Friday, November 5, 2010

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283103300018
*Order Full Text [ ]

Title:
Poly(N-isopropylacrylamide) grafting on aluminium to actively switch its surface drag in water

Authors:
Hyakutake, T; Navrotskiy, AV; Morita, K; Kato, J; Sakaue, H; Novakov, IA; Nishide, H

Author Full Names:
Hyakutake, Tsuyoshi; Navrotskiy, Alexander V.; Morita, Katsuaki; Kato, Junji; Sakaue, Hirotaka; Novakov, Ivan A.; Nishide, Hiroyuki

Source:
POLYMER INTERNATIONAL 59 (10): 1436-1440 OCT 2010

Language:
English

Document Type:
Article

Author Keywords:
graft polymerization; poly(N-isopropylacrylamide); surface modification; temperature sensitive

KeyWords Plus:
TRANSFER RADICAL POLYMERIZATION; BRUSHES; NANOPARTICLES; HYDROGELS

Abstract:
Active control of flow over object surfaces achieved by means of mechanical and/or electrical methods has recently been studied. However, there has been no report on actively switching the surface drag of an object by chemical modification of the object's surface. Poly(N-isopropylacrylamide) (PNIPA) was grafted onto the surface of an aluminium (Al) substrate via (A) surface-initiated atom transfer radical polymerization and (B) radical polymerization with an azo-group surface initiator. The grafting density was 0.19 and 0.15 chains nm(-2), respectively. The water contact angle of the PNIPA-grafted Al surface reversibly changed between 55 and 82 for (A) and between 42 degrees and 65 degrees for (B) at temperatures of 25 and 40 degrees C, which was ascribed to the temperature-responsive, hydrophilic-hydrophobic switching of the grafted PNIPA surface. The PNIPA grafting was applied on the surface of an ogive-shaped Al model. The normalized dropping speed of the model in water in
creased 1.1 times at 42 degrees C in comparison to that at 22 degrees C. Switching of the surface drag of PNIPA-grafted Al in water was demonstrated on the basis of the hydrophilicity and hydrophobicity of the grafted Al surface, the switching occurring with a change in temperature. (C) 2010 Society of Chemical Industry

Reprint Address:
Nishide, H, Waseda Univ, Dept Appl Chem, Tokyo 1698555, Japan.

Research Institution addresses:
[Hyakutake, Tsuyoshi; Kato, Junji; Nishide, Hiroyuki] Waseda Univ, Dept Appl Chem, Tokyo 1698555, Japan; [Navrotskiy, Alexander V.; Novakov, Ivan A.] Volgograd State Tech Univ, Volgograd 400131, Russia; [Morita, Katsuaki; Sakaue, Hirotaka] Japan Aerosp Explorat Agcy, Chofu, Tokyo 1828522, Japan

E-mail Address:
nishide@waseda.jp

Cited References:
ADVINCULA RC, 2004, POLYM BRUSHES SYNTHE.
BALAMURUGAN S, 2003, LANGMUIR, V19, P2545, DOI 10.1021/la026787j.
BONS JP, 2003, 2003784 AIAA.
CHEN MQ, 2003, POLYM J, V35, P901.
EJAZ M, 1998, MACROMOLECULES, V31, P5934.
FRIEBE A, 2007, LANGMUIR, V23, P10316, DOI 10.1021/la7016962.
FUJIE T, 2009, ACS APPL MATER INTER, V1, P1404, DOI 10.1021/am900111r.
FULGHUM TM, 2008, MACROMOLECULES, V41, P429.
GADELHAK M, 2000, FLOW CONTROL.
HARAGUCHI K, 2005, MACROMOLECULES, V38, P3482, DOI 10.1021/ma047431c.
HULTGREN LS, 2003, 20031025 AIAA.
HUSSEMAN M, 1999, MACROMOLECULES, V32, P1424.
JORDAN R, 1998, J AM CHEM SOC, V120, P243.
KIDDY J, 2000, 20001561 AIAA.
MA KT, 2001, 20011014 AIAA.
MILNER ST, 1991, SCIENCE, V251, P905.
MIN T, 2004, PHYS FLUIDS, V16, P55.
MIZUTANI A, 2008, BIOMATERIALS, V29, P2073, DOI 10.1016/j.biomaterials.2009.01.004.
SAKAUE H, 2008, 2008632 AIAA.
SUN TL, 2004, ANGEW CHEM INT EDIT, V43, P357, DOI 10.1002/anie.200352565.
SZLEIFER I, 1996, ADV CHEM PHYS, V94, P165.
TAKEI YG, 1994, MACROMOLECULES, V27, P6163.
THOMPSON PA, 1997, NATURE, V389, P360.
WATANABE K, 1999, J FLUID MECH, V381, P225.
WU T, 2008, CHEM MATER, V20, P101, DOI 10.1021/cm702073f.
YAMAMOTO S, 2000, MACROMOLECULES, V33, P5602.
YOSHIDA R, 1995, NATURE, V374, P240.
ZHAO B, 2000, PROG POLYM SCI, V25, P677.

Cited Reference Count:
28

Times Cited:
0

Publisher:
JOHN WILEY & SONS LTD; THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND

Subject Category:
Polymer Science

ISSN:
0959-8103

DOI:
10.1002/pi.2887

IDS Number:
666GT

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283222200160
*Order Full Text [ ]

Title:
Critical transport of polymeric electrolytes in wavy-rough microtube

Authors:
Chu, ZKH

Author Full Names:
Chu, Z. Kwang-Hua

Source:
JOURNAL OF APPLIED PHYSICS 108 (7): Art. No. 074906 OCT 1 2010

Language:
English

Document Type:
Article

KeyWords Plus:
VISCOSITY; ION; SURFACES; RATES; FLOW

Abstract:
We obtain the steady velocities and volume flow rates (up to the second order) of polymeric electrolytes along the cross-section of an (approximated) wavy-rough microtube by using the verified Eyring's transition rate model and boundary perturbation method. Our numerical results show that the wavy-roughness could tune the electric-field-driven transport especially for larger forcing due to the larger surface-to-volume ratio and slip-velocity effect. We also found a rather low electrical resistance for certain critical temperature after careful selection of geometric and material parameters. (C) 2010 American Institute of Physics. [doi:10.1063/1.3493156]

Reprint Address:
Chu, ZKH, Inner Mongolia Univ Sci & Technol, Sch Math Phys & Biol Engn, Baotou 014010, Peoples R China.

Research Institution addresses:
Inner Mongolia Univ Sci & Technol, Sch Math Phys & Biol Engn, Baotou 014010, Peoples R China

E-mail Address:
chukh49@gmail.com

Cited References:
BROUILLETTE D, 1999, ELECTROCHIM ACTA, V44, P4721.
CAGLE FW, 1951, J APPL PHYS, V22, P771.
CHU KHW, 2008, ELECTROCHIM ACTA, V53, P4920, DOI 10.1016/j.electacta.2008.02.017.
CHU ZKH, ARXIV07072828.
CHU ZKH, ARXIV09124557.
CHU ZKH, 2000, J PHYS D APPL PHYS, V33, P627.
DEGENNES PG, 2002, LANGMUIR, V18, P3413.
EYRING H, 1936, J CHEM PHYS, V4, P283.
FRIEDMAN HL, 1977, FARADAY DISCUSS, V64, P7.
GEBALLE TH, 2009, PHYSICA C, V469, P680, DOI 10.1016/j.physc.2009.03.054.
GERING KL, 2006, ELECTROCHIM ACTA, V51, P3125, DOI 10.1016/j.electacta.2005.09.011.
HIROI Z, 1993, NATURE, V364, P315.
JUSTICE JC, 1991, J SOLUTION CHEM, V20, P1017.
KRAUSZ AS, 1975, DEFORMATION KINETICS.
LILLY TC, 2007, PHYS FLUIDS, V19, ARTN 106101.
MENESES AB, 2005, ELECTROCHIM ACTA, V50, P1207, DOI 10.1016/j.electacta.2004.07.046.
PAYNE VA, 1995, ELECTROCHIM ACTA, V40, P2087.
REE FH, 1962, ADV CHEM PHYS, V4, P1.
STROOCK AD, 2002, ANAL CHEM, V74, P5306, DOI 10.1021/ac0257389.
SUMI H, 1997, ELECTROCHIM ACTA, V42, P2763.
THOMPSON PA, 1997, NATURE, V389, P360.
VONHIPPEL A, 1941, PHYS REV, V59, P820.

Cited Reference Count:
22

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0021-8979

DOI:
10.1063/1.3493156

IDS Number:
667UW

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283003800062
*Order Full Text [ ]

Title:
Nanoscale Poiseuille Flows of Liquid Argon

Authors:
Liu, C; Li, ZG

Author Full Names:
Liu, Chong; Li, Zhigang

Source:
ISCM II AND EPMESC XII, PTS 1 AND 2 1233: 366-371 2010

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
Nanoscale; Poiseuille flow; Liquid argon

KeyWords Plus:
FLUID-SOLID INTERFACE; BOUNDARY-CONDITIONS; MOLECULAR-DYNAMICS; SLIP LENGTH; SHEAR-FLOW; SURFACES

Abstract:
In nanoscale flow systems, the flow motion is affected by many parameters, some of which may play different roles under different conditions. In this work, we investigate the flux of liquid argon in nanoscale Poiseuille flows through molecular dynamics simulations. By illustrating the flux as a function of a dimensionless number, which represents the effective surface effect on the fluid, we show that the fluid motion in nanochannels under small external forces can be categorized into two regimes based on the role of the temperature. For lame external forces, a bimodal behavior in the flux is observed as the fluid-wall interaction is varied. The underlying mechanisms that govern the flow fashions are discussed.

Reprint Address:
Liu, C, Hong Kong Univ Sci & Technol, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China.

Research Institution addresses:
[Liu, Chong; Li, Zhigang] Hong Kong Univ Sci & Technol, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China

E-mail Address:
mezli@ust.hk

Cited References:
AGRAWAL PM, 2002, SURF SCI, V515, P21.
ALLEN MP, 1987, COMPUTER SIMULATION, P236.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BEEMAN D, 1976, J COMPUT PHYS, V20, P130.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
CLERI F, 1993, PHYS REV B, V48, P22.
GALEA TM, 2004, LANGMUIR, V20, P3477, DOI 10.1021/la035880k.
HEINBUCH U, 1989, PHYS REV A, V40, P1144.
HIPPLER H, 1983, J CHEM PHYS, V78, P6709.
HUANG CK, 2007, J CHEM PHYS, V126, ARTN 224702.
LI ZG, 2005, PHYS REV LETT, V95, ARTN 014502.
LI ZG, 2006, PHYS FLUIDS, V18, ARTN 117102.
LI ZG, 2007, J CHEM PHYS, V127, P74706, ARTN 074706.
LI ZG, 2009, PHYS REV E 2, V79, ARTN 026312.
MARTINI HH, 2008, PHYS REV LETT, V100, UNSP 206001.
PRIEZJEV NV, 2007, PHYS REV E 1, V75, ARTN 051605.
SOONG CY, 2007, PHYS REV E 2, V76, ARTN 036303.
TAKABA H, 2007, J CHEM PHYS, V127, ARTN 054703.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1997, NATURE, V389, P360.
VORONOV RS, 2006, J CHEM PHYS, V124, ARTN 204701.

Cited Reference Count:
21

Times Cited:
0

Publisher:
AMER INST PHYSICS; 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA

ISSN:
0094-243X

IDS Number:
BRL16

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000282916200060
*Order Full Text [ ]

Title:
EFFECTS OF CHANNEL SCALE ON SLIP LENGTH OF FLOW IN MICRO/NANO-CHANNELS

Authors:
Yang, XF; Zheng, ZQC

Author Full Names:
Yang, Xiaofan; Zheng, Zhongquan C.

Source:
FEDSM2009, VOL 2 : 477-482 2009

Language:
English

Document Type:
Proceedings Paper

KeyWords Plus:
MOLECULAR-DYNAMICS; BOUNDARY-CONDITIONS; SOLID-SURFACES; HYBRID METHOD; FLUID-FLOW; CONTINUUM; SIMULATION; PARTICLE; MODEL

Abstract:
The concept of slip length, related to surface velocity and shear rate, is often used to analyze the slip surface property for flow in micro or nano-channels. In this study, a hybrid scheme that couples Molecular dynamics simulation (used near the solid boundary to include the surface effect) and a continuum solution (to study the fluid mechanics) is validated and used for the study of slip length behavior in the Couette flow problem. By varying the height of the channel across multiple length scales, we investigate the effect of channel scale on surface slip length. In addition, by changing the velocity of the moving-solid wall, the influence of shear rate on the slip length in a certain ranee of the channel height is studied. The results show that within a certain range of the channel heights, the slip length is size-dependant. This upper bound of the channel height can vary with the shear rate.

Reprint Address:
Yang, XF, Kansas State Univ, Manhattan, KS 66506 USA.

Research Institution addresses:
[Yang, Xiaofan; Zheng, Zhongquan C.] Kansas State Univ, Manhattan, KS 66506 USA

E-mail Address:
xiaofan@ksu.edu; zzheng@ksu.edu

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
CUI J, 2006, ACTA MECH SINICA, V22, P503, DOI 10.1007/s10409-006-0034-5.
FLEKKOY EG, 2000, EUROPHYS LETT, V52, P271.
FRENKEL D, 1996, UNDERSTANDING MOL SI.
HADJICONSTANTINOU NG, 1997, INT J MOD PHYS C, V8, P967.
KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781.
KOPLIK J, 1995, ANNU REV FLUID MECH, V27, P257.
KOUMOUTSAKOS P, 2005, ANNU REV FLUID MECH, V37, P457, DOI 10.1146/annurev.fluid.37.061903.175753.
LI J, 1998, PHYS REV E, V57, P7259.
LICHTER S, 2004, PHYS REV LETT, V93, P4.
LICHTER S, 2007, PHYS REV LETT, V98, P4.
MARTINI A, 2008, J FLUID MECH, V600, P257, DOI 10.1017/S0022112008000475.
NIE XB, 2004, J FLUID MECH, V500, P55, DOI 10.1017/S0022112003007225.
OCONNELL ST, 1995, PHYS REV E A, V52, R5792.
RAPAPORT DC, 2004, ART MOL DYNAMICS SIM.
REN WQ, 2005, J COMPUT PHYS, V204, P1, DOI 10.1016/j.jcp.2004.10.001.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1997, NATURE, V389, P360.
WANG YC, 2007, CHEM ENG SCI, V62, P3574, DOI 10.1016/j.ces.2006.12.093.
WERDER T, 2005, J COMPUT PHYS, V205, P373, DOI 10.1016/j.jcp.2004.11.019.
XU JL, 2007, INT J HEAT MASS TRAN, V50, P2571, DOI 10.1016/j.ijheatmasstransfer.2006.11.031.
YEN TH, 2007, MICROFLUID NANOFLUID, V3, P665, DOI 10.1007/s10404-007-0154-7.

Cited Reference Count:
23

Times Cited:
0

Publisher:
AMER SOC MECHANICAL ENGINEERS; THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA

IDS Number:
BRK49

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: