Friday, December 3, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283651400014
*Order Full Text [ ]

Title:
Translocation events in a single-walled carbon nanotube

Authors:
He, J; Liu, H; Pang, P; Cao, D; Lindsay, S

Author Full Names:
He, Jin; Liu, Hao; Pang, Pei; Cao, Di; Lindsay, Stuart

Source:
JOURNAL OF PHYSICS-CONDENSED MATTER 22 (45): Art. No. 454112 NOV 17 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MASS-TRANSPORT; STRANDED-DNA; WATER; MEMBRANES; CHANNEL; NANOFLUIDICS; MOLECULES; NANOPIPES; NANOPORES; PORE

Abstract:
Translocation of DNA oligomers through a single-walled carbon nanotube was demonstrated recently. Translocation events are accompanied by giant current pulses, the origin of which remains obscure. Here, we show that the introduction of a nucleotide, guanosine triphosphate, alone into the input reservoir of a carbon nanotube nanofluidic device also gives giant current pulses. Taken together with data on oligomer translocation, these new results suggest that the pulse width has a nonlinear, power-law dependence on the number of nucleotides in a DNA molecule. We have also measured the time for the onset of DNA translocation pulses after bias reversal, finding that the time for the onset of translocation is directly proportional to the period of the bias reversal.

Reprint Address:
He, J, Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA.

Research Institution addresses:
[He, Jin; Lindsay, Stuart] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA; [Liu, Hao; Lindsay, Stuart] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA; [Pang, Pei; Cao, Di; Lindsay, Stuart] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA

E-mail Address:
jinhe@asu.edu

Cited References:
BRANTON D, 2008, NAT BIOTECHNOL, V26, P1146, DOI 10.1038/nbt.1495.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CHEN M, 2008, P NATL ACAD SCI USA, V105, P6272, DOI 10.1073/pnas.0711561105.
CORRY B, 2007, J PHYS CHEM B, V112, P1427.
DEKKER C, 2007, NAT NANOTECHNOL, V2, P209, DOI 10.1038/nnano.2007.27.
FAN R, 2005, NANO LETT, V5, P1633, DOI 10.1021/nl0509677.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GAO HJ, 2003, NANO LETT, V3, P471, DOI 10.1021/nl025967a.
GOWTHAM S, 2007, PHYS REV B, V76, ARTN 033401.
HAN A, 2008, ANAL CHEM, V80, P4651, DOI 10.1021/ac7025207.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOWORKA S, 2009, CHEM SOC REV, V38, P2360, DOI 10.1039/b813796j.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
JIN XZ, 2007, LANGMUIR, V23, P13209, DOI 10.1021/la702326v.
JOHNSON RR, 2008, NANO LETT, V8, P69, DOI 10.1021/nl071909j.
KASIANOWICZ JJ, 1996, P NATL ACAD SCI USA, V93, P13770.
KASIANOWICZ JJ, 2001, ANAL CHEM, V73, P2268.
KIM SJ, 2007, PHYS REV LETT, V99, ARTN 044501.
LI J, 2001, NATURE, V412, P166.
LIANG XG, 2008, NANO LETT, V8, P1472, DOI 10.1021/nl080473k.
LIU HT, 2010, SCIENCE, V327, P64, DOI 10.1126/science.1181799.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MANOHAR S, 2008, NANO LETT, V8, P4365, DOI 10.1021/nl8022143.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NOY A, 2007, NANO TODAY, V2, P22.
ROBERT RJ, 2009, SMALL, V6, P31.
ROSSI MP, 2004, NANO LETT, V4, P989, DOI 10.1021/nl049688u.
SAITO R, 1998, PHYS PROPERTIES CARB.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SHASHANK S, 2007, PHYS FLUIDS, V19, UNSP 013603.
SREEKAR B, 2006, NANOTECHNOLOGY, V17, P5080.
SUN L, 2000, J AM CHEM SOC, V122, P12340, DOI 10.1021/ja002429w.
WEI CY, 2003, PHYS REV LETT, V91, ARTN 235901.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XIE YH, 2007, J CHEM PHYS, V127, ARTN 225101.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
ZHENG M, 2003, SCIENCE, V302, P1545.

Cited Reference Count:
41

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Condensed Matter

ISSN:
0953-8984

DOI:
10.1088/0953-8984/22/45/454112

IDS Number:
673HZ

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283651400022
*Order Full Text [ ]

Title:
Hydration properties of mechanosensitive channel pores define the energetics of gating

Authors:
Anishkin, A; Akitake, B; Kamaraju, K; Chiang, CS; Sukharev, S

Author Full Names:
Anishkin, A.; Akitake, B.; Kamaraju, K.; Chiang, C-S; Sukharev, S.

Source:
JOURNAL OF PHYSICS-CONDENSED MATTER 22 (45): Art. No. 454120 NOV 17 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; ESCHERICHIA-COLI MSCS; CAPILLARY EVAPORATION; SMALL-CONDUCTANCE; ACETYLCHOLINE-RECEPTOR; HYDROPHOBIC SURFACES; ION CHANNELS; WATER; MECHANISM; PROTEIN

Abstract:
Opening of ion channels directly by tension in the surrounding membrane appears to be the most ancient and simple mechanism of gating. Bacterial mechanosensitive channels MscL and MscS are the best-studied tension-gated nanopores, yet the key physical factors that define their gating are still hotly debated. Here we present estimations, simulations and experimental results showing that hydration of the pore might be one of the major parameters defining the thermodynamics and kinetics of mechanosensitive channel gating. We associate closing of channel pores with complete dehydration of the hydrophobic gate (occlusion by 'vapor lock') and formation of two water-vapor interfaces above and below the constriction. The opening path is the expansion of these interfaces, ultimately leading to wetting of the hydrophobic pore, which does not appear to be the exact reverse of the closing path, thus producing hysteresis. We discuss specifically the role of polar groups (glycines) buried
in narrow closed conformations but exposed in the open states that change the wetting characteristics of the pore lining and stabilize conductive states of the channels.

Reprint Address:
Anishkin, A, Univ Maryland, Dept Biol, College Pk, MD 20742 USA.

Research Institution addresses:
[Anishkin, A.; Akitake, B.; Kamaraju, K.; Chiang, C-S; Sukharev, S.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA

E-mail Address:
sukharev@umd.edu

Cited References:
AKITAKE B, 2005, J GEN PHYSIOL, V125, P143, DOI 10.1085/jgp.200409198.
AKITAKE B, 2007, NAT STRUCT MOL BIOL, V14, P1141, DOI 10.1038/nsmb1341.
ANISHKIN A, UNPUB.
ANISHKIN A, 2004, BIOPHYS J, V86, P2883.
ANISHKIN A, 2005, J GEN PHYSIOL, V125, P155, DOI 10.1085/jgp.200409118.
ANISHKIN A, 2008, BIOPHYS J, V94, P1252, DOI 10.1529/biophysj.107.110171.
ANISHKIN A, 2008, J GEN PHYSIOL, V132, P67, DOI 10.1085/jgp.200810000.
ANISHKIN A, 2010, PROTEINS, V78, P932, DOI 10.1002/prot.22618.
BALL P, 2008, CHEMPHYSCHEM, V9, P2677, DOI 10.1002/cphc.200800515.
BASS RB, 2002, SCIENCE, V298, P1582.
BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BECKSTEIN O, 2006, PHYS BIOL, V3, P147, DOI 10.1088/1478-3975/3/2/007.
BELYY V, 2010, J GEN PHYSIOL, V135, P641.
BETANZOS M, 2002, NAT STRUCT BIOL, V9, P704, DOI 10.1038/nsb828.
BLOUNT P, 1996, EMBO J, V15, P4798.
BOWIE JU, 1997, J MOL BIOL, V272, P780.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CHANG G, 1998, SCIENCE, V282, P2220.
CHEN YL, 1991, J PHYS CHEM-US, V95, P10736.
CHIANG CS, 2004, BIOPHYS J, V86, P2846.
CHIANG CS, 2005, BIOCHEMISTRY-US, V44, P12589, DOI 10.1021/bi050750r.
CORRY B, 2005, BIOPHYS J, V89, L49, DOI 10.1529/biophysj.105.072009.
CORRY B, 2006, BIOPHYS J, V90, P799, DOI 10.1529/biophysj.105.067868.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGENNES PG, 2003, CAPILLARY WETTING PH.
DILEO JM, 2003, J MOL STRUC-THEOCHEM, V623, P159.
EDWARDS MD, 2005, NAT STRUCT MOL BIOL, V12, P113, DOI 10.1038/nsmb895.
FRACZKIEWICZ R, 1998, J COMPUT CHEM, V19, P319.
GULLINGSRUD JR, 2001, BIOPHYS J 2, V80, A110.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JENSENM O, 2010, P Natl Acad Sci US, V107, P5833.
JIN W, 1997, PHYS REV LETT, V78, P1520.
LEUNG K, 2000, J CHEM PHYS, V113, P5845.
LEUNG K, 2003, PHYS REV LETT, V90, UNSP 065502.
LEVINA N, 1999, EMBO J, V18, P1730.
LUCK WAP, 1998, J MOL STRUCT, V448, P131.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
LUNDBAEK JA, 1996, BIOCHEMISTRY-US, V35, P3825.
LUZAR A, 2000, J CHEM PHYS, V113, P5836.
MACCARINI M, 2007, LANGMUIR, V23, P598, DOI 10.1021/la061943y.
MAKHATADZE GI, 1995, ADV PROTEIN CHEM, V47, P307.
MARSH D, 2008, BBA-BIOMEMBRANES, V1778, P1545, DOI 10.1016/j.bbamem.2008.01.015.
MOE P, 2005, BIOCHEMISTRY-US, V44, P12239, DOI 10.1021/bi0509649.
NIELSEN C, 2000, BIOPHYS J, V79, P2583.
OKADA K, 2002, J BIOL CHEM, V277, P27682.
OU XR, 1998, P NATL ACAD SCI USA, V95, P11471.
PEROZO E, 2002, NATURE, V418, P942, DOI 10.1038/nature00992.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289.
PIVETTI CD, 2003, MICROBIOL MOL BIOL R, V67, P66, DOI 10.1128/MMBR.67.1.66-85.2003.
POMEAU Y, 2006, PHYS TODAY, V59, P39.
ROTH R, 2006, J PHYS-CONDENS MAT, V18, P6517, DOI 10.1088/0953-8984/18/28/007.
ROTH R, 2008, BIOPHYS J, V94, P4282, DOI 10.1529/biophysj.107.120493.
SCATENA LF, 2001, SCIENCE, V292, P908.
SHAPOVALOV G, 2004, J GEN PHYSIOL, V124, P151, DOI 10.1085/jgp.200409087.
SOTOMAYOR M, 2004, BIOPHYS J, V87, P3050, DOI 10.1529/biophysj.104.046045.
SPRONK SA, 2006, BIOPHYS J, V90, P3555, DOI 10.1529/biophysj.105.080432.
STEINBACHER S, 2007, CURR TOP MEMBR, V58, P1, DOI 10.1016/S1063-5823(06)58001-9.
STEITZ R, 2003, LANGMUIR, V19, P2409, DOI 10.1021/la026731p.
SUKHAREV S, 2001, BIOPHYS J, V81, P917.
SUKHAREV S, 2001, NATURE, V409, P720.
SUKHAREV S, 2002, BIOPHYS J, V83, P290.
SUKHAREV SI, 1993, BIOPHYS J, V65, P177.
SUKHAREV SI, 1994, NATURE, V368, P265.
SUKHAREV SI, 1999, J GEN PHYSIOL, V113, P525.
VASQUEZ V, 2008, SCIENCE, V321, P1210, DOI 10.1126/science.1159674.
WESSON L, 1992, PROTEIN SCI, V1, P227.
WHITE SH, 1999, ANNU REV BIOPH BIOM, V28, P319.
WIGGINS P, 2005, BIOPHYS J, V88, P880, DOI 10.1529/biophysj.104.047431.
YOSHIMURA K, 1999, BIOPHYS J, V77, P1960.

Cited Reference Count:
71

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Condensed Matter

ISSN:
0953-8984

DOI:
10.1088/0953-8984/22/45/454120

IDS Number:
673HZ

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283703400016
*Order Full Text [ ]

Title:
Exploring the Changes in the Structure of alpha-Helical Peptides Adsorbed onto a Single Walled Carbon Nanotube Using Classical Molecular Dynamics Simulation

Authors:
Balamurugan, K; Gopalakrishnan, R; Raman, SS; Subramanian, V

Author Full Names:
Balamurugan, K.; Gopalakrishnan, R.; Raman, S. Sundar; Subramanian, V.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (44): 14048-14058 NOV 11 2010

Language:
English

Document Type:
Article

KeyWords Plus:
ALANINE-BASED PEPTIDES; FORCE-FIELD; SECONDARY STRUCTURE; WATER; PROTEINS; POLYPEPTIDES; ALGORITHMS; TRANSITION; ENERGETICS; MEMBRANES

Abstract:
Classical molecular dynamics (MD) simulation has been carried out in an explicit solvent environment to understand the interaction between the single walled carbon nanotube (SWCNT) and alpha-helix. A polyalanine peptide consisting of 40 alanine residues has been chosen as the model for the a-helix (PA(40)). Results reveal that the SWCNT induces conformational changes in PA(40). Furthermore, breakage of hydrogen bonds in the chosen model peptides has been observed, which leads to conformational transitions (alpha -> turns) in different parts of the PA(40). Owing to these transitions, regions of different structural and energetic stability are generated in PA(40) which enable the PA(40) to curl around the surface of the SWCNT. The overall observations obtained from the MD simulations are not significantly influenced by the starting geometry and the choice of the force field. Although the qualities of structural information obtained from the MD simulation using ff03 and OPLS are
different, the overall observation derived from the ff03 is similar to that of PLS. Results from the MD simulation on the interaction of the alpha-helical fragment of the SNARES protein with the SWCNT elicit that the amino acid composition influences the interaction pattern. The wrapping of the a-helical fragment of the SNARES onto the SWCNT is similar to that of PA(40). Overall, there is a considerable decrease in the helical content of peptides upon interaction with SWCNTs, in agreement with the experimental findings.

Reprint Address:
Subramanian, V, Cent Leather Res Inst, Chem Lab, Council Sci & Ind Res, Madras 600020, Tamil Nadu, India.

Research Institution addresses:
[Balamurugan, K.; Gopalakrishnan, R.; Raman, S. Sundar; Subramanian, V.] Cent Leather Res Inst, Chem Lab, Council Sci & Ind Res, Madras 600020, Tamil Nadu, India

E-mail Address:
subuchem@hotmail.com

Cited References:
AGOSTINI FP, 2006, J COMPUT CHEM, V27, P1142, DOI 10.1002/jcc.20428.
BAUGHMAN RH, 1999, SCIENCE, V284, P1340.
BERENDSEN HJ, 1981, SIMPLE POINT CHARGE.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BEST RB, 2008, BIOPHYS J, L7.
BEST RB, 2009, J PHYS CHEM B, V113, P9004, DOI 10.1021/jp901540t.
BUSSI G, 2007, J CHEM PHYS, V126, ARTN 014101.
CHIU CC, 2008, J PHYS CHEM B, V112, P16326, DOI 10.1021/jp805313p.
CHIU CC, 2009, BIOPOLYMERS, V92, P156, DOI 10.1002/bip.21159.
COUCH VA, 2006, J PHYS CHEM B, V110, P3410, DOI 10.1021/jp055209j.
DAURA X, 1999, ANGEW CHEM INT EDIT, V38, P236.
DELANO WL, 2008, PYMOL MOL GRAPHICS S.
DIECKMANN GR, 2003, J AM CHEM SOC, V125, P1770, DOI 10.1021/ja029084x.
DJURDJEVIC DP, 2006, J COMPUT CHEM, V27, P1177, DOI 10.1002/jcc.20440.
DUAN Y, 2003, J COMPUT CHEM, V24, P1999, DOI 10.1002/jcc.10349.
ENKHBAYAR P, 2006, PROTEINS, V64, P691, DOI 10.1002/prot.21026.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FIORI WR, 1993, BIOCHEMISTRY-US, V32, P11957.
GIANESE G, 2009, J PHYS CHEM B, V113, P12105, DOI 10.1021/jp903652v.
HESS B, 1997, J COMPUT CHEM, V18, P1463.
HESS B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JENNESS GR, 2009, J PHYS CHEM C, V113, P10242, DOI 10.1021/jp9015307.
JOB GE, 2006, J AM CHEM SOC, V128, P8227, DOI 10.1021/ja060094y.
JOHNSON RR, 2008, NANO LETT, V8, P69, DOI 10.1021/nl071909j.
JOHNSON RR, 2009, NANO LETT, V9, P537, DOI 10.1021/nl802645d.
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225.
KABSCH W, 1983, BIOPOLYMERS, V22, P2577.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KAMINSKI GA, 2001, J PHYS CHEM B, V105, P6474.
KANG YK, 2009, NANO LETT, V9, P1414, DOI 10.1021/nl8032334.
KARPLUS M, 2002, NAT STRUCT BIOL, V9, P646.
KARPLUS M, 2002, NAT STRUCT BIOL, V9, P788, DOI 10.1038/nsb1002-788a.
KARPLUS M, 2003, BIOPOLYMERS, V68, P350, DOI 10.1002/bip.10266.
KATZ E, 2004, CHEMPHYSCHEM, V5, P1085, DOI 10.1002/cphc.200400193.
KENNEDY RJ, 2005, J AM CHEM SOC, V127, P16961.
KONG J, 2000, SCIENCE, V287, P622.
KUMAR S, 1998, BIOPHYS J, V75, P1935.
LACERDA L, 2006, ADV DRUG DELIVER REV, V58, P1460, DOI 10.1016/j.addr.2006.09.015.
LEVY Y, 2006, J N ANNU REV BIONZOL, V35, P389.
LIN Y, 2004, J MATER CHEM, V14, P527, DOI 10.1039/b314481j.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
MARQUSEE S, 1989, P NATL ACAD SCI USA, V86, P5286.
MATSUURA K, 2006, CHEM PHYS LETT, V429, P497, DOI 10.1016/j.cplett.2006.08.044.
MATTHES D, 2009, BIOPHYS J, V97, P599, DOI 10.1016/j.bpj.2009.04.061.
NOSE S, 1983, MOL PHYS, V50, P1055.
OSHOVSKY GV, 2007, ANGEW CHEM INT EDIT, V46, P2366, DOI 10.1002/anie.200602815.
PACE CN, 1998, BIOPHYS J, V75, P422.
PARRINELLO M, 1981, J APPL PHYS, V52, P7182.
PARTHASARATHI R, 2007, J PHYS CHEM A, V111, P7141.
PASCHEK D, 2005, P NATL ACAD SCI USA, V102, P6765, DOI 10.1073/pnas.0408527102.
PODTELEZHNIKOV AA, 2005, PROTEINS, V61, P94, DOI 10.1002/prot.20513.
RYU JH, 2008, CHEM COMMUN, P1043, DOI 10.1039/b713737k.
SANDEEP S, 2004, LANGMUIR, V20, P11594.
SAZONOVA V, 2004, NATURE, V431, P284, DOI 10.1038/nature02905.
SHERRILL DC, 2009, J COMPUT CHEM, V30, P2187.
SNOW ES, 2005, SCIENCE, V307, P1942, DOI 10.1126/science.1109128.
SPEK EJ, 1999, J AM CHEM SOC, V121, P5571.
SUTTON RB, 1998, NATURE, V395, P347.
TANFORD C, 2000, HYDROPHOBIC EFFECT F.
TOMASIO MS, 2009, J PHYS CHEM C, V113, P8778.
VIJAYAN M, 1999, PERSPECTIVES STRUCTU.
WANG T, 2006, J CHEM THEORY COMPUT, V2, P140, DOI 10.1021/ct0501607.
ZAGROVIC B, 2005, J MOL BIOL, V353, P232, DOI 10.1016/j.jmb.2005.08.053.
ZHAO XC, 2010, J PHYS CHEM B, V114, P5625, DOI 10.1021/jp100903x.

Cited Reference Count:
67

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp106177n

IDS Number:
673ZT

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: