Friday, December 10, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284261800041
*Order Full Text [ ]

Title:
Pore opening and closing of a pentameric ligand-gated ion channel

Authors:
Zhu, FQ; Hummer, G

Author Full Names:
Zhu, Fangqiang; Hummer, Gerhard

Source:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 107 (46): 19814-19819 NOV 16 2010

Language:
English

Document Type:
Article

Author Keywords:
ELIC; nicotinic acetylcholine receptor; hydrophobic gate; conformational change; string method

KeyWords Plus:
NICOTINIC ACETYLCHOLINE-RECEPTOR; MOLECULAR-DYNAMICS SIMULATIONS; X-RAY-STRUCTURE; STRING METHOD; CONDUCTION; STATE; PERMEATION; TRANSITION; GRAMICIDIN; HOMOLOG

Abstract:
Nerve signaling in humans and chemical sensing in bacteria both rely on the controlled opening and closing of the ion-conducting pore in pentameric ligand-gated ion channels. With the help of a multiscale simulation approach that combines mixed elastic network model calculations with molecular dynamics simulations, we study the opening and closing of the pore in Gloeobacter violaceus channel GLIC at atomic resolution. In our simulations of the GLIC transmembrane domain, we first verify that the two endpoints of the transition are open and closed to sodium ion conduction, respectively. We then show that a two-stage tilting of the pore-lining helices induces cooperative drying and iris-like closing of the channel pore. From the free energy profile of the gating transition and from unrestrained simulations, we conclude that the pore of the isolated GLIC transmembrane domain closes spontaneously. The mechanical work of opening the pore is performed primarily on the M2-M3 loop. St
rong interactions of this short and conserved loop with the extracellular domain are therefore crucial to couple ligand binding to channel opening.

Reprint Address:
Hummer, G, NIDDKD, Chem Phys Lab, NIH, Bldg 2, Bethesda, MD 20892 USA.

Research Institution addresses:
[Zhu, Fangqiang; Hummer, Gerhard] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA

E-mail Address:
hummer@helix.nih.gov

Cited References:
ALLEN TW, 2006, BIOPHYS J, V90, P3447, DOI 10.1529/biophysj.105.077073.
ANISHKIN A, 2004, BIOPHYS J S 2, V86, A6.
AUERBACH A, 2005, P NATL ACAD SCI USA, V102, P1408, DOI 10.1073/pnas.0406787102.
AUERBACH A, 2010, J PHYSIOL-LONDON, V588, P573, DOI 10.1113/jphysiol.2009.182774.
BECKSTEIN O, 2006, PHYS BIOL, V3, P147, DOI 10.1088/1478-3975/3/2/007.
BERNECHE S, 2005, STRUCTURE, V13, P591, DOI 10.1016/j.str.2004.12.019.
BOCQUET N, 2007, NATURE, V445, P116, DOI 10.1038/nature05371.
BOCQUET N, 2009, NATURE, V457, P111, DOI 10.1038/nature07462.
BRANNIGAN G, 2008, P NATL ACAD SCI USA, V105, P14418, DOI 10.1073/pnas.0803029105.
CAMPOSCARO A, 1996, P NATL ACAD SCI USA, V93, P6118.
CHENG XL, 2009, BIOPHYS J, V96, P4502, DOI 10.1016/j.bpj.2009.03.018.
DEGROOT BL, 2002, BIOPHYS J, V82, P2934.
GAN WX, 2009, BIOPHYS J, V97, L8, DOI 10.1016/j.bpj.2009.06.016.
GROSMAN C, 2000, J GEN PHYSIOL, V116, P327.
HENCHMAN RH, 2005, BIOPHYS J, V88, P2564.
HILF RJC, 2008, NATURE, V452, P375, DOI 10.1038/nature06717.
HILF RJC, 2009, NATURE, V457, P115, DOI 10.1038/nature07461.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2005, NEW J PHYS, V7, ARTN 34.
IMOTO K, 1988, NATURE, V335, P645.
JENSEN MO, 2010, P NATL ACAD SCI USA, V107, P5833, DOI 10.1073/pnas.0911691107.
JHA A, 2009, BIOPHYS J, V96, P4075, DOI 10.1016/j.bpj.2009.02.030.
KHALILIARAGHI F, 2006, BIOPHYS J, V91, L2, DOI 10.1529/biophysj.106.091926.
MARAGLIANO L, 2006, J CHEM PHYS, V125, ARTN 024106.
MILLER TF, 2007, P NATL ACAD SCI USA, V104, P14559, DOI 10.1073/pnas.0705830104.
NURY H, 2010, J MOL BIOL, V395, P1114, DOI 10.1016/j.jmb.2009.11.024.
NURY H, 2010, P NATL ACAD SCI USA, V107, P6275, DOI 10.1073/pnas.1001832107.
REN EW, 2002, PHYS REV B, V66, UNSP 052301.
SINE SM, 2006, NATURE, V440, P448, DOI 10.1038/nature04708.
SMART OS, 1996, J MOL GRAPH MODEL, V14, P354.
TALY A, 2005, BIOPHYS J, V88, P3954, DOI 10.1529/biophysj.104.050229.
UNWIN N, 2005, J MOL BIOL, V346, P967, DOI 10.1016/j.jmb.2004.12.031.
ZHU FQ, 2009, BIOPHYS J, V97, P2456, DOI 10.1016/j.bpj.2009.08.020.

Cited Reference Count:
33

Times Cited:
0

Publisher:
NATL ACAD SCIENCES; 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA

Subject Category:
Multidisciplinary Sciences

ISSN:
0027-8424

DOI:
10.1073/pnas.1009313107

IDS Number:
680UT

========================================================================

*Record 2 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284047800013
*Order Full Text [ ]

Title:
Microscopic properties of nanopore water from its time-dependent dielectric response

Authors:
Kofinger, J; Dellago, C

Author Full Names:
Koefinger, Juergen; Dellago, Christoph

Source:
PHYSICAL REVIEW B 82 (20): Art. No. 205416 NOV 10 2010

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; BORON-NITRIDE NANOTUBE; PROTON CONDUCTION; MASS-TRANSPORT; ISING-MODEL; DYNAMICS; CHANNEL; PERMEATION; SIMULATION; AQUAPORIN-1

Abstract:
We present a simple kinetic model for the orientational dynamics of a chain of hydrogen-bonded molecules due to the diffusion of orientational defects. We derive an event-driven algorithm which allows us to do kinetic simulations for chains from nanoscopic to macroscopic lengths, spanning huge orders of magnitude in time. Our simulations and analytical calculations show that nanopore water exhibits Debye behavior arising from the diffusive dynamics of orientational defects. For the limits of short and long chains we derive analytical expressions for the relaxation times which allow to extract the diffusion constant, the effective interaction, and the excitation energy of these defects from dielectric spectroscopy experiments. We also discuss the possibility to use such experiments to detect if the two possible kinds of orientational defects differ in excitation energy and diffusion constant.

Reprint Address:
Kofinger, J, NIDDK, Chem Phys Lab, NIH, Bldg 5, Bethesda, MD 20892 USA.

Research Institution addresses:
[Koefinger, Juergen] NIDDK, Chem Phys Lab, NIH, Bethesda, MD 20892 USA; [Dellago, Christoph] Univ Vienna, Fac Phys, A-1090 Vienna, Austria

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI 10.1073/pnas.0408098102.
CAMBRE S, 2010, PHYS REV LETT, V104, ARTN 207401.
CHOPRA NG, 1995, SCIENCE, V269, P966.
CHOU T, 2002, J PHYS A-MATH GEN, V35, P4515.
CHOU T, 2004, BIOPHYS J, V86, P2827.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
DENDZIK Z, 2008, J NON-CRYST SOLIDS, V354, P4300, DOI 10.1016/j.jnoncrysol.2008.06.042.
DOOB JL, 1945, T AM MATH SOC, V58, P455.
DUMITRICA T, 2002, CHEM PHYS LETT, V360, P182.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FREDRICKSON GH, 1984, PHYS REV LETT, V53, P1244.
GILLESPIE DT, 1977, J PHYS CHEM-US, V81, P2340, DOI 10.1021/J100540A008.
GLAUBER RJ, 1963, J MATH PHYS, V4, P294.
HARRELL CC, 2003, ANAL CHEM, V75, P6861, DOI 10.1021/ac034602n.
HOHENBERG PC, 1977, REV MOD PHYS, V49, P435.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KARPAN VM, 2004, PHYS REV E, V70, UNSP 056602.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOFINGER J, 2009, J CHEM PHYS, V130, P54110, ARTN 154110.
KOFINGER J, 2009, PHYS REV LETT, V103, ARTN 080601.
KOFINGER J, 2010, NEW J PHYS, V12, P93044, UNSP 093044.
LIANG CD, 2004, ANGEW CHEM INT EDIT, V43, P5785, DOI 10.1002/anie.200461051.
LIU X, 2006, J PHYS CHEM B, V110, P20102, DOI 10.1021/jp0647378.
MAIBAUM L, 2003, J PHYS CHEM B, V107, P1189, DOI 10.1021/jp0267196.
MATYUSHOV DV, 2007, J CHEM PHYS, V127, P54702, ARTN 054702.
MCQUARRIE DA, 2000, STAT MECH.
METROPOLIS M, 1953, J CHEM PHYS, V21, P1087.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
MUKHERJEE B, 2009, J PHYS CHEM B, V113, P10322, DOI 10.1021/jp904099f.
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946.
POMES R, 2002, BIOPHYS J, V82, P2304.
RITORT F, 2003, ADV PHYS, V52, P219, DOI 10.1080/0001873031000093582.
SAGNELLA DE, 1996, BIOPHYS J, V70, P2043.
SAHA SK, 2006, APPL PHYS LETT, V89, P43117, ARTN 043117.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
STRIEMER CC, 2007, NATURE, V445, P749, DOI 10.1038/nature05532.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
VANKAMPEN NG, 1992, STOCHASTIC PROCESSES.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WON CY, 2006, J CHEM PHYS, V125, P14701, ARTN 114701.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
WON CY, 2008, J PHYS CHEM C, V112, P1812, DOI 10.1021/jp076747u.
ZHOU X, 2004, J CHEM PHYS, V121, P7996, DOI 10.1063/1.1799971.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.
ZIMMERLI U, 2005, NANO LETT, V5, P1017, DOI 10.1021/nl0503126.

Cited Reference Count:
53

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Condensed Matter

ISSN:
1098-0121

DOI:
10.1103/PhysRevB.82.205416

IDS Number:
678CS

========================================================================

*Record 3 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284335800001
*Order Full Text [ ]

Title:
Molecular dynamics simulation of nanoscale liquid flows

Authors:
Li, YX; Xu, JL; Li, DQ

Author Full Names:
Li, Yuxiu; Xu, Jinliang; Li, Dongqing

Source:
MICROFLUIDICS AND NANOFLUIDICS 9 (6): 1011-1031 DEC 2010

Language:
English

Document Type:
Review

Author Keywords:
Molecular dynamics simulation; Liquid flow; Nanochannels; Nanofluidics

KeyWords Plus:
FLUID-SOLID INTERFACE; CARBON NANOTUBES; BOUNDARY-CONDITIONS; ELECTROKINETIC TRANSPORT; ATOMISTIC SIMULATION; NANOFLUIDIC CHANNELS; SURFACE-ROUGHNESS; SHEAR-FLOW; WATER; SLIP

Abstract:
Molecular dynamics (MD) simulation is a powerful tool to investigate the nanoscale fluid flow. In this article, we review the methods and the applications of MD simulation in liquid flows in nanochannels. For pressure-driven flows, we focus on the fundamental research and the rationality of the model hypotheses. For electrokinetic-driven flows and the thermal-driven flows, we concentrate on the principle of generating liquid motion. The slip boundary condition is one of the marked differences between the macro- and micro-scale flows and the nanoscale flows. In this article, we review the parameters controlling the degree of boundary slip and the new findings. MD simulation is based on the Newton's second law to simulate the particles' interactions and consists of several important processing methods, such as the thermal wall model, the cut-off radius, and the initial condition. Therefore, we also reviewed the recent improvement in these key methods to make the MD simulation m
ore rational and efficient. Finally, we summarized the important discoveries in this research field and proposed some worthwhile future research directions.

Reprint Address:
Li, DQ, Univ Waterloo, Dept Mech & Mech Engn, Waterloo, ON N2L 3G1, Canada.

Research Institution addresses:
[Li, Dongqing] Univ Waterloo, Dept Mech & Mech Engn, Waterloo, ON N2L 3G1, Canada; [Li, Yuxiu] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Peoples R China; [Xu, Jinliang] N China Elect Power Univ, Beijing Key Lab New & Renewable Energy, Beijing 102206, Peoples R China

E-mail Address:
dongqing@mme.uwaterloo.ca

Cited References:
ALEXANDER FJ, 1997, COMPUT PHYS, V11, P588.
ANDERSEN HC, 1980, J CHEM PHYS, V72, P2384.
BANERJEE S, 2007, CHEM PHYS LETT, V434, P292, DOI 10.1016/j.cplett.2006.12.025.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BENEDICT LX, 1995, PHYS REV B, V52, P8541.
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u.
BIKERMAN JJ, 1970, PHYS SURFACES.
BONACCURSO E, 2003, PHYS REV LETT, V90, ARTN 144501.
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211.
BRANAM RD, 2005, THESIS PENNSYLVANIA.
BUCKINGHAM RA, 1938, PROC R SOC LON SER-A, V168, P264.
CHANDRASEKHAR J, 1984, J AM CHEM SOC, V106, P903.
CHAUDHURY MK, 1992, SCIENCE, V256, P1539.
CHEN SC, 2005, PHYS REV B, V72, ARTN 193412.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
CHURAEV NV, 1984, J COLLOID INTERF SCI, V97, P574.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI 10.1140/epje/i2002-10112-9.
CRAIG VSJ, 2001, PHYS REV LETT, V87, ARTN 054504.
DAIGUJI H, 2004, NANO LETT, V4, P137, DOI 10.1021/nl0348185.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGENNES PG, 2003, CAPILLARITY WETTING.
DUKHIN SS, 1974, ELECTROKINETIC PHENO, V7.
ERMAKOV SV, 1998, ANAL CHEM, V70, P4494.
ERRINGTON JR, 1999, J PHYS CHEM B, V103, P6314.
FAN R, 2003, J AM CHEM SOC, V125, P5254, DOI 10.1021/ja034163.
FRENKEL D, 2002, UNDERSTANDING MOL SI.
FREUND JB, 2002, J CHEM PHYS, V116, P2194.
GALEA TM, 2004, LANGMUIR, V20, P3477, DOI 10.1021/la035880k.
GALLIERO G, 2006, PHYS REV E 1, V73, ARTN 061201.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HAILE JM, 1992, MOL DYNAMICS SIMULAT.
HAN M, 2005, J COLLOID INTERF SCI, V284, P339, DOI 10.1016/j.jcis.2004.09.067.
HAN M, 2008, J MECH SCI TECHNOL, V22, P157, DOI 10.1007/s12206-007-1019-4.
HEINZ TN, 2004, J COMPUT CHEM, V25, P1474, DOI 10.1002/jcc.20071.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HORN RG, 2000, J CHEM PHYS, V112, P6424.
HUMMER G, 2001, NATURE, V414, P188.
JABBARZADEH A, 1999, J CHEM PHYS, V110, P2612.
JAKOBTORWEIHEN S, 2006, J CHEM PHYS, V124, UNSP 154706-1-13.
JOLY L, 2004, PHYS REV LETT, V93, ARTN 257805.
JOLY L, 2006, PHYS REV LETT, V96, ARTN 046101.
JORGENSEN WL, 1982, J AM CHEM SOC, V104, P4584.
KHARE R, 1996, MACROMOLECULES, V29, P7910.
KHARE R, 1997, J CHEM PHYS, V107, P2589.
KIM BH, 2008, MICROFLUID NANOFLUID, V5, P551, DOI 10.1007/s10404-008-0267-7.
KIM CS, 2007, J FLUID ENG-T ASME, V129, P1140, DOI 10.1115/1.2754311.
KIM D, 2006, PHYS REV E 1, V73, ARTN 051203.
KOIKE A, 1998, J PHYS CHEM B, V102, P3669.
KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781.
KUO TC, 2001, LANGMUIR, V17, P6298.
LI TS, 2006, PHYS REV B, V73, ARTN 075432.
LI Y, 2004, 4 IEEE C NAN, P273.
LINKE H, 2006, PHYS REV LETT, V96, ARTN 154502.
LIU L, 2009, PHYS CHEM CHEM PHYS, V11, P6520, DOI 10.1039/b905641f.
LUDWIG KF, 2004, THESIS PENNSYLVANIA.
MAHAR B, 2007, IEEE SENS J, V7, P266, DOI 10.1109/JSEN.2006.886863.
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910.
MARTINI A, 2008, J FLUID MECH, V600, P257, DOI 10.1017/S0022112008000475.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MASON DR, 2005, COMPUT PHYS COMMUN, V170, P31, DOI 10.1016/j.cpc.2005.03.111.
MAXIMOVA T, 2006, J COMPUT BIOL, V13, P1041.
MAXWELL JC, 1879, PHILOS T R SOC LONDO, V170, P231, DOI 10.1098/RSTL.1879.0067.
MICCI MM, 2000, 8 INT C LIQ AT SPRAY.
MIGLER KB, 1993, PHYS REV LETT, V70, P287.
MITCHELL MJ, 2000, J MICROELECTROMECH S, V9, P435.
MIYAMOTO S, 1992, J COMPUT CHEM, V13, P952.
MOSELER M, 2000, SCIENCE, V289, P1165.
NIAVARANI A, 2008, J CHEM PHYS, V129, ARTN 144902.
NIAVARANI A, 2008, PHYS REV E 1, V77, ARTN 041606.
NOSE S, 1984, J CHEM PHYS, V81, P511.
NOSE S, 2002, MOL PHYS, V100, P191.
PENNATHUR S, 2005, ANAL CHEM, V77, P6782, DOI 10.1021/ac0508346.
PIT R, 2000, PHYS REV LETT, V85, P980.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
PRIEZJEV NV, 2006, J FLUID MECH, V554, P25, DOI 10.1017/S0022112006009086.
PRIEZJEV NV, 2007, PHYS REV E 1, V75, ARTN 051605.
QIAO R, 2003, J CHEM PHYS, V118, P4692, DOI 10.1063/1.1543140.
QIAO R, 2005, COLLOID SURFACE A, V267, P103, DOI 10.1016/j.colsurfa.2005.06.067.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
QIAO Y, 2009, NANO LETT, V9, P984, DOI 10.1021/nl8030136.
RAVIV U, 2001, NATURE, V413, P51.
REGAN BC, 2004, NATURE, V428, P924, DOI 10.1038/nature02496.
SAITO R, 1992, APPL PHYS LETT, V60, P2204.
SANCHEZREYES J, 2003, LANGMUIR, V19, P3304, DOI 10.1021/la0265326.
SCHMATKO T, 2005, PHYS REV LETT, V94, ARTN 244501.
SCHMATKO T, 2006, LANGMUIR, V22, P6843, DOI 10.1021/la060061w.
SERVICE RF, 2006, SCIENCE, V313, P1088.
SHIN H, 2006, THESIS YONSEI U SEOU.
SOFOS F, 2009, INT J HEAT MASS TRAN, V52, P735, DOI 10.1016/j.ijheatmasstransfer.2008.07.022.
SOONG CY, 2007, PHYS REV E 2, V76, ARTN 036303.
SPOEL DVD, 2004, GROMACS USER MANUAL.
STEIN D, 2004, PHYS REV LETT, V93, ARTN 035901.
STERN MB, 1997, J VAC SCI TECHNOL B, V15, P2887.
STONE AJ, 1996, THEORY INTERMOLECULA.
SUN H, 1998, COMPUT THEOR POLYM 2, V8, P229.
SUTMANN G, 2006, J MOL LIQ, V125, P197, DOI 10.1016/j.molliq.2005.11.029.
TAS NR, 2004, APPL PHYS LETT, V85, P3274, DOI 10.1063/1.1804602.
TENENBAUM A, 1982, PHYS REV A, V25, P2778.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1995, ISR J CHEM, V35, P93.
THOMPSON PA, 1997, NATURE, V389, P360.
TURNER CH, 2002, APPL SURF SCI, V196, P366.
TYRELL JWG, 2001, PHYS REV LETT, V87, ARTN 176104.
VINOGRADOVA OI, 2006, PHYS REV E 2, V73, ARTN 045302.
WANG DB, 2007, COMPUT PHYS COMMUN, V177, P551, DOI 10.1016/j.cpc.2007.05.009.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WHEELER TD, 2008, NATURE, V455, P208, DOI 10.1038/nature07226.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WHITESIDES GM, 2006, NATURE, V442, P368, DOI 10.1038/nature05058.
XU Y, 2008, APPL PHYS LETT, V93, NI324, UNSP 043122-1-3.
XUE YQ, 2006, NANOTECHNOLOGY, V17, P5216, DOI 10.1088/0957-4484/17/20/029.
YANG L, 2007, J CHEM PHYS, V126, P8, ARTN 084706.
YANG SC, 2006, MICROFLUID NANOFLUID, V2, P501, DOI 10.1007/s10404-006-0096-5.
YAO ZH, 2004, COMPUT PHYS COMMUN, V161, P27, DOI 10.1016/j.cpc.2004.04.004.
ZHANG HZ, 2004, FLUID PHASE EQUILIBR, V217, P111, DOI 10.1016/j.fluid.2003.11.002.
ZHANG WF, 2007, MICROFLUID NANOFLUID, V3, P417, DOI 10.1007/s10404-006-0133-4.

Cited Reference Count:
124

Times Cited:
0

Publisher:
SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY

Subject Category:
Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas

ISSN:
1613-4982

DOI:
10.1007/s10404-010-0612-5

IDS Number:
681RZ

========================================================================

*Record 4 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284101100012
*Order Full Text [ ]

Title:
Lubrication by molecularly thin water films confined between nanostructured membranes

Authors:
Kalra, A; Garde, S; Hummer, G

Author Full Names:
Kalra, A.; Garde, S.; Hummer, G.

Source:
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS 189 (1): 147-154 OCT 2010

Language:
English

Document Type:
Article

KeyWords Plus:
BOUNDARY LUBRICATION; LAYERING TRANSITIONS; SUBNANOMETER FILMS; CARBON NANOTUBE; LIQUID-FILMS; DYNAMICS; FLUIDITY; SURFACES; DEPENDENCE; SIMULATION

Abstract:
We use molecular dynamics simulations to study thermal sliding of two nanostructured surfaces separated by nanoscale water films. We find that friction at molecular separations is determined primarily by the effective free energy landscape for motion in the plane of sliding, which depends sensitively on the surface character and the molecular structure of the confined water. Small changes in the surface nanostructure can have dramatic effects on the apparent rheology. Whereas porous and molecularly rough interfaces of open carbon nanotube membranes are found to glide with little friction, a comparably smooth interface of end-capped nanotubes is effectively stuck. The addition of salt to the water layer is found to reduce the sliding friction. Surprisingly, the intervening layers of water remain fluid in all cases, even in the case of high apparent friction between the two membranes.

Reprint Address:
Kalra, A, Shell Oil Co, Houston, TX 77252 USA.

Research Institution addresses:
[Kalra, A.; Garde, S.] Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA; [Kalra, A.; Hummer, G.] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA

E-mail Address:
gardes@rpi.edu; gerhard.hummer@nih.gov

Cited References:
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BOCQUET L, 2010, CHEM SOC REV, V39, P1073, DOI 10.1039/b909366b.
BRISCOE WH, 2006, NATURE, V444, P191, DOI 10.1038/nature05196.
BROVCHENKO IV, 2001, FLUID PHASE EQUILIBR, V183, P331.
CUI ST, 2001, J CHEM PHYS, V114, P7189.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DONNELLY SE, 2002, SCIENCE, V296, P507.
GAO JP, 1997, PHYS REV LETT, V79, P705.
GAO JP, 2004, J PHYS CHEM B, V108, P3410, DOI 10.1021/jp036362l.
GRANICK S, 1991, SCIENCE, V253, P1374.
HOMOLA AM, 1989, ASME, V111, P675.
HUMMER G, 2001, NATURE, V414, P188.
ISRAELACHVILI JN, 1988, SCIENCE, V240, P189.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KALRA A, 2004, J PHYS CHEM B, V108, P544, DOI 10.1021/jp035828x.
KLEIN J, 2004, J PHYS-CONDENS MAT, V16, S5437, DOI 10.1088/0953-8984/16/45/008.
KLEIN J, 2007, PHYS REV LETT, V98, ARTN 056101.
KUMACHEVA E, 1998, J CHEM PHYS, V108, P7010.
LENG YS, 2005, PHYS REV LETT, V94, ARTN 026101.
LI TD, 2007, PHYS REV B, V75, ARTN 115415.
MO YF, 2009, NATURE, V457, P1116, DOI 10.1038/nature07748.
MULLER MH, 2001, PHYS REV LETT, V86, P1295.
PEARLMAN DA, 1995, COMPUT PHYS COMMUN, V91, P1.
PERKIN S, 2008, FARADAY DISCUSS, V141, P399.
PERSSON BNJ, 2000, SLIDING FRICTION PHY.
RAVIV U, 2001, NATURE, V413, P51.
RAVIV U, 2002, J CHEM PHYS, V116, P5167.
RAVIV U, 2002, SCIENCE, V297, P1540.
RAVIV U, 2004, LANGMUIR, V20, P5322, DOI 10.1021/la030419d.
THOMPSON PA, 1990, SCIENCE, V250, P792.
URBAKH M, 2004, NATURE, V430, P525, DOI 10.1038/nature02750.
YAMADA S, 2003, LANGMUIR, V19, P7399, DOI 10.1021/la034511l.
YEH IC, 2004, J PHYS CHEM B, V108, P15873, DOI 10.1021/jp0477147.

Cited Reference Count:
34

Times Cited:
0

Publisher:
SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY

Subject Category:
Physics, Multidisciplinary

ISSN:
1951-6355

DOI:
10.1140/epjst/e2010-01317-9

IDS Number:
678SQ

========================================================================

*Record 5 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283453700038
*Order Full Text [ ]

Title:
Control Performance and Biomembrane Disturbance of Carbon Nanotube Artificial Water Channels by Nitrogen-Doping

Authors:
Yang, YL; Li, XY; Jiang, JL; Du, HL; Zhao, LN; Zhao, YL

Author Full Names:
Yang, Yuling; Li, Xiaoyi; Jiang, Jinliang; Du, Huailiang; Zhao, Lina; Zhao, Yuliang

Source:
ACS NANO 4 (10): 5755-5762 OCT 2010

Language:
English

Document Type:
Article

Author Keywords:
N-SWCNT; N-DWCNT; artificial water channel; water flow control; molecular dynamics simulation

KeyWords Plus:
MOLECULAR-DYNAMICS; PERMEATION; TRANSPORT; NANOMATERIALS; SIMULATIONS; AQUAPORIN-1; CONDUCTION; MECHANISM; DIFFUSION; MEMBRANES

Abstract:
To establish ways to control the performance of artificial water channels is a big challenge. With molecular dynamics studies, we found that water flow inside the water channels of carbon nanotubes (CNTs) can be controlled by reducing or intensifying interaction energy between water molecules and the wall of the CNTs channel. A way of example toward this significant goal was demonstrated by the doping of nitrogen into the wall of CNTs. Different ratios of nitrogen doping result in different controllable water performance which is dominated mainly through a gradient of van der Waals forces created by the heteroatom doping in the wall of CNTs. Further results revealed that the nitrogen-doped CNT channels show less influence on the integrality of biomembrane than the pristine one, while the nitrogen-doped double-walled carbon nanotube exhibits fewer disturbances to the cellular membrane integrality than the nitrogen-doped single-walled carbon nanotube when interacting with biome
mbranes.

Reprint Address:
Li, XY, Chinese Acad Sci, Grad Univ, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China.

Research Institution addresses:
[Yang, Yuling; Li, Xiaoyi; Du, Huailiang] Chinese Acad Sci, Grad Univ, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China; [Jiang, Jinliang] Chinese Acad Sci, Grad Univ, Coll Chem & Chem Engn, Beijing 100049, Peoples R China; [Yang, Yuling; Li, Xiaoyi; Zhao, Lina; Zhao, Yuliang] Chinese Acad Sci, Key Lab Biomed Effects Nanomat & Nanosafetey, Inst High Energy Phys, Beijing 100049, Peoples R China; [Yang, Yuling; Li, Xiaoyi; Zhao, Lina; Zhao, Yuliang] Natl Ctr Nanosci & Technol China, Beijing 100049, Peoples R China

E-mail Address:
lixy@gucas.ac.cn; zhaoyuliang@ihep.ac.cn

Cited References:
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
CARREROSANCHEZ JC, 2006, NANO LETT, V6, P1609, DOI 10.1021/nl060548p.
CASTROROMAN F, 2006, J PHYS CHEM B, V110, P24157, DOI 10.1021/jp064746g.
CHAUDHURY MK, 1992, SCIENCE, V256, P1539.
CHEN X, 2007, P NATL ACAD SCI USA, V104, P8218, DOI 10.1073/pnas.0700567104.
DEGENNES PG, 2004, CAPILLARITY WETTING.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
ELIAS AL, 2007, SMALL, V3, P1723, DOI 10.1002/smll.200700331.
ENDO M, 2008, TOP APPL PHYS, V111, P13.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FELLER SE, 2000, J PHYS CHEM B, V104, P7510.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HEISTER E, 2010, ACS NANO, V4, P2615, DOI 10.1021/nn100069k.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
HUSSAIN SM, 2009, ADV MATER, V21, P1549, DOI 10.1002/adma.200801395.
JANG JW, 2004, APPL PHYS LETT, V84, P2877, DOI 10.1063/1.1697624.
JIA G, 2005, ENVIRON SCI TECHNOL, V39, P1378, DOI 10.1021/es048729l.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KLAUDA JB, 2006, J CHEM PHYS, V125, ARTN 144710.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOLOSNJAJ J, 2007, BIOAPPLICATIONS NANO, P181.
LACERDA L, 2007, NANO TODAY, V2, P38.
LEE RS, 2000, PHYS REV B, V61, P4526.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIJIMA S, 1991, NATURE, V354, P56.
LINKE H, 2006, PHYS REV LETT, V96, ARTN 154502.
LIU B, 2009, NANO LETT, V9, P1386, DOI 10.1021/nl8030339.
LIU JZ, 2008, CHEM RES TOXICOL, V21, P459, DOI 10.1021/tx700392b.
MURATA K, 2000, NATURE, V407, P599.
NOY A, 2007, NANO TODAY, V2, P22.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289.
PRATO M, 2008, ACCOUNTS CHEM RES, V41, P60, DOI 10.1021/ar700089b.
SERVICE RF, 2006, SCIENCE, V313, P1088.
STRIOLO A, 2006, J CHEM PHYS, V124, ARTN 074710.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
STRIOLO A, 2007, NANOTECHNOLOGY, V18, ARTN 475704.
TERRONES M, 2008, TOP APPL PHYS, V111, P531.
VANOMMESLAEGHE K, 2009, J COMPUT CHEM, V31, P671.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
WU HC, 2010, J MATER CHEM, V20, P1036, DOI 10.1039/b911099m.
ZANG J, 2009, ACS NANO, V3, P1548, DOI 10.1021/nn9001837.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZHU FQ, 2004, PHYS REV LETT, V93, ARTN 224501.
ZUO G, 2009, ACS NANO, V4, P205.

Cited Reference Count:
54

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn1014825

IDS Number:
670UV

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: