Friday, April 29, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289569600019
*Order Full Text [ ]

Title:
Why are slip lengths so large in carbon nanotubes?

Authors:
Myers, TG

Author Full Names:
Myers, Tim G.

Source:
MICROFLUIDICS AND NANOFLUIDICS 10 (5): 1141-1145 MAY 2011

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotube; Slip length; Navier slip

KeyWords Plus:
FAST MASS-TRANSPORT; BOUNDARY-CONDITION; WATER; FLOW; HYDRODYNAMICS; LIQUIDS; NANOFLUIDICS; DYNAMICS; SURFACES

Abstract:
A possible explanation for the enhanced flow in carbon nanotubes is given using a mathematical model that includes a depletion layer with reduced viscosity near the wall. In the limit of large tubes the model predicts no noticeable enhancement. For smaller tubes the model predicts enhancement that increases as the radius decreases. An analogy between the reduced viscosity and slip-length models shows that the term slip-length is misleading and that on surfaces which are smooth at the nanoscale it may be thought of as a length-scale associated with the size of the depletion region and viscosity ratio. The model therefore provides a physical interpretation of the classical Navier slip condition and explains why 'slip-lengths' may be greater than the tube radius.

Reprint Address:
Myers, TG, Ctr Recerca Matemat, Campus Bellaterra,Edifici C, Barcelona 08193, Spain.

Research Institution addresses:
Ctr Recerca Matemat, Barcelona 08193, Spain

E-mail Address:
tmyers@crm.cat

Cited References:
ALEXEYEV AA, 1996, COLLOID SURFACE A, V108, P173.
BARRAT JL, 1999, FARADAY DISCUSS, V112, P119.
BHUSHAN B, 2008, SPRINGER HDB NANOTEC.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
COTTINBIZONNE C, 2005, PHYS REV LETT, V94, ARTN 056102.
DEGENNES PG, 2002, LANGMUIR, V18, P3413.
DENN MM, 2001, ANNU REV FLUID MECH, V33, P265.
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI 10.1007/s10404-004-0012-9.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MATTHEWS MT, 2008, INT J NANOTECHNOL, V5, P218.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
MYERS TG, 1998, SIAM REV, V40, P441.
MYERS TG, 2002, WATER RESOUR RES, V38, ARTN 1230.
MYERS TG, 2005, PHYS REV E 2, V72, ARTN 066302.
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05.
NOYA A, 2007, NANO TODAY, V2, P22.
ODONOVAN EJ, 1984, J NON-NEWTON FLUID, V15, P75.
ORIKASA H, 2006, CHEM MATER, V18, P1036, DOI 10.1021/cm0521368.
POYNOR A, 2006, PHYS REV LETT, V97, ARTN 266101.
POZHAR LA, 2000, PHYS REV E, V61, P1432.
QIAN TZ, 2004, PHYS REV LETT, V93, ARTN 094501.
RUCKENSTEIN E, 1983, J COLLOID INTERF SCI, V96, P488.
THOMAS JA, 2008, J CHEM PHYS, V128, ARTN 084715.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
TRAVIS KP, 1997, PHYS REV E, V55, P4288.
TRETHEWAY DC, 2002, PHYS FLUIDS, V14, L9.
VERDAGUER A, 2006, CHEM REV, V106, P1478, DOI 10.1021/cr040376l.
VERWEIJ H, 2007, SMALL, V3, P1996, DOI 10.1002/smll.200700368.
VINOGRADOVA OI, 1995, J COLLOID INTERF SCI, V169, P306.
VINOGRADOVA OI, 1999, INT J MINER PROCESS, V56, P31.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
WHITBY M, 2008, NANO LETT, V8, P2632, DOI 10.1021/nl080705f.
WHITE FM, 1991, VISCOUS FLUID FLOW.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.

Cited Reference Count:
37

Times Cited:
0

Publisher:
SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY

Subject Category:
Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas

ISSN:
1613-4982

DOI:
10.1007/s10404-010-0752-7

IDS Number:
750SZ

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289256100031
*Order Full Text [ ]

Title:
Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: Insight from molecular simulation

Authors:
Hu, ZQ; Chen, YF; Jiang, JW

Author Full Names:
Hu, Zhongqiao; Chen, Yifei; Jiang, Jianwen

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (13): Art. No. 134705 APR 7 2011

Language:
English

Document Type:
Article

KeyWords Plus:
METAL-ORGANIC FRAMEWORK; HYDROGEN-BOND KINETICS; DYNAMICS SIMULATIONS; CARBON NANOTUBE; LIQUID WATER; LIGHT GASES; FORCE-FIELD; TRANSPORT; SELECTIVITY; ADSORPTION

Abstract:
A molecular simulation study is reported for water desalination in zeolitic imidazolate framework-8 (ZIF-8) membrane. The simulation demonstrates that water desalination occurs under external pressure, and Na+ and Cl- ions cannot transport across the membrane due to the sieving effect of small apertures in ZIF-8. The flux of water permeating the membrane scales linearly with the external pressure, and exhibits an Arrhenius-type relation with temperature (activation energy of 24.4 kJ/mol). Compared with bulk phase, water molecules in ZIF-8 membrane are less hydrogen-bonded and the lifetime of hydrogen-bonding is considerably longer, as attributed to the surface interactions and geometrical confinement. This simulation study suggests that ZIF-8 might be potentially used as a reverse osmosis membrane for water purification. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3573902]

Reprint Address:
Hu, ZQ, Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore.

Research Institution addresses:
[Hu, Zhongqiao; Chen, Yifei; Jiang, Jianwen] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore

E-mail Address:
chejj@nus.edu.sg

Cited References:
BABARAO R, 2008, LANGMUIR, V24, P6270, DOI 10.1021/la800369s.
BUSSI G, 2007, J CHEM PHYS, V126, ARTN 014101.
BUX H, 2009, J AM CHEM SOC, V131, P16000, DOI 10.1021/ja907359t.
CHAPMAN KW, 2009, J AM CHEM SOC, V131, P17546, DOI 10.1021/ja908415z.
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DUBBELDAM D, 2007, FLUID PHASE EQUILIBR, V261, P152, DOI 10.1016/j.fluid.2007.07.042.
ELDESSOUKY HT, 2002, FUNDAMENTALS SALT WA.
FEREY G, 2008, CHEM SOC REV, V37, P191, DOI 10.1039/b618320b.
FRISCH MJ, 2004, GAUSSIAN 03 REVISION.
GARBEROGLIO G, 2005, J PHYS CHEM B, V109, P13094, DOI 10.1021/jp050948l.
GREENLEE LF, 2009, WATER RES, V43, P2317, DOI 10.1016/j.watres.2009.03.010.
GUO HL, 2009, J AM CHEM SOC, V131, P1646, DOI 10.1021/ja8074874.
HILDER TA, 2009, SMALL, V5, P2183, DOI 10.1002/smll.200900349.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KHAWAJI AD, 2008, DESALINATION, V221, P47, DOI 10.1016/j.desal.2007.01.067.
KUMAR M, 2007, P NATL ACAD SCI USA, V104, P20719, DOI 10.1073/pnas.0708762104.
LI D, 2010, J MATER CHEM, V20, P4551, DOI 10.1039/b924553g.
LI YS, 2010, ANGEW CHEM INT EDIT, V49, P548, DOI 10.1002/anie.200905645.
LIU B, 2008, J PHYS CHEM C, V112, P9854, DOI 10.1021/jp802343n.
LONG JR, 2009, CHEM SOC REV, V38, P1213, DOI 10.1039/b903811f.
LUZAR A, 1996, NATURE, V379, P55.
MEHDIZADEH H, 1989, IND ENG CHEM RES, V28, P814.
MIYAMOTO S, 1992, J COMPUT CHEM, V13, P952.
PARK KS, 2006, P NATL ACAD SCI USA, V103, P10186, DOI 10.1073/pnas.0602439103.
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SKOULIDAS AI, 2005, J PHYS CHEM B, V109, P15760, DOI 10.1021/jp051771y.
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120.
SUK ME, 2010, J PHYS CHEM LETT, V1, P1590, DOI 10.1021/jz100240r.
TAN JC, 2010, P NATL ACAD SCI USA, V107, P9938, DOI 10.1073/pnas.1003205107.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
VENNA SR, 2010, J AM CHEM SOC, V132, P76, DOI 10.1021/ja909263x.
XU HF, 2001, J PHYS CHEM B, V105, P11929.

Cited Reference Count:
36

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3573902

IDS Number:
746OH

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283583800048
*Order Full Text [ ]

Title:
Water sorption in hydrophobic porous materials: isotherm shapes and their meanings for the mesoporous MCM-41 and the microporous AlPO4-5

Authors:
Floquet, N; Coulomb, JP; Andre, G; Kahn, R

Author Full Names:
Floquet, N.; Coulomb, J. P.; Andre, G.; Kahn, R.

Source:
CHARACTERIZATION OF POROUS SOLIDS VII - PROCEEDINGS OF THE 7TH INTERNATIONAL SYMPOSIUM ON THE CHARACTERIZATION OF POROUS SOLIDS (COPS-VII), AIX-EN-PROVENCE, FRANCE, 26-28 MAY 2005 160: 375-382 2006

Language:
English

Document Type:
Proceedings Paper

KeyWords Plus:
X-RAY-DIFFRACTION; NEUTRON-DIFFRACTION; CARBON NANOTUBES; MOLECULAR-SIEVES; CONFINED PHASES; TRIPLE-HELIX; DYNAMICS; ZEOLITE; VPI-5; HYDROGEN

Abstract:
We report on extensive neutron diffraction and incoherent quasi-elastic neutron scattering analyses for the water sorption in two hydrophobic porous materials: the mesoporous material MCM-41 and the microporous zeolite AlPO4-5. Water sorption isotherms have, in the both porous materials, the characteristics of type V isotherms: vertical step at p/p(0) > 0.3 and H1 hysteresis loop. Whatever the pore diameter (either mesoporous 20 angstrom < empty set < 40 angstrom or microporous empty set = 7.3 angstrom), whatever the pore wall structure (either amorphous SiO2, or crystalline AlPO4), water sorption phenomenon looks like the so-called capillary condensation phase transition. Our neutron scattering results clearly validate such an expected behaviour in the mesoporous confinement range (20 angstrom < empty set(MCM-41) < 40 angstrom). Concerning water confinement in the microporous range (empty set(AlPO4-5) = 7.3 angstrom), our results are more surprising. Type V sorption isotherm
is the signature of a crystallization phenomenon at room temperature (T = 300 K). The confined water crystallizes in two helices that are commensurate with the AlPO4-5 micropore structure. The confined ice has a density of 1.2 g.cm(-3).

Reprint Address:
Floquet, N, CNRS, Ctr Rech Mat Condensee & Nanosci, Campus Luminy,Case 901, F-13288 Marseille 9, France.

Research Institution addresses:
[Floquet, N.; Coulomb, J. P.] CNRS, Ctr Rech Mat Condensee & Nanosci, F-13288 Marseille 9, France

Cited References:
COULOMB JP, 2000, STUD SURF SCI CATAL, V128, P235.
COULOMB JP, 2003, EUR PHYS J E, V12, P25.
DAVIS ME, 1989, J AM CHEM SOC, V111, P3919.
DORE J, 2002, PHYSICA A, V314, P501.
FLOQUET N, 1999, P 12 INT ZEOL C MAT, P659.
FLOQUET N, 2004, J PHYS CHEM B, V108, P13107, DOI 10.1021/jp048687n.
FLOQUET N, 2004, MICROPOR MESOPOR MAT, V72, P143, DOI 10.1016/j.micromeso.2004.04.014.
FOIS E, 2001, J PHYS CHEM B, V105, P3012.
FOIS E, 2002, J PHYS CHEM B, V106, P4806.
HUMMER G, 2001, NATURE, V414, P188.
IIYAMA T, 1997, CHEM PHYS LETT, V274, P152.
IZMAILOVA SG, 1996, COLLOID INTERFACE SC, V179, P374.
KIMURA T, 2004, J PHYS CHEM B, V108, P14043, DOI 10.1021/jp048934n.
KNOPSGERRITS PP, 2000, J PHYS CHEM A, V104, P2410.
KOGA K, 2002, PHYSICA A, V314, P462.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LINE CMB, 2000, CHEM PHYS, V112, P9058.
LLEWELLYN PL, 1995, LANGMUIR, V11, P574.
MALLA PB, 1995, ZEOLITES, V15, P324.
MANIWA Y, 2002, PHYS SOC JPN, V71, P2863.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MARTIN C, 1996, EUROPHYS LETT, V36, P503.
MARTIN C, 1998, LANGMUIR, V14, P1774.
MCCUSKER LB, 1991, ZEOLITES, V11, P308.
MORISHIGE K, 1997, J CHEM PHYS, V107, P6965.
MORISHIGE K, 1999, CHEM PHYS, V110, P4867.
MORISHIGE K, 2003, LANGMUIR, V19, P2809.
NEWALKAR BL, 1998, MICROPOR MESOPOR MAT, V20, P129.
OH JS, 2003, J CHEM ENG DATA, V48, P1458, DOI 10.1021/je0301390.
PIRES J, 2003, ADSORPTION, V9, P303.
TAKAHARA S, 1999, J PHYS CHEM B, V103, P5814.
TSUTSUMI K, 1999, COLLOID POLYM SCI, V277, P83.

Cited Reference Count:
32

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Chemistry, Physical

ISSN:
0167-2991

IDS Number:
BRS88

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289532700001
*Order Full Text [ ]

Title:
The Chemical Engineering of Low-Dimensional Materials

Authors:
Paulus, GLC; Shimizu, S; Abrahamson, JT; Zhang, JQ; Hilmer, AJ; Strano, MS

Author Full Names:
Paulus, Geraldine L. C.; Shimizu, Steven; Abrahamson, Joel T.; Zhang, Jingqing; Hilmer, Andrew J.; Strano, Michael S.

Source:
AICHE JOURNAL 57 (5): 1104-1118 MAY 2011

Language:
English

Document Type:
Article

Author Keywords:
low-dimensional materials; single-walled carbon nanotubes; graphene; thermopower waves; excitons; single-molecule detection; ion transport; electron transfer chemistry

KeyWords Plus:
WALLED CARBON NANOTUBES; GUIDED THERMOPOWER WAVES; SOLID-STATE NANOPORES; PHOTOVOLTAIC DEVICES; CONJUGATED POLYMERS; THERMAL-CONDUCTIVITY; SILICON NANOWIRES; EXCITON DIFFUSION; THIN-FILMS; BAND-GAP

Reprint Address:
Strano, MS, MIT, Dept Chem Engn, Cambridge, MA 02139 USA.

Research Institution addresses:
[Paulus, Geraldine L. C.; Shimizu, Steven; Abrahamson, Joel T.; Zhang, Jingqing; Hilmer, Andrew J.; Strano, Michael S.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA

E-mail Address:
strano@mit.edu

Cited References:
ABRAHAMSON JT, 2010, J PHYS CHEM LETT, V1, P3514, DOI 10.1021/jz101381m.
ABRAHAMSON JT, 2011, ACS NANO, V5, P367, DOI 10.1021/nn101618y.
AGO H, 1999, ADV MATER, V11, P1281.
ARNOLD MS, 2006, NAT NANOTECHNOL, V1, P60, DOI 10.1038/nnano.2006.52.
BANERJEE S, 2004, J AM CHEM SOC, V126, P2073, DOI 10.1021/ja038111w.
BARD AJ, 2001, ELECTROCHEMICAL METH, CH6.
BERBER S, 2000, PHYS REV LETT, V4, P4613.
BJORKLUND TG, 2001, J PHYS CHEM B, V105, P11970.
BREWER ML, 2001, BIOPHYS J, V80, P1691.
CAHAY MLJ, 2001, ELECTROCHEM SOC, P1.
CHEN Q, 2008, NANO LETT, V8, P1902, DOI 10.1021/nl080569e.
CHOI W, 2010, MATER TODAY, V13, P22.
CHOI W, 2010, NAT MATER, V9, P423, DOI 10.1038/nmat2714.
CHOI W, 2011, J AM CHEM SOC, V133, P203, DOI 10.1021/ja108011g.
COGNET L, 2007, SCIENCE, V316, P1465, DOI 10.1126/science.1141316.
CROCHET J, 2007, J AM CHEM SOC, V129, P8058, DOI 10.1021/ja071553d.
DAVIES JH, 2006, PHYS LOW DIMENSIONAL, P1.
DEKKER C, 2007, NAT NANOTECHNOL, V2, P209, DOI 10.1038/nnano.2007.27.
DEVI LS, 2008, PHYS REV B, V78, ARTN 045210.
FORNASIERO F, 2010, LANGMUIR, V26, P14848, DOI 10.1021/la101943h.
FORSTER T, 1948, ANN PHYSIK, V2, P55.
FRENKEL J, 1931, PHYS REV, V37, P17.
GALITSKI VM, 2007, PHYS REV B, V76, ARTN 245405.
GEIM AK, 2007, NAT MATER, V6, P183.
GHOSH S, 2010, NAT NANOTECHNOL, V5, P443, DOI 10.1038/NNANO.2010.68.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
GRAUPNER R, 2006, J AM CHEM SOC, V128, P6683, DOI 10.1021/ja0607281.
HAM MH, 2010, ACS NANO, V4, P6251, DOI 10.1021/nn1019384.
HAN JH, 2010, NAT MATER, V9, P833, DOI 10.1038/nmat2832.
HELLER DA, 2005, ADV MATER, V17, P2793.
HILMER AJ, 2010, NANOTECHNOLOGY, V21, ARTN 495703.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HWANG EH, 2007, PHYS REV LETT, V98, ARTN 186806.
JIN H, 2008, NANO LETT, V8, P4299, DOI 10.1021/nl802010z.
KIM BJ, 2009, ADV FUNCT MATER, V19, P2273, DOI 10.1002/adfm.200900043.
KIM WJ, 2007, CHEM MATER, V19, P1571, DOI 10.1021/cm061862n.
KIM WJ, 2008, J PHYS CHEM C, V112, P7326, DOI 10.1021/jp710919b.
KOEHLER FM, 2010, SMALL, V9999.
KYMAKIS E, 2002, APPL PHYS LETT, V80, P112.
LANDAU LD, 1937, PHYS Z SOWJETUNION, V11, P26.
LEE CY, 2010, SCIENCE, V329, P1320, DOI 10.1126/science.1193383.
LEE K, 2010, J MATER CHEM, V20, P3791, DOI 10.1039/b921857b.
LI DY, 2003, APPL PHYS LETT, V83, P2934, DOI 10.1063/1.1616981.
LI J, 2001, NATURE, V412, P166.
LI LS, 2001, NANO LETTERS, V1, P349.
LIANG WY, 1970, PHYS EDUC, V5, P226.
LU X, 2002, EUR PHYS J B, V26, P375.
LUTICH AA, 2010, APPL PHYS LETT, V96, ARTN 083109.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MARTEL R, 1998, APPL PHYS LETT, V73, P2447.
MIKHNENKO OV, 2008, J PHYS CHEM B, V112, P11601, DOI 10.1021/jp8042363.
MILLER A, 1960, PHYS REV, V120, P745, DOI 10.1103/PHYSREV.120.745.
NAIR N, 2007, J AM CHEM SOC, V129, P3946, DOI 10.1021/ja068018i.
NAIR N, 2009, PHYS REV B, V80, ARTN 174301.
OHKITA H, 2006, J PHOTOCH PHOTOBIO A, V182, P225, DOI 10.1016/j.jphotochem.2006.04.026.
PARTOENS B, 2006, PHYS REV B, V74, ARTN 075404.
PASQUIER AD, 2005, APPL PHYS LETT, V87, ARTN 203511.
PAULUS GLC, 2011, ACS NANO IN PRESS.
PEIERLS RE, 1935, ANN I H POINCARE, V5, P177.
PETTERSSON LAA, 1999, J APPL PHYS, V86, P487.
POP E, 2005, PHYS REV LETT, V95, ARTN 155505.
PUREWAL MS, 2007, PHYS REV LETT, V98, ARTN 186808.
QIAN HH, 2008, PHYS STATUS SOLIDI B, V245, P2243, DOI 10.1002/pssb.200879598.
SARAN N, 2004, J AM CHEM SOC, V126, P4462, DOI 10.1021/ja037273p.
SCHEIDLER M, 1996, PHYS REV B, V54, P5536.
SHARMA R, 2009, J PHYS CHEM C, V113, P14771, DOI 10.1021/jp904814h.
SHARMA R, 2010, NANO LETT, V10, P398, DOI 10.1021/nl902741x.
SHAW PE, 2008, ADV MATER, V20, P3516, DOI 10.1002/adma.200800982.
SHKLOVSKII BI, 2007, PHYS REV B, V76, ARTN 233411.
SIITONEN AJ, 2010, J PHYS CHEM LETT, V1, P2189, DOI 10.1021/jz100749c.
SIITONEN AJ, 2010, NANO LETT, V10, P1595, DOI 10.1021/nl9039845.
SKOTHEIM TA, 2007, HDB CONDUCTING POLYM, P1.
SLONCZEWSKI JC, 1958, PHYS REV, V109, P272.
SOLOVIEV VN, 2000, J AM CHEM SOC, V122, P2673.
STORM AJ, 2003, NAT MATER, V2, P537, DOI 10.1038/nmat941.
STRANO MS, 2003, SCIENCE, V301, P1519.
USREY ML, 2005, J AM CHEM SOC, V127, P16129, DOI 10.1021/ja0537530.
WALLACE PR, 1947, PHYS REV, V71, P622.
WANG HM, 2009, CHEM PHYS LETT, V477, P176, DOI 10.1016/j.cplett.2009.06.076.
WEISMAN RB, 2003, NANO LETT, V3, P1235, DOI 10.1021/nl034428i.
WU JB, 2008, APPL PHYS LETT, V92, ARTN 263302.
XU B, 1994, THIN SOLID FILMS, V243, P638.
YU H, 2003, J AM CHEM SOC, V125, P16168, DOI 10.1021/ja037971.
ZHANG JQ, 2011, J AM CHEM SOC, V133, P567, DOI 10.1021/ja1084942.
ZHOU X, 2006, APPL PHYS LETT, V89, ARTN 053113.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
88

Times Cited:
0

Publisher:
WILEY-BLACKWELL; COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA

Subject Category:
Engineering, Chemical

ISSN:
0001-1541

DOI:
10.1002/aic.12628

IDS Number:
750GC

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: