Friday, October 1, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281899500002
*Order Full Text [ ]

Title:
A computational study of water adsorption on boron nitride nanotube

Authors:
Beheshtian, J; Behzadi, H; Esrafili, MD; Shirvani, BB; Hadipour, NL

Author Full Names:
Beheshtian, Javad; Behzadi, Hadi; Esrafili, Mehdi D.; Shirvani, Bahram B.; Hadipour, Nasser L.

Source:
STRUCTURAL CHEMISTRY 21 (5): 903-908 OCT 2010

Language:
English

Document Type:
Article

Author Keywords:
Boron nitride nanotube; Density functional theory; Water; Adsorption

KeyWords Plus:
WALLED CARBON NANOTUBES; ICE NANOTUBES; CONFINEMENT; PERMEATION

Abstract:
The effect of water molecule adsorption on the surface of (5,0) zigzag boron nitride nanotube was studied by density functional theory calculations. Geometrical optimizations were carried out at the B3LYP/6-31+G* level of theory. Six different configurations of water molecule(s) adsorption process including monomer (1WB and 1WN), dimer (2WB, 2WNN, and 2WBN), and trimer (3WB) clusters were obtained. The strengths of interactions were analyzed by the equilibrium geometries, binding energies, and charge transfer. The natural bonding analysis was also performed to investigate electronic properties. The results reveal that the adsorption of water is more favorable as the water cluster size increases.

Reprint Address:
Hadipour, NL, Tarbiat Modares Univ, Dept Chem, POB 14115-175, Tehran, Iran.

Research Institution addresses:
[Beheshtian, Javad; Esrafili, Mehdi D.; Shirvani, Bahram B.; Hadipour, Nasser L.] Tarbiat Modares Univ, Dept Chem, Tehran, Iran; [Behzadi, Hadi] Islamic Azad Univ, S Tehran Branch, Dept Chem, Tehran, Iran

E-mail Address:
hadipour@modares.ac.ir

Cited References:
AN W, 2007, J PHYS CHEM C, V111, P14105, DOI 10.1021/jp072443w.
BLASE X, 1994, EUROPHYS LETT, V28, P335.
BOYS SF, 1970, MOL PHYS, V19, P553, DOI 10.1080/00268977000101561.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
ELLISON MD, 2005, J PHYS CHEM B, V109, P10640, DOI 10.1021/jp0444417.
FENG C, 2007, J PHYS CHEM C, V111, P14131, DOI 10.1021/jp0742822.
FUENTES G, 2003, J PHYS REV B, V67, P35429.
GELB LD, 1999, REP PROG PHYS, V62, P1573.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GOLBERG D, 2007, APPL PHYS A-MATER, V88, P347, DOI 10.1007/s00339-007-3950-8.
GOLDBERG D, 1999, CHEM PHYS LETT, V308, P337.
HANASAKI I, 2008, J PHYS-CONDENS MAT, V20, ARTN 015213.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MULLERDETHLEFS K, 2000, CHEM REV, V100, P143.
MURATA K, 2000, NATURE, V407, P599.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
REED AE, 1988, CHEM REV, V88, P899.
ROOHI H, 2008, J MOL STRUC-THEOCHEM, V856, P46, DOI 10.1016/j.theochem.2008.01.020.
RUBIO A, 1994, PHYS REV B, V49, P5081.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
UGALDE JM, 2000, ANGEW CHEM INT EDIT, V39, P717.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
WON CY, 2008, J PHYS CHEM C, V112, P1812, DOI 10.1021/jp076747u.
ZANGI R, 2004, J PHYS-CONDENS MAT, V16, P5371.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.

Cited Reference Count:
32

Times Cited:
0

Publisher:
SPRINGER/PLENUM PUBLISHERS; 233 SPRING ST, NEW YORK, NY 10013 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Crystallography

ISSN:
1040-0400

DOI:
10.1007/s11224-010-9605-y

IDS Number:
651BL

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281742900013
*Order Full Text [ ]

Title:
Transition from single-file to Fickian diffusion for binary mixtures in single-walled carbon nanotubes

Authors:
Chen, Q; Moore, JD; Liu, YC; Roussel, TJ; Wang, Q; Wu, T; Gubbins, KE

Author Full Names:
Chen, Qu; Moore, Joshua D.; Liu, Ying-Chun; Roussel, Thomas J.; Wang, Qi; Wu, Tao; Gubbins, Keith E.

Source:
JOURNAL OF CHEMICAL PHYSICS 133 (9): Art. No. 094501 SEP 7 2010

Language:
English

Document Type:
Article

Author Keywords:
argon; carbon nanotubes; krypton; mixtures; nanoporous materials; neon; self-diffusion; solvation; xenon

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATION; ANOMALOUS SELF-DIFFUSION; NARROW CYLINDRICAL PORES; FLUIDS; ADSORPTION; TRANSPORT; ALPO4-5; CHANNEL; BUNDLES; DIFFUSIVITIES

Abstract:
The transition from single-file diffusion to Fickian diffusion in narrow cylindrical pores is investigated for systems of rigid single-walled armchair carbon nanotubes, solvated with binary mixtures of Lennard-Jones fluids (Ar/Ne, Ar/Kr, and Ar/Xe). A range of effects is examined including the mixture concentration, the size ratio of the two components, and the nanotube diameter. The transition from single-file to Fickian diffusion in varying carbon nanotube diameters is analyzed in terms of the Fickian self-diffusivity and the single-file mobility of the mixture components. It is found that the single-file to Fickian carbon nanotube transition diameter is a unique property of the individual molecule's diameter and remains unchanged regardless of the mixture composition. In applications of binary mixtures, each component may crossover from single-file to Fickian diffusion in a different carbon nanotube diameter, giving rise to bimodal diffusion in some nanotubes. This transit
ion allows for one species to diffuse in single-file while the other diffuses by a Fickian mechanism, yielding orders of magnitude difference between the self-diffusional rates of the two molecules. This phenomenon might be further extended to alter the diffusional motion of molecules in nanoporous materials. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3469811]

Reprint Address:
Liu, YC, Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China.

Research Institution addresses:
[Chen, Qu; Liu, Ying-Chun; Wang, Qi; Wu, Tao] Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China; [Moore, Joshua D.; Liu, Ying-Chun; Roussel, Thomas J.; Gubbins, Keith E.] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA; [Moore, Joshua D.; Liu, Ying-Chun; Roussel, Thomas J.; Gubbins, Keith E.] N Carolina State Univ, Inst Computat Sci & Engn, Raleigh, NC 27695 USA

E-mail Address:
liuyingch@zju.edu.cn

Cited References:
ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI 10.1080/0892702031000103239.
BALL CD, 2009, J CHEM PHYS, V130, ARTN 054504.
BAZARNIK M, 2009, CENT EUR J PHYS, V7, P295, DOI 10.2478/s11534-009-0006-z.
BHATIA SK, 2005, MOL SIMULAT, V31, P643, DOI 10.1080/00268970500108403.
CHENNAMSETTY N, 2005, MOL PHYS, V103, P3185, DOI 10.1080/00268970500208658.
DAS A, 2010, ACS NANO, V4, P1687, DOI 10.1021/nn901554h.
FELDERHOF BU, 2009, J CHEM PHYS, V131, ARTN 064504.
GORRING RL, 1973, J CATAL, V31, P13.
GUBBINS KE, 2010, IND ENG CHEM RES, V49, P3026, DOI 10.1021/ie901909c.
GUPTA V, 1995, CHEM PHYS LETT, V247, P596.
HAHN K, 1996, J PHYS CHEM-US, V100, P316.
HAHN K, 1996, PHYS REV LETT, V76, P2762.
HAHN K, 1998, J PHYS CHEM B, V102, P5766.
HUMMER G, 2001, NATURE, V414, P188.
JAKOBTORWEIHEN S, 2009, MOL SIMULAT, V35, P90, DOI 10.1080/08927020802378936.
JOBIC H, 1997, J PHYS CHEM B, V101, P5834.
KUKLA V, 1996, SCIENCE, V272, P702.
LEVITT DG, 1973, PHYS REV A, V8, P3050.
LIN BH, 2005, PHYS REV LETT, V94, ARTN 216001.
LIU C, 2009, P DIFFUSION FUNDAMEN, V3, P164.
LIU YC, 2010, PHYS CHEM CHEM PHYS, V12, P6632, DOI 10.1039/b927152j.
LUTZ C, 2004, PHYS REV LETT, V93, ARTN 026001.
MON KK, 2000, J CHEM PHYS, V112, P3457.
MON KK, 2002, J CHEM PHYS, V117, P2289.
MON KK, 2003, J CHEM PHYS, V119, P3343, DOI 10.1063/1.1591179.
MOORE JD, 2010, APPL SURF SCI, V256, P5131, DOI 10.1016/j.apsusc.2009.12.071.
NIVARTHI SS, 1994, CHEM PHYS LETT, V229, P297.
PALMER JC, 2009, CARBON, V47, P2904, DOI 10.1016/j.carbon.2009.06.037.
PALMER JC, 2010, CARBON, V48, P1116, DOI 10.1016/j.carbon.2009.11.033.
PERCUS JK, 1974, PHYS REV A, V9, P557.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289.
ROUSSEL T, 2007, J PHYS CHEM C, V111, P15863, DOI 10.1021/jp0746906.
SHOLL DS, 1997, J CHEM PHYS, V107, P4384.
SKOULIDAS AI, 2002, J PHYS CHEM B, V106, P5058.
SKOULIDAS I, 2002, PHYS REV LETT, V89, UNSP 185901.
STEELE A, 1974, INTERACTION GASES SO.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
WEI QH, 2000, SCIENCE, V287, P625.
WONGKOBLAP A, 2009, J COLLOID INTERF SCI, V331, P65, DOI 10.1016/j.jcis.2008.11.042.
YASHONATH S, 1994, J PHYS CHEM-US, V98, P6368.

Cited Reference Count:
40

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3469811

IDS Number:
649BX

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000281904200026
*Order Full Text [ ]

Title:
Interfacial thermodynamics of confined water near molecularly rough surfaces

Authors:
Mittal, J; Hummer, G

Author Full Names:
Mittal, Jeetain; Hummer, Gerhard

Source:
FARADAY DISCUSSIONS 146: 341-352 2010

Language:
English

Document Type:
Article

KeyWords Plus:
HYDROPHOBIC SURFACES; HYDROPHILIC SURFACES; DYNAMICS SIMULATIONS; LENGTH SCALES; LIQUID WATER; SHORT-RANGE; FORCE; TRANSITION; NANOTUBES; CHEMISTRY

Abstract:
We study the effects of nanoscopic roughness on the interfacial free energy of water confined between solid surfaces. SPC/E water is simulated in confinement between two infinite planar surfaces that differ in their physical topology: one is smooth and the other one is physically rough on a sub-nanometre length scale. The two thermodynamic ensembles considered, with constant pressure either normal or parallel to the walls, correspond to different experimental conditions. We find that molecular-scale surface roughness significantly increases the solid liquid interfacial free energy compared to the smooth surface. For our surfaces with a water-wall interaction energy minimum of -1.2 kcal mol(-1), we observe a transition from a hydrophilic surface to a hydrophobic surface at a roughness amplitude of about 3 angstrom and a wavelength of 11.6 angstrom, with the interfacial free energy changing sign from negative to positive. In agreement with previous studies of water near hydroph
obic surfaces, we find an increase in the isothermal compressibility of water with increasing surface roughness. Interestingly, average measures of the water density and hydrogen-bond number do not contain distinct signatures of increased hydrophobicity. In contrast, a local analysis indicates transient dewetting of water in the valleys of the rough surface, together with a significant loss of hydrogen bonds, and a change in the dipole orientation toward the surface. These microscopic changes in the density, hydrogen bonding, and water orientation contribute to the large increase in the interfacial free energy, and the change from a hydrophilic to a hydrophobic character of the surface.

Reprint Address:
Mittal, J, Lehigh Univ, Dept Chem Engn, Bethlehem, PA 18015 USA.

Research Institution addresses:
[Mittal, Jeetain] Lehigh Univ, Dept Chem Engn, Bethlehem, PA 18015 USA; [Hummer, Gerhard] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA

E-mail Address:
jeetain@lehigh.edu; hummer@helix.nih.gov

Cited References:
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P159, DOI 10.1103/RevModPhys.78.159.
ATTARD P, 2003, ADV COLLOID INTERFAC, V104, P75, DOI 10.1016/S0001-8686(03)00037-X.
BENAMOTZ D, 2005, J CHEM PHYS, V123, ARTN 184504.
BENNAIM A, 1974, WATER AQUEOUS SOLUTI.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BERNE BJ, 2009, ANNU REV PHYS CHEM, V60, P85, DOI 10.1146/annurev.physchem.58.032806.104445.
BRATKO D, 2001, J CHEM PHYS, V115, P3873.
CASSIE ABD, 1944, T FARADAY SOC, V40, P546.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHEN F, 2007, J CHEM PHYS, V126, UNSP 221101-1.
CHOTHIA C, 1974, NATURE, V248, P338.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
CHRISTENSON HK, 2001, ADV COLLOID INTERFAC, V91, P391.
COTTINBIZONNE C, 2003, NAT MATER, V2, P238.
DAVIS HT, 1996, STAT MECH PHASES INT.
DILL KA, 1990, BIOCHEMISTRY-US, V29, P7133.
FORSMAN J, 1996, J PHYS CHEM-US, V100, P15005.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
GIOVAMBATTISTA N, 2007, J PHYS CHEM B, V111, P9581, DOI 10.1021/jp071957s.
GIOVAMBATTISTA N, 2007, J PHYS CHEM C, V111, P1323, DOI 10.1021/jp065419b.
GIOVAMBATTISTA N, 2008, P NATL ACAD SCI USA, V105, P2274, DOI 10.1073/pnas.0708088105.
GODAWAT R, 2009, P NATL ACAD SCI USA, V106, P15119, DOI 10.1073/pnas.0902778106.
GRANICK S, 2008, SCIENCE, V322, P1477, DOI 10.1126/science.1167219.
HIRVI JT, 2007, LANGMUIR, V23, P7724, DOI 10.1021/la700558v.
HUANG X, 2003, P NATL ACAD SCI USA, V100, P11953, DOI 10.1073/pnas.1934837100.
HUMMER G, 1998, PHYS REV LETT, V80, P4193.
HUMMER G, 2001, NATURE, V414, P188.
JANECEK J, 2007, LANGMUIR, V23, P8417, DOI 10.1021/la700561q.
JENSEN MO, 2004, J CHEM PHYS, V120, P9729, DOI 10.1063/1.1697379.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KAUZMANN W, 1959, ADV PROTEIN CHEM, V14, P1.
KUMAR P, 2005, PHYS REV E 1, V72, ARTN 051503.
KUMAR P, 2007, PHYS REV E 1, V75, ARTN 011202.
LEE CY, 1984, J CHEM PHYS, V80, P4448.
LEUNG K, 2003, PHYS REV LETT, V90, UNSP 065502.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
MEYER EE, 2006, P NATL ACAD SCI USA, V103, P15739, DOI 10.1073/pnas.0606422103.
MITTAL J, 2008, P NATL ACAD SCI USA, V105, P20130, DOI 10.1073/pnas.0809029105.
NETZ RR, 2004, CURR OPIN COLLOID IN, V9, P192, DOI 10.1016/j.cocis.2004.06.007.
PAL S, 2005, LANGMUIR, V21, P3699, DOI 10.1021/la047601e.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
PRATT LR, 2002, CHEM REV, V102, P2671, DOI 10.1021/cr000692+.
QUERE D, 2008, ANNU REV MATER RES, V38, P71, DOI 10.1146/annurev.matsci.38.060407.132434.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
SENDNER C, 2009, LANGMUIR, V25, P10768, DOI 10.1021/la901314b.
SHARP KA, 1991, SCIENCE, V252, P106.
SINGH S, 2006, NATURE, V442, P526, DOI 10.1038/442526a.
STEVENS MJ, 2008, BIOINTERPHASES, V3, FC13, DOI 10.1116/1.2977751.
STILLINGER FH, 1980, SCIENCE, V209, P451.
TANFORD C, 1973, HYDROPHOBIC EFFECT F.
TRUSKETT TM, 2001, J CHEM PHYS, V114, P2401.
URBIC T, 2006, J PHYS CHEM B, V110, P4963, DOI 10.1021/jp055543f.
VAITHEESWARAN S, 2005, J PHYS CHEM B, V109, P6629, DOI 10.1021/jp045591k.
WALLQVIST A, 1995, J PHYS CHEM-US, V99, P2893.
WALLQVIST A, 2001, J PHYS CHEM B, V105, P6745.
WENZEL RN, 1936, IND ENG CHEM, V28, P988.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WIDOM B, 2003, PHYS CHEM CHEM PHYS, V5, P3085, DOI 10.1039/b304038k.
WILLARD AP, 2009, FARADAY DISCUSS, V141, P209, DOI 10.1039/b805786a.
YEH IC, 1999, J CHEM PHYS, V111, P3155.
ZHANG XY, 2002, SCIENCE, V295, P663.

Cited Reference Count:
62

Times Cited:
2

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical

ISSN:
1364-5498

DOI:
10.1039/b925913a

IDS Number:
651DG

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: