Friday, March 4, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284990700031
*Order Full Text [ ]

Title:
Water in the Polar and Nonpolar Cavities of the Protein Interleukin-1 beta

Authors:
Yin, H; Feng, GG; Clore, GM; Hummer, G; Rasaiah, JC

Author Full Names:
Yin, Hao; Feng, Guogang; Clore, G. Marius; Hummer, Gerhard; Rasaiah, Jayendran C.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (49): 16290-16297 DEC 16 2010

Language:
English

Document Type:
Article

KeyWords Plus:
HIGH-PRESSURE CRYSTALLOGRAPHY; MOLECULAR-DYNAMICS; BOUND WATER; 3-DIMENSIONAL STRUCTURE; HYDROPHOBIC CAVITY; CRYSTAL-STRUCTURE; DISORDERED WATER; NMR-SPECTROSCOPY; AQUEOUS-SOLUTION; FREE-ENERGIES

Abstract:
Water in the protein interior serves important structural and functional roles and is also increasingly recognized as a relevant factor in drug binding. The nonpolar cavity in the protein interleulcin-l beta has been reported to be filled by water on the basis of some experiments and simulations and to be empty on the basis of others. Here we study the thermodynamics of filling the central nonpolar cavity and the four polar cavities of interleukin-1 beta by molecular dynamics simulation. We use different water models (TIP3P and SPC/E) and protein force fields (amber94 and amber03) to calculate the semigrand partition functions term by term that quantify the hydration equilibria. We consistently find that water in the central nonpolar cavity is thermodynamically unstable, independent of force field and water model. The apparent reason is the relatively small size of the cavity, with a volume less than 80 similar to angstrom(3). Our results are consistent with the most recent X
-ray crystallographic and simulation studies but disagree with an earlier interpretation of nuclear magnetic resonance (NMR) experiments probing protein water interactions. We show that, at least semiquantitatively, the measured nuclear Overhauser effects indicating the proximity of water to the methyl groups lining the nonpolar cavity can, in all likelihood, be attributed to interactions with buried and surface water molecules near the cavity. The same methods applied to determine the occupancy of the polar cavities show that they are filled by the same number of water molecules observed in crystallography, thereby validating the theoretical and simulation methods used to study the water occupancy in the nonpolar protein cavity.

Reprint Address:
Hummer, G, NIDDK, Chem Phys Lab, NIH, Bethesda, MD 20892 USA.

Research Institution addresses:
[Clore, G. Marius; Hummer, Gerhard] NIDDK, Chem Phys Lab, NIH, Bethesda, MD 20892 USA; [Yin, Hao; Feng, Guogang; Rasaiah, Jayendran C.] Univ Maine, Dept Chem, Orono, ME 04469 USA

E-mail Address:
Gerhard.Hummer@nih.gov; rasaiah@maine.edu

Cited References:
BENNETT CH, 1976, J COMPUT PHYS, V22, P245.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
CASE DA, 2005, J COMPUT CHEM, V26, P1668, DOI 10.1002/jcc.20290.
CLORE GM, 1990, BIOCHEMISTRY-US, V29, P5671.
CLORE GM, 1991, BIOCHEMISTRY-US, V30, P2315.
COLLINS MD, 2005, P NATL ACAD SCI USA, V102, P16668, DOI 10.1073/pnas.0508224102.
COLLINS MD, 2007, J MOL BIOL, V367, P752, DOI 10.1016/j.jmb.2006.12.021.
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DENISOV VP, 1996, FARADAY DISCUSS, V103, P227.
DUAN Y, 2003, J COMPUT CHEM, V24, P1999, DOI 10.1002/jcc.10349.
DUNITZ JD, 1994, SCIENCE, V264, P670.
ERIKSSON AE, 1992, SCIENCE, V255, P178.
ERNST JA, 1995, SCIENCE, V267, P1813.
ERNST JA, 1995, SCIENCE, V270, P1848.
FINZEL BC, 1989, J MOL BIOL, V209, P779.
GARCIA AE, 2000, PROTEINS, V38, P261.
HUMMER G, 1997, J AM CHEM SOC, V119, P8523.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KUSZEWSKI J, 1999, J AM CHEM SOC, V121, P2337.
LEVITT M, 1993, STRUCTURE, V1, P223.
MATTHEWS BW, 1995, SCIENCE, V270, P1847.
MATTHEWS BW, 2009, PROTEIN SCI, V18, P494, DOI 10.1002/pro.61.
OIKAWA M, 2010, BIOPHYS J, V98, P2974, DOI 10.1016/j.bpj.2010.01.029.
OLANO LR, 2004, J AM CHEM SOC, V126, P7991, DOI 10.1021/ja049701c.
OPREA TI, 1997, P NATL ACAD SCI USA, V94, P2133.
OTTING G, 1989, J AM CHEM SOC, V111, P1871.
OTTING G, 1997, NAT STRUCT BIOL, V4, P396.
PETER C, 2001, J BIOMOL NMR, V20, P297.
PETRONE PM, 2004, J MOL BIOL, V338, P419, DOI 10.1016/j.jmb.2004.02.039.
PRIESTLE JP, 1989, P NATL ACAD SCI USA, V86, P9667.
QUILLIN ML, 2006, P NATL ACAD SCI USA, V103, P19749, DOI 10.1073/pnas.0609442104.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
ROUX B, 1996, BIOPHYS J, V71, P670.
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327, DOI 10.1016/0021-9991(77)90098-5.
SHAANAN B, 1992, SCIENCE, V257, P961.
SOMANI S, 2007, PROTEINS, V67, P868, DOI 10.1002/prot.21320.
STETEFELD J, 2000, NAT STRUCT BIOL, V7, P772.
TREHARNE AC, 1990, PROG CLIN BIOL RES, V349, P309.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI 10.1073/pnas.0407968101.
VEERAPANDIAN B, 1992, PROTEINS, V12, P10.
YIN H, 2007, J AM CHEM SOC, V129, P7369, DOI 10.1021/ja070456h.
YIN H, 2007, THESIS U MAINE.
YU B, 1999, P NATL ACAD SCI USA, V96, P103.
ZHANG L, 1996, PROTEINS, V24, P433.

Cited Reference Count:
48

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp108731r

IDS Number:
690GO

========================================================================

*Record 2 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000284990700055
*Order Full Text [ ]

Title:
Molecular Dynamics Study of the Structures and Dynamics of the Iodine Molecules Confined in AlPO4-11 Crystals

Authors:
Hu, JM; Zhai, JP; Wu, FM; Tang, ZK

Author Full Names:
Hu, J. M.; Zhai, J. P.; Wu, F. M.; Tang, Z. K.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (49): 16481-16486 DEC 16 2010

Language:
English

Document Type:
Article

KeyWords Plus:
ABSOLUTE FREQUENCY-MEASUREMENT; WALLED CARBON NANOTUBES; ABSORPTION-SPECTRUM; FORCE-FIELD; MECHANICS; SIMULATIONS; ATOMS; LASER; WATER; NM

Abstract:
Structural and dynamical properties of iodine molecules incorporated in one-dimensional elliptic channels of AlPO4-11 (AEL) crystals were studied by means of molecular dynamics (MD) simulations. It was found that the iodine molecules in the AEL channels are restricted in the (101) planes with only two favorite orientations: lying along the channels and standing along the major axes of the ellipses, which are well consistent with the experimental observations. In addition, the iodine structures are largely dependent on the loading level: with the increase of loading, the iodine specimens change their structures accordingly from isolated molecules as in the gas phase to single molecular chains and molecular ribbon sheets. The molecular ribbon sheets are composed of equally distributed and parallel molecules as in the iodine crystals. The simulation results show that the standing iodine molecules in the AEL channels are well restricted due to both the appropriate size of ellipse
s and their alternation throughout the channels. They can diffuse along the channels only after overcoming the rotational barriers to become lying molecules, which indicate that the iodine molecules in the ribbon sheets can keep the configurations without rotational and translational motion. The confined iodine molecules with such structures and properties may be used to improve the accuracy of the frequency standards.

Reprint Address:
Tang, ZK, Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China.

Research Institution addresses:
[Hu, J. M.; Tang, Z. K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China; [Hu, J. M.; Tang, Z. K.] Hong Kong Univ Sci & Technol, Inst Nano Sci & Technol, Kowloon, Hong Kong, Peoples R China; [Zhai, J. P.] Shenzhen Univ, Coll Elect Sci & Technol, Shenzhen 518060, Peoples R China; [Wu, F. M.] Zhejiang Normal Univ, Inst Condensed Matter Phys, Jinhua 321004, Zhejiang, Peoples R China

E-mail Address:
phzktang@ust.hk

Cited References:
ALLEN MP, 1989, COMPUTER SIMULATION.
ANGELL CA, 2008, SCIENCE, V319, P582, DOI 10.1126/science.1131939.
BURCHART ED, 1992, J CHEM SOC FARADAY T, V88, P2761.
CATLOW CRA, 2004, COMPUTER MODELLING M.
FAN X, 2000, PHYS REV LETT, V84, P4621.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
GERSTENKORN S, 1985, J PHYS-PARIS, V46, P867.
GONCHAROV A, 2004, APPL PHYS B-LASERS O, V78, P725, DOI 10.1007/s00340-004-1487-5.
GUAN L, 2008, J AM CHEM SOC, V130, P2162, DOI 10.1021/ja7103069.
GUAN LH, 2007, NANO LETT, V7, P1532, DOI 10.1021/nl070313t.
HERTZSCH T, 2002, ANGEW CHEM INT EDIT, V41, P2281.
HUMMER G, 2001, NATURE, V414, P188.
IBBERSON RM, 1992, MOL PHYS, V76, P395.
LESSINGER L, 1994, J CHEM EDUC, V71, P388.
LI IL, 2005, J AM CHEM SOC, V127, P16111.
LIDE DR, 2006, CRC HDB CHEM PHYS.
LORTZA R, 2009, P NATL ACAD SCI USA, V106, P7299, DOI 10.1073/pnas.0813162106.
MORSE PM, 1929, PHYS REV, V34, P57.
NEVSKY AY, 2001, OPT COMMUN, V192, P263.
OZIN GA, 1992, ADV MATER, V4, P612.
PETKOV V, 2002, PHYS REV LETT, V89, ARTN 5502.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
RABINOWITCH E, 1936, J CHEM PHYS, V4, P358.
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024.
RAZET A, 1996, METROLOGIA, V33, P19.
SMIT B, 2008, CHEM REV, V108, P4125, DOI 10.1021/cr8002642.
TANG ZK, 2001, SCIENCE, V292, P2462.
VANBOLHUIS F, 1967, ACTA CRYSTALLOGR, V23, P90.
VERMA DR, 1960, J CHEM PHYS, V32, P738.
WANG N, 2000, NATURE, V408, P50.
WIRNSBERGER G, 1996, ANGEW CHEM INT EDIT, V35, P2777.
YE J, 2001, PHYS REV LETT, V87, ARTN 270801.
YOON TH, 2001, APPL PHYS B-LASERS O, V72, P221.
ZHAI JP, 2008, APPL PHYS LETT, V92, ARTN 043117.
ZHAI JP, 2008, NANOTECHNOLOGY, V19, ARTN 175604.
ZHANG J, 2009, APPL OPTICS, V29, P5629.

Cited Reference Count:
36

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp1076615

IDS Number:
690GO

========================================================================

*Record 3 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286797900025
*Order Full Text [ ]

Title:
Kinetics and Solvent-Dependent Thermodynamics of Water Capture by a Fullerene-Based Hydrophobic Nanocavity

Authors:
Frunzi, M; Baldwin, AM; Shibata, N; Iwamatsu, SI; Lawler, RG; Turro, NJ

Author Full Names:
Frunzi, Michael; Baldwin, Anne M.; Shibata, Nobuyuki; Iwamatsu, Sho-Ichi; Lawler, Ronald G.; Turro, Nicholas J.

Source:
JOURNAL OF PHYSICAL CHEMISTRY A 115 (5): 735-740 FEB 10 2011

Language:
English

Document Type:
Article

KeyWords Plus:
OPEN-CAGE FULLERENE; CARBON NANOTUBES; MOLECULES; ENCAPSULATION; NMR; COMPLEXES; CHEMISTRY; PROTEINS; CLUSTERS; CAVITIES

Abstract:
Kinetic and thermodynamic properties of water encapsulation from organic solution by an open-cage [60]fullerene derivative have been investigated. 2D exchange NMR spectroscopy (EXSY) measurements were employed to determine the association and dissociation constants at 300 330 K (k(a) = 4.3 M-1 x s(-1) and k(d) = 0.42 s(-1) at 300 K) in 1,1,2,2-tetrachloroethane-d(2) as well as the activation energies (E-a,E-ass = 27 kJ mol(-1) E-a,E-diss 50 kJ mol(-1)). The equilibrium constants and thermodynamic parameters in various solvents (benzene-d(6), 1,2-dichlorobenzene-d(4), and dimethylsulfwdde-d(6)) were estimated using 1D-H-1 NMR spectroscopy. The parameters were dependent on the polarity of the solvent; Delta H depended linearly on the solvent polarity, becoming increasingly unfavorable as polarity increased. Mixtures of polar dimethylsulfoxide-do in less polar 1,1,2,2-tetrachloroethane-d(2) showed a similar trend.

Reprint Address:
Turro, NJ, Columbia Univ, Dept Chem, New York, NY 10027 USA.

Research Institution addresses:
[Frunzi, Michael; Baldwin, Anne M.; Turro, Nicholas J.] Columbia Univ, Dept Chem, New York, NY 10027 USA; [Shibata, Nobuyuki; Iwamatsu, Sho-Ichi] Nagoya Univ, Grad Sch Environm Studies, Chikusa Ku, Nagoya, Aichi 4648601, Japan; [Lawler, Ronald G.] Brown Univ, Dept Chem, Providence, RI 02912 USA

E-mail Address:
njt3@columbia.edu

Cited References:
EXSYCALC.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
BLENNER MA, 2010, J MOL BIOL, V400, P244, DOI 10.1016/j.jmb.2010.04.056.
BROTIN T, 2008, CHEM REV, V109, P88.
CIOSLOWSKI J, 1991, J AM CHEM SOC, V113, P4139.
ERIKSSON AE, 1992, SCIENCE, V255, P178.
ERNST JA, 1995, SCIENCE, V267, P1813.
GAN LB, 2010, ADV MATER, V22, P1498, DOI 10.1002/adma.200903705.
GAREL L, 1993, ANGEW CHEM INT EDIT, V32, P1169.
GARRIC J, 2007, CHEM-EUR J, V13, P8454, DOI 10.1002/chem.200700640.
HIRSCH A, 2005, FULLERENES CHEM REAC, P345.
HUMMER G, 2001, NATURE, V414, P188.
IHM C, 2004, ORG LETT, V6, P369, DOI 10.1021/ol036206x.
IWAMATSU S, 2004, J AM CHEM SOC, V126, P2668, DOI 10.1021/ja038537a.
IWAMATSU S, 2005, J ORG CHEM, V70, P4820, DOI 10.1021/jo050251w.
IWAMATSU S, 2005, SYNLETT, V2117.
IWAMATSU S, 2006, ANGEW CHEM INT EDIT, V45, P5337, DOI 10.1002/anie.200601241.
IWAMATSU SI, 2009, STRAINED HYDROCARBON, P282.
KALYANASUNDARAM K, 1977, J AM CHEM SOC, V99, P2039.
KITAGAWA T, 2006, CARBON RICH COMPOUND, P383.
LIU L, 2009, PHYS CHEM CHEM PHYS, V11, P6520, DOI 10.1039/b905641f.
LOEB LB, 1928, PHILOS MAG MAY, V5, P1011.
MAJUMDER M, 2005, NATURE, V438, P930, DOI 10.1038/438930b.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MATTHEWS BW, 2009, PROTEIN SCI, V18, P494, DOI 10.1002/pro.61.
MURATA M, 2008, CHEM COMMUN, V6083.
NAKAZAWA J, 2007, J ORG CHEM, V72, P9448, DOI 10.1021/jo701299v.
NILSSON SO, 1986, J CHEM THERMODYN, V18, P877.
PANKEWITZ T, 2008, CHEM PHYS LETT, V465, P48, DOI 10.1016/j.cplett.2008.09.023.
PASTOR A, 2008, COORDIN CHEM REV, V252, P2314, DOI 10.1016/j.ccr.2008.01.025.
PERRIN CL, 1990, CHEM REV, V90, P935.
RAMACHANDRAN CN, 2005, CHEM PHYS LETT, V410, P348, DOI 10.1016/j.cplett.2005.04.113.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
SHAMEEMA O, 2005, J PHYS CHEM A, V110, P2.
STANISKY CM, 2009, J AM CHEM SOC, V131, P3392, DOI 10.1021/ja809831a.
VOUGIOUKALAKIS GC, 2010, CHEM SOC REV, V39, P817, DOI 10.1039/b913766a.
WANG L, 2008, J PHYS CHEM C, V112, P11779, DOI 10.1021/jp8048185.
WHITENER KE, 2009, J AM CHEM SOC, V131, P6338, DOI 10.1021/ja901383r.
WILLIAMS CI, 1993, J PHYS CHEM-US, V97, P11652.
XIAO Z, 2007, J AM CHEM SOC, V129, P16149, DOI 10.1021/j0763798.

Cited Reference Count:
40

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1089-5639

DOI:
10.1021/jp110832m

IDS Number:
714HH

========================================================================

*Record 4 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285474100114
*Order Full Text [ ]

Title:
The coupled vibration of fluid-filled multiwalled carbon nanotubes with intertube deformation

Authors:
Wang, XY; Chen, W

Author Full Names:
Wang, X. Y.; Chen, W.

Source:
JOURNAL OF APPLIED PHYSICS 108 (11): Art. No. 114307 DEC 1 2010

Language:
English

Document Type:
Article

KeyWords Plus:
WAVE-PROPAGATION ANALYSIS; CONVEYING FLUID; ELASTIC MEDIUM; INSTABILITY; MODULUS; MODEL; WATER; FLOW

Abstract:
Carbon nanotubes hold substantial and exciting promise as nanocontainers filled with fluid or nanopipes conveying fluid in their hollow cavity in nanotechnology. This paper studies the coupled vibration of embedded fluid-filled multiwalled carbon nanotubes (MWNTs) subject to axial load using the multiple-Euler beam model and considering the distinctive intertube deformation of carbon MWNTs. Through the numerical examples, the effective scope of the single-beam model is examined, and the effect of the internal fluid on the coupled vibration for various geometric dimensions, mass densities of the fluid, Winkler constants, axial loads, and mode numbers, is investigated. It is found that the influence of fluid coupling effect on the natural vibrating frequencies of fluid-filled MWNTs increases as the density of the fluid increases, or as the diameter of the innermost tube increases, or as the mode number studied decreases, and, the higher mode number n or density of the fluid rho
(f) is, the more intense the vibration of inner tubes are than that of outer tubes, and the more the vibration tends towards noncoaxial. (c) 2010 American Institute of Physics. [doi:10.1063/1.3480987]

Reprint Address:
Wang, XY, Hohai Univ, Coll Mech & Mat, Dept Engn Mech, Nanjing 210098, Jiangsu Prov, Peoples R China.

Research Institution addresses:
[Wang, X. Y.; Chen, W.] Hohai Univ, Coll Mech & Mat, Dept Engn Mech, Nanjing 210098, Jiangsu Prov, Peoples R China

E-mail Address:
xywang223@sina.com

Cited References:
AJAYAN PM, 1993, NATURE, V361, P333.
CHAKRABORTY A, 2006, INT J SOLIDS STRUCT, V43, P279, DOI 10.1016/j.ijsolstr.2005.03.044.
DILLON AC, 1997, NATURE, V386, P377.
DONG K, 2007, MODEL SIMUL MATER SC, V15, P427, DOI 10.1088/0965-0393/15/5/004.
FU YM, 2006, J SOUND VIB, V296, P746, DOI 10.1016/j.jsv.2006.02.024.
GADD GE, 1997, SCIENCE, V277, P933.
GAO YH, 2002, NATURE, V415, P599.
GARG A, 1998, PHYS REV LETT, V81, P2260.
GIBSON RF, 2007, COMPOS SCI TECHNOL, V67, P1, DOI 10.1016/j.compscitech.2006.03.031.
GIRIFALCO LA, 1991, J PHYS CHEM-US, V95, P5370.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
HAN Q, 2003, EUR J MECH A-SOLID, V22, P875, DOI 10.1016/j.euromechsol.2003.07.001.
HAN Q, 2005, COMPOS SCI TECHNOL, V65, P1337, DOI 10.1016/j.compscitech.2004.12.003.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
KHOSRAVIAN N, 2008, NANOTECHNOLOGY, V19, ARTN 275703.
LANIR Y, 1972, J COMPOS MATER, V6, P387.
LEE HL, 2008, J APPL PHYS, V103, ARTN 024302.
LIBERA JA, 2001, MATER RES SOC S P, V633, A741.
LIU J, 1998, SCIENCE, V280, P1253.
LIU YC, 2005, J CHEM PHYS, V123, ARTN 234701.
LOURIE O, 1998, PHYS REV LETT, V81, P1638.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
MEGARIDIS CM, 2002, PHYS FLUIDS, V14, L5.
MITRA M, 2006, SMART MATER STRUCT, V15, P104, DOI 10.1088/0964-17226/15/1/039.
MITRA M, 2007, J APPL PHYS, V101, ARTN 114320.
MITRA M, 2008, CMES-COMP MODEL ENG, V27, P125.
NATSUKI T, 2007, J APPL PHYS, V101, ARTN 034319.
NATSUKI T, 2008, APPL PHYS A-MATER, V90, P441, DOI 10.1007/s00339-007-4297-x.
ODEN JT, 1967, MECH ELASTIC STRUCTU.
PONCHARAL P, 1999, SCIENCE, V283, P1513.
POPOV VN, 2000, PHYS REV B, V61, P3078.
REDDY CD, 2007, APPL PHYS LETT, V90, ARTN 133122.
RU CQ, 2000, PHYS REV B, V62, P16962.
RU CQ, 2000, PHYS REV B, V62, P9973.
SAITO R, 2001, CHEM PHYS LETT, V348, P187.
SALVETAT JP, 1999, ADV MATER, V11, P161.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
TREACY MMJ, 1996, NATURE, V381, P678.
WANG CM, 2006, J SOUND VIB, V294, P1060, DOI 10.1016/j.jsv.2006.01.005.
WANG CY, 2003, INT J SOLIDS STRUCT, V40, P3893, DOI 10.1016/S0020-7683(03)00213-0.
WANG L, 2008, COMP MATER SCI, V43, P399, DOI 10.1016/j.commatsci.2008.01.004.
WANG L, 2008, COMP MATER SCI, V44, P821, DOI 10.1016/j.commatsci.2008.06.001.
WANG L, 2008, PHYSICA E, V40, P3179, DOI 10.1016/j.physe.2008.05.009.
WANG XY, 2007, J PHYS D APPL PHYS, V40, P2563, DOI 10.1088/0022-3727/40/8/022.
WONG EW, 1997, SCIENCE, V277, P1971.
YAN Y, 2007, J APPL PHYS, V102, ARTN 044307.
YAN Y, 2009, APPL MATH MODEL, V33, P1430, DOI 10.1016/j.apm.2008.02.010.
YAN Y, 2010, APPL MATH MODEL, V34, P122, DOI 10.1016/j.apm.2009.03.031.
YOON J, 2002, PHYS REV B, V66, ARTN 233402.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2003, J APPL PHYS, V93, P4801, DOI 10.1063/1.1559932.
YOON J, 2004, COMPOS PART B-ENG, V35, P87, DOI 10.1016/j.compositesb.2003.09.002.
YOON J, 2005, COMPOS SCI TECHNOL, V65, P1326, DOI 10.1016/j.compscitech.2004.12.002.
ZHANG YQ, 2005, PHYS REV B, V71, ARTN 195404.

Cited Reference Count:
55

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0021-8979

DOI:
10.1063/1.3480987

IDS Number:
696XG

========================================================================

*Record 5 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287338100016
*Order Full Text [ ]

Title:
Effect of Surface Morphology on the Ordered Water Layer at Room Temperature

Authors:
Wang, CL; Zhou, B; Xiu, P; Fang, HP

Author Full Names:
Wang, Chunlei; Zhou, Bo; Xiu, Peng; Fang, Haiping

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 115 (7): 3018-3024 FEB 24 2011

Language:
English

Document Type:
Article

KeyWords Plus:
HYDROPHOBIC NANOPORES; PROTEIN SURFACES; CONTACT-ANGLE; DYNAMICS; NANOTUBES; HYDRATION; DEFECTS; INTERFACES; POLARITY; CHANNEL

Abstract:
The behavior of water, particularly the first water layer residing on solid surfaces with various unit cell sizes and charge defects, is studied by molecular dynamics simulations at room temperature. We found that both the unit cell size and presence of defects greatly affected the configurations of the first water layer, specifically the structure and stability of the two-dimensional hydrogen.-bond network within this layer. Consequently, the wetting behavior of water on the solid surface is significantly influenced. On certain wetted solid surfaces with water droplets distributed over the first water layer, the presence of defects at low ratios leads to partial disruption of the structure of the two-dimensional hydrogen-bond network within the first water layer and the existence of the irregular droplet profiles different from the conventional circular shapes. Due to the adsorption of the surface, the dwell time of the first water layer is extremely large and is about 1 ord
er of magnitude larger than the rest of the water layers.

Reprint Address:
Fang, HP, Chinese Acad Sci, Shanghai Inst Appl Phys, POB 800-204, Shanghai 201800, Peoples R China.

Research Institution addresses:
[Wang, Chunlei; Zhou, Bo; Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Wang, Chunlei; Zhou, Bo] Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China; [Xiu, Peng] Zhejiang Univ, Dept Phys, Bio X Lab, Hangzhou 310027, Peoples R China; [Fang, Haiping] Chinese Acad Sci, Theoret Phys Ctr Sci Facil, Beijing 100049, Peoples R China

E-mail Address:
fanghaiping@sinap.ac.cn

Cited References:
ASHBAUGH HS, 2006, REV MOD PHYS, V78, P159, DOI 10.1103/RevModPhys.78.159.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BROOKS CL, 1998, P NATL ACAD SCI USA, V95, P11037.
BROOKS CL, 2001, SCIENCE, V293, P612.
CHANDLER D, 2005, NATURE, V437, P640, DOI 10.1038/nature04162.
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DIMEGLIO JM, 1992, EPL-EUROPHYS LETT, V17, P607.
DOBSON CM, 1998, ANGEW CHEM INT EDIT, V37, P868.
ERBIL HY, 2003, SCIENCE, V299, P1377.
EWING GE, 2006, CHEM REV, V106, P1511, DOI 10.1021/cr040369x.
FAWZI NL, 2008, J AM CHEM SOC, V130, P6145, DOI 10.1021/ja710366c.
GENZER J, 2000, SCIENCE, V290, P2130.
GIOVAMBATTISTA N, 2007, J PHYS CHEM B, V111, P9581, DOI 10.1021/jp071957s.
GIOVAMBATTISTA N, 2008, P NATL ACAD SCI USA, V105, P2274, DOI 10.1073/pnas.0708088105.
GIOVAMBATTISTA N, 2009, P NATL ACAD SCI USA, V106, P15181, DOI 10.1073/pnas.0905468106.
HASHIMOTO A, 2004, NATURE, V430, P870, DOI 10.1038/nature02817.
HU GH, 2008, PHYS FLUIDS, V20, ARTN 102101.
HUMMER G, 1998, PHYS REV LETT, V80, P4193.
HUMMER G, 2001, NATURE, V414, P188.
KIMMEL GA, 2005, PHYS REV LETT, V95, ARTN 166102.
KOGA K, 1997, PHYS REV LETT, V79, P5262.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LI X, 2006, J AM CHEM SOC, V128, P12439, DOI 10.1021/ja057944e.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LUTZENKIRCHEN J, 2010, ADV COLLOID INTERFAC, V157, P61, DOI 10.1016/j.cis.2010.03.003.
MAKAROV VA, 2000, BIOPHYS J, V79, P2966.
MENG S, 2002, PHYS REV LETT, V89, ARTN 176104.
MENG S, 2006, PHYS REV LETT, V97, ARTN 036107.
MICHAELIDES A, 2007, NAT MATER, V6, P597, DOI 10.1038/nmat1940.
MIRANDA PB, 1998, PHYS REV LETT, V81, P5876.
OGASAWARA H, 2002, PHYS REV LETT, V89, ARTN 276102.
PAL SK, 2004, CHEM REV, V104, P2099.
QUEISSER HJ, 1998, SCIENCE, V281, P945.
RASCHKE TM, 2006, CURR OPIN STRUC BIOL, V16, P152, DOI 10.1016/j.sbi.2006.03.002.
SCATENA LF, 2001, SCIENCE, V292, P908.
SCHNEEMILCH M, 2004, J CHEM PHYS, V120, P2901, DOI 10.1063/1.1638999.
SERR A, 2008, J AM CHEM SOC, V130, P12408, DOI 10.1021/ja802234f.
SOMMER AP, 2007, CRYST GROWTH DES, V7, P18, DOI 10.1021/cg060761z.
SOMMER AP, 2007, CRYST GROWTH DES, V7, P2298, DOI 10.1021/cg070610b.
SOMMER AP, 2008, CRYST GROWTH DES, V8, P2620, DOI 10.1021/cg800382x.
SOMMER AP, 2009, CRYST GROWTH DES, V9, P3852, DOI 10.1021/cg9006247.
SOMMER AP, 2010, J CONTROL RELEASE, V148, P131, DOI 10.1016/j.jconrel.2010.10.010.
THIEL PA, 1987, SURF SCI REP, V7, P211.
TU YS, 2009, P NATL ACAD SCI USA, V106, P18120, DOI 10.1073/pnas.0902676106.
TU YS, 2010, NANOSCALE, V2, P1976, DOI 10.1039/c0nr00304b.
VERDAGUER A, 2006, CHEM REV, V106, P1478, DOI 10.1021/cr040376l.
WAN RZ, 2009, PHYS CHEM CHEM PHYS, V11, P9898, DOI 10.1039/b907926m.
WANG CL, 2009, PHYS REV LETT, V103, ARTN 137801.
XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w.
YUAN QZ, 2010, PHYS REV LETT, V104, ARTN 246101.
ZANGI R, 2003, PHYS REV LETT, V91, ARTN 025502.
ZANGI R, 2006, J PHYS CHEM B, V110, P22736, DOI 10.1021/jp064475+.
ZANGI R, 2007, J AM CHEM SOC, V129, P4678, DOI 10.1021/ja068305m.
ZHOU RH, 2004, SCIENCE, V305, P1605.
ZHOU YQ, 1999, NATURE, V401, P400.
ZUO GH, 2009, PHYS REV E 1, V79, ARTN 031925.

Cited Reference Count:
60

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp108595d

IDS Number:
721FD

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: