Friday, May 13, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289829200007
*Order Full Text [ ]

Title:
A mechanical model for single-file transport of water through carbon nanotube membranes

Authors:
Chan, Y; Hill, JM

Author Full Names:
Chan, Yue; Hill, James M.

Source:
JOURNAL OF MEMBRANE SCIENCE 372 (1-2): 57-65 APR 15 2011

Language:
English

Document Type:
Article

Author Keywords:
Single-file transport; Continuous approximation; Classical phonon theory; Carbon nanotube; Water molecules

KeyWords Plus:
DIFFUSION; CHANNEL; FULLERENES; ATOMS; IONS; BEHAVIOR; FLOW

Abstract:
Carbon nanotubes can be embedded into a polymer matrix to manufacture nanotube membranes generating rapid water transport. In particular, for nanotubes of small radii, the single-file transport of water diffusing rapidly and concertedly through densely filled carbon nanotubes has been reported. In this paper, we provide an additional methodology to investigate such problems by employing both applied mathematical modelling and classical phonon theory. Our approach has the merit of giving rise to rapid computational times in comparison to the molecular dynamics simulations approach. The total energy of a water molecule inside a carbon nanotube can be determined analytically using point-point interactions and the continuous approximation. In addition, we may use classical phonon theory for the collective motion of water molecules inside the nanotube to formulate the basic equations of motion for water diffusing through a carbon nanotube. Upon making a 'sufficiently long' hypoth!
esis, the average water flow time can be deduced analytically. Furthermore, we incorporate external forces at the tube ends and show that water is virtually incompressible for external forces up to 3 pN. We also determine the variation of the water flow time under random fluctuations in the presence of the external forces and find that the random effect diminishes as the external force increases. This outcome could open up a precise engineering approach for using such nanotube membranes in numerous applications. (C) 2011 Elsevier B.V. All rights reserved.

Reprint Address:
Chan, Y, Univ Adelaide, Nanomech Grp, Sch Math Sci, Adelaide, SA 5005, Australia.

Research Institution addresses:
[Chan, Yue; Hill, James M.] Univ Adelaide, Nanomech Grp, Sch Math Sci, Adelaide, SA 5005, Australia

E-mail Address:
yue.chan@adelaide.edu.au

Cited References:
AJAYAN PM, 1992, NATURE, V358, P23.
ALEXANDER S, 1978, PHYS REV B, V18, P2011.
BAOWAN D, 2007, J PHYS A, P7543.
BELLMAN R, 1963, DIFFERENTIAL DIFFERE.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, ARTN 064503.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
BURDEN RL, 2005, NUMERICAL ANAL.
CHAN Y, 2009, FEW-BODY SYST, P239.
CHAN Y, 2009, INT J THEOR APPL MUL, V1, P176.
CHAN Y, 2010, MICRO NANO LETT, V5, P247, DOI 10.1049/mnl.2010.0058.
CHARLES K, 1996, INTRO SOLID STATE PH.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
COX BJ, 2007, P R SOC A, V463, P461, DOI 10.1098/rspa.2006.1771.
COX BJ, 2007, P ROY SOC A-MATH PHY, V463, P477, DOI 10.1098/rspa.2006.1772.
FINKELSTEIN A, 1981, J MEMBRANE BIOL, V59, P155.
GOGOTSI Y, 2001, APPL PHYS LETT, V79, P1021.
HAHN K, 1998, J PHYS CHEM B, V102, P5766.
HILDER TA, 2007, CURR APPL PHYS, V8, P258.
HILDER TA, 2007, MICRONANOLETT, V3, P18.
HILDER TA, 2009, SMALL, V5, P300, DOI 10.1002/smll.200800321.
HUMMER G, 2001, NATURE, V414, P188.
JIRAGE KB, 1997, SCIENCE, V278, P655.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KARGER J, 1992, PHYS REV A, V45, P4173.
KOGA K, 2001, NATURE, V412, P802.
LEVITT DG, 1973, PHYS REV A, V8, P3050.
LIJIMA S, 1991, NATURE, V354, P56.
LYNDENBELL RM, 1996, J CHEM PHYS, V105, P9266.
MACKAY DHJ, 1986, J BIOMOL STRUCT DYN, V4, P491.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
MITCHELL DT, 2002, J AM CHEM SOC, V124, P11864, DOI 10.1021/ja027247b.
MUKHERJEE B, 2010, ACS NANO, V4, P985, DOI 10.1021/nn900858a.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
RICHARDS PM, 1977, PHYS REV B, V16, P1393.
SANSOM MSP, 2000, TRENDS BIOCHEM SCI, V25, P368.
STONE M, 2009, MATH PHYS GUIDED TOU.
SUI HX, 2001, NATURE, V414, P872.
THORNTON AW, 2009, J AM CHEM SOC, V131, P10662, DOI 10.1021/ja9036302.
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w.

Cited Reference Count:
43

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Engineering, Chemical; Polymer Science

ISSN:
0376-7388

DOI:
10.1016/j.memsci.2011.01.040

IDS Number:
754CI

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000289840200028
*Order Full Text [ ]

Title:
Phase transition of nanotube-confined water driven by electric field

Authors:
Fu, ZM; Luo, Y; Ma, JP; Wei, GH

Author Full Names:
Fu, Zhaoming; Luo, Yin; Ma, Jianpeng; Wei, Guanghong

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (15): Art. No. 154507 APR 21 2011

Language:
English

Document Type:
Article

KeyWords Plus:
WALLED CARBON NANOTUBES; ICE-NANOTUBES; TRANSPORT-PROPERTIES; CHANNEL; DYNAMICS; NMR

Abstract:
The effects of electric field on the phase behaviors of water encapsulated in a thick single-walled carbon nanotube (SWCNT) (diameter = 1.2 nm) have been studied by performing extensive molecular dynamics simulations at atmospheric pressure. We found that liquid water can freeze continuously into either pentagonal or helical solidlike ice nanotube in SWCNT, depending on the strengths of the external electric field applied along the tube axis. Remarkably, the helical one is new ice phase which was not observed previously in the same size of SWCNT in the absence of electric field. Furthermore, a discontinuous solid-solid phase transition is observed between pentagonal and helical ice nanotubes as the strengths of the external electric field changes. The mechanism of electric-field-induced phase transition is discussed. The dependence of ice structures on the chiralities of SWCNTs is also investigated. Finally, we present a phase diagram of confined water in the electric field-!
temperature plane. (C) 2011 American Institute of Physics. [doi:10.1063/1.3579482]

Reprint Address:
Wei, GH, Fudan Univ, State Key Lab Surface Phys, Key Lab Computat Phys Sci, Minist Educ, Shanghai 200433, Peoples R China.

Research Institution addresses:
[Fu, Zhaoming; Luo, Yin; Wei, Guanghong] Fudan Univ, State Key Lab Surface Phys, Key Lab Computat Phys Sci, Minist Educ, Shanghai 200433, Peoples R China; [Fu, Zhaoming; Luo, Yin; Wei, Guanghong] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China; [Ma, Jianpeng] Rice Univ, Verna & Marrs McLean Dept Biochem & Mol Biol, Baylor Coll Med, Houston, TX USA; [Ma, Jianpeng] Rice Univ, Dept Bioengn, Houston, TX USA

E-mail Address:
ghwei@fudan.edu.cn

Cited References:
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CAMBRE S, 2010, PHYS REV LETT, V104, ARTN 207401.
EISENBERG D, 1969, STRUCTURE PROPERTIES.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9.
HAN SH, 2010, NAT PHYS, V6, P685, DOI 10.1038/NPHYS1708.
HOOVER WG, 1985, PHYS REV A, V31, P1695.
HUMMER G, 2001, NATURE, V414, P188.
JAYENDRAN CR, 2008, ANNU REV PHYS CHEM, V59, P713.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU YC, 2005, J CHEM PHYS, V123, ARTN 234701.
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MARTI J, 2001, PHYS REV E, V64, P1504.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
NOSE S, 1984, MOL PHYS, V52, P255.
REICH S, 2004, CARBON NANOTUBES BAS.
SEKHANEH W, 2006, CHEM PHYS LETT, V428, P143, DOI 10.1016/j.cplett.2006.06.105.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
VAITHEESWARAN S, 2004, J CHEM PHYS, V121, P7955, DOI 10.1063/1.1796271.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w.

Cited Reference Count:
32

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3579482

IDS Number:
754FM

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: