Friday, June 17, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 2 new records this week (2 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000291109900040
*Order Full Text [ ]

Title:
The role of activation energy and reduced viscosity on the enhancement of water flow through carbon nanotubes

Authors:
Babu, JS; Sathian, SP

Author Full Names:
Babu, Jeetu S.; Sathian, Sarith P.

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (19): Art. No. 194509 MAY 21 2011

Language:
English

Document Type:
Article

KeyWords Plus:
ABSOLUTE REACTION-RATES; MOLECULAR-DYNAMICS; ROOM-TEMPERATURE; TRANSPORT; DIFFUSION; NANOFLUIDICS; SIMULATION; MEMBRANES; LIQUIDS; STORAGE

Abstract:
Molecular dynamics simulations are carried out to study the pressure driven fluid flow of water through single walled carbon nanotubes. A method for the calculation of viscosity of the confined fluid based on the Eyring theory of reaction rates is proposed. The method involves the calculation of the activation energy directly from the molecular dynamics trajectory information. Computations are performed using this method to study the effect of surface curvature on the confined fluid viscosity. The results indicate that the viscosity varies nonlinearly with the carbon nanotube diameter. It is concluded that the reason behind the observed enhancement in the rate of fluid flow through carbon nanotubes could be the nonlinear variation of viscosity. (C) 2011 American Institute of Physics. [doi:10.1063/1.3592532]

Reprint Address:
Sathian, SP, Natl Inst Technol Calicut, Computat Nanotechnol Lab, Sch Nano Sci & Technol, Kozhikode 673601, India.

Research Institution addresses:
[Babu, Jeetu S.; Sathian, Sarith P.] Natl Inst Technol Calicut, Computat Nanotechnol Lab, Sch Nano Sci & Technol, Kozhikode 673601, India

E-mail Address:
sarith@nitc.ac.in

Cited References:
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALEXIADIS A, 2008, MOL SIMULAT, V34, P671, DOI 10.1080/08927020802073057.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
CAO DP, 2003, J PHYS CHEM B, V107, P13286, DOI 10.1021/jp036094r.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
COWLING TG, 1950, MOL MOTION.
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI 10.1007/s10404-004-0012-9.
EWELL RH, 1937, J CHEM PHYS, V5, P726.
EYRING H, 1936, J CHEM PHYS, V4, P283.
FRENKEL J, 1955, KINETIC THEORY LIQUI.
GOLDSMITH J, 2010, J PHYS CHEM LETT, V1, P528, DOI 10.1021/jz900173w.
GREEN MS, 1954, J CHEM PHYS, V22, P398.
HAILE JM, 1992, MOL DYNAMICS SIMULAT.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HIRSCHFELDER JO, 1967, MOL THEORY GASES LIQ.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KINCAID JF, 1941, CHEM REV, V28, P301.
LIU C, 1999, SCIENCE, V286, P1127.
LIU YC, 2005, J CHEM PHYS, V123, ARTN 234701.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MYERS TG, 2011, MICROFLUID NANOFLUID, V10, P1141, DOI 10.1007/s10404-010-0752-7.
NOY A, 2007, NANO TODAY, V2, P22.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
POWELL RE, 1941, IND ENG CHEM, V33, P430.
POWER TD, 2002, J AM CHEM SOC, V124, P1858.
SADUS RJ, 2002, MOL SIMULATION FLUID.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
ZHANG H, 2010, MICROFLUID NANOFLUID, V10, P403.

Cited Reference Count:
33

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3592532

IDS Number:
770SX

========================================================================

*Record 2 of 2.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000291219100001
*Order Full Text [ ]

Title:
A review of water treatment membrane nanotechnologies

Authors:
Pendergast, MM; Hoek, EMV

Author Full Names:
Pendergast, MaryTheresa M.; Hoek, Eric M. V.

Source:
ENERGY & ENVIRONMENTAL SCIENCE 4 (6): 1946-1971 JUN 2011

Language:
English

Document Type:
Review

KeyWords Plus:
REVERSE-OSMOSIS MEMBRANES; ALIGNED CARBON NANOTUBES; FILM NANOCOMPOSITE MEMBRANES; ATOMIC-FORCE MICROSCOPY; COPOLYMER THIN-FILMS; MANGANESE-CATALYZED OZONATION; POLYAMIDE MOLECULAR-STRUCTURE; CELLULOSE-ACETATE MEMBRANES; SUPPORTED ZEROVALENT IRON; METAL-OXIDE NANOPARTICLES

Abstract:
Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology.

Reprint Address:
Pendergast, MM, Univ Calif Los Angeles, Dept Civil & Environm Engn, Nanomat & Membrane Technol Res Lab, 5732-G Boelter Hall,POB 951593, Los Angeles, CA 90095 USA.

Research Institution addresses:
[Pendergast, MaryTheresa M.; Hoek, Eric M. V.] Univ Calif Los Angeles, Dept Civil & Environm Engn, Nanomat & Membrane Technol Res Lab, Los Angeles, CA 90095 USA; [Hoek, Eric M. V.] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA

E-mail Address:
emvhoek@ucla.edu

Cited References:
*UN WAT, 2007, COP WAT SCARC CHALL.
*UNDP, 2006, HUM DEV REP 2006, CH4.
*WHO, 2010, PROGR SAN DRINK WAT.
*WWC, 2007, URB URG WAT CAUC SUM.
AERTS P, 2001, SEP PURIF TECHNOL, V22, P663.
AERTS P, 2006, J PHYS CHEM B, V110, P7425, DOI 10.1021/jp0539876c.
AGRE P, 1993, AM J PHYSIOL 2, V265, F463.
AGRE P, 1993, AM J PHYSIOL, V265, F461.
AGRE P, 2003, AQUAPORIN WATER CHAN.
AHADIAN S, 2009, NANOSCALE RES LETT, V4, P1054, DOI 10.1007/s11671-009-9361-3.
AHMAD AL, 2005, DESALINATION, V179, P257, DOI 10.1016/j.desal.2004.11.072.
AJAYAN PM, 1999, CHEM REV, V99, P1787.
AO YH, 2008, NANOTECHNOLOGY, V19, ARTN 405604.
ARKAS M, 2005, CHEM MATER, V17, P3439, DOI 10.1021/cm047981p.
AUGUGLIARO V, 2002, CHEMOSPHERE, V49, P1223.
BAE TH, 2005, J MEMBRANE SCI, V249, P1, DOI 10.1016/j.memsci.2004.09.008.
BAE TH, 2006, J MEMBRANE SCI, V275, P1, DOI 10.1016/j.memsci.2006.01.023.
BAERLOCHER C, DATABASE ZEOLITE STR.
BAHNEMANN D, 2004, SOL ENERGY, V77, P445, DOI 10.1016/j.solener.2004.03.031.
BAKER JS, 1998, DESALINATION, V118, P81.
BEATTIE D, 2006, BIOMACROMOLECULES, V7, P1072, DOI 10.1021/bm050858m.
BELTRAN FJ, 2003, IND ENG CHEM RES, V42, P3210, DOI 10.1021/ie0209982.
BENITO JM, 2007, DESALINATION, V214, P91, DOI 10.1016/j.desal.2006.10.020.
BERNARDO P, 2009, IND ENG CHEM RES, V48, P4638, DOI 10.1021/ie8019032.
BESSEKHOUAD Y, 2004, J PHOTOCH PHOTOBIO A, V167, P49, DOI 10.1016/j.jphotochem.2003.12.001.
BHAVE RR, 1991, INORGANIC MEMBRANES.
BOTTINO A, 2002, DESALINATION, V146, P35.
BRADYESTEVEZ AS, 2008, SMALL, V4, P481, DOI 10.1002/smll.200700863.
BRUNET L, 2008, ENVIRON ENG SCI, V25, P565, DOI 10.1089/ees.2007.0076.
BRUNET L, 2009, ENVIRON SCI TECHNOL, V43, P4355, DOI 10.1021/es803093t.
BURDA C, 2003, NANO LETT, V3, P1049, DOI 10.1021/nl034332o.
CADOTTE JE, 1980, DESALINATION, V32, P25.
CAO XC, 2006, APPL SURF SCI, V253, P2003, DOI 10.1016/j.apsusc.2006.03.090.
CAREY JH, 1976, B ENVIRON CONTAM TOX, V16, P697.
CASAVANT MJ, 2003, J APPL PHYS, V93, P2153, DOI 10.1063/1.1536732.
CHEN L, 2007, J AM CHEM SOC, V129, P13786, DOI 10.1021/ja0753041.
CHENG JY, 2004, NAT MATER, V3, P823, DOI 10.1038/nmat1211.
CHERYAN M, 1998, ULTRAFILTRATION MICR.
CHOI H, 2006, APPL CATAL B-ENVIRON, V63, P60, DOI 10.1016/j.apcatb.2005.09.012.
CHOI JH, 2006, J MEMBRANE SCI, V284, P406, DOI 10.1016/j.memsei.2006.08.013.
CHOI YC, 2000, APPL PHYS LETT, V76, P2367.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DARAB JG, 2007, CHEM MATER, V19, P5703, DOI 10.1021/cm0607379.
DEHEER WA, 1995, SCIENCE, V268, P845.
DONG W, 2009, APPL CATAL B-ENVIRON, P197.
DOVE AP, 2008, CHEM COMMUN, P6446, DOI 10.1039/b813059k.
DUKE MC, 2009, SEP PURIF TECHNOL, V68, P343, DOI 10.1016/j.seppur.2009.06.003.
DYER A, 1988, INTRO ZEOLITE MOL SI.
EBBESEN TW, 1994, ANNU REV MATER SCI, V24, P235.
EBBESEN TW, 1997, J PHYS CHEM SOLIDS, V58, P1979.
EBERT K, 2004, J MEMBRANE SCI, V233, P71, DOI 10.1016/j.memsci.2003.12.012.
ELIMELECH M, 1997, J MEMBRANE SCI, V127, P101.
FABREGA J, 2009, ENVIRON SCI TECHNOL, V43, P7285, DOI 10.1021/es803259g.
FAIBISH RS, 2001, COLLOID SURFACE A, V191, P27.
FAIBISH RS, 2001, J MEMBRANE SCI, V185, P129.
FAN ZF, 2008, J MEMBRANE SCI, V310, P402, DOI 10.1016/j.memsci.2007.11.012.
FAN ZF, 2008, J MEMBRANE SCI, V320, P363, DOI 10.1016/j.memsci.2008.04.019.
FASOLKA MJ, 2001, ANN REV MATER RES, V31, P323.
FERNANDES DM, 2009, MATER CHEM PHYS, V115, P110, DOI 10.1016/j.matchemphys.2008.11.038.
FIERRO D, 2009, AUST J CHEM, V62, P885, DOI 10.1071/CH09094.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FREGER V, 2002, J MEMBRANE SCI, V209, P283.
FREGER V, 2003, LANGMUIR, V19, P4791, DOI 10.1021/la020920q.
FREGER V, 2004, ENVIRON SCI TECHNOL, V38, P3168, DOI 10.1021/es034815u.
FRISCH HL, 1963, J SOC IND APPL MATH, V11, P894.
FU WY, 2006, MATER LETT, V60, P2723, DOI 10.1016/j.matlet.2006.01.078.
FUKAHORI S, 2003, APPL CATAL B-ENVIRON, V46, P453, DOI 10.1016/S0926-3373(03)00270-4.
FUKUNAGA K, 2003, MACROMOLECULES, V36, P2852, DOI 10.1021/m021096f.
GAO Y, 1999, APPL PHYS LETT, V74, P3642.
GENNE I, 1996, J MEMBRANE SCI, V113, P343.
GHOSH AK, 2008, J MEMBRANE SCI, V311, P34, DOI 10.1016/j.memsci.2007.11.038.
GRACIA R, 1996, OZONE-SCI ENG, V18, P195.
GUILLEN G, 2009, CHEM ENG J, V149, P221, DOI 10.1016/j.cej.2008.10.030.
GUILLEN GR, 2011, IND ENG CHEM RES, V50, P3798, DOI 10.1021/ie101928r.
HACHISUKA H, 2002, 6413425, US.
HADNAGY E, 2007, J ENVIRON SCI HEAL A, V42, P685, DOI 10.1080/10934520701326222.
HAN MJ, 2002, J MEMBRANE SCI, V202, P55.
HAN Y, 2008, CHEMOSPHERE, V72, P53, DOI 10.1016/j.chemosphere.2008.02.002.
HASSAN MH, 1995, J MEMBRANE SCI, V104, P27.
HIROSE M, 1996, J MEMBRANE SCI, V121, P209.
HOEK E, 2002, DEKKER ENCY NANOSCI.
HOEK EMV, 2002, THESIS YALE U NEW HA.
HOFFMANN MR, 1995, CHEM REV, V95, P69.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HORIKOSHI S, 2002, ENVIRON SCI TECHNOL, V36, P1357.
HOSSEINI SS, 2007, J MEMBRANE SCI, V302, P207, DOI 10.1016/j.memsci.2007.06.062.
HUCZKO A, 2002, APPL PHYS A-MATER, V74, P617.
HUMMER G, 2001, NATURE, V414, P188.
ILISZ I, 2003, COLLOID SURFACE A, V230, P89, DOI 10.1016/j.colsurfa.2003.09.015.
JEONG BH, 2007, J MEMBRANE SCI, V294, P1, DOI 10.1016/j.memsci.2007.02.025.
JIA MD, 1991, J MEMBRANE SCI, V57, P289.
JIANG LY, 2006, AICHE J, V52, P2898, DOI 10.1002/aic.10909.
JONSSON G, 1978, DESALINATION, V24, P19.
JUNG H, 1993, POLYMER, V34, P4969.
KABSCHKORBUTOWICZ M, 1999, DESALINATION, V126, P179.
KABUTO T, 2007, ADV FUNCT MATER, V17, P3569, DOI 10.1002/adfm.200700249.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KANG GD, 2008, J MEMBRANE SCI, V318, P227, DOI 10.1016/j.memsci.2008.02.045.
KANG S, 2007, LANGMUIR, V23, P8670, DOI 10.1021/la701067r.
KARNIK BS, 2005, ENVIRON SCI TECHNOL, V39, P7656, DOI 10.1021/es0503938.
KAUFMAN Y, 2010, LANGMUIR, V26, P7388, DOI 10.1021/la904411b.
KAZEMIMOGHADAM M, 2010, DESALINATION, V251, P176, DOI 10.1016/j.desal.2009.11.036.
KESTING R, 1971, SYNTHETIC POLYM MEMB.
KESTING RE, 1990, J APPL POLYM SCI, V41, P2739.
KIM CK, 2000, J MEMBRANE SCI, V165, P189.
KIM IC, 2002, IND ENG CHEM RES, V41, P5523, DOI 10.1021/ie0202064.
KIM IC, 2002, J MEMBRANE SCI, V199, P75.
KIM MM, 2010, J MEMBRANE SCI, V354, P142, DOI 10.1016/j.memsci.2010.02.053.
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u.
KIRKPATRICK S, 1973, REV MOD PHYS, V45, P574.
KONDO M, 1997, J MEMBRANE SCI, V133, P133.
KRISHNA V, 2005, PROCESS SAF ENVIRON, V83, P393, DOI 10.1205/psep.04387.
KUMAKIRI I, 2000, J CHEM ENG JPN, V33, P333.
KUMAR M, 2007, P NATL ACAD SCI USA, V104, P20719, DOI 10.1073/pnas.0708762104.
KURIHARA M, 1994, DESALINATION, V96, P133.
KWAK SY, 1999, J MEMBRANE SCI, V158, P143.
KWAK SY, 1999, J POLYM SCI POL PHYS, V37, P1429.
KWAK SY, 1999, POLYMER, V40, P6361.
KWAK SY, 2001, ENVIRON SCI TECHNOL, V35, P2388.
LEE D, 2005, LANGMUIR, V21, P9651, DOI 10.1021/la0513306.
LEE HS, 2008, DESALINATION, V219, P48, DOI 10.1016/j.desal.2007.06.003.
LEE KW, 2003, DESALINATION, V159, P289.
LEGUBE B, 1999, CATAL TODAY, V53, P61.
LI JF, 2009, APPL SURF SCI, V255, P4725, DOI 10.1016/j.apsusc.2008.07.139.
LI LX, 2004, J MEMBRANE SCI, V243, P401, DOI 10.1016/j.memsci.2004.06.045.
LI LX, 2007, IND ENG CHEM RES, V46, P1584, DOI 10.1021/ie0612818.
LI LX, 2007, SEP PURIF TECHNOL, V53, P42, DOI 10.1016/j.seppur.2006.06.012.
LI LX, 2009, SEPAR SCI TECHNOL, V44, P3455, DOI 10.1080/01496390903253395.
LI XF, 2010, J MATER CHEM, V20, P4333, DOI 10.1039/b926774c.
LI Y, 2007, AICHE J, V53, P610, DOI 10.1002/aic.11109.
LI YS, 2006, J MEMBRANE SCI, V277, P230, DOI 10.1016/j.memsci.2005.10.033.
LIN J, 2001, MOL PHYS, V99, P1175.
LIN Y, 2007, J MATER CHEM, V17, P1143, DOI 10.1039/b618344a.
LIND ML, 2009, J MATER RES, V24, P1624, DOI 10.1557/JMR.2009.0189.
LIND ML, 2009, LANGMUIR, V25, P10139, DOI 10.1021/la900938x.
LIND ML, 2010, ENVIRON SCI TECHNOL, V44, P8230, DOI 10.1021/es101569p.
LINDER C, 1991, 5028337, US.
LIOTTA LF, 2009, J HAZARD MATER, V162, P588, DOI 10.1016/j.jhazmat.2008.05.115.
LIU GG, 2004, CHEMOSPHERE, V55, P1287, DOI 10.1016/j.chemosphere.2004.01.035.
LIU N, 2008, J MEMBRANE SCI, V325, P357, DOI 10.1016/j.memsci.2008.07.056.
LOBO RF, 2003, HDB ZEOLITE SCI TECH.
LOEB S, 1964, 3133132, US.
LOVALLO M, 2004, AICHE J, V44, P1903.
LU J, 2010, SEP PURIF TECHNOL, V72, P203, DOI 10.1016/j.seppur.2010.02.010.
LUO ML, 2005, APPL SURF SCI, V249, P76, DOI 10.1016/j.apsusc.2004.11.054.
LUO ML, 2006, J MATER PROCESS TECH, V172, P431, DOI 10.1016/j.jmatprotec.2005.11.004.
MA J, 1999, WATER RES, V33, P785.
MA J, 2000, WATER RES, V34, P3822.
MADAENI SS, 2007, J MEMBRANE SCI, V303, P221, DOI 10.1016/j.memsci.2007.07.017.
MAHAJAN R, 2002, J APPL POLYM SCI, V86, P881, DOI 10.1002/app.10998.
MAHAJAN R, 2002, J CHIN INST CHEM ENG, V33, P77.
MANSOURPANAH Y, 2009, J MEMBRANE SCI, V330, P297, DOI 10.1016/j.memsci.2009.01.001.
MARAMBIOJONES C, 2010, J NANOPART RES, V12, P1.
MATOS J, 2001, J CATAL, V200, P10.
MAURON P, 2002, CARBON, V40, P1339.
MAXIMOUS N, 2009, J MEMBRANE SCI, V341, P67, DOI 10.1016/j.memsci.2009.05.040.
MEINILD AK, 1998, J BIOL CHEM, V273, P32446.
MEYER DE, 2007, J PHYS CHEM B, V111, P7142, DOI 10.1021/jp070972u.
MICKOLS WE, 2003, 6562266, US.
MO J, 2007, J APPL POLYM SCI, V105, P1267, DOI 10.1002/app.25767.
MODESTOV AD, 1998, J PHOTOCH PHOTOBIO A, V112, P261.
MOLINARI R, 2000, CATAL TODAY, V55, P71.
MOOSEMILLER MD, 1989, SEP SCI TECHNOL, V24, P641.
MORONES JR, 2005, NANOTECHNOLOGY, V16, P2346, DOI 10.1088/0957-4484/16/10/059.
MULDER M, 1996, BASIC PRINCIPLES MEM.
NOACK M, 2005, MICROPOR MESOPOR MAT, V79, P329, DOI 10.1016/j.micromeso.2005.01.004.
NUNES SP, 2010, MACROMOLECULES, V43, P8079, DOI 10.1021/ma101531k.
OCHOA NA, 2003, J MEMBRANE SCI, V226, P203, DOI 10.1016/j.memsci.2003.09.004.
OREILLY RK, 2006, CHEM SOC REV, V35, P1068, DOI 10.1039/b514858h.
OTTINO J, 2004, POLYM ENG SCI, V24, P153.
OZTURK S, 2009, MICROPOR MESOPOR MAT, V126, P228, DOI 10.1016/j.micromeso.2009.06.010.
PEINEMANN KV, 2007, NAT MATER, V6, P992, DOI 10.1038/nmat2038.
PEINEMANN KV, 2009, 0173694, US.
PENDERGAST MTM, 2010, DESALINATION, V261, P255, DOI 10.1016/j.desa1.2010.06.008.
PERSSON KM, 1995, J MEMBRANE SCI, V100, P155.
PETERSEN RJ, 1993, J MEMBRANE SCI, V83, P81.
PHILLIP WA, 2009, ACS APPL MATER INTER, V1, P472, DOI 10.1021/am8001428.
PHILLIP WA, 2010, ACS APPL MATER INTER, V2, P847, DOI 10.1021/am900882t.
PHILLIP WA, 2010, MACROMOLECULES, V43, P7763, DOI 10.1021/ma1012946.
PONDER SM, 2000, ENVIRON SCI TECHNOL, V34, P2564.
PONDER SM, 2001, CHEM MATER, V13, P479, DOI 10.1021/cm000288r.
PRAMAURO E, 1998, CHEMOSPHERE, V36, P1523.
PREVOT AB, 2001, ENVIRON SCI TECHNOL, V35, P971, DOI 10.1021/es000162v.
PREVOT B, 1999, TALANTA, V48, P847.
QIU XF, 2007, CHEM PHYS, V339, P1, DOI 10.1016/j.chemphys.2007.06.039.
RAHIMPOUR A, 2008, J MEMBRANE SCI, V313, P158, DOI 10.1016/j.memsei.2007.12.075.
RAO AP, 1997, J MEMBRANE SCI, V124, P263.
RAO AP, 2003, J MEMBRANE SCI, V211, P13.
RODRIGUEZABREU C, 2008, CURR OPIN COLLOID IN, V13, P198, DOI 10.1016/j.cocis.2007.09.004.
ROH IJ, 1998, J POLYM SCI POL PHYS, V36, P1821.
RONG MZ, 2001, POLYMER, V42, P167.
ROTHENBERGER G, 1985, J AM CHEM SOC, V107, P8054.
SALVETAT JP, 1999, ADV MATER, V11, P161.
SALVETAT JP, 1999, PHYS REV LETT, V82, P944.
SAVAGE N, 2005, J NANOPART RES, V7, P331, DOI 10.1007/s11051-005-7523-5.
SCHAFER AI, 2005, NANOFILTRATION PRINC.
SHARMA YC, 2008, IND ENG CHEM RES, V47, P8095, DOI 10.1021/ie800831v.
SHARMA YC, 2009, ENVIRON TECHNOL, V30, P583, DOI 10.1080/09593330902838080.
SHIH YH, 2009, COLLOID SURFACE A, V332, P84, DOI 10.1016/j.colsurfa.2008.09.031.
SIVAKUMAR M, 2006, J MEMBRANE SCI, V268, P208, DOI 10.1016/j.memsci.2005.06.017.
SMART T, 2008, NANO TODAY, V3, P38.
SMULEAC V, 2009, J MEMBRANE SCI, V346, P310.
SONDI I, 2004, J COLLOID INTERF SCI, V275, P177, DOI 10.1016/j.jcis.2004.02.012.
SONG LF, 2003, DESALINATION, V155, P213.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
STOIMENOV PK, 2002, LANGMUIR, V18, P6679, DOI 10.1021/la0202374.
STRATFORD K, 2005, SCIENCE, V309, P2198, DOI 10.1126/science.1116589.
TARABARA VV, 2009, NANOTECHNOLOGY APPL, P59.
TAUROZZI JS, 2008, J MEMBRANE SCI, V325, P58, DOI 10.1016/j.memsci.2008.07.010.
ULBRICHT M, 2006, POLYMER, V47, P2217, DOI 10.1016/j.polymer.2006.01.084.
WANG JS, 1995, J AM CHEM SOC, V117, P5614.
WARA NM, 1995, J MEMBRANE SCI, V104, P43.
WHITESIDES GM, 2002, SCIENCE, V295, P2418.
WIDAWSKI G, 1994, NATURE, V369, P387.
WU L, 2005, J NANOPART RES, V7, P469, DOI 10.1007/s11051-005-4271-5.
WU LF, 2008, ENVIRON PROG, V27, P218, DOI 10.1002/ep.10277.
YABU H, 2006, LANGMUIR, V22, P9760, DOI 10.1021/la062228r.
YAN L, 2005, POLYMER, V46, P7701, DOI 10.1016/j.polymer.2005.05.155.
YANG SY, 2006, ADV MATER, V18, P709, DOI 10.1002/adma.200501500.
YANG YF, 2009, J MEMBRANE SCI, V326, P372, DOI 10.1016/j.memsci.2008.10.011.
YAO X, 2009, J COLLOID INTERF SCI, V332, P165, DOI 10.1016/j.jcis.2008.12.015.
YOSHIKAWA N, 2008, NANOTECHNOLOGY, V19, ARTN 245607.
YOUNG TH, 1995, DESALINATION, V103, P233.
YUAN WH, 2004, J AM CHEM SOC, V126, P4776, DOI 10.1021/ja031653t.
YUE ZR, 2005, J NANOPART RES, V7, P477, DOI 10.1007/s11051-005-4719-7.
ZHANG W, 2003, SEP PURIF TECHNOL, V30, P27.
ZHANG ZB, 1998, J PHYS CHEM B, V102, P10871.
ZHU BW, 2007, ENVIRON SCI TECHNOL, V41, P7523, DOI 10.1021/es0712625.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.
ZIMMERMAN CM, 1997, J MEMBRANE SCI, V137, P145.

Cited Reference Count:
230

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences

ISSN:
1754-5692

DOI:
10.1039/c0ee00541j

IDS Number:
772FG

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: