Friday, May 20, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290373000057
*Order Full Text [ ]

Title:
Measurement of the Rate of Water Translocation through Carbon Nanotubes

Authors:
Qin, XC; Yuan, QZ; Zhao, YP; Xie, SB; Liu, ZF

Author Full Names:
Qin, Xingcai; Yuan, Quanzi; Zhao, Yapu; Xie, Shubao; Liu, Zhongfan

Source:
NANO LETTERS 11 (5): 2173-2177 MAY 2011

Language:
English

Document Type:
Article

Author Keywords:
Nanofluidics; water flow velocity; enhancement factor; slip length; CNT-FET

KeyWords Plus:
ELECTRICAL BREAKDOWN; RAMAN-SPECTROSCOPY; FLOW; TRANSPORT; GROWTH

Abstract:
We present an approach for measuring the water flow rate through individual ultralong carbon nanotubes (CNTs) using field effect transistors array defined on individual tubes. Our work exhibits a rate enhancement of 882-51 and a slip length of 53-8 nm for CNTs with diameters of 0.81-1.59 nm. We also found that the enhancement factor does not increase monotonically with shrinking tube diameter and there exists a discontinuous region around 0.98-1.10 nm. We believe that these single-tube level results would help understand the intrinsic nanofluidics of water in CNTs.

Reprint Address:
Liu, ZF, Peking Univ, Coll Chem & Mol Engn, State Key Lab Struct Chem Unstable & Stable Speci, Ctr Nanochem,Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China.

Research Institution addresses:
[Qin, Xingcai; Xie, Shubao; Liu, Zhongfan] Peking Univ, Coll Chem & Mol Engn, State Key Lab Struct Chem Unstable & Stable Speci, Ctr Nanochem,Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China; [Yuan, Quanzi; Zhao, Yapu] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China

E-mail Address:
zfliu@pku.edu.cn

Cited References:
CHEN JY, 2005, SCIENCE, V310, P1480, DOI 10.1126/science.1120385.
COLLINS PC, 2001, SCIENCE, V292, P706.
COLLINS PG, 2001, PHYS REV LETT, V86, P3128.
DRESSELHAUS MS, 2005, PHYS REP, V409, P47, DOI 10.1016/j.physrep.2004.10.006.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JIN Z, 2007, NANO LETT, V7, P2073, DOI 10.1021/nl070980m.
KUZNETSOVA A, 2001, J AM CHEM SOC, V123, P10699.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MUGELE F, 2005, J PHYS-CONDENS MAT, V17, R705, DOI 10.1088/0953-8984/17/28/R01.
NA PS, 2005, APPL PHYS LETT, V87, ARTN 093101.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
VILLALPANDOPAEZ F, 2008, NANO LETT, V8, P3879, DOI 10.1021/nl802306t.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WASHBURN EW, 1921, PHYS REV, V17, P273.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
YAO YG, 2007, NAT MATER, V6, P283, DOI 10.1038/nmat1865.
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372.
ZHENG LX, 2004, NAT MATER, V3, P673, DOI 10.1038/nmat1216.

Cited Reference Count:
21

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1530-6984

DOI:
10.1021/n1200843g

IDS Number:
761CN

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290292900074
*Order Full Text [ ]

Title:
Effect of Electric Field on Liquid Infiltration into Hydrophobic Nanopores

Authors:
Xu, BX; Qiao, Y; Zhou, QL; Chen, X

Author Full Names:
Xu, Baoxing; Qiao, Yu; Zhou, Qulan; Chen, Xi

Source:
LANGMUIR 27 (10): 6349-6357 MAY 17 2011

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; MOLECULAR-DYNAMICS; SILICA-GEL; WATER; SURFACES; CAPILLARITY; SIMULATIONS; NANOSCALE; TRANSPORT; CHANNELS

Abstract:
Understanding the variation of nanofluidic behavior in the presence of an external electric field is critical for controlling and designing nanofluidic devices. By studying the critical infiltration pressure of liquids into hydrophobic nanopores using molecular dynamics (MD) simulations and experiments, important insights can be gained on the variation of the effective liquid solid interfacial tension with the magnitude and sign of electric field, as well as its coupling with the pore size and the solid and liquid species. It is found that the effective hydrophobicity reduces with the increase of electric intensity and/or pore size, and the behavior is asymmetric with respect to the direction of the electric field. The underlying molecular mechanisms are revealed via the study of the density profile, contact angle, and surface tension of confined liquid molecules.

Reprint Address:
Chen, X, Columbia Univ, Columbia Nanomech Res Ctr, Dept Earth & Environm Engn, New York, NY 10027 USA.

Research Institution addresses:
[Xu, Baoxing; Chen, Xi] Columbia Univ, Columbia Nanomech Res Ctr, Dept Earth & Environm Engn, New York, NY 10027 USA; [Qiao, Yu] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA; [Zhou, Qulan] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China; [Chen, Xi] Xi An Jiao Tong Univ, Sch Aerosp, Xian 710049, Peoples R China; [Chen, Xi] Hanyang Univ, Dept Civil & Environm Engn, Seoul 133791, South Korea

E-mail Address:
qlzhou@mail.xjtu.edu.cn; xichen@columbia.edu

Cited References:
AHN WS, 1972, J COLLOID INTERF SCI, V38, P605.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BERKOWITZ ML, 2006, CHEM REV, V106, P1527, DOI 10.1021/cr0403638.
BONTHUIS DJ, 2010, PHYS REV LETT, V105, ARTN 209401.
BRATKO D, 2007, J AM CHEM SOC, V129, P2504, DOI 10.1021/ja0659370.
BRATKO D, 2008, PHYS CHEM CHEM PHYS, V10, P6807, DOI 10.1039/b809072f.
CHEN X, 2006, APPL PHYS LETT, V89, ARTN 241918.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
CRUZCHU ER, 2006, J PHYS CHEM B, V110, P21497, DOI 10.1021/jp063896o.
DAUB CD, 2007, J PHYS CHEM C, V111, P505, DOI 10.1021/jp067395e.
DESBIENS N, 2005, J PHYS CHEM B, V109, P24071, DOI 10.1021/jp054168o.
DUJARDIN E, 1994, SCIENCE, V265, P1850.
GARATE JA, 2009, J CHEM PHYS, V131, ARTN 114508.
GORDILLO MC, 2008, PHYS REV B, V78, ARTN 075432.
HAN A, 2008, LANGMUIR, V24, P7044, DOI 10.1021/la800446z.
HAN AJ, 2007, CHEM LETT, V36, P882.
HAN AJ, 2007, LANGMUIR, V23, P11396, DOI 10.1021/la702606s.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708.
HELMY R, 2005, J AM CHEM SOC, V127, P12446, DOI 10.1021/ja053267c.
HUMMER G, 2001, NATURE, V414, P188.
KUTANA A, 2007, PHYS REV B, V76, ARTN 195444.
LIM MH, 1999, CHEM MATER, V11, P3285.
LIU L, 2009, LANGMUIR, V25, P11862, DOI 10.1021/la901516j.
LIU L, 2009, PHYS CHEM CHEM PHYS, V11, P6520, DOI 10.1039/b905641f.
LIU L, 2009, PHYS REV LETT, V102, ARTN 184501.
LIU L, 2010, NEW J PHYS, V12, ARTN 033021.
LU WY, 2009, LANGMUIR, V25, P9463, DOI 10.1021/la900661z.
NAGY G, 1996, J ELECTROANAL CHEM, V409, P19.
PHILIPPSEN A, 2002, BIOPHYS J, V82, P1667.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
PRYLUTSKYY YI, 2005, FULLER NANOTUB CA S1, V13, P287, DOI 10.1081/FST-200039308.
QIAO Y, 2007, J AM CHEM SOC, V129, P2355, DOI 10.1021/ja067185f.
SPARREBOOM W, 2009, NAT NANOTECHNOL, V4, P713, DOI 10.1038/NNANO.2009.332.
THOMAS JA, 2008, J CHEM PHYS, V128, ARTN 084715.
VAITHEESWARAN S, 2005, J PHYS CHEM B, V109, P6629, DOI 10.1021/jp045591k.
WALTHER JH, 2001, J PHYS CHEM B, V105, P9980.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
WONGEKKABUT J, 2010, NAT NANOTECHNOL, P555.
ZHAO JB, 2009, LANGMUIR, V25, P12687, DOI 10.1021/la901696t.
ZHAO JB, 2009, PHYS REV E 1, V80, ARTN 061206.
ZHAO JB, 2010, J PHYS-CONDENS MAT, V22, ARTN 315301.
ZHU SB, 1991, J PHYS CHEM-US, V95, P6211.

Cited Reference Count:
43

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0743-7463

DOI:
10.1021/la200477y

IDS Number:
760AL

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290127100023
*Order Full Text [ ]

Title:
Vibrational Energy Transfer between Carbon Nanotubes and Nonaqueous Solvents: A Molecular Dynamics Study

Authors:
Nelson, TR; Chaban, VV; Prezhdo, VV; Prezhdo, OV

Author Full Names:
Nelson, Tammie R.; Chaban, Vitaly V.; Prezhdo, Victor V.; Prezhdo, Oleg V.

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 115 (18): 5260-5267 MAY 12 2011

Language:
English

Document Type:
Article

KeyWords Plus:
SOLVATION DYNAMICS; HYDRATED ELECTRON; AB-INITIO; SIMULATION; WATER; ACETONITRILE; RELAXATION; FUNCTIONALIZATION

Abstract:
We report molecular dynamics (MD) simulation of energy exchange between single-walled carbon nanotubes (CNTs) and two aprotic solvents, acetonitrile and cyclohexane. Following our earlier study of hydrated CNTs, we find that the time scales and molecular mechanisms of the energy transfer are largely independent of the nature of the surrounding medium, and therefore, should hold for other media including polymer matrices and DNA. The vibrational energy exchange between CNT and solvents exhibits two time-scales. Over half of the energy is transferred in less than one picosecond, indicating that the dominant exchange mechanism is inertial relaxation. It occurs by collisions of solvent molecules with CNT walls, facilitated by the short-range Lennard-Jones interaction. Additional several picoseconds are required for the remainder of the vibrational energy exchange, corresponding to the diffusive relaxation mechanism and involving collective molecular motions. The faster stage of t
he CNT-solvent energy exchange occurs on the same time-scale, and therefore, competes with the vibrational energy relaxation inside CNTs. The energy exchange time-scales are significantly influenced by the arrangement of solvent molecules inside CNTs. Generally, the effects of confinement on the dynamics can be rationalized by analysis of the solvent structure. For the same CNT diameter, the extent of the confinement effect strongly depends on the size of the solvent molecules. Icelike properties in water seen in small CNTs disappear in CNTs with intermediate diameters. In acetonitrile and cyclohexane, medium size CNTs still show strong confinement effects. Rotational motions of acetonitrile molecules are inhibited, and the cyclohexane density is dramatically decreased. The disbalance between the local temperatures of the inside and outside regions of the solvent equilibrates through a tube-mediated interaction, rather than by a direct coupling between the two solvent subsys
tems. In all cases, the CNT-solvent energy transfer is media!
ted by s
low motions in the frequency range of CNT radial breathing modes.

Reprint Address:
Prezhdo, OV, Univ Rochester, Dept Chem, Rochester, NY 14627 USA.

Research Institution addresses:
[Chaban, Vitaly V.; Prezhdo, Oleg V.] Univ Rochester, Dept Chem, Rochester, NY 14627 USA; [Nelson, Tammie R.] Univ Washington, Dept Chem, Seattle, WA 98195 USA; [Prezhdo, Victor V.] Jan Kochanowski Univ, Inst Chem, PL-25406 Kielce, Poland

E-mail Address:
oleg.prezhdo@rochester.edu

Cited References:
ANDO T, 2010, J PHYS SOC JPN, V79, ARTN 024706.
BHIRDE AA, 2009, ACS NANO, V3, P307, DOI 10.1021/nn800551s.
BRAGG AE, 2008, SCIENCE, V321, P1817, DOI 10.1126/science.1161511.
BROOKSBY C, 2003, J CHEM PHYS, V119, P9111, DOI 10.1063/1.1614203.
CAMPIDELLI S, 2006, J PHYS ORG CHEM, V19, P531, DOI 10.1002/poc.1052.
CARLSON LJ, 2008, ACCOUNTS CHEM RES, V41, P235, DOI 10.1021/ar700136v.
CHABAN VV, 2010, J PHYS CHEM B, V114, P13271.
DYKE CA, 2004, CHEM-EUR J, V10, P812.
FISCHER R, 2002, J CHEM PHYS, V117, P8467, DOI 10.1063/1.1512281.
FOSTER CE, 2001, J CHEM PHYS, V114, P8492.
GUNNERSON KN, 2007, J CHEM PHYS, V127, ARTN 164510.
GUO YJ, 1991, NATURE, V351, P464.
HABENICHT BF, 2006, PHYS REV LETT, V96, ARTN 187401.
HABENICHT BF, 2007, NANO LETT, V7, P3260, DOI 10.1021/nl0710699.
HABENICHT BF, 2008, PHYS REV LETT, V100, ARTN 197402.
HAGEN A, 2005, PHYS REV LETT, V95, ARTN 197401.
HALLS MD, 2005, NANO LETT, V5, P1861, DOI 10.1021/nl050722u.
HERTEL T, 2000, PHYS REV LETT, V84, P5002.
HESS B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q.
HILDER TA, 2009, SMALL, V5, P300, DOI 10.1002/smll.200800321.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225.
KALUGIN ON, 2008, NANO LETT, V8, P2126, DOI 10.1021/nl072976g.
KANG K, 2008, NANO LETT, V8, P4642, DOI 10.1021/nl802447a.
KILINA S, 2009, PHYS CHEM CHEM PHYS, V11, P4113, DOI 10.1039/b818473a.
LARSEN RE, 1999, J CHEM PHYS, V110, P1036.
LEFEBVRE J, 2008, NANO LETT, V8, P1890, DOI 10.1021/nl080518h.
LI LJ, 2005, NAT MATER, V4, P481, DOI 10.1038/nmat1396.
LUER L, 2009, PHYS REV LETT, V102, ARTN 127401.
MANZONI C, 2005, PHYS REV LETT, V94, ARTN 207401.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MOUNTAIN RD, 1997, J CHEM PHYS, V107, P3921.
MUKAMEL S, 1995, PRINCIPLES NONLINEAR.
NELSON T, 2010, NANO LETT, V10, P3237, DOI 10.1021/nl9035934.
NELSON TR, 2010, J PHYS CHEM B, V114, P4609, DOI 10.1021/jp912233e.
NOSE S, 1990, J PHYS-CONDENS MAT, V2, P115.
PEREBEINOS V, 2008, PHYS REV LETT, V101, ARTN 057401.
PREZHDO OV, 1996, J PHYS CHEM-US, V100, P17094.
PREZHDO OV, 1998, PHYS REV LETT, V81, P5294.
RADOVIC LR, 2003, CHEM PHYS CARBON, V28.
REN PY, 2003, J PHYS CHEM B, V107, P5933, DOI 10.1021/jp027815+.
ROTKIN SV, 2009, NANO LETT, V9, P1850, DOI 10.1021/nl803835z.
ROTKIN SV, 2010, ANNU REV PHYS CHEM, V61, P241, DOI 10.1146/annurev.physchem.012809.103304.
SCHWARTZ BJ, 1994, J CHEM PHYS, V101, P6902.
SERVICE RF, 2006, SCIENCE, V313, P902.
SONG DH, 2008, PHYS REV LETT, V100, ARTN 225503.
STEINBACH PJ, 1994, J COMPUT CHEM, V15, P667.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XUE YQ, 2006, NANOTECHNOLOGY, V17, P5216, DOI 10.1088/0957-4484/17/20/029.
YAROTSKI DA, 2009, NANO LETT, V9, P12, DOI 10.1021/nl801455t.
ZHANG M, 2004, SCIENCE, V306, P1358.
ZHAO YL, 2009, ACCOUNTS CHEM RES, V42, P1161, DOI 10.1021/ar900056z.
ZHENG M, 2003, NAT MATER, V2, P338, DOI 10.1038/nmat877.

Cited Reference Count:
53

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp108776q

IDS Number:
757ZA

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290127100024
*Order Full Text [ ]

Title:
Vibrational Spectroscopy of Water in Narrow Nanopores

Authors:
Weinwurm, M; Dellago, C

Author Full Names:
Weinwurm, Marcus; Dellago, Christoph

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 115 (18): 5268-5277 MAY 12 2011

Language:
English

Document Type:
Article

KeyWords Plus:
ULTRAFAST INFRARED-SPECTROSCOPY; HYDROGEN-BOND DYNAMICS; CARBON NANOTUBES; LIQUID WATER; MOLECULAR SIMULATION; DILUTE HOD; D2O; CONDUCTION; TRANSPORT; MODELS

Abstract:
Inside narrow pores, for instance, realized as carbon nanotubes, water forms structures that strongly differ from the structure of bulk liquid water or ice. Here we compute vibrational spectra of such systems using molecular dynamics simulation combined with quantum mechanical perturbation theory. We focus on the spectroscopic response of single-file water chains in pores with subnanometer diameter, finding characteristic signatures of dangling and hydrogen-bonded hydrogen configurations occurring in this particular form of water. These features in the absorption spectra permit us to distinguish single-file water from the stacked-ring structures that form in wider pores. As previously observed in bulk liquid water, the vibrational frequency of the OH stretch of an HDO molecule in a system of D2O molecules is essentially determined by the electric field acting at the position of the hydrogen atom, providing a way to link the spectroscopic response to the local charge distribut
ion of specific molecular arrangements.

Reprint Address:
Dellago, C, Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria.

Research Institution addresses:
[Weinwurm, Marcus; Dellago, Christoph] Univ Vienna, Fac Phys, A-1090 Vienna, Austria

Cited References:
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
AUER B, 2007, P NATL ACAD SCI USA, V104, P14215, DOI 10.1073/pnas.0701482104.
AUER BM, 2008, J CHEM PHYS, V128, ARTN 224511.
BAKKER HJ, 2010, CHEM REV, V110, P1498, DOI 10.1021/cr9001879.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BEST RB, 2005, P NATL ACAD SCI USA, V102, P6732, DOI 10.1073/pnas.0408098102.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CAMBRE S, 2010, PHYS REV LETT, V104, ARTN 207401.
CORCELLI SA, 2005, J PHYS CHEM A, V109, P6154, DOI 10.1021/jp0506540.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
EAVES JD, 2005, J PHYS CHEM A, V109, P9424, DOI 10.1021/jp051364m.
FECKO CJ, 2003, SCIENCE, V301, P1698.
FECKO CJ, 2005, J CHEM PHYS, V122, ARTN 054506.
HAYASHI T, 2005, J PHYS CHEM A, V109, P64, DOI 10.1021/jp046685x.
HENNRICH F, 2007, PHYS STATUS SOLIDI B, V244, P3896, DOI 10.1002/pssb.200776104.
HILLE B, 2001, ION CHANNELS EXCITAB.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOFINGER J, 2008, J PHYS CHEM B, V112, P2349, DOI 10.1021/jp0736185.
KOFINGER J, 2008, P NATL ACAD SCI USA, V105, P13218, DOI 10.1073/pnas.0801448105.
KOFINGER J, 2009, PHYS REV LETT, V103, ARTN 080601.
KOFINGER J, 2010, NEW J PHYS, V12, ARTN 093044.
KOFINGER J, 2010, PHYS REV B, V82, ARTN 205416.
KOGA K, 2001, NATURE, V412, P802.
LI F, 2010, J CHEM PHYS, V132, ARTN 204505.
LOPARO JJ, 2004, PHYS REV B, V70, ARTN 180201.
LUZAR A, 1996, NATURE, V379, P55.
LUZAR A, 1996, PHYS REV LETT, V76, P928.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t.
MUKAMEL S, 1998, PRINCIPLES NONLINEAR.
MUKHERJEE B, 2009, J PHYS CHEM B, V113, P10322, DOI 10.1021/jp904099f.
MUSSO M, 2002, J PHYS CHEM A, V106, P10152, DOI 10.1021/jp021440a.
MUSSO M, 2009, J MOL LIQ, V147, P37, DOI 10.1016/j.molliq.2008.08.006.
NOY A, 2007, NANO TODAY, V2, P22.
QUINTILLA A, 2010, PHYS CHEM CHEM PHYS, V12, P902, DOI 10.1039/b912847f.
REIMERS JR, 1984, MOL PHYS, V52, P357.
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327, DOI 10.1016/0021-9991(77)90098-5.
SCHMIDT JR, 2005, J CHEM PHYS, V123, ARTN 044513.
SMITH JD, 2007, J AM CHEM SOC, V129, P13847, DOI 10.1021/ja071933z.
STRIOLO A, 2005, J CHEM PHYS, V122, ARTN 234712.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
VERLET L, 1967, PHYS REV, V159, P98.
WATSON IA, 1981, SPECTROCHIM ACTA A, V37, P857.
WHALLEY E, 1986, J CHEM PHYS, V84, P78.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZWANZIG R, 2001, NONEQUILIBRIUM STAT.

Cited Reference Count:
49

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp109037q

IDS Number:
757ZA

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290127200003
*Order Full Text [ ]

Title:
Effect of Curvature on the alpha-Helix Breaking Tendency of Carbon Based Nanomaterials

Authors:
Balamurugan, K; Singam, ERA; Subramanian, V

Author Full Names:
Balamurugan, K.; Singam, E. R. Azhagiya; Subramanian, V.

Source:
JOURNAL OF PHYSICAL CHEMISTRY C 115 (18): 8886-8892 MAY 12 2011

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; NANOTUBE MEMBRANES; FORCE-FIELD; SIMULATION; PROTEINS; PEPTIDE

Abstract:
Our previous study on the interaction of alpha-helical peptide with single walled carbon nanotubes (CNTs) has revealed the structural basis for the helix breaking tendency of the CNT and associated energetics (J. Phys. Chem. B 2010, 114, 14048). In this study, a systematic attempt has been made to explore the relationship between the curvature of carbon nanomaterials (NMs) and their alpha-helix breaking tendency. The interaction of a model alpha-helical peptide, polyalanine consisting of 40 residues (PA(40)) with CNTs of different chiralities ((6,6), (10,10), (14,14), and (18,18)) and planar graphene sheet has been investigated using molecular dynamics (MD) simulation approach. The structural changes in the helical peptide which is adsorbed onto the surface of the NMs of different curvatures have been derived from the MD simulation. The role of electrostatic and van der Waals energies in the interaction process has also been obtained from the MD trajectory. Results show that
the extent of helix breakage induced by the NMs is inversely proportional to their curvature; that is, the helix breaking tendency is minimum for the CNT having the highest curvature and maximum for the planar graphene sheet.

Reprint Address:
Subramanian, V, Cent Leather Res Inst, Chem Lab, Council Sci & Ind Res, Madras 600020, Tamil Nadu, India.

Research Institution addresses:
[Balamurugan, K.; Singam, E. R. Azhagiya; Subramanian, V.] Cent Leather Res Inst, Chem Lab, Council Sci & Ind Res, Madras 600020, Tamil Nadu, India

E-mail Address:
subuchem@hotmail.com

Cited References:
*GAUSS INC, 2003, GAUSSVIEW.
AJAYAN PM, 1999, CHEM REV, V99, P1787.
BALAMURUGAN K, 2010, J PHYS CHEM B, V114, P14048, DOI 10.1021/jp106177n.
BAUGHMAN RH, 1999, SCIENCE, V284, P1340.
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BUSSI G, 2007, J CHEM PHYS, V126, ARTN 014101.
CHIU CC, 2008, J PHYS CHEM B, V112, P16326, DOI 10.1021/jp805313p.
CHIU CC, 2009, BIOPOLYMERS, V92, P156, DOI 10.1002/bip.21159.
DELANO WL, 2008, PYMOL MOL GRAPHICS S.
DRESSELHAUS M, 1998, PHYS WORLD, V11, P33.
DUAN Y, 2003, J COMPUT CHEM, V24, P1999, DOI 10.1002/jcc.10349.
ENKHBAYAR P, 2006, PROTEINS, V64, P691, DOI 10.1002/prot.21026.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
GIANESE G, 2009, J PHYS CHEM B, V113, P12105, DOI 10.1021/jp903652v.
HEGEFELD WA, 2010, J PHYS CHEM A, V114, P12391, DOI 10.1021/jp102612d.
HESS B, 1997, J COMPUT CHEM, V18, P1463.
HESS B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JOHNSON RR, 2008, NANO LETT, V8, P69, DOI 10.1021/nl071909j.
JOHNSON RR, 2009, NANO LETT, V9, P537, DOI 10.1021/nl802645d.
KABSCH W, 1983, BIOPOLYMERS, V22, P2577.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KANG YK, 2009, NANO LETT, V9, P1414, DOI 10.1021/nl8032334.
LIJIMA S, 1991, NATURE, V354, P56.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
MATSUURA K, 2006, CHEM PHYS LETT, V429, P497, DOI 10.1016/j.cplett.2006.08.044.
NIYOGI S, 2002, ACCOUNTS CHEM RES, V35, P1105, DOI 10.1021/ar010155r.
NOSE S, 1983, MOL PHYS, V50, P1055.
PARRINELLO M, 1981, J APPL PHYS, V52, P7182.
PORTNEY NG, 2006, ANAL BIOANAL CHEM, V384, P620, DOI 10.1007/s00216-005-0247-7.
ROSCA ID, 2005, CARBON, V43, P3124, DOI 10.1016/j.carbon.2005.06.019.
SANDEEP S, 2004, LANGMUIR, V20, P11594.
SAZONOVA V, 2004, NATURE, V431, P284, DOI 10.1038/nature02905.
SHERRILL DC, 2009, J COMPUT CHEM, V30, P2187.
SINGH R, 2006, P NATL ACAD SCI USA, V103, P3357, DOI 10.1073/pnas.0509009103.
TOMASIO MS, 2009, J PHYS CHEM C, V113, P8778.
WALLACE EJ, 2010, NANOSCALE, V2, P967, DOI 10.1039/b9nr00355j.

Cited Reference Count:
40

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1932-7447

DOI:
10.1021/jp110898r

IDS Number:
757ZB

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290369200010
*Order Full Text [ ]

Title:
Salty water desalination using carbon nanotubes membrane

Authors:
Tofighy, MA; Shirazi, Y; Mohammadi, T; Pak, A

Author Full Names:
Tofighy, Maryam Ahmadzadeh; Shirazi, Yaser; Mohammadi, Toraj; Pak, Afshin

Source:
CHEMICAL ENGINEERING JOURNAL 168 (3): 1064-1072 APR 15 2011

Language:
English

Document Type:
Article

Author Keywords:
Carbon nanotubes membrane; Salty water desalination; Taguchi method

KeyWords Plus:
METAL-IONS; CVD

Abstract:
Carbon nanotube (CNT) film was synthesized directly on macroporous surface of a-alumina support by chemical vapor deposition (CVD) of cyclohexanol and ferrocene in nitrogen atmosphere at 650 degrees C, and oxidized using HNO3 and H2SO4 and then employed as membrane in desalination process (sodium chloride removal from water). In order to enhance the performance of the oxidized CNTs membrane, effects of operating parameters on the yield of desalinated water (separation percent and permeate flux) were studied. Four parameters at three levels were selected: feed concentration (10,000, 20,000 and 30,000 ppm), temperature (25. 35 and 45 degrees C), pressure (4, 7 and 10 bar) and flow rate (200, 350 and 5001/h). Taguchi method was used to plan a minimum number of experiments and to find the optimal conditions. The results showed that increasing feed concentration, temperature and flow rate as well as decreasing pressure optimize the performance of the oxidized CNTs membrane (separa
tion percent and permeate flux). Analysis of variance (ANOVA) was applied and it was found that temperature is the most influential factor on the oxidized CNTs membrane performance (its contribution percentage was calculated to be about 60%). (C) 2011 Elsevier B.V. All rights reserved.

Reprint Address:
Mohammadi, T, Iran Univ Sci & Technol IUST, Res Ctr Membrane Separat Proc, Fac Chem Engn, Tehran, Iran.

Research Institution addresses:
[Tofighy, Maryam Ahmadzadeh; Shirazi, Yaser; Mohammadi, Toraj; Pak, Afshin] Iran Univ Sci & Technol IUST, Res Ctr Membrane Separat Proc, Fac Chem Engn, Tehran, Iran

E-mail Address:
torajmohammadi@iust.ac.ir

Cited References:
BOEHM HP, 1994, CARBON, V32, P759.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
HALT JK, 2006, SCIENCE, V312, P1034.
HANASAKI I, 2006, J CHEM PHYS, V124, ARTN 144708.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HUA L, 2008, INT C EL PACK TECHN.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KANDAH MI, 2007, J HAZARD MATER, V146, P283, DOI 10.1016/j.jhazmat.2006.12.019.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KOTSALIS EM, 2004, INT J MULTIPHAS FLOW, V30, P995, DOI 10.1016/j.imultiphaseflow.2004.03.009.
KUMAR M, 2003, DIAM RELAT MATER, V12, P998.
LUFTING JT, 1998, DESIGN EXPT QUALITY.
MAMONTOV E, 2006, J CHEM PHYS, V124, ARTN 194703.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MI WL, 2005, MICROPOR MESOPOR MAT, V81, P185, DOI 10.1016/j.micromeso.2005.02.003.
MI WL, 2007, J MEMBRANE SCI, V304, P1, DOI 10.1016/j.memsci.2007.07.021.
MOHAMMADI T, 2009, INT J CHEM REACT ENG, V7, ARTN A75.
MUSSO S, 2005, DIAM RELAT MATER, V14, P784, DOI 10.1016/j.diamond.2004.12.030.
MUSSO S, 2007, DIAM RELAT MATER, V16, P1183, DOI 10.1016/j.diamond.2006.11.087.
MUSSO S, 2009, J NANOSCI NANOTECHNO, V6, P3593.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NOAH JS, 1990, CARBON, V28, P675.
NOY A, 2007, NANO TODAY, V2, P22.
RAO GP, 2007, SEP PURIF TECHNOL, V58, P224, DOI 10.1016/j.seppur.2006.12.006.
SADRZADEH M, 2008, DESALINATION, V221, P440, DOI 10.1016/j.desal.2007.01.103.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
STAFIEJ A, 2007, SEP PURIF TECHNOL, V58, P49, DOI 10.1016/j.seppur.2007.07.008.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
TOFIGHY MA, 2010, DESALINATION, V258, P182, DOI 10.1016/j.desal.2010.03.017.
TOFIGHY MA, 2011, DESALINATION, V268, P208, DOI 10.1016/j.desal.2010.10.028.
TOFIGHY MA, 2011, J HAZARD MATER, V185, P140, DOI 10.1016/j.jhazmat.2010.09.008.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.

Cited Reference Count:
33

Times Cited:
0

Publisher:
ELSEVIER SCIENCE SA; PO BOX 564, 1001 LAUSANNE, SWITZERLAND

Subject Category:
Engineering, Environmental; Engineering, Chemical

ISSN:
1385-8947

DOI:
10.1016/j.cej.2011.01.086

IDS Number:
761BI

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: