Friday, April 1, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288355400001
*Order Full Text [ ]

Title:
A review of reverse osmosis membrane materials for desalination-Development to date and future potential

Authors:
Lee, KP; Arnot, TC; Mattia, D

Author Full Names:
Lee, Kali Peng; Arnot, Tom C.; Mattia, Davide

Source:
JOURNAL OF MEMBRANE SCIENCE 370 (1-2): 1-22 MAR 15 2011

Language:
English

Document Type:
Review

Author Keywords:
Desalination; Reverse osmosis (RO); Membrane material; Membrane performance; Nano-materials

KeyWords Plus:
CARBON NANOTUBE MEMBRANES; FILM COMPOSITE MEMBRANE; POLYAMIDE MOLECULAR-STRUCTURE; ATOMIC-FORCE MICROSCOPY; CARBIDE-DERIVED CARBON; RIGID STAR AMPHIPHILES; NANOFILTRATION MEMBRANES; SEAWATER DESALINATION; INTERFACIAL POLYMERIZATION; ZEOLITE MEMBRANES

Abstract:
Reverse osmosis (RO) is currently the most important desalination technology and it is experiencing significant growth. The objective of this paper is to review the historical and current development of RO membrane materials which are the key determinants of separation performance and water productivity, and hence to define performance targets for those who are developing new RO membrane materials. The chemistry, synthesis mechanism(s) and desalination performance of various RO membranes are discussed from the point of view of membrane materials science. The review starts with the first generation of asymmetric polymeric membranes and finishes with current proposals for nano-structured membrane materials. The paper provides an overview of RO performance in relation to membrane materials and methods of synthesis.
To date polymeric membranes have dominated the RO desalination industry. From the late 1950s to the 1980s the research effort focussed on the search for optimum polymeric membrane materials. In subsequent decades the performance of RO membranes has been optimised via control of membrane formation reactions, and the use of poly-condensation catalysts and additives. The performance of state-of-the-art RO membranes has been highlighted. Nevertheless, the advances in membrane permselectivity in the past decade has been relatively slow, and membrane fouling remains a severe problem.
The emergence of nano-technology in membrane materials science could offer an attractive alternative to polymeric materials. Hence nano-structured membranes are discussed in this review including zeolite membranes, thin film nano-composite membranes, carbon nano-tube membranes, and biomimetic membranes. It is proposed that these novel materials represent the most likely opportunities for enhanced RO desalination performance in the future, but that a number of challenges remain with regard to their practical implementation. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Mattia, D, Univ Bath, Dept Chem Engn, Bath BA2 7AY, Avon, England.

Research Institution addresses:
[Lee, Kali Peng; Arnot, Tom C.; Mattia, Davide] Univ Bath, Dept Chem Engn, Bath BA2 7AY, Avon, England

E-mail Address:
D.Mattia@bath.ac.uk

Cited References:
1975, 3926798, APPL.
2004, WATER EXECUTIVE, P9.
2005, MEMBRANE TECHNOLOGY, P3.
2006, IDA NEWSLETTER, P9.
2006, INT DESALINATION WAT, V16, P10.
2007, GLOBAL WATER INTELLI, V8.
2008, PROGR DRINKING WATER.
2009, DESALINATION NATL PE.
2009, GLOBAL WATER INTELLI, V10.
*DOW CHEM CO, FILMT MEMBR FILMT SW.
*HLTH ENV SUST DEV, 1997, 5 YEARS EARTH SUMM, P54.
*HYDR CORP, MEMBR EL SWC4.
*TOR IND, TOR SEA WAT RO EL TM.
*WAT DES, 2009, 45 WAT DES.
*WORLD MET ORG, 1997, COMPR ASS FRESHW RES, P9.
AGRE P, 2005, BIOL CELL, V97, P355, DOI 10.1042/BC20050027.
ANTRIM B, 2005, DESALINATION, V178, P313, DOI 10.1016/j.desal.2004.11.042.
ARTHUR SD, 1991, 5019264, APPL.
BAERLOCHER C, 2007, ATLAS ZEOLITE FRAMEW.
BARTELS C, 2008, DESALINATION, V221, P207, DOI 10.1016/j.desal.2007.01.077.
BARTELS CR, 1989, J MEMBRANE SCI, V45, P225.
BEASLEY JK, 1977, DESALINATION, V22, P181.
BROUSSE C, 1976, DESALINATION, V18, P137.
BUCK KR, 1970, MEMBRANES, V2, P238.
CADOTTE JE, 1977, 4039440, APPL.
CADOTTE JE, 1980, DESALINATION, V32, P25.
CADOTTE JE, 1981, 4259183, APPL.
CADOTTE JE, 1981, 4277344, APPL.
CADOTTE JE, 1985, MAT SCI SYNTHETIC ME, P273.
CAHILL DG, 2008, MRS BULL, V33, P27.
CANNON CR, 1971, 3585126, APPL.
CHAU MM, 1991, 4983291, APPL.
CONGJIE G, 2003, CHIN J OCEANOL LIMN, V21, P40.
CORONELL O, 2008, ENVIRON SCI TECHNOL, V42, P5260, DOI 10.1021/es8002712.
CORONELL O, 2010, ENVIRON SCI TECHNOL, V44, P6808, DOI 10.1021/es100891r.
CORRY B, 2007, J PHYS CHEM B, V112, P1427.
CREDALI L, 1971, POLYMER, V12, P717.
CREDALI L, 1974, DESALINATION, V14, P137.
CREDALI L, 1978, 4129559, APPL.
CROWDUS F, 1984, ULTRAPURE WATER, V1, P29.
DHUMAL SS, 2008, J MEMBRANE SCI, V325, P758, DOI 10.1016/j.memsci.2008.09.002.
DUKE MC, 2007, WATER RES, V41, P3998, DOI 10.1016/j.watres.2007.05.028.
DUKE MC, 2009, SEP PURIF TECHNOL, V68, P343, DOI 10.1016/j.seppur.2009.06.003.
EDGAR KJ, 2001, PROG POLYM SCI, V26, P1605.
ERIKSSON P, 1988, J MEMBRANE SCI, V36, P297.
FORNASIEROA HGP, 2008, P NATL ACAD SCI USA, V105, P17250.
FRANCIS FS, 1966, FABRICATION EVALUATI.
FRY LM, 2008, ENVIRON SCI TECHNOL, V42, P4298, DOI 10.1021/es7025856.
GAZAGNES L, 2007, DESALINATION, V217, P260, DOI 10.1016/j.desal.2007.01.017.
GERARD R, 1998, DESALINATION, V119, P47.
GHOSH AK, 2008, J MEMBRANE SCI, V311, P34, DOI 10.1016/j.memsci.2007.11.038.
GHOSH AK, 2009, J MEMBRANE SCI, V336, P140, DOI 10.1016/j.memsci.2009.03.024.
GILMAN AB, 2003, HIGH ENERG CHEM+, V37, P17.
GLATER J, 1983, DESALINATION, V48, P1.
GLATER J, 1994, DESALINATION, V95, P325.
GLEICK PH, WORLDS WATER 2008 20.
GOGOTSI Y, 2003, NAT MATER, V2, P591, DOI 10.1038/nmat957.
GONZALEZPEREZ A, 2009, LANGMUIR, V25, P10447, DOI 10.1021/la902417m.
GUIVER MD, 1990, 4894159, APPL.
HACHISUKA H, 2001, 6177011, APPL.
HARA S, 1977, DESALINATION, V21, P183.
HASSLER GL, 1949, SEA SOURCE FRESH WAT.
HICKMAN CE, 1979, DESALINATION, V30, P259.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HIROSE M, 1996, 5576057, APPL.
HIROSE M, 1996, J MEMBRANE SCI, V121, P209.
HIROSE MS, 1997, 5614099, APPL.
HOEHN HH, 1980, 30351, RE, APPL.
HOEHN HH, 1985, MAT SCI SYNTHETIC ME, P81.
HOEKSTRA AY, 2008, GLOBALIZATION WATER.
HOFFMAN EN, 2008, MATER CHEM PHYS, V112, P587, DOI 10.1016/j.matchemphys.2008.06.006.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLT JK, 2009, ADV MATER, V21, P3542, DOI 10.1002/adma.200900867.
HSU ST, 2002, DESALINATION, V143, P279.
HUMMER G, 2001, NATURE, V414, P188.
ISMAIL AF, SEP PURIF T IN PRESS.
JAREMAN F, 2003, SEP PURIF TECHNOL, V32, P159, DOI 10.1016/S1383-5866(03)00029-7.
JENKINS M, 1998, DESALINATION, V119, P243.
JENSEN PH, 2010, 1885477, EP, APPL.
JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI 10.1016/j.memsci.2007.02.025.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KAMIYAMA Y, 1984, DESALINATION, V51, P79.
KANG GD, 2007, J MEMBRANE SCI, V300, P165, DOI 10.1016/j.memsci.2007.05.025.
KARODE SK, 1998, CHEM ENG SCI, V53, P2649.
KAUFMAN Y, 2010, LANGMUIR, V26, P7388, DOI 10.1021/la904411b.
KAWAGUCHI T, 1982, 4360434.
KIM CK, 2000, J MEMBRANE SCI, V165, P189.
KIM SH, 2003, J MEMBRANE SCI, V211, P157.
KIM SH, 2005, ENVIRON SCI TECHNOL, V39, P1764, DOI 10.1021/es049453k.
KING WM, 1970, MEMBRANES CELLULOSE.
KIRSH YE, 1988, NEW TRENDS DEV POLYM, V57.
KOO JY, 1986, AN CAL M ACS AN CA U, P391.
KOO JY, 2000, 6015495, APPL.
KOO JY, 2000, 6063278, APPL.
KOTSALIS EM, 2004, INT J MULTIPHAS FLOW, V30, P995, DOI 10.1016/j.imultiphaseflow.2004.03.009.
KUEHNE MA, 2001, ENVIRON PROG, V20, P23.
KUJAWSKI W, 2007, DESALINATION, V205, P75, DOI 10.1016/j.desal.2006.04.042.
KULKARNI A, 1996, J MEMBRANE SCI, V114, P39.
KULPRATHIPANJA S, 1988, 4740219, APPL.
KUMANO A, 2008, ADV MEMBRANE TECHNOL, P21.
KUMANO A, 2008, ADV MEMBRANE TECHNOL, P39.
KUMAR M, 2007, P NATL ACAD SCI USA, V104, P20719, DOI 10.1073/pnas.0708762104.
KURIHARA M, 1980, DESALINATION, V32, P13.
KURIHARA M, 1991, POLYM J, V23, P513.
KURIHARA M, 1991, POLYM J, V23, P513.
KWAK SY, 1999, J MEMBRANE SCI, V158, P143.
KWAK SY, 1999, J POLYM SCI POL PHYS, V37, P1429.
KWAK SY, 2001, ENVIRON SCI TECHNOL, V35, P2388.
KWAK SY, 2001, ENVIRON SCI TECHNOL, V35, P4334.
LAI JY, 1990, J APPL POLYM SCI, V39, P2293.
LAINE JM, 2009, DESIGN OPERATION CON.
LARSON RE, 1981, DESALINATION, V38, P473.
LI D, 2010, J MATER CHEM, V20, P4551, DOI 10.1039/b924553g.
LI L, 2007, J MEMBRANE SCI, V289, P258, DOI 10.1016/j.memsci.2006.12.007.
LI L, 2008, J MEMBRANE SCI, V315, P20, DOI 10.1016/j.memsci.2008.02.022.
LI LX, 2004, J MEMBRANE SCI, V243, P401, DOI 10.1016/j.memsci.2004.06.045.
LI LX, 2007, IND ENG CHEM RES, V46, P1584, DOI 10.1021/ie0612818.
LIA L, 2004, DESALINATION, V170, P309.
LIGHT WG, 1987, DESALINATION, V64, P411.
LIGHT WG, 1988, DESALINATION, V70, P47.
LIN J, 2001, MOL PHYS, V99, P1175.
LIN NH, 2010, J MATER CHEM, V20, P4642, DOI 10.1039/b926918e.
LIND ML, 2009, LANGMUIR, V25, P10139, DOI 10.1021/la900938x.
LIU N, 2008, J MEMBRANE SCI, V325, P357, DOI 10.1016/j.memsci.2008.07.056.
LOEB S, 1963, SALINE WATER CONVERS, V2, P117.
LOEB S, 1981, SYNTHETIC MEMBRANES, P1.
LOUIE JS, 2006, J MEMBRANE SCI, V280, P762, DOI 10.1016/j.memsci.2006.02.041.
LU J, SEP PURIF T IN PRESS.
LU YY, 2007, CHEM MATER, V19, P3194, DOI 10.1021/cm070200a.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k.
MALTHUS TR, 1798, ESSAY PRINCIPLE POPU.
MATSUURA T, 2001, DESALINATION, V134, P47.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
MAUTER MS, 2008, ENVIRON SCI TECHNOL, V42, P5843, DOI 10.1021/es8006904.
MCGINNIS RL, 2007, DESALINATION, V207, P370, DOI 10.1016/j.desal.2006.08.012.
MI BX, 2006, J MEMBRANE SCI, V282, P71, DOI 10.1016/j.memsci.2006.05.015.
MICKOLS WE, 1998, 5755964, APPL.
MICKOLS WE, 2002, 6337018, APPL.
MICKOLS WE, 2005, 6878278, APPL.
MONTGOMERY MA, 2007, ENVIRON SCI TECHNOL, V41, P17.
MOON EJ, 2004, J MEMBRANE SCI, V243, P311, DOI 10.1016/j.memsci.2004.07.002.
MUKHERJEE D, 1994, J MEMBRANE SCI, V97, P231.
MUKHERJEE D, 1996, DESALINATION, V104, P239.
MURAKAMI H, 1981, IND ENG CHEM PROD RD, V20, P501.
MYSELS KJ, 1991, LANGMUIR, V7, P3052.
NAAKTGEBOREN AJ, 1988, DESALINATION, V68, P223.
NG HY, 2008, DESALINATION, V225, P274, DOI 10.1016/j.desal.2007.02.097.
NOY A, 2007, NANO TODAY, V2, P22.
OKUMUS E, 1994, SEP SCI TECHNOL, V29, P2451.
OREN Y, 2008, DESALINATION, V228, P10, DOI 10.1016/j.desal.2007.08.005.
PABBY AK, 2009, HDB MEMBRANE SEPARAT.
PARRINI P, 1983, DESALINATION, V48, P67.
PEARCE G, 2007, FILTR SEPARAT, V44, P31.
PERIC D, 1976, AM CHEM SOC POLYM PR, V17, P534.
PETERSEN RJ, 1990, HDB IND MEMBRANE TEC.
PETERSEN RJ, 1993, J MEMBRANE SCI, V83, P81.
PINNAU I, 1999, ACS SYM SER, V744, P1.
POLASEK V, 2003, DESALINATION, V156, P239.
RATTO TV, 2010, 20100025330, APPL.
REID CE, 1959, J APPL POLYM SCI, V1, P133.
RILEY RL, 1971, J APPL POLYM SCI, V15, P1267.
RILEY RL, 1976, DESALINATION, V19, P113.
RILEY RL, 1977, DESALINATION, V23, P331.
ROH IJ, 1998, J POLYM SCI POL PHYS, V36, P1821.
ROZELLE LT, 1968, FINAL REPORT DEV NEW.
SADRZADEH M, 2008, DESALINATION, V221, P440, DOI 10.1016/j.desal.2007.01.103.
SARKAR A, 2010, J MEMBRANE SCI, V349, P421, DOI 10.1016/j.memsci.2009.12.005.
SCHIFFER DK, 1979, DEV COMPOSITE HOLLOW.
SEKIGUCHI H, 1978, 4067804, APPL.
SENOO M, 1976, 3951920, APPL.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHEIKHOLESLAMI R, 2009, DESALINATION, V248, P218, DOI 10.1016/j.desal.2008.05.058.
SHIMOKAWA A, 2009, DESALINATION PLANT U.
SISKENS CAM, 1996, MEMBRANE SCI TECHNOL, P619.
SONG YJ, 2005, J MEMBRANE SCI, V251, P67, DOI 10.1016/j.memsci.2004.10.042.
STOVER RL, 2008, CLEAN TECHNOLOGY 200.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUDAK RG, 1990, HDB IND MEMBRANE TEC.
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120.
SUNADA K, 1998, ENVIRON SCI TECHNOL, V32, P726.
SUNDET SA, 1985, 4529646, APPL.
SUNDET SA, 1987, DESALINATION, V64, P259.
SUZUKI T, 2007, ENVIRON SCI TECHNOL, V41, P6246, DOI 10.1021/es070157s.
TANG CYY, 2007, J MEMBRANE SCI, V287, P146, DOI 10.1016/j.memsci.2006.10.038.
TANG CYY, 2009, DESALINATION, V242, P149, DOI 10.1016/j.desal.2008.04.003.
TANG CYY, 2009, DESALINATION, V242, P168, DOI 10.1016/j.desal.2008.04.004.
TARBOUSH BJA, 2008, J MEMBRANE SCI, V325, P166.
TAUBERT A, 2007, P NATL ACAD SCI USA, V104, P20643, DOI 10.1073/pnas.0710864105.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
TOMASCHKE JE, 1990, 4948507, APPL.
TRAN CN, 1993, 5234598, APPL.
TRAN DT, 2008, THIN SOLID FILMS, V516, P4384, DOI 10.1016/j.tsf.2007.10.069.
UEMURA T, 1988, 4761234, APPL.
UEMURA T, 2008, ADV MEMBRANE TECHNOL, P3.
UEMURA TK, 1988, 4761234, APPL.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
WILF M, 2000, DESALINATION, V132, P11.
WRASIDLO WJ, 1977, 4005012, APPL.
WU SY, 1997, J APPL POLYM SCI, V64, P1923.
YASUDA H, 1973, APPL POLYM S, P241.
YASUDA H, 1975, J APPL POLYM SCI, V19, P2981.
YASUDA H, 1975, REACTIONS NITROGEN A, V16, P142.
YASUDA H, 1976, J POLYM SCI POL CHEM, V14, P195.
YUN TI, 2006, DESALINATION, V189, P141, DOI 10.1016/j.desal.2005.06-022.
ZHANG XJ, 2007, APPL PHYS LETT, V91, ARTN 181904.
ZHU AH, 2009, J MEMBRANE SCI, V344, P1, DOI 10.1016/j.memsci.2009.08.006.

Cited Reference Count:
209

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Engineering, Chemical; Polymer Science

ISSN:
0376-7388

DOI:
10.1016/j.memsci.2010.12.036

IDS Number:
734RV

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288401200004
*Order Full Text [ ]

Title:
Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap

Authors:
Dalosto, SD; Tinte, S

Author Full Names:
Dalosto, Sergio D.; Tinte, Silvia

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 115 (11): 4381-4386 MAR 24 2011

Language:
English

Document Type:
Article

KeyWords Plus:
NANORIBBONS; NANOTUBES; OXIDE

Abstract:
We investigate how a box of water molecules affects the HOMO LUMO gap of a rectangular graphene nanodot (GND) with two zigzag and two armchair edges, using a combination of first principles and molecular mechanics, and also classical molecular dynamics. A GND is solvated in a periodic box of water molecules, and the HOMO LUMO gap is computed for some snapshots taken from a molecular dynamics simulation. Although an isolated GND has a semiconductor state with degenerate alpha and beta gaps, we find that, in a solvated GND, that degeneracy broken and the gaps of both spins flavors oscillate following the time fluctuations in strength and direction of the electric field generated by the solvent at the edges. The average electric field generated by the water molecules causes an effect equivalent to applying a uniform electric field of 0.16 V/angstrom computed at the PBE level of theory. In particular, this field is not strong enough to change the GND semiconductor ground state to
a half-metallic one in nanodots with dimensions smaller than 2.5 nm, as those studied here. These results can be useful in the design of sensors based on graphene, indicating that important fluctuations in the energy gap can occur if water molecules are present.

Reprint Address:
Dalosto, SD, INTEC CONICET, Guemes 3450, RA-3000 Santa Fe, Argentina.

Research Institution addresses:
[Dalosto, Sergio D.] INTEC CONICET, RA-3000 Santa Fe, Argentina; Univ Nacl Litoral, RA-3000 Santa Fe, Argentina

E-mail Address:
dalosto@intec.unl.edu.ar

Cited References:
BALANDIN AA, 2008, NANO LETT, V8, P902, DOI 10.1021/nl0731872.
BARONE V, 2006, NANO LETT, V6, P2748, DOI 10.1021/nl0617033.
BESLER BH, 1990, J COMPUT CHEM, V11, P431.
BHANDARKAR M, 2009, NAMD VERSION 2 7.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
DALOSTO SD, 2008, J PHYS CHEM C, V112, P8196, DOI 10.1021/jp711524y.
DIKIN DA, 2007, NATURE, V448, P457, DOI 10.1038/nature06016.
EZAWA M, 2006, PHYS REV B, V73, ARTN 045432.
FRISCH MJ, 2004, GAUSSIAN03.
GORDILLO MC, 2008, PHYS REV B, V78, ARTN 075432.
GORDILLO MC, 2010, J PHYS-CONDENS MAT, V22, ARTN 284111.
HEYD J, 2003, J CHEM PHYS, V118, P8207, DOI 10.1063/1.1564060.
HEYD J, 2006, J CHEM PHYS, V124, ARTN 219906.
HOD O, 2007, NANO LETT, V7, P2295, DOI 10.1021/nl0708922.
HOD O, 2008, PHYS REV B, V77, ARTN 035411.
HOD O, 2009, NANO LETT, V9, P2619, DOI 10.1021/nl900913c.
HUMMER G, 2001, NATURE, V414, P188.
IZMAYLOV AF, 2006, J CHEM PHYS, V125, ARTN 104103.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALE L, 1999, J COMPUT PHYS, V151, P283.
LEE C, 2008, SCIENCE, V321, P385, DOI 10.1126/science.1157996.
LEENAERTS O, 2008, PHYS REV B, V77, ARTN 125416.
LEENAERTS O, 2009, MICROELECTRON J, V40, P860, DOI 10.1016/j.mejo.2008.11.022.
LU J, 2008, ACS NANO, V2, P1825, DOI 10.1021/nn800244k.
MASERAS M, 1995, J COMPUT CHEM, V16, P1170.
NOVOSELOV KS, 2004, SCIENCE, V306, P666, DOI 10.1126/science.1102896.
NOVOSELOV KS, 2007, SCIENCE, V315, P1379, DOI 10.1126/science.1137201.
PARK S, 2008, ACS NANO, V2, P572, DOI 10.1021/nn700349a.
PATRA N, 2009, NANO LETT, V9, P3766, DOI 10.1021/nl9019616.
PERDEW JP, 1996, PHYS REV LETT, V77, P3865.
PERDEW JP, 1997, PHYS REV LETT, V78, P1396.
PERES NMR, 2005, PHYS REV B, V72, P1.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
ROMERO HE, 2009, NANOTECHNOLOGY, V20, ARTN 245501.
SCHEDIN F, 2007, NAT MATER, V6, P652, DOI 10.1038/nmat1967.
SENN HM, 2009, ANGEW CHEM, V49, P1149.
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f.
SON YW, 2006, NATURE, V444, P347, DOI 10.1038/nature05180.
SON YW, 2006, PHYS REV LETT, V97, ARTN 216803.
STANKOVICH S, 2006, NATURE, V442, P282, DOI 10.1038/nature04969.
SUN XM, 2008, NANO RES, V1, P203, DOI 10.1007/s12274-008-8021-8.
VREVEN T, 2000, J CHEM PHYS, V113, P2969.
YU DC, 2008, NANO RES, V1, P497, DOI 10.1007/s12274-008-8053-0.

Cited Reference Count:
44

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp109297p

IDS Number:
735GK

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287923800026
*Order Full Text [ ]

Title:
Syntheses, structures, and photoluminescence of lanthanide coordination polymers with pyridine-2,3,5,6-tetracarboxylic acid

Authors:
Yang, AH; Gao, HL; Cui, JZ; Zhao, B

Author Full Names:
Yang, Ai-Hong; Gao, Hong-Ling; Cui, Jian-Zhong; Zhao, Bin

Source:
CRYSTENGCOMM 13 (6): 1870-1876 2011

Language:
English

Document Type:
Article

KeyWords Plus:
ORGANIC SUPRAMOLECULAR COMPLEX; CYCLIC WATER HEPTAMER; SOLID-STATE; PYRAZINE-2,3,5,6-TETRACARBOXYLIC ACID; CRYSTAL-STRUCTURE; (H2O)(10) CLUSTER; 1,2,4,5-BENZENETETRACARBOXYLIC ACID; MOLECULAR RECOGNITION; FRAMEWORK STRUCTURES; ICE

Abstract:
Six lanthanide(III) coordination polymers with the formulae {[Ln(Hpdtc)(H2O)(3)]center dot H2O}(n) [Ln = La (1), Ce (2), Pr (3)], {[Ln(Hpdtc)(H2O)(2)]center dot 2H(2)O}(n) [Ln = Eu (4), Tb (5)] and {SmK(pdtc)(H2O)(4)} n (6) (H(4)pdtc = pyridine-2,3,5,6-tetracarboxylic acid) have been synthesized by reacting the corresponding rare earth salts or oxides with H(4)pdtc under hydrothermal conditions. In the three kinds of structure, H(4)pdtc displays three different coordination modes. H(4)pdtc is an elegant ligand with rich coordination sites and low symmetry, but has seldom been used to synthesize complexes. 1-6 are the first examples from lanthanide ions and H(4)pdtc. Furthermore, the novel wave-like T3(2)4(2)6(2) water tape with (H2O)(4) as the substructure is present in complex 6. The two complexes of Eu(III) and Tb(III) exhibit the corresponding characteristic luminescence.

Reprint Address:
Cui, JZ, Tianjin Univ, Dept Chem, Tianjin 300072, Peoples R China.

Research Institution addresses:
[Yang, Ai-Hong; Gao, Hong-Ling; Cui, Jian-Zhong] Tianjin Univ, Dept Chem, Tianjin 300072, Peoples R China; [Zhao, Bin] Nankai Univ, Dept Chem, Tianjin 300071, Peoples R China

E-mail Address:
cuijianzhong@tju.edu.cn

Cited References:
ATWOOD JL, 2001, J AM CHEM SOC, V123, P7192.
BARBOUR LJ, 1998, NATURE, V393, P671.
BARBOUR LJ, 2000, CHEM COMMUN, P859.
BERGOUGNANT RD, 2005, CRYST GROWTH DES, V5, P1691, DOI 10.1021/cg050201k.
BLANTON WB, 1999, TETRAHEDRON-ASYMMETR, V121, P3551.
CALEFI PS, 2002, J ALLOY COMPD, V344, P285.
CAO R, 2002, INORG CHEM, V41, P2087.
CARBALLO R, 2005, CRYSTENGCOMM, V7, P294, DOI 10.1039/b504177e.
CHERUZEL LE, 2003, ANGEW CHEM INT EDIT, V42, P5452, DOI 10.1002/anie.200352157.
CUSTELCEAN R, 2000, ANGEW CHEM INT EDIT, V39, P3094.
FANG SR, 2008, J CHEM CRYSTALLOGR, V38, P393, DOI 10.1007/s10870-008-9328-8.
GAO HL, 2009, J MOL STRUCT, V918, P97, DOI 10.1016/j.molstruc.2008.07.027.
GHOSH SK, 2003, INORG CHEM, V42, P8250, DOI 10.1021/ic034976z.
GHOSH SK, 2004, CRYSTENGCOMM, V6, P250, DOI 10.1039/b407571d.
GHOSH SK, 2004, INORG CHEM, V43, P5180, DOI 10.1021/ic049839q.
GHOSH SK, 2004, INORG CHEM, V43, P6887, DOI 10.1021/ic049111f.
GHOSH SK, 2004, J CHEM SOC P2, V43, P3577.
GHOSH SK, 2005, CRYST GROWTH DES, V5, P623, DOI 10.1021/cg049838e.
GHOSH SK, 2005, INORG CHEM, V44, P5553, DOI 10.1021/ic050727u.
GHOSH SK, 2005, J INORG CHEM, P4880.
GHOSH SK, 2006, INORG CHIM ACTA, V359, P468, DOI 10.1016/j.ica.2005.07.040.
GHOSH SK, 2006, PROG INORG CHEM, V796, P119.
GUO CY, 2005, CHEM COMMUN, P2220, DOI 10.1039/b418869a.
HOU Y, 2004, INORG CHIM ACTA, V357, P3155, DOI 10.1016/j.ica.2004.03.019.
HUMMER G, 2001, NATURE, V414, P188.
INFANTES L, 2002, INORG CHEM, V4, P454.
INFANTES L, 2002, Z ANORG ALLG CHEM, V4, P454.
INFANTES L, 2003, CRYSTENGCOMM, V5, P480, DOI 10.1039/b312846f.
JUDE KM, 2002, BIOCHEMISTRY-US, V41, P2485.
KARABACH YY, 2006, CRYST GROWTH DES, V6, P2200, DOI 10.1021/cg060310e.
KOGA K, 2001, ANGEW CHEM, V412, P802.
KOVACS F, 1999, P NATL ACAD SCI USA, V96, P7910.
LAKSHMINARAYANAN PS, 2005, J AM CHEM SOC, V127, P13132, DOI 10.1021/ja054068w.
LAKSHMINARAYANAN PS, 2006, ANGEW CHEM INT EDIT, V45, P3807, DOI 10.1002/anie.200600254.
LEE YS, 2004, J AM CHEM SOC, V126, P2225, DOI 10.1021/ja036115v.
LEE YS, 2004, J MOL STRUCT, V700, P243, DOI 10.1016/j.molstruc.2004.02.004.
LI M, 1995, J AM CHEM SOC, V117, P8132.
LIAO YC, 2005, J AM CHEM SOC, V127, P12794, DOI 10.1021/ja054357k.
LUDWIG R, 2001, INORG CHEM, V40, P1808.
MA BQ, 2004, ANGEW CHEM INT EDIT, V43, P1374.
MA BQ, 2005, ORGANOMETALLICS, P2336.
MACGILLIVRAY LR, 1997, J AM CHEM SOC, V119, P2592.
MANIKUMARI S, 2002, INORG CHEM, V41, P6953, DOI 10.1021/ic025803x.
MARCHAL C, 2009, CHEM-EUR J, V15, P5273, DOI 10.1002/chem.200802589.
MARIONI PA, 1994, INORG CHIM ACTA, V219, P161.
MASCI B, 2008, Z ANORG ALLG CHEM, V8, P1689.
MIR MH, 2007, ANGEW CHEM INT EDIT, V46, P5925, DOI 10.1002/anie.200701779.
MIR MH, 2008, CRYST GROWTH DES, V8, P1478, DOI 10.1021/cg800244g.
MOORTHY JN, 2002, ANGEW CHEM INT EDIT, V41, P3417.
NI ZH, 2007, INORG CHEM, V46, P6029, DOI 10.1021/ic700528a.
PAL S, 2003, ANGEW CHEM INT EDIT, V42, P1741, DOI 10.1002/anie.200250444.
QUAN YP, 2009, CRYSTENGCOMM, V11, P1679, DOI 10.1039/b900618d.
RAGHURAMAN K, 2003, J AM CHEM SOC, V125, P6955, DOI 10.1021/ja034682c.
RAMASUBBU N, 2004, ARCH BIOCHEM BIOPHYS, V421, P115, DOI 10.1016/j.abb.2003.10.007.
RODRIGUEZCUAMAT.P, 2004, DALTON T, V43, P3041.
SHELDRICK GM, 1997, SHELXL 97 PROGRAM RE.
SHELDRICK GM, 1997, SHELXL 97 PROGRAM SO.
SUPRIYA S, 2003, ANGEW CHEM, V27, P218.
VANDERHORST MG, 2008, EUR J INORG CHEM MAY, P2170, DOI 10.1002/ejic.200800031.
VENKATARAMANAN B, 2004, J PHYS CHEM A, V3, P553.
WANG HS, 2007, CHEM-EUR J, V10, P856.
WU JY, 2006, CRYST GROWTH DES, V6, P467, DOI 10.1021/cg050393j.
YANG AH, 2008, CHINESE J INORG CHEM, V24, P487.
YANG AH, 2008, CRYST GROWTH DES, V8, P3354, DOI 10.1021/cg800291p.
YANG AH, 2009, CRYSTENGCOMM, V11, P2719, DOI 10.1039/b911939f.
YANG AH, 2009, J COORD CHEM, V62, P3306, DOI 10.1080/00958970903046593.
YANG AH, 2010, CRYST GROWTH DES, V10, P218, DOI 10.1021/cg9008575.
YAO JN, 2009, EUR J INORG CHEM, V12, P430.
YE BH, 2004, INORG CHEM, V43, P6866, DOI 10.1021/ic0492321.
YOSHIZAWA M, 2005, J AM CHEM SOC, V127, P2798, DOI 10.1021/ja043953w.
ZABEL V, 1986, J AM CHEM SOC, V108, P3664.
ZHAO B, 2004, J AM CHEM SOC, V126, P3012, DOI 10.1021/ja038784e.
ZHAO LH, 2009, CRYSTENGCOMM, V11, P1427, DOI 10.1039/b820663e.

Cited Reference Count:
73

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Multidisciplinary; Crystallography

ISSN:
1466-8033

DOI:
10.1039/c0ce00397b

IDS Number:
729BV

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286676600045
*Order Full Text [ ]

Title:
Raman spectroscopy of iodine molecules trapped in zeolite crystals

Authors:
Guo, WH; Wang, DD; Hu, JM; Tang, ZK; Du, SW

Author Full Names:
Guo, Wenhao; Wang, Dingdi; Hu, Juanmei; Tang, Z. K.; Du, Shengwang

Source:
APPLIED PHYSICS LETTERS 98 (4): Art. No. 043105 JAN 24 2011

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBE; HYPERFINE INTERACTIONS; CHANNELS; STATE; NM

Abstract:
We study the Raman spectroscopy of neutral iodine molecules confined in the channels of zeolite AlPO4-5 (AFI) and AlPO4-11 (AEL) crystals, which shows that the molecular vibration states are significantly modified by the confinements from the nanosize channels. An iodine molecule trapped in the AEL crystal has an effective internuclear potential close to an ideal harmonic oscillator, while that in the AFI crystal behaves similarly to that in free space. The results are further confirmed by measuring the temperature dependence of Raman spectral width. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3549194]

Reprint Address:
Du, SW, Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China.

Research Institution addresses:
[Guo, Wenhao; Wang, Dingdi; Hu, Juanmei; Tang, Z. K.; Du, Shengwang] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China

E-mail Address:
phzktang@ust.hk; dusw@ust.hk

Cited References:
CHEN LS, 2004, J OPT SOC AM B, V21, P820.
CHEN LS, 2005, J OPT SOC AM B, V22, P951.
CHENG WY, 2002, OPT LETT, V27, P571.
GELB LD, 1999, REP PROG PHYS, V62, P1573.
HOSAKA K, 2010, PHYS REV LETT, V104, ARTN 180501.
HUMMER G, 2001, NATURE, V414, P188.
JIANG FY, 2005, J CRYST GROWTH, V283, P108, DOI 10.1016/j.jcrysgro.2005.05.069.
JIANG FY, 2007, J PHYS CHEM SOLIDS, V68, P1552, DOI 10.1016/j.jpcs.2007.03.035.
JUNGNER PA, 1995, IEEE T INSTRUM MEAS, V44, P151.
KIEFER W, 1972, J MOL SPECTROSC, V43, P366.
LORTZA R, 2009, P NATL ACAD SCI USA, V106, P7299, DOI 10.1073/pnas.0813162106.
MORSE PM, 1929, PHYS REV, V34, P57.
TANG ZK, 2001, SCIENCE, V292, P2462.
WANG N, 2000, NATURE, V408, P50.
XIU P, 2009, J AM CHEM SOC, V131, P2840, DOI 10.1021/ja804586w.
YE J, 2001, PHYS REV LETT, V87, ARTN 270801.
YE JT, 2006, APPL PHYS LETT, V88, ARTN 073114.
ZHAI JP, 2008, APPL PHYS LETT, V92, ARTN 043117.

Cited Reference Count:
18

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Applied

ISSN:
0003-6951

DOI:
10.1063/1.3549194

IDS Number:
712OR

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286487300045
*Order Full Text [ ]

Title:
Control of Unidirectional Transport of Single-File Water Molecules through Carbon Nanotubes in an Electric Field

Authors:
Su, JY; Guo, HX

Author Full Names:
Su, Jiaye; Guo, Hongxia

Source:
ACS NANO 5 (1): 351-359 JAN 2010

Language:
English

Document Type:
Article

Author Keywords:
water molecule; transport; carbon nanotube; electric field; molecular dynamics simulation

KeyWords Plus:
NONPOLAR CAVITIES; DRUG-DELIVERY; ICE NANOTUBES; CHANNEL; MEMBRANES; COMPOSITES; MECHANISM; CLUSTERS; PROTEIN; DESALINATION

Abstract:
The transport of water molecules through nanopores is not only crucial to biological activities but also useful for designing novel nanofluidic devices. Despite considerable effort and progress that has been made, a controllable and unidirectional water flow is still difficult to achieve and the underlying mechanism is far from being understood. In this paper, using molecular dynamics simulations, we systematically investigate the effects of an external electric field on the transport of single-file water molecules through a carbon nanotube (CNT). We find that the orientation of water molecules inside the CNT can be well-tuned by the electric field and is strongly coupled to the water flux. This orientation induced water flux is energetically due to the asymmetrical water water interaction along the CNT ills. The wavelike water density profiles are disturbed under strong field strengths. The frequency of flipping for the water dipoles will decrease as the field strength is in
creased, and the flipping events vanish completely for the relatively large field strengths. Most importantly, a critical field strength E, related to the water flux is found. The water flux is increased as E is increased for E <= E-o while it is almost unchanged for E > E-c. Thus, the electric field offers a level of governing for unidirectional water flow, which may have some biological applications and provides a route for designing efficient nanopumps.

Reprint Address:
Guo, HX, Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Joint Lab Polymer Sci & Mat,State Key Lab Polymer, Beijing 100190, Peoples R China.

Research Institution addresses:
[Su, Jiaye; Guo, Hongxia] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Joint Lab Polymer Sci & Mat,State Key Lab Polymer, Beijing 100190, Peoples R China

E-mail Address:
hxguo@iccas.ac.cn

Cited References:
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BALL P, 2008, BIOL CHEM, V108, P74.
BHIRDE AA, 2009, ACS NANO, V3, P307, DOI 10.1021/nn800551s.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
BRATKO D, 2007, J AM CHEM SOC, V129, P2504, DOI 10.1021/ja0659370.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
COLLINS MD, 2005, P NATL ACAD SCI USA, V102, P16668, DOI 10.1073/pnas.0508224102.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DELLAGO C, 2006, PHYS REV LETT, V97, ARTN 245901.
DUAN WH, 2010, ACS NANO, V4, P2338, DOI 10.1021/nn1001694.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
FANG HP, 2008, J PHYS D APPL PHYS, V41, ARTN 103002.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
GIOVAMBATTISTA N, 2007, J PHYS CHEM B, V111, P9581, DOI 10.1021/jp071957s.
GIOVAMBATTISTA N, 2009, PHYS REV LETT, V102, ARTN 050603.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GONG XJ, 2010, J AM CHEM SOC, V132, P1873, DOI 10.1021/ja905753p.
HEYMANN JB, 1999, NEWS PHYSIOL SCI, V14, P187.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, MOL PHYS, V105, P201, DOI 10.1080/00268970601140784.
IWAMATSU S, 2004, J AM CHEM SOC, V126, P2668, DOI 10.1021/ja038537a.
JAVEY A, 2008, ACS NANO, V2, P1329, DOI 10.1021/nn8003982.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
JOSEPH S, 2008, PHYS REV LETT, V101, ARTN 064502.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOGA K, 2001, NATURE, V412, P802.
KREUER KD, 2004, CHEM REV, V104, P4637, DOI 10.1021/cr020715f.
LEUNG K, 2003, PHYS REV LETT, V90, ARTN 065502.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LIU HT, 2010, SCIENCE, V327, P64, DOI 10.1126/science.1181799.
LUM K, 1999, J PHYS CHEM B, V103, P4570.
MAMEDOV AA, 2002, NAT MATER, V1, P190, DOI 10.1038/nmat747.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t.
MIYAZAWA A, 2003, NATURE, V423, P949, DOI 10.1038/nature01748.
MUKHERJEE B, 2010, ACS NANO, V4, P985, DOI 10.1021/nn900858a.
MURATA K, 2000, NATURE, V407, P599.
PARK JH, 2008, APPL PHYS LETT, V93, ARTN 253104.
PRESTON GM, 1991, P NATL ACAD SCI USA, V88, P11110.
RAGHUNATHAN AV, 2006, PHYS REV LETT, V97, ARTN 024501.
RAMACHANDRAN CN, 2005, CHEM PHYS LETT, V410, P348, DOI 10.1016/j.cplett.2005.04.113.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713, DOI 10.1146/annurev.physchem.59.032607.093815.
SERVICE RF, 2006, SCIENCE, V313, P1088.
SHIM BS, 2007, CHEM MATER, V19, P5467, DOI 10.1021/cm070442a.
SHIM BS, 2009, ACS NANO, V3, P1711, DOI 10.1021/nn9002743.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
SUI HX, 2001, NATURE, V414, P872.
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120.
SUK ME, 2009, PHYS CHEM CHEM PHYS, V11, P8614, DOI 10.1039/b903541a.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
TU YS, 2009, P NATL ACAD SCI USA, V106, P18120, DOI 10.1073/pnas.0902676106.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VAITHEESWARAN S, 2004, P NATL ACAD SCI USA, V101, P17002, DOI 10.1073/pnas.0407968101.
VAITHEESWARAN S, 2005, J PHYS CHEM B, V109, P6629, DOI 10.1021/jp045591k.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WALZ T, 1994, J BIOL CHEM, V269, P1583.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WAN RZ, 2009, PHYS CHEM CHEM PHYS, V11, P9898, DOI 10.1039/b907926m.
WANG CL, 2009, PHYS REV LETT, V103, ARTN 137801.
WON CY, 2006, J CHEM PHYS, V125, ARTN 114701.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12171.
YIN H, 2007, J AM CHEM SOC, V129, P7369, DOI 10.1021/ja070456h.
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372.
ZHANG YB, 2009, NATURE, V459, P820, DOI 10.1038/nature08105.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHU FQ, 2002, BIOPHYS J, V83, P154.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w.

Cited Reference Count:
75

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn1014616

IDS Number:
710CA

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000288570600069
*Order Full Text [ ]

Title:
Helical Encapsulation of Graphene Nanoribbon into Carbon Nanotube

Authors:
Jiang, YY; Li, H; Li, YF; Yu, HQ; Liew, KM; He, YZ; Liu, XF

Author Full Names:
Jiang, Yanyan; Li, Hui; Li, Yunfang; Yu, Haiqing; Liew, Kim M.; He, Yezeng; Liu, Xiangfa

Source:
ACS NANO 5 (3): 2126-2133 MAR 2011

Language:
English

Document Type:
Article

Author Keywords:
molecular dynamics simulation; graphene nanoribbon; carbon nanotube; helical configuration; the pi-pi stacking interaction; nanoscale carriers

KeyWords Plus:
FORCE-FIELD; WATER; DYNAMICS; OXIDE; TRANSPORTATION; ENERGETICS; BEHAVIOR; CHANNEL; COMPASS; ESTERS

Abstract:
Molecular dynamics (MD) simulations were performed to study interaction between the graphene nanoribbon (GNR) and single-wall carbon nanotube (SWCNT). The GNR enters the SWCNT spontaneously to display a helical configuration which is quite similar to the chloroplast in the spirogyra cell. This unique phenomenon results from the combined action of the van der Waals potential well and the pi-pi stacking interaction. The size of SWCNT and GNR should satisfy some certain conditions in the helical encapsulation process. A DNA-like double helix would be formed inside the SWCNT with the encapsulation of two GNRs. A water cluster enclosed in the SWCNT has great effect on the formation of the GNR helix in the tube. Furthermore, we also studied the possibility that the spontaneous encapsulation of GNR is used for substance delivery. The expected outcome of these properties is to provide novel strategies to design nanoscale carriers and reaction devices.

Reprint Address:
Li, H, Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China.

Research Institution addresses:
[Jiang, Yanyan; Li, Hui; Li, Yunfang; Yu, Haiqing; He, Yezeng; Liu, Xiangfa] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China; [Liew, Kim M.] City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China

E-mail Address:
lihuilmy@hotmail.com

Cited References:
AJAYAN PM, 1994, PHYS REV LETT, V72, P1722.
AJAYAN PM, 1995, NATURE, V375, P564.
ARGYRIS D, 2010, ACS NANO, V4, P2035, DOI 10.1021/nn100251g.
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BETS KV, 2009, NANO RES, V2, P161, DOI 10.1007/s12274-009-9015-x.
BUNTE SW, 2000, J PHYS CHEM B, V104, P2477.
CHOI WY, 2003, PHYS REV B, V68, ARTN 193405.
CICERO G, 2008, J AM CHEM SOC, V130, P1871.
DUTTA S, 2009, PHYS REV LETT, V102, ARTN 096601.
EZAWA M, 2006, PHYS REV B, V73, ARTN 045432.
FASOLINO A, 2007, NAT MATER, V6, P858.
FENG G, 2010, ACS NANO, V4, P2382, DOI 10.1021/nn100126w.
FRANK O, 2010, ACS NANO, V4, P3131, DOI 10.1021/nn100454w.
GAO HJ, 2003, NANO LETT, V3, P471, DOI 10.1021/nl025967a.
GILL EL, 1998, J WILDLIFE MANAGE, V72, P872.
GLOBWKA ML, 1999, J MOL STRUCT, V474, P81.
GUNLYCKE D, 2007, APPL PHYS LETT, V91, ARTN 112108.
HOD O, 2007, NANO LETT, V7, P2295, DOI 10.1021/nl0708922.
HUANG JY, 2006, NATURE, V439, P281, DOI 10.1038/439281a.
HUMMER G, 2001, NATURE, V414, P188.
JIANG XF, 2000, ANTI-CANCER DRUG, V11, P49.
LEE C, 2008, SCIENCE, V321, P385, DOI 10.1126/science.1157996.
LIU Z, 2008, J AM CHEM SOC, V130, P10876, DOI 10.1021/ja803688x.
MATTHEW YS, 2004, SCIENCE, V306, P1540.
MOFFET RB, 1964, J MED CHEM, V7, P319.
OHIWA T, 1976, J PLANT RES, V89, P259.
OKADA S, 2001, PHYS REV LETT, V86, P3835.
SEOL JH, 2010, SCIENCE, V328, P213, DOI 10.1126/science.1184014.
SETLUR AA, 1996, APPL PHYS LETT, V69, P345.
SHAO JL, 2010, J PHYS CHEM C, V114, P2896, DOI 10.1021/jp910289c.
SNIR Y, 2005, SCIENCE, V307, P1067, DOI 10.1126/science.1106243.
SON YW, 2006, NATURE, V444, P347, DOI 10.1038/nature05180.
SON YW, 2006, PHYS REV LETT, V97, ARTN 216803.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUN H, 1998, J PHYS CHEM B, V102, P7338.
TSANG SC, 1994, NATURE, V372, P159.
VIDOSSICH P, 2004, PROTEINS, V55, P924.
VILLANI FJ, 1954, J AM CHEM SOC, V76, P87.
WANG L, 2007, APPL PHYS LETT, V91, ARTN 051122.
WANG Q, 2009, CARBON, V47, P1870, DOI 10.1016/j.carbon.2009.03.030.
WANG Q, 2009, NANO LETT, V9, P245, DOI 10.1021/nl802829z.
WANG ZY, 2010, J AM CHEM SOC, V132, P13840, DOI 10.1021/ja1058026.
WARNER JH, 2010, ACS NANO, V4, P4011, DOI 10.1021/nn101111b.
WU CF, 2010, POLYMER, V51, P4452, DOI 10.1016/j.polymer.2010.07.019.
XU ZP, 2010, ACS NANO, V4, P3869, DOI 10.1021/nn100575k.
YANG XY, 2008, J PHYS CHEM C, V112, P17554, DOI 10.1021/jp806751k.
ZOU JA, 2010, INT J NUMER METH ENG, V83, P968, DOI 10.1002/nme.2819.

Cited Reference Count:
47

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn103317u

IDS Number:
737LP

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: