Saturday, February 26, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285750100030
*Order Full Text [ ]

Title:
Ferroelectric mobile water

Authors:
Nakamura, Y; Ohno, T

Author Full Names:
Nakamura, Yoshimichi; Ohno, Takahisa

Source:
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 13 (3): 1064-1069 2011

Language:
English

Document Type:
Article

KeyWords Plus:
PHASE-TRANSITION; CARBON NANOTUBES; ICE NANOTUBES; HEXAGONAL ICE; EWALD SUMS; IH

Abstract:
In molecular dynamics simulations single-domain ferroelectric water is produced under ordinary ambient conditions utilizing carbon nanotubes open to a water reservoir. This ferroelectric water diffuses while keeping its proton-ordered network intact. The mobile/immobile water transitions and the step-wise changes in net polarization of water are observed to occur spontaneously. The immobile water becomes mobile by transforming into the single-domain ferroelectric water. Our general notion of relating a more highly ordered structure with a lower temperature has so far restricted researchers' attention to very low temperatures when experimenting on proton-ordered phases of water. The present study improves our general understanding of water, considering that the term 'ferroelectric water' has so far practically stood for 'ferroelectric ice,' and that single-domain ferroelectric water has not been reported even for the ice nanotubes.

Reprint Address:
Nakamura, Y, Natl Inst Mat Sci, Computat Mat Sci Ctr, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan.

Research Institution addresses:
[Nakamura, Yoshimichi; Ohno, Takahisa] Natl Inst Mat Sci, Computat Mat Sci Ctr, Tsukuba, Ibaraki 3050047, Japan; [Nakamura, Yoshimichi; Ohno, Takahisa] JST, CREST, Chiyoda Ku, Tokyo 1020075, Japan

E-mail Address:
NAKAMURA.Yoshimichi@nims.go.jp

Cited References:
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BERNAL JD, 1933, J CHEM PHYS, V1, P515.
BRAMWELL ST, 1999, NATURE, V397, P212.
CASE DA, 2006, AMBER 9.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
FELLER W, 1968, INTRO PROBABILITY TH, CH3.
FUKAZAWA H, 2006, ASTROPHYS J 2, V652, L57.
HUMMER G, 2001, NATURE, V414, P188.
IEDEMA MJ, 1998, J PHYS CHEM B, V102, P9203.
JACKSON SM, 1995, J CHEM PHYS, V103, P7647.
JACKSON SM, 1997, J PHYS CHEM B, V101, P6142.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KAWADA S, 1972, J PHYS SOC JPN, V32, P1442.
KAWADA S, 1989, J PHYS CHEM SOLIDS, V50, P1177.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOFINGER J, 2009, PHYS REV LETT, V103, ARTN 080601.
KOGA K, 2001, NATURE, V412, P802.
LUO CF, 2008, NANO LETT, V8, P2607, DOI 10.1021/nl072642r.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MATSUO T, 1986, J PHYS CHEM SOLIDS, V47, P165.
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
PAULING L, 1935, J AM CHEM SOC, V57, P2680.
RICK SW, 2004, J CHEM PHYS, V120, P6085, DOI 10.1063/1.1652434.
SLATER JC, 1941, J CHEM PHYS, V9, P16.
SU XC, 1998, PHYS REV LETT, V80, P1533.
TAJIMA Y, 1982, NATURE, V299, P810.
TAJIMA Y, 1984, J PHYS CHEM SOLIDS, V45, P1135.
TUA Y, 2009, P NATL ACAD SCI USA, V106, P18120.
WAN RZ, 2009, PHYS CHEM CHEM PHYS, V11, P9898, DOI 10.1039/b907926m.

Cited Reference Count:
32

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1463-9076

DOI:
10.1039/c0cp01428a

IDS Number:
700NJ

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286615600014
*Order Full Text [ ]

Title:
Prediction of the viscosity of water confined in carbon nanotubes

Authors:
Zhang, HW; Ye, HF; Zheng, YG; Zhang, ZQ

Author Full Names:
Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang

Source:
MICROFLUIDICS AND NANOFLUIDICS 10 (2): 403-414 FEB 2011

Language:
English

Document Type:
Article

Author Keywords:
Viscosity; Carbon nanotube; Confined water; Eyring theory; Molecular dynamics

KeyWords Plus:
ABSOLUTE REACTION-RATES; MOLECULAR-DYNAMICS; VISCOUS-FLOW; ICE NANOTUBES; TRANSPORT; DIFFUSION; LIQUID; NANOSCALE; MODEL; HYDRODYNAMICS

Abstract:
In this paper, the viscosity of water confined in single-walled carbon nanotubes (SWCNTs) with the diameter ranging from 8 to 54 is evaluated, which is crucial for the research on the nanoflow but difficult to be obtained. An "Eyring-MD" (molecular dynamics) method combining the Eyring theory of viscosity with the MD simulations is proposed to tackle the particular problems. For the critical energy which is a parameter in the "Eyring-MD" method, the numerical experiment is adopted to explore its dependence on the temperature and the potential energy. To demonstrate the feasibility of the proposed method, the viscosity of water at high pressure is computed and the results are in reasonable agreement with the experimental results. The computational results indicate that the viscosity of water inside SWCNTs increases nonlinearly with enlarging diameter of SWCNTs, which can reflect the size effect on the transports capability of the SWCNTs. The trend of the viscosity is well expl
ained by the variation of the hydrogen bond of the water inside SWCNTs. A fitting equation of the viscosity of the confined water is given, which should be significant for recognizing and studying the transport behavior of fluid through the nanochannels.

Reprint Address:
Zhang, HW, Dalian Univ Technol, Dept Engn Mech, Fac Vehicle Engn & Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China.

Research Institution addresses:
[Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang] Dalian Univ Technol, Dept Engn Mech, Fac Vehicle Engn & Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China

E-mail Address:
zhanghw@dlut.edu.cn

Cited References:
ALBERTO S, 2006, NANO LETT, V6, P633, DOI 10.1021/NL052254U.
ALENKA L, 1996, NATURE, V379, P55, DOI 10.1038/379055A0.
ALEXIADIS A, 2008, CHEM ENG SCI, V63, P2047, DOI 10.1016/j.ces.2007.12.035.
ALFE D, 1998, PHYS REV LETT, V81, P5161.
ANGELL CA, 1993, J PHYS CHEM-US, V97, P6339.
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BALASUBRAMANIAN S, 1996, J CHEM PHYS, V105, P11190.
BERTOLINI D, 1995, PHYS REV E, V52, P1699.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
BOSSE D, 2005, IND ENG CHEM RES, V44, P8428, DOI 10.1021/ie048797g.
BRYC W, 2002, APPL MATH COMPUT, V127, P365.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
DAVID RL, 2003, CRC HDB CHEM PHYS.
EYRING H, 1936, J CHEM PHYS, V4, P283.
GIOVAMBATTISTA N, 2009, PHYS REV LETT, V102, ARTN 050603.
GUO GJ, 2001, MOL PHYS, V99, P283.
HALLETT J, 1963, P PHYS SOC LOND, V82, P1046.
HAN AJ, 2008, J APPL PHYS, V104, ARTN 124908.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708.
HANS WH, 2004, J CHEM PHYS, V120, P9665.
HENKELMAN G, 2000, J CHEM PHYS, V113, P9978.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLT JK, 2008, MICROFLUID NANOFLUID, V5, P425, DOI 10.1007/s10404-008-0301-9.
HORNE RA, 1965, J PHYS CHEM-US, V69, P3988, DOI 10.1021/J100895A057.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KAUZMANN W, 1940, J AM CHEM SOC, V62, P3113.
KINCAID JF, 1941, CHEM REV, V28, P301.
KOGA K, 2001, NATURE, V412, P802.
LEE MJ, 1999, IND ENG CHEM RES, V38, P2867.
LEI QF, 1997, FLUID PHASE EQUILIBR, V140, P221.
LI YX, 2010, MICROFLUID NANOFLUID, V9, P1011, DOI 10.1007/s10404-010-0612-5.
LIU YC, 2005, J CHEM PHYS, V123, ARTN 234701.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MALLAMACE F, 2010, J PHYS CHEM B, V114, P1870, DOI 10.1021/jp910038j.
MARTI J, 1999, J CHEM PHYS, V110, P6876.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
POLING BE, 2001, PROPERTIES GASES LIQ.
POWELL RE, 1941, IND ENG CHEM, V33, P430.
STEVE P, 1995, J COMPUT PHYS, V117, P1, DOI 10.1006/JCPH.1995.1039.
SUN YL, 2007, COMP MATER SCI, V38, P737, DOI 10.1016/j.commatsci.2006.05.007.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
TOLMAN RC, 1920, J AM CHEM SOC, V42, P2506.
VELIKOV V, 2001, SCIENCE, V294, P2335.
WALTER J, 1938, J CHEM PHYS, V6, P391, DOI 10.1063/1.1750274.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
WONHAM J, 1967, NATURE, V215, P1053.
ZHU FQ, 2004, PHYS REV LETT, V93, ARTN 224501.

Cited Reference Count:
50

Times Cited:
0

Publisher:
SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY

Subject Category:
Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas

ISSN:
1613-4982

DOI:
10.1007/s10404-010-0678-0

IDS Number:
711TZ

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286700900008
*Order Full Text [ ]

Title:
Potential of nanoparticles in sample preparation

Authors:
Lucena, R; Simonet, BM; Cardenas, S; Valcarcel, M

Author Full Names:
Lucena, R.; Simonet, B. M.; Cardenas, S.; Valcarcel, M.

Source:
JOURNAL OF CHROMATOGRAPHY A 1218 (4): 620-637 Sp. Iss. SI JAN 28 2011

Language:
English

Document Type:
Review

Author Keywords:
Sample treatment; Nanoparticles; Solid phase extraction; Liquid-liquid extraction

KeyWords Plus:
SOLID-PHASE EXTRACTION; MULTIWALLED CARBON NANOTUBES; ATOMIC-ABSORPTION-SPECTROMETRY; MOLECULARLY IMPRINTED POLYMER; ENVIRONMENTAL WATER SAMPLES; PERFORMANCE LIQUID-CHROMATOGRAPHY; MODIFIED TIO2 NANOPARTICLES; PLASMA-MASS SPECTROMETRY; SIZE TITANIUM-DIOXIDE; RARE-EARTH-ELEMENTS

Abstract:
The paper presents a general overview of the use of nanoparticles to perform sample preparation. In this way the main uses of nanoparticles to carry out solid phase extraction, solid phase microextraction, liquid-liquid extraction and filtration techniques are described for a wide range of nanoparticles including carbon nanoparticles, metallic, silica and molecular imprinted polymer nanoparticles. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Valcarcel, M, Univ Cordoba, Dept Analyt Chem, E-14071 Cordoba, Spain.

Research Institution addresses:
[Lucena, R.; Simonet, B. M.; Cardenas, S.; Valcarcel, M.] Univ Cordoba, Dept Analyt Chem, E-14071 Cordoba, Spain

E-mail Address:
qa1meobj@uco.es

Cited References:
ALEXANDER C, 2003, TETRAHEDRON, V59, P2025, DOI 10.1016/S0040-4020(03)00152-2.
ALEXANDER C, 2006, J MOL RECOGNIT, V19, P106, DOI 10.1002/jmr.760.
ALTELAAR AFM, 2006, ANAL CHEM, V78, P734, DOI 10.1021/ac0513111.
ANDREWS R, 1999, CHEM PHYS LETT, V303, P467.
ARSHADY R, 1981, MAKROMOL CHEM, V182, P687.
ARTHUR CL, 1990, ANAL CHEM, V62, P2145.
AZENHA MA, 2006, ANAL CHEM, V78, P2071, DOI 10.1021/ac0521246.
BAENA JR, 2000, ANAL CHEM, V72, P1510.
BAKER MJ, 2006, APPL SURF SCI, V252, P6731, DOI 10.1016/j.apsusc.2006.02.161.
BALLESTEROS E, 2000, J CHROMATOGR A, V869, P101.
BALLESTEROSGOMEZ A, 2009, ANAL CHEM, V81, P9012, DOI 10.1021/ac9016264.
BARBOSA AF, 2007, TALANTA, V71, P1512, DOI 10.1016/j.talanta.2006.07.026.
BASHEER C, 2006, ANAL CHEM, V78, P2853, DOI 10.1021/ac060240i.
BURGUERA JL, 2009, SPECTROCHIM ACTA B, V64, P451, DOI 10.1016/j.sab.2009.01.004.
CAI YQ, 2003, ANAL CHEM, V75, P2517, DOI 10.1021/ac0263566.
CALVARESI M, 2009, SMALL, V19, P2191.
CAO AY, 2005, SCIENCE, V310, P1307, DOI 10.1126/science.1118957.
CARRILLOCARRION C, 2007, ANALYST, V132, P551, DOI 10.1039/b701019b.
CARRILLOCARRION C, 2007, J CHROMATOGR A, V1171, P1.
CHAPUIS F, 2003, J CHROMATOGR A, V999, P23, DOI 10.1016/S0021-9673(03)00552-1.
CHE G, 1998, NATURE, V393, P393.
CHEN CT, 2005, ANAL CHEM, V77, P5912, DOI 10.1021/ac050831t.
CHEN HB, 2006, J MEMBRANE SCI, V269, P152, DOI 10.1016/j.memsci.2005.06.030.
CHEN WF, 2009, J CHROMATOGR A, V1216, P9143, DOI 10.1016/j.chroma.2009.07.025.
CHEN WH, 2006, ANAL CHEM, V78, P4228, DOI 10.1021/ac052085y.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DADFARNIA S, 2002, B KOR CHEM SOC, V23, P545.
DELCALZO AB, 2006, ANGEW CHEM INT EDIT, V45, P5924.
DELIYANNI EA, 2003, CHEMOSPHERE, V50, P155.
DEMARCO MJ, 2003, WATER RES, V37, P164.
DEMONDT R, 2008, RAPID COMMUN MASS SP, V22, P1481, DOI 10.1002/rcm.3533.
DU W, 2009, J CHROMATOGR A, V1216, P3751, DOI 10.1016/j.chroma.2009.03.013.
FALVIN K, 2009, ANAL BIOANAL CHEM, V393, P437.
FAN GZ, 2006, J CHROMATOGR A, V1127, P12.
FARAJI M, 2010, TALANTA, V81, P831, DOI 10.1016/j.talanta.2010.01.023.
FLETCHER JS, 2006, SURF INTERFACE ANAL, V38, P1393, DOI 10.1002/sia.2461.
FLETCHER JS, 2008, ANAL CHEM, V80, P9058, DOI 10.1021/ac8015278.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GALLEGO M, 1994, ANAL CHEM, V66, P4074.
GAO DM, 2007, J AM CHEM SOC, V129, P7859, DOI 10.1021/ja070975k.
GOKTURK G, 2000, SPECTROCHIM ACTA B, V55, P1063.
GONZALEZ MM, 1999, J ANAL ATOM SPECTROM, V14, P711.
HANG YP, 2003, J SEP SCI, V26, P957, DOI 10.1002/jssc.200301270.
HILL R, 2004, APPL SURF SCI, V231, P936, DOI 10.1016/j.apsusc.2004.03.177.
HOWARD AG, 2005, ANALYST, V130, P1432, DOI 10.1039/b506242j.
HUANG CZ, 2008, SPECTROCHIM ACTA B, V63, P437, DOI 10.1016/j.sab.2007.12.010.
HUMMER G, 2001, NATURE, V414, P188.
ITO D, 2004, IEEE T APPL SUPERCON, V14, P1551, DOI 10.1109/TASC.2004.830704.
JAL PK, 2004, TALANTA, V62, P1005, DOI 10.1016/j.talanta.2003.10.028.
JANOTTA M, 2001, INT J ENVIRON AN CH, V80, P75.
JIANG RF, 2009, J CHROMATOGR A, V1216, P4641, DOI 10.1016/j.chroma.2009.03.076.
JIANG XM, 2007, ANAL BIOANAL CHEM, V389, P355, DOI 10.1007/s00216-007-1336-6.
JIMENEZSOTO JM, 2009, J CHROMATOGR A, V1216, P5626, DOI 10.1016/j.chroma.2009.05.070.
JIMENEZSOTO JM, 2010, J CHROMATOGR A, V1217, P3341, DOI 10.1016/j.chroma.2010.03.016.
JURADOSANCHEZ B, 2009, J CHROMATOGR A, V1216, P1200, DOI 10.1016/j.chroma.2008.12.033.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KAUR A, 2008, E-J CHEM, V5, P930.
KAUR A, 2009, EURASIAN J ANAL CHEM, V4, P175.
KAUR A, 2009, EURASIAN J ANAL CHEM, V4, P234.
KAUR A, 2009, J MATER CHEM, V19, P8279, DOI 10.1039/b901933b.
KAUR A, 2010, AOAC, V93, P1302.
KHAN A, 2003, J SOL-GEL SCI TECHN, V27, P221.
KONG XL, 2005, ANAL CHEM, V77, P259, DOI 10.1021/ac048971a.
KOTTER F, 1998, APPL SURF SCI, V133, P47.
KROTO HW, 1985, NATURE, V318, P162.
KUMAR A, 2008, ANAL CHIM ACTA, V610, P1, DOI 10.1016/j.aca.2008.01.028.
LAZARIDIS NK, 2005, CHEMOSPHERE, V58, P65, DOI 10.1016/j.chemosphere.2004.09.007.
LEE CY, 2008, J AM CHEM SOC, V130, P1766, DOI 10.1021/ja0776069.
LEENDERT AK, 2010, ANAL CHEM, V82, P801.
LEOPOLD K, 2009, ANAL CHEM, V81, P3421, DOI 10.1021/ac802685s.
LEOPOLD N, 2003, ANAL CHEM, V75, P2166, DOI 10.1021/ac026308l.
LI JD, 2008, J CHROMATOGR A, V1180, P24, DOI 10.1016/j.chroma.2007.12.028.
LI L, 2009, ANAL CHIM ACTA, V631, P182, DOI 10.1016/j.aca.2008.10.043.
LI QL, 2009, J CHROMATOGR A, V1216, P1305, DOI 10.1016/j.chroma.2008.12.082.
LI T, 2009, J CHROMATOGR A, V1216, P2989, DOI 10.1016/j.chroma.2009.01.076.
LI WH, 1989, POLYMER, V30, P1513.
LI XS, 2007, SMALL, V3, P595, DOI 10.1002/smll.200600652.
LI Y, 2006, ANAL CHEM, V78, P317, DOI 10.1021/ac050802i.
LIAN N, 2005, MICROCHIM ACTA, V151, P81, DOI 10.1007/s00604-005-0381-0.
LIANG P, 2000, FRESEN J ANAL CHEM, V368, P638.
LIANG P, 2001, ANAL CHIM ACTA, V440, P207.
LIANG P, 2001, J ANAL ATOM SPECTROM, V16, P863.
LIANG P, 2003, ANAL SCI, V19, P1167.
LIANG P, 2004, J ANAL ATOM SPECTROM, V19, P1489, DOI 10.1039/b409619c.
LIANG P, 2005, J SEP SCI, V28, P2339, DOI 10.1002/jssc.200500154.
LIANG P, 2005, SPECTROCHIM ACTA B, V60, P125, DOI 10.1016/j.sab.2004.11.010.
LIU SH, 2005, TALANTA, V67, P456, DOI 10.1016/j.talanta.2005.06.020.
LIU XY, 2007, J CHROMATOGR A, V1165, P10, DOI 10.1016/j.chroma.2007.07.057.
LIU XY, 2008, J CHROMATOGR A, V1212, P10, DOI 10.1016/j.chroma.2008.10.034.
LOPEZFERIA S, 2009, ANAL BIOANAL CHEM, V395, P737, DOI 10.1007/s00216-009-3066-4.
LOPEZFERIA S, 2009, J CHROMATOGR A, V1216, P7346, DOI 10.1016/j.chroma.2009.02.060.
LU JX, 2007, J SEP SCI, V30, P2138, DOI 10.1002/jssc.200700083.
LU ZD, 2010, ANAL CHEM, V82, P7249, DOI 10.1021/ac1011206.
MAIER NM, 2007, ANAL BIOANAL CHEM, V389, P377, DOI 10.1007/s00216-007-1427-4.
MCDONNELL LA, 2007, MASS SPECTROM REV, V26, P606, DOI 10.1002/mas.20124.
MEHDINIA A, 2006, J CHROMATOGR A, V1134, P24, DOI 10.1016/j.chroma.2006.08.087.
MI W, 2007, MEMBR SCI, V304, P304.
MILLER SA, 2002, J ELECTROANAL CHEM, V522, P66.
MILLER SA, 2004, J AM CHEM SOC, V126, P6226, DOI 10.1021/ja0496322.
MORALESCID G, 2010, ANAL CHEM, V82, P2743, DOI 10.1021/ac902631h.
MUNOZ J, 2002, J ANAL ATOM SPECTROM, V17, P716.
MUNOZ J, 2005, ANAL CHIM ACTA, V548, P66, DOI 10.1016/j.aca.2005.05.062.
NIU HY, 2007, J CHROMATOGR A, V1172, P113, DOI 10.1016/j.chroma.2007.10.014.
PATEK M, 2008, CURR OPIN CHEM BIOL, V12, P332, DOI 10.1016/j.cbpa.2008.04.602.
PIEHOWSKI PD, 2008, ANAL CHEM, V80, P8662, DOI 10.1021/ac801591r.
PU XL, 2005, ANALYST, V130, P1175, DOI 10.1039/b502548f.
QUINSON JF, 1996, J MATER SCI, V31, P5179.
REN ZF, 1998, SCIENCE, V282, P1105.
SADEGHI SM, 2009, NANOTECHNOLOGY, V20, ARTN 225401.
SAEKHOW O, 2009, J CHROMATOGR A, V1216, P2270, DOI 10.1016/j.chroma.2009.01.037.
SARIDARA C, 2005, ANAL CHEM, V77, P1183, DOI 10.1021/ac0487101.
SCHRLAU MG, 2008, NANOTECHNOLOGY, V19, ARTN 015101.
SEE HH, 2010, J CHROMATOGR A, V1217, P1767, DOI 10.1016/j.chroma.2010.01.053.
SELLERGREN B, 1993, J CHROMATOGR, V635, P31.
SERRANO A, 2006, J SEP SCI, V29, P33, DOI 10.1002/jssc.200500200.
SHASTRI L, 2010, TALANTA, V81, P1176, DOI 10.1016/j.talanta.2010.01.065.
SHIMODA H, 2002, PHYSICA B, V323, P135.
SHRIVAS K, 2008, ANAL CHEM, V80, P2583, DOI 10.1021/ac702309w.
SHUNXIN L, 1999, J ANAL CHEM+, V365, P469.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
SUAREZ B, 2007, J CHROMATOGR A, V1159, P203, DOI 10.1016/j.chroma.2007.01.092.
SUAREZ B, 2007, J CHROMATOGR A, V1175, P127.
SUDHIR PR, 2005, ANAL CHEM, V77, P7380, DOI 10.1021/ac051162m.
SULEIMAN JS, 2007, MICROCHIM ACTA, V159, P379, DOI 10.1007/s00604-007-0742-y.
SUN L, 2009, ANAL CHIM ACTA, V638, P162, DOI 10.1016/j.aca.2009.02.039.
SUN Y, 2001, J AM CHEM SOC, V123, P5348.
THABANO JRE, 2009, J CHROMATOGR A, V1216, P4933, DOI 10.1016/j.chroma.2009.04.012.
TIEN P, 1999, CHEM MATER, V11, P2141.
TOKONAMI S, 2009, ANAL CHIM ACTA, V641, P7, DOI 10.1016/j.aca.2009.03.035.
TOUBOUL D, 2004, ANAL CHEM, V76, P1550, DOI 10.1021/ac035243z.
VAISMAN L, 2006, ADV COLLOID INTERFAC, V128, P161.
VALCARCEL M, 2007, ANAL CHEM, V79, P4788, DOI 10.1021/ac070196m.
VALCARCEL M, 2008, Anal Bioanal Chem, V391, P13.
VALCARCEL M, 2008, TRAC-TREND ANAL CHEM, V27, P34, DOI 10.1016/j.trac.2007.10.012.
VASILEVA SY, 2009, J ANAL CHEM+, V64, P1214, DOI 10.1134/S106193480912003X.
VELEZ K, 2000, J SOL-GEL SCI TECHN, V19, P469.
VERMISOGIOU EC, 2008, MICROPOR MESOPOR MAT, V110, P25, DOI 10.1016/j.micromeso.2007.08.001.
VICKERMAN JC, 2001, TOF SIMS SURFACE ANA.
WANG JF, 2003, ANGEW CHEM INT EDIT, V42, P5336, DOI 10.1002/anie.200352298.
WANG JX, 2006, J CHROMATOGR A, V1137, P8, DOI 10.1016/j.chroma.2006.10.003.
WANG Q, 2009, CARBON, V47, P2752.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.
WAYCHUNAS GA, 2005, J NANOPART RES, V7, P409, DOI 10.1007/s11051-005-6931-x.
WEI S, 2007, J SEP SCI, V30, P1794, DOI 10.1002/jssc.200700166.
WEIBEL D, 2003, ANAL CHEM, V75, P1754, DOI 10.1021/ac026338o.
WEIS S, 2006, BIOSENS BIOELECTRON, V21, P1943.
WENG TH, 2009, INT J HYDROGEN ENERG, V34, P8707, DOI 10.1016/j.ijhydene.2009.08.027.
WULFF G, 1972, ANGEW CHEM INT EDIT, V11, P341.
XIAO CH, 2001, J CHROMATOGR A, V927, P121.
XIE CG, 2006, ANAL CHEM, V78, P8339, DOI 10.1021/ac0615044.
YAN M, 2001, ANAL CHIM ACTA, V435, P163.
YE L, 2004, ANAL BIOANAL CHEM, V378, P1887, DOI 10.1007/s00216-003-2450-8.
YIN J, 2005, ANAL CHIM ACTA, V540, P333, DOI 10.1016/j.aca.2005.03.045.
YOSHIMATSU K, 2008, BIOSENS BIOELECTRON, V23, P1208, DOI 10.1016/j.bios.2007.12.002.
YU JCC, 2007, FOOD CHEM, V105, P301, DOI 10.1016/j.foodchem.2006.11.049.
YU JX, 2002, J CHROMATOGR A, V978, P37.
ZHAI YH, 2006, MICROCHIM ACTA, V154, P253, DOI 10.1007/s00604-006-0488-y.
ZHANG HQ, 2006, J MOL RECOGNIT, V19, P248, DOI 10.1002/jmr.793.
ZHAO XL, 2008, J CHROMATOGR A, V1188, P140, DOI 10.1016/j.chroma.2008.02.069.
ZHENG H, 2006, INT J ENVIRON AN CH, V86, P431, DOI 10.1080/03067310500248429.
ZHU L, 2010, TALANTA, V80, P1873, DOI 10.1016/j.talanta.2009.10.037.
ZHU XB, 2008, MICROCHIM ACTA, V161, P115, DOI 10.1007/s00604-007-0790-3.

Cited Reference Count:
162

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Biochemical Research Methods; Chemistry, Analytical

ISSN:
0021-9673

DOI:
10.1016/j.chroma.2010.10.069

IDS Number:
712XZ

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286144200005
*Order Full Text [ ]

Title:
DYNAMICAL BEHAVIORS OF FLUID-FILLED MULTI-WALLED CARBON NANOTUBES

Authors:
Yan, Y; Wang, WQ; Zhang, LX

Author Full Names:
Yan, Y.; Wang, W. Q.; Zhang, L. X.

Source:
INTERNATIONAL JOURNAL OF MODERN PHYSICS B 24 (24): 4727-4739 SEP 30 2010

Language:
English

Document Type:
Article

Author Keywords:
Fluid-filled multi-walled carbon nanotubes; natural resonant frequency; intertube resonant frequency; amplitude ratio; noncoaxial vibration

KeyWords Plus:
CYLINDRICAL-SHELLS; VIBRATION; FLOW; INSTABILITY; PREDICTION

Abstract:
This paper is concerned with the free vibration of the fluid-filled multi-walled carbon nanotubes (MWCNTs) with simply supported ends. Based on Donnell's cylindrical shell model and potential flow theory, the effects of internal fluid and the different radii on the coupling vibration of the MWCNT-fluid system are discussed in detail. The results show that the fluid has only a little influence on the natural resonant frequency (frequency of the innermost tube) and the associated amplitude ratio in MWCNTs, while it plays a significant role in the intertube resonant frequency and the associated amplitude ratio. For the natural resonant frequency, the vibrational mode is almost coaxial, i.e., the MWCNTs vibrate like a single-layer shell, however, for the intertube resonant frequency, the system shows complex noncoaxial vibration, which plays a critical role in electronic and transport properties of carbon nanotubes (CNTs). Simultaneously, the effect of the innermost radius on the
frequencies of MWCNTs is also examined and the conclusions accord well with those of another paper.

Reprint Address:
Yan, Y, Kunming Univ Sci & Technol, Dept Engn Mech, Kunming 650051, Yunnan, Peoples R China.

Research Institution addresses:
[Yan, Y.; Wang, W. Q.; Zhang, L. X.] Kunming Univ Sci & Technol, Dept Engn Mech, Kunming 650051, Yunnan, Peoples R China

E-mail Address:
wwqquan@126.com

Cited References:
AMABILI M, 1998, J FLUID STRUCT, V12, P883.
DONG K, 2007, MODEL SIMUL MATER SC, V15, P427, DOI 10.1088/0965-0393/15/5/004.
FU YM, 2006, J SOUND VIB, V296, P746, DOI 10.1016/j.jsv.2006.02.024.
GADD GE, 1997, SCIENCE, V277, P933.
GIRIFALCO LA, 1956, J CHEM PHYS, V25, P693.
HE XQ, 2005, INT J SOLIDS STRUCT, V42, P6032, DOI 10.1016/j.ijsolstr.2005.03.045.
HE XQ, 2005, J MECH PHYS SOLIDS, V53, P303, DOI 10.1016/j.jmps.2004.08.003.
HE XQ, 2006, J APPL PHYS, V100, ARTN 124317.
HU N, 2007, INT J SOLIDS STRUCT, V44, P6535, DOI 10.1016/j.ijsolstr.2007.02.043.
HUMMER G, 2001, NATURE, V414, P188.
LEE SM, 2001, J AM CHEM SOC, V123, P5059, DOI 10.1021/ja003751+.
LIEW KM, 2004, ACTA MATER, V52, P2521, DOI 10.1016/j.actamat.2004.01.043.
LIEW KM, 2006, ACTA MATER, V54, P225, DOI 10.1016/j.actamat.2005.09.002.
LIEW KM, 2006, J APPL PHYS, V99, ARTN 114312.
LIU J, 1998, SCIENCE, V280, P1253.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
NATSUKI T, 2007, J APPL PHYS, V101, ARTN 034319.
RU CQ, 2000, J APPL PHYS, V87, P7227.
RU CQ, 2000, PHYS REV B, V62, P9973.
SAITO R, 2001, CHEM PHYS LETT, V348, P187.
SHEN HS, 2004, INT J SOLIDS STRUCT, V41, P2643, DOI 10.1016/j.ijsolstr.2003.11.028.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SUN C, 2007, SOLID STATE COMMUN, V143, P202, DOI 10.1016/j.ssc.2007.05.027.
SUPPLE S, 2003, PHYS REV LETT, V90, ARTN 214501.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
WANG LF, 2005, PHYS REV LETT, V95, ARTN 105501.
WANG XY, 2007, J PHYS D APPL PHYS, V40, P2563, DOI 10.1088/0022-3727/40/8/022.
XU KY, 2006, J APPL PHYS, V99, ARTN 064303.
YAKOBSON BI, 1996, PHYS REV LETT, V76, P2511.
YAN Y, 2007, J APPL PHYS, V102, ARTN 044307.
YAN Y, 2009, APPL MATH MODEL, V33, P1430, DOI 10.1016/j.apm.2008.02.010.
YOON J, 2002, PHYS REV B, V66, ARTN 233402.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI 10.1016/j.compscitech.2004.12.002.
YOON J, 2006, INT J SOLIDS STRUCT, V43, P3337, DOI 10.1016/j.ijsolstr.2005.04.039.
ZHANG YY, 2006, J APPL PHYS, V100, ARTN 074304.

Cited Reference Count:
36

Times Cited:
0

Publisher:
WORLD SCIENTIFIC PUBL CO PTE LTD; 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE

Subject Category:
Physics, Applied; Physics, Condensed Matter; Physics, Mathematical

ISSN:
0217-9792

DOI:
10.1142/S0217979210054701

IDS Number:
705NW

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285992600017
*Order Full Text [ ]

Title:
A theoretical study on the catalytic effect of nanoparticle confined in carbon nanotube

Authors:
Qin, W; Li, X

Author Full Names:
Qin, Wu; Li, Xin

Source:
CHEMICAL PHYSICS LETTERS 502 (1-3): 96-100 JAN 18 2011

Language:
English

Document Type:
Article

KeyWords Plus:
TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; OZONE DECOMPOSITION; WATER; IRON; PARTICLES; OZONATION; DYNAMICS; SYSTEMS; METALS

Abstract:
We investigated the catalytic effect of CuO nanoparticles confined in carbon nanotubes using molecular dynamics simulations and density functional theory calculations. Ozone decomposition and hydroxyl radical generation were used as the probe reactions to investigate the catalytic behavior of catalyst. The effects of the confined environment of carbon nanotubes induced more reactants into the channel. Interface interactions between reactants and CuO nanoparticles in the channel and charge transfer accelerated the decomposition of ozone into oxygen molecule and atomic oxygen species. The atomic oxygen species then interacted to water molecule to generate hydroxyl radicals, which were truly identified by electron paramagnetic resonance (EPR) technique. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Li, X, Harbin Inst Technol, Dept Chem, Harbin 150090, Peoples R China.

Research Institution addresses:
[Qin, Wu; Li, Xin] Harbin Inst Technol, Dept Chem, Harbin 150090, Peoples R China

E-mail Address:
lixin@hit.edu.cn

Cited References:
AJAYAN PM, 1993, NATURE, V362, P522.
ANATRAM MP, 2000, PHYS REV B, V61, P14219.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BAZILEVSKY AV, 2007, LANGMUIR, V23, P7451, DOI 10.1021/1a070140n.
BELTRAN FJ, 2002, OZONE-SCI ENG, V24, P227.
CHE GL, 1999, LANGMUIR, V15, P750.
CHEN W, 2007, J AM CHEM SOC, V129, P7421, DOI 10.1021/ja0713072.
CHEN W, 2008, J AM CHEM SOC, V130, P9414, DOI 10.1021/ja8008192.
COOPER C, 1999, WATER RES, V33, P3695.
CORREADUARTE MA, 2006, J MATER CHEM, V16, P22, DOI 10.1039/b512090j.
COSTA PMFJ, 2008, NANO LETT, V8, P3120, DOI 10.1021/nl8012506.
EDER D, 2008, J MATER CHEM, V18, P2036, DOI 10.1039/b800499d.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FREITAG M, 2007, NANO LETT, V7, P2037, DOI 10.1021/nl070900e.
GOVIND N, 2003, COMP MATER SCI, V28, P250, DOI 10.1016/S0927-0256(03)00111-3.
HUMMER G, 2001, NATURE, V414, P188.
JAIN D, 2007, CARBON, V45, P602, DOI 10.1016/j.carbon.2006.10.012.
JANZEN EG, 1969, J AM CHEM SOC, V91, P4481.
KARI P, 2002, CHEMOSPHERE, V48, P1047.
KOGA K, 2001, NATURE, V412, P802.
KRESSE G, 1993, PHYS REV B, V47, P558.
KRESSE G, 1996, COMP MATER SCI, V6, P15.
KRESSE G, 1996, PHYS REV B, V54, P11169.
LI W, 1998, J AM CHEM SOC, V120, P9041.
MAITI A, 2004, CHEM PHYS LETT, V395, P7, DOI 10.1016/j.cplett.2004.07.024.
MARTYNA GJ, 1996, MOL PHYS, V87, P1117.
MUHL T, 2003, J APPL PHYS 3, V93, P7894, DOI 10.1063/1.1557824.
NEMEC N, 2006, PHYS REV LETT, V96, ARTN 076802.
PAN XL, 2007, NAT MATER, V6, P507, DOI 10.1038/nmat1916.
PERDEW JP, 1981, PHYS REV B, V23, P5048.
PERDEW JP, 1992, PHYS REV B, V45, P13244.
SERP P, 2010, CHEMCATCHEM, V2, P41, DOI 10.1002/cctc.200900283.
SHAN B, 2004, PHYS REV B, V70, ARTN 233405.
SLOAN J, 2002, J AM CHEM SOC, V124, P2116.
STASHANS A, 2007, INT J QUANTUM CHEM, V107, P1508, DOI 10.1002/qua.21273.
SU FB, 2006, CARBON, V44, P801, DOI 10.1016/j.carbon.2005.10.056.
TESSONNIER JP, 2005, APPL CATAL A-GEN, V288, P203, DOI 10.1016/j.apcata.2005.04.034.
TESSONNIER JP, 2009, ACS NANO, V3, P2081, DOI 10.1021/nn900647q.
UTSUMI H, 1994, WATER SCI TECHNOL, V30, P91.
VITALE V, 2008, J AM CHEM SOC, V130, P5848, DOI 10.1021/ja8002843.
ZHU WG, 2006, APPL PHYS LETT, V89, ARTN 243107.
ZHU WG, 2006, NANO LETT, V6, P1415, DOI 10.1021/nl0604311.

Cited Reference Count:
42

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
0009-2614

DOI:
10.1016/j.cplett.2010.12.030

IDS Number:
703PY

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285502000046
*Order Full Text [ ]

Title:
Dynamic behavior of double-walled carbon nanotubes conveying viscous fluid based on nonlocal elastic theory

Authors:
Zhen, YX; Fang, B; Wang, LG

Author Full Names:
Zhen, Yaxin; Fang, Bo; Wang, Liguo

Source:
NANOSENSORS, BIOSENSORS, AND INFO-TECH SENSORS AND SYSTEMS 2010 7646: Art. No. 76461R 2010

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
carbon nanotubes; viscous fluid; nonlocal effect; critical flow velocity; instability

KeyWords Plus:
INSTABILITY; VIBRATION; SCALE; FLOW

Abstract:
In this paper, the dynamic behavior of a fixed-fixed double-walled carbon nanotube (DWCNT) conveying fluid is studied based on Euler-Bernoulli beam theory. The viscosity of the fluid and the nonlocal effect are incorporated in the formulation, and the Galerkin discretization method is used to solve the coupled equations of motions. The critical flow velocity of the fluid is obtained. Numerical simulations show that the van der Waals (vdW) interactions and the internal moving fluid play significant roles in the natural frequencies and the instability of DWCNTs. Also, the influences of the viscosity, nonlocal effect, aspect ratio and the surrounding elastic medium on the dynamic behavior of the double-walled carbon nanotube is studied in detail. It is found that a higher viscous-fluid-conveying DWCNT embedded in a stiff matrix with a larger aspect ratio make the induced instability vibration occur until a higher flow velocity.

Reprint Address:
Zhen, YX, Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China.

Research Institution addresses:
[Zhen, Yaxin; Fang, Bo] Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China

E-mail Address:
bfang@hit.edu.cn

Cited References:
CHE GL, 1998, NATURE, V393, P346.
ERINGEN AC, 1983, J APPL PHYS, V54, P4703.
GAO YH, 2002, NATURE, V415, P599.
GIRIFALCO LA, 1991, J PHYS CHEM-US, V95, P5370.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
LEE HL, 2008, J APPL PHYS, V103, ARTN 024302.
LEE HL, 2009, PHYSICA E, V41, P529, DOI 10.1016/j.physe.2008.10.002.
LIU J, 1998, SCIENCE, V280, P1253.
LU P, 2006, J APPL PHYS, V99, ARTN 073510.
PEDDIESON J, 2003, INT J ENG SCI, V41, P305.
REDDY CD, 2007, APPL PHYS LETT, V90, ARTN 133122.
RU CQ, 2000, PHYS REV B, V62, P16962.
SAITO R, 1998, PHYS PROPERTIES CARB, CH4.
SATIO R, 2001, CHEM PHYS LETT, V348, P187.
TUZUN RE, 1996, NANOTECHNOLOGY, V7, P241.
WANG L, 2008, COMP MATER SCI, V44, P821, DOI 10.1016/j.commatsci.2008.06.001.
WANG L, 2009, COMP MATER SCI, V45, P584, DOI 10.1016/j.commatsci.2008.12.006.
YAN Y, 2009, J SOUND VIB, V319, P1003, DOI 10.1016/j.jsv.2008.07.001.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI 10.1016/j.compscitech.2004.12.002.
YOON J, 2006, INT J SOLIDS STRUCT, V43, P3337, DOI 10.1016/j.ijsolstr.2005.04.039.
YOUNG DF, 2003, BRIEF INTRO FLUID ME.
ZHANG YQ, 2005, PHYS REV B, V71, ARTN 195404.

Cited Reference Count:
24

Times Cited:
0

Publisher:
SPIE-INT SOC OPTICAL ENGINEERING; 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA

Subject Category:
Optics

ISSN:
0277-786X

DOI:
10.1117/12.847488

IDS Number:
BSQ85

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: