 2010, ENVIRON SCI TECHNOL, V44, P4583, DOI
10.1021/es1005785
RYAN JN, 1996, COLLOID SURFACE A, V107, P1
SALEH NB, 2008, ENVIRON SCI TECHNOL, V42, P7963, DOI 10.1021/es801251c
SALEH NB, 2009, ENVIRON SCI TECHNOL, V44, P2412
SANO M, 2001, LANGMUIR, V17, P7172
SAVAGE N, 2005, J NANOPART RES, V7, P331, DOI 10.1007/s11051-005-7523-5
SCHIJVEN JF, 2000, CRIT REV ENV SCI TEC, V30, P49
SOBSEY MD, 1995, WATER SCI TECHNOL, V31, P203
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192
TAYLOR DH, 1981, APPL ENVIRON MICROB, V42, P976
TUFENKJI N, 2004, ENVIRON SCI TECHNOL, V38, P529, DOI 10.1021/es034049r
WANG DS, 1981, APPL ENVIRON MICROB, V42, P83
WANG XF, 2005, ENVIRON SCI TECHNOL, V39, P7684, DOI 10.1021/es050512j
YAO KM, 1971, ENVIRON SCI TECHNOL, V5, P1105
YE Y, 1999, APPL PHYS LETT, V74, P2307
YUAN BL, 2008, ENVIRON SCI TECHNOL, V42, P7628, DOI 10.1021/es801003s
YUAN W, 2008, J PHYS CHEM C, V112, P18754, DOI 10.1021/jp807133j
ZHANG J, 2003, J PHYS CHEM B, V107, P3712, DOI 10.1021/jp027500u
NR 60
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
DI 10.1021/la102783v
PD SEP 21
VL 26
IS 18
BP 14975
EP 14982
SC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
GA 648JV
UT ISI:000281690600087
ER

PT J
*Record 4 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000282018100008>
*Order Full Text [ ]
AU Cannon, JJ
Tang, D
Hur, N
Kim, D
AF Cannon, James J.
Tang, Dai
Hur, Nahmkeon
Kim, Daejoong
TI Competitive Entry of Sodium and Potassium into Nanoscale Pores
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; CARBON NANOTUBE MEMBRANES;
ELECTROOSMOTIC FLOWS; WATER; TRANSPORT; SELECTIVITY; NANOPORES;
HYDRATION; CHANNELS; NA+
AB We have studied the competitive entry of potassium and sodium into
carbon nanotubes using molecular dynamics simulations. Our results
demonstrate how a combination of strong sodium hydration coupled with
strong potassium chlorine interaction leads to enhanced potassium
selectivity at certain diameters. We detail the reasons behind this,
and show how variation of nanotube diameter can cause a switch to
sodium selectivity, or even cause a decrease in overall ion entry
despite an increase in diameter. These results demonstrate the
importance of considering inter-ion dependence in the theoretical study
of pore selectivity and show that, with careful design, the practical
separation of sodium and potassium is possible using diameter variation
alone.
C1 [Cannon, James J.; Tang, Dai; Hur, Nahmkeon; Kim, Daejoong] Sogang Univ, Dept Mech Engn, Seoul 121742, South Korea.
[Cannon, James J.; Hur, Nahmkeon; Kim, Daejoong] Sogang Univ, Multiphenomena CFD ERC, Seoul 121742, South Korea.
RP Kim, D, Sogang Univ, Dept Mech Engn, 1 Shinsu Dong, Seoul 121742, South
Korea.
EM Daejoong@sogang.ac.kr
CR BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
CARRILLOTRIPP M, 2004, PHYS REV LETT, V93, ARTN 168104
CARRILLOTRIPP M, 2006, BIOPHYS CHEM, V124, P243, DOI
10.1016/j.bpc.2006.04.012
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u
DANG LX, 1991, J AM CHEM SOC, V113, P2481
DANG LX, 1995, J PHYS CHEM-US, V99, P55
DUAN Y, 1998, SCIENCE, V282, P740
EWALD P, 1921, ANN PHYS, V369, P253
FREDDOLINO PL, 2006, STRUCTURE, V14, P437
GE YY, 2009, PHYS REV E 1, V80, ARTN 021918
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320
GONG XJ, 2010, J AM CHEM SOC, V132, P1873, DOI 10.1021/ja905753p
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HOOVER WG, 1985, PHYS REV A, V31, P1695
ITANO T, 2008, J PHYS SOC JPN, V77, ARTN 064605
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175
KANG MS, 2001, LANGMUIR, V17, P2753
KARPLUS M, 2002, NAT STRUCT BIOL, V9, P646
KIM D, 2009, J COLLOID INTERF SCI, V330, P194, DOI
10.1016/j.jcis.2008.10.029
LIU ZT, 2008, CERAM INT, V34, P69, DOI 10.1016/j.ceramint.2006.08.006
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b
QIAO R, 2003, J CHEM PHYS, V118, P4692, DOI 10.1063/1.1543140
RAGHUNATHAN AV, 2006, PHYS REV LETT, V97, ARTN 024501
SHAO Q, 2009, NANO LETT, V9, P989, DOI 10.1021/nl803044k
SHINODA W, 1997, J CHEM PHYS, V106, P5731
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261
SMITH W, 1996, J MOL GRAPH MODEL, V14, P136
SMITH W, 2002, MOL SIMULAT, V28, P385, DOI 10.1080/08927020290018769
SONG C, 2009, J PHYS CHEM B, V113, P7642, DOI 10.1021/jp810102u
WARD JM, 2009, ANNU REV PHYSIOL, V71, P59, DOI
10.1146/annurev.physiol.010908.163204
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112
YELLEN G, 2002, NATURE, V419, P35, DOI 10.1038/nature00978
NR 34
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
DI 10.1021/jp104609d
PD SEP 30
VL 114
IS 38
BP 12252
EP 12256
SC Chemistry, Physical
GA 652OV
UT ISI:000282018100008
ER

PT J
*Record 5 of 5.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000281857100119>
*Order Full Text [ ]
AU Lee, J
Karnik, R
AF Lee, Jongho
Karnik, Rohit
TI Desalination-of water by vapor-phase transport through hydrophobic
nanopores
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID REVERSE-OSMOSIS MEMBRANES; CONDENSATION COEFFICIENT; EVAPORATION
COEFFICIENT; CARBON NANOTUBE; SEAWATER DESALINATION; FUEL-CELLS;
DISTILLATION; REDUCTION; SURFACE; MACROMOLECULES
AB We propose a new approach to desalination of water whereby a pressure
difference across a vapor-trapping nanopore induces selective transport
of water by isothermal evaporation and condensation across the pore.
Transport of water through a nanopore with saline water on one side and
pure water on the other side under a pressure difference was
theoretically analyzed under the rarefied gas assumption using a
probabilistic framework that accounts for diffuse scattering from the
pore walls as well as reflection from the menisci. The analysis
revealed that in addition to salinity, temperature, and pressure
difference, the nanopore aspect ratio and the probability of
condensation of a water molecule incident on a meniscus from the vapor
phase, known as the condensation coefficient, are key determinants of
flux. The effect of condensation coefficient on mass flux becomes
critical when the aspect ratio is small. However, the mass flux becomes
independent of the condensation coefficient as the pore aspect ratio
increases, converging to the Knudsen flux for long nanopores. For
design of a nanopore membrane that can trap vapor, a minimum aspect
ratio is derived for which coalescence of the two interfaces on either
side of the nanopore remains energetically unfavorable. Based on this
design criterion, the analysis suggests that mass flux in the range of
20-70 g/m(2) s may be feasible if the system is operated at
temperatures in the range of 30-50 degrees C. The proposed approach
further decouples transport properties from material properties of the
membrane, which opens the possibility of engineering membranes with
appropriate materials that may lead to reverse osmosis membranes with
improved flux, better selectivity, and high chlorine resistance. (C)
2010 American Institute of Physics. [doi:10.1063/1.3419751]
C1 [Lee, Jongho; Karnik, Rohit] MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
RP Karnik, R, MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
EM karnik@mit.edu
CR ALTY T, 1931, P R SOC LOND A-CONTA, V131, P554
ALTY T, 1935, PROC R SOC LON SER-A, V149, P104
ANISIMOV SI, 1999, J CHEM PHYS, V110, P8722
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI
10.1073/pnas.1136844100
BERMAN AS, 1965, J APPL PHYS, V36, P3356
BONACCI JC, 1976, CHEM ENG SCI, V31, P609
CADOTTE J, 1981, 4277344, US
CAILLIEZ F, 2008, J PHYS CHEM C, V112, P10435, DOI 10.1021/jp710746b
CARDEW PT, 1999, MEMBRANE PROCESSES
CINCOTTA RP, 2003, SECURITY DEMOGRAPHIC
CLAUSING P, 1971, J VAC SCI TECHNOL, V8, P636
CUNNINGHAM RE, 1980, DIFFUSION GASES PORO
EAMES IW, 1997, INT J HEAT MASS TRAN, V40, P2963
ENGEHIMN R, 2000, PEOPLE BALANCE POPUL
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI
10.1073/pnas.0710437105
FRITZMANN C, 2007, DESALINATION, V216, P1, DOI
10.1016/i.desal.2006.12.009
GIAYA A, 2002, J CHEM PHYS, V117, P3464
GLATER J, 1994, DESALINATION, V95, P325
GREGG SJ, 1967, ADSORPTION SURFACE A
HALL C, 1981, POLYM MAT INTRO TECH
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUMMER G, 2001, NATURE, V414, P188
JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI
10.1016/j.memsci.2007.02.025
KHAYET M, 2003, J APPL POLYM SCI, V89, P2902, DOI 10.1002/app.12231
KIM HI, 2001, J MEMBRANE SCI, V190, P21
KLAUK H, 2007, NATURE, V445, P745, DOI 10.1038/nature05533
KULKARNI A, 1996, J MEMBRANE SCI, V114, P39
LAWSON KW, 1996, J MEMBRANE SCI, V120, P123
LAWSON KW, 1997, J MEMBRANE SCI, V124, P1
LEFEVRE B, 2004, J CHEM PHYS, V120, P4927, DOI 10.1063/1.1643728
LIU C, 2000, COMMUN THEOR PHYS, V33, P457
LIU ZL, 2002, LANGMUIR, V18, P4054
LOEB S, 1964, 3133132, US
LUM K, 1997, PHYS REV E, V56, R6283
MAA JR, 1967, IND ENG CHEM FUND, V6, P504
MAGARA Y, 1998, DESALINATION, V118, P25
MAREK R, 2001, INT J HEAT MASS TRAN, V44, P39
MASON EA, 1983, GAS TRANSPORT POROUS
MCCOOL BA, 2003, J MEMBRANE SCI, V218, P55, DOI
10.1016/S0376-7388(03)00136-4
MICKOLS WE, 2005, INT DES ASS WORLD C
MILLER JE, 2003, SAND20030800 SAND NA
MILLS AF, 1967, INT J HEAT MASS TRAN, V10, P1815
MILLS AF, 1998, HEAT TRANSFER
NABAVIAN K, 1963, CHEM ENG SCI, V18, P651
PARKHILL AL, 2006, INT IMMUNOPHARMACOL, V6, P1013, DOI
10.1016/j.intimp.2006.01.012
PETERSEN RJ, 1993, J MEMBRANE SCI, V83, P81
PHILLIP WA, 2006, J MEMBRANE SCI, V286, P144, DOI
10.1016/j.memsci.2006.09.028
RAMACHANDRAN CE, 2006, MICROPOR MESOPOR MAT, V90, P293, DOI
10.1016/j.micromeso.2005.10.021
RAO AP, 2003, J MEMBRANE SCI, V211, P13
SANDLER SI, 2006, CHEM BIOCH ENG THERM
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
SOLTANIEH M, 1981, CHEM ENG COMMUN, V12, P279
SRISURICHAN S, 2006, J MEMBRANE SCI, V277, P186, DOI
10.1016/j.memsci.2005.10.028
STELZER J, 1998, MICROPOR MESOPOR MAT, V22, P1
STRIEMER CC, 2007, NATURE, V445, P749, DOI 10.1038/nature05532
TANIGUCHI M, 2000, AICHE J, V46, P1967
TANIGUCHI M, 2001, J MEMBRANE SCI, V183, P259
VARANASI KK, 2009, APPL PHYS LETT, V95, ARTN 094101
WANG C, 2004, NANO LETT, V4, P345, DOI 10.1021/nl034952p
WILF M, 2007, GUIDEBOOK MEMBRANE D
WOLF PH, 2004, P INT C DES COST LIM, P55
WYLLIE G, 1949, P ROY SOC LOND A MAT, V197, P383
YAMAGUCHI A, 2004, NAT MATER, V3, P337, DOI 10.1038/nmat1107
YUAN ZH, 2002, ADV MATER, V14, P303
NR 64
TC 0
PU AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON
QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
DI 10.1063/1.3419751
PD AUG 15
VL 108
IS 4
AR 044315
SC Physics, Applied
GA 650NV
UT ISI:000281857100119
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: