Friday, November 5, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000282686200011
*Order Full Text [ ]

Title:
Signal transmission, conversion and multiplication by polar molecules confined in nanochannels

Authors:
Tu, YS; Zhou, RH; Fang, HP

Author Full Names:
Tu, Yusong; Zhou, Ruhong; Fang, Haiping

Source:
NANOSCALE 2 (10): 1976-1983 2010

Language:
English

Document Type:
Article

KeyWords Plus:
JUNCTION CARBON NANOTUBES; CELL POLARITY; ELECTRICAL SYNAPSES; MULTIDOMAIN PROTEIN; REPLICA EXCHANGE; MAMMALIAN BRAIN; ENERGY-TRANSFER; WATER CHANNEL; DIPOLE CHAINS; LOGIC GATES

Abstract:
The mechanism of signal transmission, conversion and multiplication at molecular level has been of great interest lately, due to its wide applications in nanoscience and nanotechnology. The interferences between authentic signals and thermal noises at the nanoscale make it difficult for molecular signal transduction. Here we review some of our recent progress on the signal transduction mediated by water and other polar molecules confined in nanochannels, such as Y-shaped carbon nanotubes. We also explore possible future directions in this emerging field. These studies on molecular signal conduction might have significance in future designs and applications of nanoscale electronic devices, and might also provide useful insights for a better understanding of signal conduction in both physical and biological systems.

Reprint Address:
Zhou, RH, IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA.

Research Institution addresses:
[Zhou, Ruhong] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA; [Tu, Yusong; Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Tu, Yusong] Shanghai Univ, Inst Syst Biol, Shanghai, Peoples R China; [Tu, Yusong] Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China; [Zhou, Ruhong] Columbia Univ, Dept Chem, New York, NY 10027 USA

E-mail Address:
ruhongz@us.ibm.com; fanghaiping@sinap.ac.cn

Cited References:
AMITAI Y, 2002, J NEUROSCI, V22, P4142.
AXELROD JD, 2001, GENE DEV, V15, P1182.
BACHTOLD A, 2001, SCIENCE, V294, P1317.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BANDARU PR, 2005, NAT MATER, V4, P663, DOI 10.1038/nmat1450.
BARTOS M, 2007, NAT REV NEUROSCI, V8, P45, DOI 10.1038/nrn2044.
BENNETT MVL, 2004, NEURON, V41, P495.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
CHEN F, 2007, ANNU REV PHYS CHEM, V58, P535, DOI 10.1146/annurev.physchem.58.032806.104523.
COLLIER CP, 1999, SCIENCE, V285, P391.
CONNORS BW, 2004, ANNU REV NEUROSCI, V27, P393, DOI 10.1146/annurev.neuro.26.041002.131128.
CUI Y, 2001, SCIENCE, V293, P1289.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEEPAK FL, 2001, CHEM PHYS LETT, V345, P5.
DEJONGE JJ, 2004, J PHYS CHEM B, V108, P2666, DOI 10.1021/jp0365458.
DEJONGE JJ, 2006, J PHYS CHEM B, V110, P442, DOI 10.1021/jp0529523.
DEJONGE JJ, 2007, J PHYS CHEM C, V111, P3770, DOI 10.1021/jp0648994.
DRUMMOND TG, 2003, NAT BIOTECHNOL, V21, P1192, DOI 10.1038/nbt873.
DUDKO O, 2007, J STAT PHYS, V126, P429.
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607.
FULLERESPIE S, 1998, INT IMMUNOL, V10, P923.
GANNER A, 2009, P NATL ACAD SCI USA, V106, P17799, DOI 10.1073/pnas.0909465106.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GOTHARD N, 2004, NANO LETT, V4, P213, DOI 10.1021/nl0349294.
HEATH JR, 2009, ANNU REV MATER RES, V39, P1, DOI 10.1146/annurev-matsci-082908-145401.
HORMUZDI SG, 2001, NEURON, V31, P487.
HUA L, 2006, J PHYS CHEM B, V110, P3704, DOI 10.1021/jp055399y.
HUA L, 2008, P NATL ACAD SCI USA, V105, P16928, DOI 10.1073/pnas.0808427105.
HUMMER G, 2001, NATURE, V414, P188.
JONES C, 2008, NAT GENET, V40, P69, DOI 10.1038/ng.2007.54.
KAO KC, 1966, P I ELECTR ENG, V113, P1151.
KOENIG DR, 2008, NAT NANOTECHNOL, V3, P482, DOI 10.1038/nnano.2008.178.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KONG J, 2000, SCIENCE, V287, P622.
KWOK KS, 2002, MATER TODAY, V5, P28.
LI D, 2010, ACCOUNTS CHEM RES, V43, P631, DOI 10.1021/ar900245u.
LI JY, 2007, CHINESE PHYS LETT, V24, P2710.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LI WZ, 2001, APPL PHYS LETT, V79, P1879.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LITVINCHUK S, 2007, NAT MATER, V6, P576, DOI 10.1038/nmat1933.
LIU P, 2005, NATURE, V437, P159, DOI 10.1038/nature03926.
LIU P, 2006, J PHYS CHEM B, V110, P19018, DOI 10.1021/jp060365r.
MIAO L, 2007, J CHEM PHYS, V127, ARTN 134708.
MITCHELL B, 2007, NATURE, V447, P97, DOI 10.1038/nature05771.
NITZAN A, 2003, SCIENCE, V300, P1384.
PAPADOPOULOS C, 2000, PHYS REV LETT, V85, P3476.
PFEUTY B, 2003, J NEUROSCI, V23, P6280.
SATISHKUMAR BC, 2000, APPL PHYS LETT, V77, P2530.
SETHNA J, 2006, STAT MECH ENTROPY OR.
SMOCK RG, 2009, SCIENCE, V324, P198, DOI 10.1126/science.1169377.
SOGAARDANDERSEN L, 2004, CURR OPIN MICROBIOL, V7, P587, DOI 10.1016/j.mib.2004.10.004.
SOHL G, 2005, NAT REV NEUROSCI, V6, P191, DOI 10.1038/nrn1627.
STRACK G, 2008, CHEMBIOCHEM, V9, P1260, DOI 10.1002/cbic.200700762.
TERRONES M, 2002, PHYS REV LETT, V89, ARTN 075505.
TSAI CJ, 2008, J MOL BIOL, V378, P1, DOI 10.1016/j.jmb.2008.02.034.
TSAI CJ, 2009, MOL BIOSYST, V5, P207, DOI 10.1039/b819720b.
TU YS, 2009, P NATL ACAD SCI USA, V106, P18120, DOI 10.1073/pnas.0902676106.
WAGNER RW, 1994, J AM CHEM SOC, V116, P9759.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
XU HQ, 2005, NAT MATER, V4, P649, DOI 10.1038/nmat1471.
YANG ZB, 2008, ANNU REV CELL DEV BI, V24, P551, DOI 10.1146/annurev.cellbio.23.090506.123233.
YUAN GD, 2008, NANO LETT, V8, P2591, DOI 10.1021/nl073022t.
ZHOU RH, 2004, J MOL GRAPH MODEL, V22, P451, DOI 10.1016/j.jmgm.2003.12.011.
ZHOU RH, 2004, SCIENCE, V305, P1605.
ZOIDL G, 2002, CELL TISSUE RES, V310, P137, DOI 10.1007/s004410-002-0632-x.

Cited Reference Count:
67

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied

ISSN:
2040-3364

DOI:
10.1039/c0nr00304b

IDS Number:
660YP

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283276800059
*Order Full Text [ ]

Title:
Understanding the Stabilization of Liquid-Phase-Exfoliated Graphene in Polar Solvents: Molecular Dynamics Simulations and Kinetic Theory of Colloid Aggregation

Authors:
Shih, CJ; Lin, SC; Strano, MS; Blankschtein, D

Author Full Names:
Shih, Chih-Jen; Lin, Shangchao; Strano, Michael S.; Blankschtein, Daniel

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 132 (41): 14638-14648 OCT 20 2010

Language:
English

Document Type:
Article

KeyWords Plus:
LINEAR CONSTRAINT SOLVER; PARTICLE MESH EWALD; CARBON NANOTUBES; GRAPHITE; WATER; DISPERSIONS; NANOSHEETS; MODELS; LINCS; FIELD

Abstract:
Understanding the solution-phase dispersion of pristine, unfunctionalized graphene is important for the production of conducting inks and top-down approaches to electronics. This process can also be used as a higher-quality alternative to chemical vapor deposition. We have developed a theoretical framework that utilizes molecular dynamics simulations and the kinetic theory of colloid aggregation to elucidate the mechanism of stabilization of liquid-phase-exfoliated graphene sheets in N-methylpyrrolidone (NMP), N,N'-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), gamma-butyrolactone (GBL), and water. By calculating the potential of mean force between two solvated graphene sheets using molecular dynamics (MD) simulations, we have found that the dominant barrier hindering the aggregation of graphene is the last layer of confined solvent molecules between the graphene sheets, which results from the strong affinity of the solvent molecules for graphene. The origin of the energ
y barrier responsible for repelling the sheets is the steric repulsions between solvent molecules and graphene before the desorption of the confined single layer of solvent. We have formulated a kinetic theory of colloid aggregation to model the aggregation of graphene sheets in the liquid phase in order to predict the stability using the potential of mean force. With only one adjustable parameter, the average collision area, which can be estimated from experimental data, our theory can describe the experimentally observed degradation of the single-layer graphene fraction in NMP. We have used these results to rank the potential solvents according to their ability to disperse pristine, unfunctionalized graphene as follows: NMP approximate to DMSO > DMF > GBL > H2O. This is consistent with the widespread use of the first three solvents for this purpose.

Reprint Address:
Blankschtein, D, MIT, Dept Chem Engn, Cambridge, MA 02139 USA.

Research Institution addresses:
[Shih, Chih-Jen; Lin, Shangchao; Strano, Michael S.; Blankschtein, Daniel] MIT, Dept Chem Engn, Cambridge, MA 02139 USA; [Lin, Shangchao] MIT, Dept Mech Engn, Cambridge, MA 02139 USA

E-mail Address:
dblank@mit.edu

Cited References:
AFFOUNE AM, 2001, CHEM PHYS LETT, V348, P17.
AN X, NANO LETT, DOI 10.1021/NL903557P.
ANG PK, 2009, ACS NANO, V3, P3587, DOI 10.1021/nn901111s.
APARICIO S, 2008, J PHYS CHEM B, V112, P11361, DOI 10.1021/jp712131j.
APARICIO S, 2009, PHYS CHEM CHEM PHYS, V11, P6455, DOI 10.1039/b823507d.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BLAKE P, 2008, NANO LETT, V8, P1704, DOI 10.1021/nl080649i.
BUSSI G, 2007, J CHEM PHYS, V126, ARTN 014101.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
COLEMAN JN, 2009, ADV FUNCT MATER, V19, P3680, DOI 10.1002/adfm.200901640.
COLEMAN TF, 1996, SIAM J OPTIMIZ, V6, P418.
CURTISS LA, 2002, CHEM PHYS LETT, V359, P390.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DOTSON NA, 1996, POLYMERIZATION PROCE.
DUTTA S, 2010, J MATER CHEM, V20, P8207, DOI 10.1039/c0jm00261e.
ENOKI T, 2003, GRAPHITE INTERCALATI.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FUCHS N, 1934, Z PHYS CHEM A-CHEM T, V171, P199.
GEIM AK, 2007, NAT MATER, V6, P183.
GHOSH A, 2008, J PHYS CHEM C, V112, P15704, DOI 10.1021/jp805802w.
GIRIFALCO LA, 2000, PHYS REV B, V62, P13104.
GREEN AA, 2010, J PHYS CHEM LETT, V1, P544, DOI 10.1021/jz900235f.
HAMILTON CE, 2009, NANO LETT, V9, P3460, DOI 10.1021/nl9016623.
HERNANDEZ Y, 2008, NAT NANOTECHNOL, V3, P563, DOI 10.1038/nnano.2008.215.
HERNANDEZ Y, 2010, LANGMUIR, V26, P3208, DOI 10.1021/la903188a.
HESS B, 1997, J COMPUT CHEM, V18, P1463.
HESS B, 2008, J CHEM THEORY COMPUT, V4, P116, DOI 10.1021/ct700200b.
HIEMENZ PC, 1997, PRINCIPLES COLLOID S.
HOCKNEY RW, 1974, J COMPUT PHYS, V14, P148.
HUMMER G, 2001, NATURE, V414, P188.
ISRAELACHVILI JN, 1985, INTERMOLECULAR SURFA.
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225.
KONATHAM D, 2008, NANO LETT, V8, P4630, DOI 10.1021/nl802262p.
LEACH AR, 2001, MOL MODELLING PRINCI.
LENNARDJONES JE, 1925, P R SOC LOND A-CONTA, V109, P584.
LI D, 2008, NAT NANOTECHNOL, V3, P101, DOI 10.1038/nnano.2007.451.
LIDE DR, 1996, CRC PRESS DATABASE V.
LOTYA M, 2009, J AM CHEM SOC, V131, P3611, DOI 10.1021/ja807449u.
MANNA AK, 2009, CHEM-ASIAN J, V4, P855, DOI 10.1002/asia.200800486.
MIYAMOTO S, 1992, J COMPUT CHEM, V13, P952.
NIYOGI S, 2006, J AM CHEM SOC, V128, P7720, DOI 10.1021/ja060680r.
NOVOSELOV KS, 2004, SCIENCE, V306, P666, DOI 10.1126/science.1102896.
NOVOSELOV KS, 2005, P NATL ACAD SCI USA, V102, P10451, DOI 10.1073/pnas.0502848102.
PARK S, 2009, NAT NANOTECHNOL, V4, P217, DOI 10.1038/NNANO.2009.58.
PATRA N, 2009, NANO LETT, V9, P3766, DOI 10.1021/nl9019616.
SI Y, 2008, NANO LETT, V8, P1679, DOI 10.1021/nl080604h.
SNOOK I, 1979, J CHEM PHYS, V70, P3099.
STANKOVICH S, 2007, CARBON, V45, P1558, DOI 10.1016/j.carbon.2007.02.034.
STRANO MS, 2003, J NANOSCI NANOTECHNO, V3, P81, DOI 10.1166/jnn.2003.194.
SUN ZY, 2009, J PHYS CHEM C, V113, P1260, DOI 10.1021/jp807371r.
SUTTER PW, 2008, NAT MATER, V7, P406, DOI 10.1038/nmat2166.
TARAZONA P, 1985, MOL PHYS, V56, P557.
TUMMALA NR, 2008, J PHYS CHEM B, V112, P1987, DOI 10.1021/jp077678m.
UDDIN NM, 2010, J ENG MATER-T ASME, V132, ARTN 021012.
VALLES C, 2008, J AM CHEM SOC, V130, P15802, DOI 10.1021/ja808001a.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
VERLET L, 1967, PHYS REV, V159, P98.
XU ZJ, 2010, NANO LETT, V10, P985, DOI 10.1021/nl9041005.

Cited Reference Count:
59

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja1064284

IDS Number:
668NN

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283003800132
*Order Full Text [ ]

Title:
Gas Separation by Kinked Single-Walled Carbon Nanotubes

Authors:
Zhang, ZQ; Zhang, HW

Author Full Names:
Zhang, Z. Q.; Zhang, H. W.

Source:
ISCM II AND EPMESC XII, PTS 1 AND 2 1233: 770-775 2010

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Molecular Dynamics; Gas Separation; Carbon Nanotubes

KeyWords Plus:
MASS-TRANSPORT; MEMBRANES; FLOW; GRAPHITE; NITROGEN

Abstract:
A kink model for gas separation is presented. Transport of pure nitrogen, oxygen and their mixture in single walled carbon nanotubes (SWCNTs) with a kink formed by bending is studied using molecular dynamics simulations. The results show that a kinked SWCNT results in transport resistance to nitrogen while allowing oxygen to pass even though the two gases have very similar molecular sizes. The permeability decreases while the selectivity increases with increasing the bending angle of SWCNTs. The tradeoff between permeability and selectivity is evaluated by linear weighting method to attain an optimum bending angle for gas separation. It is also found that the kink model can be used to improve the permeability by changing the diameter of the SWCNTs while keeping a high selectivity in the gas separation process. Both the permeability and purity of oxygen increase with increasing the gas pressure. Interestingly, it is very convenient to obtain the required purity and permeabilit
y of the oxygen by adjusting the bending angle of SWCNTs.

Reprint Address:
Zhang, ZQ, Dalian Univ Technol, Fac Vehicle Engn & Mech, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China.

Research Institution addresses:
[Zhang, Z. Q.; Zhang, H. W.] Dalian Univ Technol, Fac Vehicle Engn & Mech, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China

E-mail Address:
zhanghw@dlut.edu.cn

Cited References:
ARORA G, 2004, LANGMUIR, V20, P6268, DOI 10.1021/la036432f.
ARORA G, 2005, J CHEM PHYS, V123, ARTN 044705.
ARORA G, 2006, J CHEM PHYS, V124, ARTN 084702.
ARORA G, 2007, NANO LETT, V7, P565, DOI 10.1021/nl062201s.
BOJAN MJ, 1987, LANGMUIR, V3, P1123.
BOJAN MJ, 1987, LANGMUIR, V3, P116.
GRUJICIC M, 2005, APPL SURF SCI, V246, P149, DOI 10.1016/j.apsusc.2004.11.007.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
KLEIN ML, 1980, PHYS REV B, V21, P5785.
LIDE DR, 2000, CRC HDB CHEM PHYS.
LONG RQ, 2001, J AM CHEM SOC, V123, P2058.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
MURTHY CS, 1980, MOL PHYS, V41, P1387.
POWER TD, 2002, J AM CHEM SOC, V124, P1858.
REN ZF, 1998, SCIENCE, V282, P1105.
SINGH A, 1996, IND ENG CHEM RES, V35, P1231.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
WANG QY, 1999, PHYS REV LETT, V82, P956.
ZHANG ZQ, 2008, PHYS REV B, V78, ARTN 035439.

Cited Reference Count:
22

Times Cited:
0

Publisher:
AMER INST PHYSICS; 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA

ISSN:
0094-243X

IDS Number:
BRL16

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: