Friday, June 3, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290525700014
*Order Full Text [ ]

Title:
Size and temperature effects on the viscosity of water inside carbon nanotubes

Authors:
Ye, HF; Zhang, HW; Zhang, ZQ; Zheng, YG

Author Full Names:
Ye, Hongfei; Zhang, Hongwu; Zhang, Zhongqiang; Zheng, Yonggang

Source:
NANOSCALE RESEARCH LETTERS 6 (1): Art. No. 87 DEC 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; TRANSPORT; CONDUCTION; CHANNEL

Abstract:
The influences of the diameter (size) of single-walled carbon nanotubes (SWCNTs) and the temperature on the viscosity of water confined in SWCNTs are investigated by an "Eyring-MD" (molecular dynamics) method. The results suggest that the relative viscosity of the confined water increases with increasing diameter and temperature, whereas the size-dependent trend of the relative viscosity is almost independent of the temperature. Based on the computational results, a fitting formula is proposed to calculate the size-and temperature-dependent water viscosity, which is useful for the computation on the nanoflow. To demonstrate the rationality of the calculated relative viscosity, the relative amount of the hydrogen bonds of water confined in SWCNTs is also computed. The results of the relative amount of the hydrogen bonds exhibit similar profiles with the curves of the relative viscosity. The present results should be instructive for understanding the coupling effect of the size
and the temperature at the nanoscale.

Reprint Address:
Zhang, HW, Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dept Engn Mech, Fac Vehicle Engn & Mech, Dalian 116023, Peoples R China.

Research Institution addresses:
[Ye, Hongfei; Zhang, Hongwu; Zhang, Zhongqiang; Zheng, Yonggang] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dept Engn Mech, Fac Vehicle Engn & Mech, Dalian 116023, Peoples R China; [Zhang, Zhongqiang] Jiangsu Univ, Ctr Micro Nano Sci & Technol, Zhenjiang 212013, Peoples R China

E-mail Address:
zhanghw@dlut.edu.cn

Cited References:
ALENKA L, 1996, NATURE, V379, P55, DOI 10.1038/379055A0.
BERTOLINI D, 1995, PHYS REV E, V52, P1699.
BIANCO A, 2005, CURR OPIN CHEM BIOL, V9, P674, DOI 10.1016/j.cbpa.2005.10.006.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DAVID RL, 2004, CRC HDB CHEM PHYS.
GIOVAMBATTISTA N, 2009, PHYS REV LETT, V102, ARTN 050603.
HANASAKI I, 2009, PHYS REV E 2, V79, ARTN 046307.
HANS WH, 2004, J CHEM PHYS, V120, P665.
HOLT JK, 2009, ADV MATER, V21, P3542, DOI 10.1002/adma.200900867.
HUMMER G, 2001, NATURE, V414, P188.
LIU L, 2008, APPL PHYS LETT, V92, ARTN 101927.
MALLAMACE F, 2010, J PHYS CHEM B, V114, P1870, DOI 10.1021/jp910038j.
MARTI J, 1999, J CHEM PHYS, V110, P6876.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
POLING BE, 2001, PROPERTIES GASES LIQ.
POWELL RE, 1941, IND ENG CHEM, V33, P430.
STEVE P, 1995, J COMPUT PHYS, V117, P1, DOI 10.1006/JCPH.1995.1039.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
WANG LQ, 2010, NANOSCALE RES LETT, V5, P1241, DOI 10.1007/s11671-010-9638-6.
ZHANG HW, 2010, MICROFLUID NANOFLUID.
ZHANG ZQ, 2009, APPL PHYS LETT, V95, ARTN 154101.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w.

Cited Reference Count:
25

Times Cited:
0

Publisher:
SPRINGER; 233 SPRING ST, NEW YORK, NY 10013 USA

Subject Category:
Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied

ISSN:
1931-7573

DOI:
10.1186/1556-276X-6-87

IDS Number:
763AQ

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290581900020
*Order Full Text [ ]

Title:
Nanoconfinement induced anomalous water diffusion inside carbon nanotubes

Authors:
Ye, HF; Zhang, HW; Zheng, YG; Zhang, ZQ

Author Full Names:
Ye, Hongfei; Zhang, Hongwu; Zheng, Yonggang; Zhang, Zhongqiang

Source:
MICROFLUIDICS AND NANOFLUIDICS 10 (6): 1359-1364 JUN 2011

Language:
English

Document Type:
Article

Author Keywords:
Diffusion mechanism; Diffusion coefficient; Carbon nanotube; Confined water; Molecular dynamics

KeyWords Plus:
SINGLE-FILE DIFFUSION; MOLECULAR-DYNAMICS; TRANSPORT; FLUID

Abstract:
The diffusion mechanism and coefficient of water confined in carbon nanotubes (CNTs) of diameter ranging from 8 to 54 are studied by molecular dynamics simulations. It is found that the motions of water molecules inside the CNTs of diameter smaller than 12.2 follow a two-stage diffusion mechanism. Initially, the water diffusion exhibits a long-time super- or sub-diffusion mechanism, and thereafter it transits to the single-file type inside the (6, 6) CNT and shifts to the Fickian type inside the larger CNTs. As for the CNTs of diameter larger than 12.2 , the diffusion of the confined water occurs through the Fickian mechanism, which is identical to that of the bulk water. The simulation results further reveal that the diffusion coefficient of the confined water is non-monotonically dependent on the diameter, which can be ascribed to the double-edged effect of CNTs, i.e., the surface effect and the size effect.

Reprint Address:
Zhang, HW, Dalian Univ Technol, Fac Vehicle Engn & Mech, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China.

Research Institution addresses:
[Ye, Hongfei; Zhang, Hongwu; Zheng, Yonggang; Zhang, Zhongqiang] Dalian Univ Technol, Fac Vehicle Engn & Mech, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China; [Zhang, Zhongqiang] Jiangsu Univ, Ctr Micro Nano Sci & Technol, Zhenjiang 212013, Peoples R China

E-mail Address:
zhanghw@dlut.edu.cn

Cited References:
ALLEN MP, 1987, COMPUTER SIMULATION.
ARORA G, 2004, LANGMUIR, V20, P6268, DOI 10.1021/la036432f.
BOUCHAUD JP, 1990, PHYS REV LETT, V64, P2503.
CAO GX, 2008, MOL SIMULAT, V34, P1267, DOI 10.1080/08927020802175225.
CHEN Q, 2010, J CHEM PHYS, V133, ARTN 094501.
CHEN X, 2008, NANO LETT, V8, P2988, DOI 10.1021/nl802046b.
DAS A, 2010, ACS NANO, V4, P1687, DOI 10.1021/nn901554h.
DEVI R, 2010, MICROFLUID NANOFLUID, V9, P737, DOI 10.1007/s10404-010-0587-2.
HAHN K, 1996, PHYS REV LETT, V76, P2762.
HAN AJ, 2008, J APPL PHYS, V104, ARTN 124908.
HANS WH, 2004, J CHEM PHYS, V120, P9665, DOI 10.1063/1.1683075.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, ARTN 044501.
JAKOBTORWEIHEN S, 2006, J CHEM PHYS, V124, ARTN 154706.
LEE J, 2010, APPL PHYS LETT, V96, ARTN 133108.
LEVITT DG, 1973, PHYS REV A, V8, P3050.
LI YX, 2010, MICROFLUID NANOFLUID, V9, P1011, DOI 10.1007/s10404-010-0612-5.
LIU YC, 2005, J CHEM PHYS, V123, ARTN 234701.
LIU YC, 2005, LANGMUIR, V21, P12025, DOI 10.1021/la0517181.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MASHL RJ, 2003, NANO LETT, V3, P589, DOI 10.1021/nl0340226.
MUKHERJEE B, 2007, J CHEM PHYS, V126, ARTN 124704.
MUKHERJEE B, 2010, ACS NANO, V4, P985, DOI 10.1021/nn900858a.
NANOK T, 2009, J PHYS CHEM A, V113, P2103, DOI 10.1021/jp8088676.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
RAPAPORT DC, 2004, ART MOL DYNAMICS SIM.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
STRIOLO A, 2007, NANOTECHNOLOGY, V18, ARTN 475704.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
THOMAS JA, 2010, PHYS REV B, V81, ARTN 045413.
WEI QH, 2000, SCIENCE, V287, P625.
ZHANG HW, 2011, MICROFLUID NANOFLUID, V10, P403, DOI 10.1007/s10404-010-0678-0.

Cited Reference Count:
34

Times Cited:
0

Publisher:
SPRINGER HEIDELBERG; TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY

Subject Category:
Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas

ISSN:
1613-4982

DOI:
10.1007/s10404-011-0772-y

IDS Number:
763TF

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290650200020
*Order Full Text [ ]

Title:
Non local effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle

Authors:
Simsek, M

Author Full Names:
Simsek, Mesut

Source:
COMPUTATIONAL MATERIALS SCIENCE 50 (7): 2112-2123 MAY 2011

Language:
English

Document Type:
Article

Author Keywords:
Vibration; Nonlocal elasticity theory; Carbon nanotube; Nanoparticle; Moving load

KeyWords Plus:
NONLOCAL CONTINUUM-MECHANICS; TIMOSHENKO BEAM THEORY; SMALL LENGTH SCALE; WAVE-PROPAGATION; TRANSVERSE VIBRATIONS; MODEL; LOAD; ADSORPTION; SENSORS

Abstract:
This study presents an analytical method for the forced vibration of an elastically connected double-carbon nanotube system (DCNTS) carrying a moving nanoparticle based on the nonlocal elasticity theory. The two nanotubes are identical and are connected with each other continuously by elastic springs. The problem is also solved numerically by using the Galerkin method and the time integration method of Newmark to establish the reliability of the analytical method. Two sets of critical velocity exist for DCNTS. The closed-form solutions for the dynamic deflections of the two nanotubes are derived for these two sets of critical velocity for the first time in this study. The influences of the nonlocal parameter, aspect ratio, velocity of the moving nanoparticle and the elastic layer between the nanotubes on the dynamic responses are discussed. The study shows that the dynamic behavior of the double-carbon nanotube system is greatly influenced by the nonlocal effects. The dynamic
deflections predicted by the classical theory are always smaller than those predicted by the nonlocal theory due to the nonlocal effects. Thus, the classical beam models are not suitable in modeling carbon nanotubes with small aspect ratio, and nonlocal effects should be taken into account. Furthermore, the velocity of the nanoparticle and the stiffness of the elastic layer have significant effects on the dynamic behavior of DCNTS. (C) 2011 Elsevier B.V. All rights reserved.

Reprint Address:
Simsek, M, Yildiz Tech Univ, Dept Civil Engn, Davutpasa Campus, TR-34210 Esenler, Turkey.

Research Institution addresses:
Yildiz Tech Univ, Dept Civil Engn, TR-34210 Esenler, Turkey

E-mail Address:
msimsek@yildiz.edu.tr

Cited References:
ABUHILAL M, 2006, J SOUND VIB, V297, P477, DOI 10.1016/j.jsv.2006.03.050.
ADALI S, 2008, PHYS LETT A, V372, P5701, DOI 10.1016/j.physleta.2008.07.003.
AYDOGDU M, 2009, PHYSICA E, V41, P1651, DOI 10.1016/j.physe.2009.05.014.
AYDOGDU M, 2009, PHYSICA E, V41, P861, DOI 10.1016/j.physe.2009.01.007.
BEYER H, 2009, TOP CATAL, P1752.
CHOPRA AK, 2001, DYNAMICS STRUCTURES.
CIVALEK O, 2009, INT J ENG APPL SCI, V2, P47.
DEDKOV GV, 2007, TECH PHYS LETT+, V33, P51, DOI 10.1134/S1063785007010142.
DRESSELHAUS MS, 2001, CARBON NANOTUBES SYN.
DRESSELHAUS MS, 2004, PHILOS T R SOC A, V362, P2065, DOI 10.1098/rsta.2004.1430.
ECE MC, 2007, ACTA MECH, V190, P185, DOI 10.1007/s00707-006-0417-5.
ERINGEN AC, 1983, J APPL PHYS, V54, P4703.
ESWARAMOORTHY M, 1999, CHEM PHYS LETT, V304, P207.
FILIZ S, 2010, COMP MATER SCI, V49, P619, DOI 10.1016/j.commatsci.2010.06.003.
FRANK W, 2010, OPTICS EXP, V18, P8705.
FRYBA L, 1972, VIBRATION SOLIDS STR.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GU C, 2002, FLUID PHASE EQUILIBR, V194, P297.
GUPTA SS, 2010, COMP MATER SCI, V47, P1049, DOI 10.1016/j.commatsci.2009.12.007.
HEIRECHE H, 2008, PHYSICA E, V40, P2799.
HONG S, 2007, NAT NANOTECHNOL, V2, P207, DOI 10.1038/nnano.2007.89.
HU YG, 2008, J MECH PHYS SOLIDS, V56, P3475, DOI 10.1016/j.jmps.2008.08.010.
HU YG, 2009, J APPL PHYS, V106, ARTN 044301.
HUMAR JL, 2002, DYNAMICS STRUCTURES.
HUMMER G, 2001, NATURE, V414, P188.
KE LL, 2009, COMP MATER SCI, V47, P409, DOI 10.1016/j.commatsci.2009.09.002.
KEMPA K, 2007, ADV MATER, V19, P421, DOI 10.1002/adma.20061187.
KHADEMOLHOSSEINI F, 2010, COMP MATER SCI, V48, P736, DOI 10.1016/j.commatsci.2010.03.021.
KIANI K, 2010, J SOUND VIB, V329, P2241, DOI 10.1016/j.jsv.2009.12.017.
KONG J, 2000, SCIENCE, V287, P622.
KUMAR D, 2008, J APPL PHYS, V103, ARTN 073521.
LI XF, 2009, APPL PHYS LETT, V94, ARTN 101903.
LIJIMA S, 1991, NATURE, V354, P56.
LIM CW, 2007, J APPL PHYS, V101, ARTN 054312.
LU P, 2006, J APPL PHYS, V99, ARTN 073510.
LU P, 2007, J APPL PHYS, V101, ARTN 073504.
LU X, 2005, CHEM REV, V105, P3643, DOI 10.1021/cr030093d.
LUO JZ, 2000, CATAL LETT, V66, P91.
MA RZ, 1998, J MATER SCI, V33, P5243.
MA YC, 2001, PHYS REV B, V63, ARTN 115422.
MEYYAPPAN M, 2005, CARBON NANOTUBES SCI.
MURMU T, 2009, COMP MATER SCI, V46, P854, DOI 10.1016/j.commatsci.2009.04.019.
MURMU T, 2009, PHYSICA E, V41, P1232, DOI 10.1016/j.physe.2009.02.004.
MURMU T, 2009, PHYSICA E, V41, P1451, DOI 10.1016/j.physe.2009.04.015.
MURMU T, 2010, COMP MATER SCI, V47, P721, DOI 10.1016/j.commatsci.2009.10.015.
MURMU T, 2010, J APPL PHYS, V108, ARTN 083514.
MURMU T, 2010, PHYSICA E, V43, P415, DOI 10.1016/j.physe.2010.08.023.
MURMU T, 2011, PHYS LETT A, V375, P601, DOI 10.1016/j.physleta.2010.11.007.
MUSTAPHA KB, 2010, COMP MATER SCI, V50, P742, DOI 10.1016/j.commatsci.2010.10.005.
NEWMARK NM, 1959, ASCE J ENG MECH DIVI, V85, P67.
ONISZCZUK Z, 2003, J SOUND VIB, V264, P273, DOI 10.1016/S0022-460X(02)01166-5.
PEDDIESON J, 2003, INT J ENG SCI, V41, P305.
PHADIKAR JK, 2010, COMP MATER SCI, V49, P492, DOI 10.1016/j.commatsci.2010.05.040.
PRATO M, 2008, ACCOUNTS CHEM RES, V41, P60, DOI 10.1021/ar700089b.
RAMACHANDRAN CN, 2009, CHEM PHYS LETT, V473, P146, DOI 10.1016/j.cplett.2009.03.068.
REDDY JN, 2007, INT J ENG SCI, V45, P288, DOI 10.1016/j.ijengsci.2007.04.004.
REDDY JN, 2008, J APPL PHYS, V103, ARTN 023511.
SEARS A, 2004, PHYS REV B, V69, ARTN 235406.
SIMSEK M, 2010, PHYSICA E, V43, P182, DOI 10.1016/j.physe.2010.07.003.
SIMSEK M, 2011, STEEL COMPOS STRUCT, V11, P59.
SNOW ES, 2005, SCIENCE, V307, P1942, DOI 10.1126/science.1109128.
SONG J, 2010, COMP MATER SCI, V49, P518, DOI 10.1016/j.commatsci.2010.05.043.
SUDAK LJ, 2003, J APPL PHYS, V94, P7281, DOI 10.1063/1.1625437.
TIMOSHENKO S, 1955, VIBRATION PROBLEMS E.
TOUNSI A, 2008, J APPL PHYS, V104, ARTN 104301.
TOUNSI A, 2009, J APPL PHYS, V105, ARTN 126105.
TOUNSI A, 2009, J PHYS-CONDENS MAT, V21, ARTN 448001.
TSUKAGOSHI K, 2002, PHYSICA B, V323, P107.
WANG CM, 2006, J SOUND VIB, V294, P1060, DOI 10.1016/j.jsv.2006.01.005.
WANG CY, 2007, J NANOSCI NANOTECHNO, V7, P4221, DOI 10.1166/jnn.2007.924.
WANG CY, 2008, NANOTECHNOLOGY, V19, ARTN 075705.
WANG L, 2009, COMP MATER SCI, V45, P584, DOI 10.1016/j.commatsci.2008.12.006.
WANG L, 2009, PHYSICA E, V41, P1835, DOI 10.1016/j.physe.2009.07.011.
WANG LF, 2005, PHYS REV B, V71, ARTN 195412.
WANG Q, 2005, J APPL PHYS, V98, ARTN 124301.
WANG Q, 2006, PHYS LETT A, V357, P130, DOI 10.1016/j.physleta.2006.04.026.
WANG Q, 2007, PHYS LETT A, V363, P236, DOI 10.1016/j.physleta.2006.10.093.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2004, COMPOS PART B-ENG, V35, P87, DOI 10.1016/j.compositesb.2003.09.002.
ZHANG M, 2005, SCIENCE, V309, P1215, DOI 10.1126/science.1115311.
ZHANG YQ, 2004, PHYS REV B, V70, ARTN 205430.
ZHANG YQ, 2005, PHYS LETT A, V340, P258, DOI 10.1016/j.physleta.2005.03.064.
ZHANG YQ, 2005, PHYS REV B, V71, ARTN 195404.
ZHANG YQ, 2006, PHYS LETT A, V349, P370, DOI 10.1016/j.physleta.2005.09.036.

Cited Reference Count:
84

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Materials Science, Multidisciplinary

ISSN:
0927-0256

DOI:
10.1016/j.commatsci.2011.02.017

IDS Number:
764RN

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290830900010
*Order Full Text [ ]

Title:
Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance

Authors:
Wilson, MA; Wei, CY; Bjelkmar, P; Wallace, BA; Pohorille, A

Author Full Names:
Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew

Source:
BIOPHYSICAL JOURNAL 100 (10): 2394-2402 MAY 18 2011

Language:
English

Document Type:
Article

KeyWords Plus:
NERNST-PLANCK THEORY; FORMING POLYPEPTIDE; POTASSIUM CHANNELS; ALPHA-HEMOLYSIN; BACTERIAL PORIN; ALAMETHICIN; MEMBRANE; MODELS; TRANSPORT; FORCE

Abstract:
Molecular-dynamics simulations were carried out to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistent with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive. The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be nonconducting. The conductance of the hexamer was estimated to be 115 +/- 34 pS and 74 +/- 20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis, we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K+ and Cl- with their first solvation shells intact. T
he free energy barrier encountered by K+ is only 2.2 kcal/mol whereas Cl- encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics.

Reprint Address:
Pohorille, A, Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA.

Research Institution addresses:
[Wilson, Michael A.; Wei, Chenyu; Pohorille, Andrew] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA; [Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Pohorille, Andrew] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA; [Wallace, B. A.] Univ London, Inst Struct & Mol Biol, Birkbeck Coll, Dept Crystallog, London, England

E-mail Address:
Andrew.Pohorille@nasa.gov

Cited References:
AKSIMENTIEV A, 2005, BIOPHYS J, V88, P3745, DOI 10.1529/biophysj.104.058727.
ALLEN TW, 2006, BIOPHYS CHEM, V124, P251, DOI 10.1016/j.bpc.2006.04.015.
BERNECHE S, 2003, P NATL ACAD SCI USA, V100, P8644, DOI 10.1073/pnas.1431750100.
BIRO I, 2010, BIOPHYS J, V98, P1830, DOI 10.1016/j.bpj.2010.01.026.
BREED J, 1997, BBA-BIOMEMBRANES, V1325, P235.
BROGDEN KA, 2005, NAT REV MICROBIOL, V3, P238, DOI 10.1038/nrmicro1098.
BUCHER D, 2009, CHEM PHYS LETT, V477, P207, DOI 10.1016/j.cplett.2009.06.069.
BUCHER D, 2010, J GEN PHYSIOL, V135, P549, DOI 10.1085/jgp.201010404.
CHENG MHY, 2005, BIOPHYS J, V89, P1669, DOI 10.1529/biophysj.105.060368.
CHIU SW, 1999, BIOPHYS J, V76, P1929.
CHUGH JK, 2001, BIOCHEM SOC T 4, V29, P565.
CHUNG SH, 2002, EUR BIOPHYS J BIOPHY, V31, P283.
COALSON RD, 2005, IEEE T NANOBIOSCI, V4, P81, DOI 10.1109/TNB.2004.842495.
COOPER K, 1985, PROG BIOPHYS MOL BIO, V46, P51.
DARVE E, 2001, J CHEM PHYS, V115, P9169.
DARVE E, 2002, MOL SIMULAT, V28, P113.
DARVE E, 2008, J CHEM PHYS, V128, ARTN 144120.
DOYLE DA, 1998, SCIENCE, V280, P69.
DUCLOHIER H, 1998, BBA-BIOMEMBRANES, V1415, P255.
DUCLOHIER H, 2004, EUR BIOPHYS J BIOPHY, V33, P169, DOI 10.1007/s00249-003-0383-y.
DUCLOHIER H, 2007, CHEM BIODIVERS, V4, P1023.
EISENBERG RS, 1996, J MEMBRANE BIOL, V150, P1.
FARAUDO J, 2010, BIOPHYS J, V99, P2107, DOI 10.1016/j.bpj.2010.07.058.
FELLER SE, 1997, BIOPHYS J, V73, P2269.
FISCHER WB, 2002, BBA-BIOMEMBRANES, V1561, P27.
GALBRAITH TP, 2003, BIOPHYS J, V84, P185.
GARCIACELMA JJ, 2007, LANGMUIR, V23, P10074, DOI 10.1021/la701188f.
GORDON LGM, 1972, BIOCHIM BIOPHYS ACTA, V255, P1014.
HALL JE, 1984, BIOPHYS J, V45, P233.
HELLER H, 1993, J PHYS CHEM-US, V97, P8343.
HENIN J, 2004, J CHEM PHYS, V121, P2904, DOI 10.1063/1.1773132.
HILLE B, 2001, ION CHANNELS EXCITAB.
HUMMER G, 2001, NATURE, V414, P188.
ILLINGWORTH CJ, 2009, P R SOC A, V465, P1701, DOI 10.1098/rspa.2009.0014.
KARLE IL, 1998, P NATL ACAD SCI USA, V95, P5501.
KURNIKOVA MG, 1999, BIOPHYS J, V76, P642.
LEITGEB B, 2007, CHEM BIODIVERS, V4, P1027.
LEVITT DG, 1973, PHYS REV A, V8, P3050.
LEVITT DG, 1986, ANNU REV BIOPHYS BIO, V15, P29, UNSP A111711.
MACKERELL AD, 1998, ENCY COMPUTATIONAL C, V1, P271.
MACKERELL AD, 2004, J COMPUT CHEM, V25, P1400, DOI 10.1002/jcc.20065.
MOURITSEN OG, 1984, BIOPHYS J, V46, P141.
NOSKOV SY, 2004, BIOPHYS J, V87, P2299, DOI 10.1529/biophysj.104.044008.
OREILLY AO, 2003, J PEPT SCI, V9, P769.
PANDEY RC, 1977, J AM CHEM SOC, V99, P5203.
PANDIT SA, 2003, BIOPHYS J, V84, P3743.
PATEL S, 2009, J AM CHEM SOC, V131, P13890, DOI 10.1021/ja902903m.
PEZESHKI S, 2009, BIOPHYS J, V97, P1898, DOI 10.1016/j.bpj.2009.07.018.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289.
PIERCE B, 2005, BIOINFORMATICS, V21, P1472, DOI 10.1093/bioinformatics/bti229.
RODRIGUEZGOMEZ D, 2004, J CHEM PHYS, V120, P3563, DOI 10.1063/1.1642607.
ROUX B, 2004, Q REV BIOPHYS, V37, P15, DOI 10.1017/S0033583504003968.
SANSOM MSP, 1991, PROG BIOPHYS MOL BIO, V55, P139.
SMART OS, 1993, BIOPHYS J, V65, P2455, DOI 10.1016/S0006-3495(93)81293-1.
SMITH GR, 1999, BIOPHYS CHEM, V79, P129.
SNOOK CF, 1998, STRUCTURE, V6, P783.
TIELEMAN DP, 2002, BIOPHYS J, V83, P2393.
WALZ T, 1997, NATURE, V387, P624.
WILSON MA, 1996, J AM CHEM SOC, V118, P6580.
WOOLLEY GA, 2007, CHEM BIODIVERS, V4, P1323.
ZUCKERMAN DM, 2001, PHYS REV E, V63, ARTN 016702.
ZWANZIG R, 1964, J CHEM PHYS, V40, P2527.

Cited Reference Count:
62

Times Cited:
0

Publisher:
CELL PRESS; 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA

Subject Category:
Biophysics

ISSN:
0006-3495

DOI:
10.1016/j.bpj.2011.03.054

IDS Number:
767BS

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290826800054
*Order Full Text [ ]

Title:
Mass Transport through Carbon Nanotube Membranes in Three Different Regimes: Ionic Diffusion and Gas and Liquid Flow

Authors:
Majumder, M; Chopra, N; Hinds, BJ

Author Full Names:
Majumder, Mainak; Chopra, Nitin; Hinds, Bruce J.

Source:
ACS NANO 5 (5): 3867-3877 MAY 2011

Language:
English

Document Type:
Article

Author Keywords:
membrane; separations; biomimetic; nanofluidics

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATIONS; WATER; SEPARATION; NANOPORES; MIXTURES; SURFACES; CHANNEL; PORES; FILMS; SLIP

Abstract:
Transport phenomena through the hollow conduits of carbon nanotubes (CNTs) are subjects of intense theoretical and experimental research. We have studied molecular transport over the large spectrum of ionic diffusion to pressure-driven gaseous and liquid flow. Plasma oxidation during the fabrication of the membrane introduces carboxylic acid groups at the CNT entrance, which provides electrostatic "gatekeeper" effects on ionic transport. Diffusive transport of ions of different charge and size through the core of the CNT is close to bulk diffusion expectations and allows estimation of the number of open pores or porosity of the membrane. Flux of gases such as N-2, CO2, Ar, H-2, and CH4 scaled Inversely with their molecular weight by an exponent of 0.4, close to expected kinetic theory velocity expectations. However, the magnitude of the fluxes was similar to 15- to 30-fold higher than predicted from Knudsen diffusion kinetics and consistent with specular momentum reflection i
nside smooth pores. Polar liquids such as water, ethanol, and isopropyl alcohol and nonpolar liquids such as hexane and decane were dramatically enhanced, with water flow over 4 orders of magnitude larger than "no-slip" hydrodynamic flow predictions. As direct experimental proof for the mechanism of near perfect slip conditions within CNT cores, a stepwise hydrophilic functionalization of CNT membranes from as-produced, tip-functionalized, and core-functionalized was performed. Pressure-driven water flow through the membrane was reduced from 5 x 10(4) to 2 x 10(2) to less than a factor of 5 enhancement over conventional Newtonian flow, while retaining nearly the same pore area.

Reprint Address:
Hinds, BJ, Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA.

Research Institution addresses:
[Majumder, Mainak; Hinds, Bruce J.] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA; [Chopra, Nitin; Hinds, Bruce J.] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA

E-mail Address:
bjhinds@engr.uky.edu

Cited References:
ACKERMAN DM, 2003, MOL SIMULAT, V29, P677, DOI 10.1080/0892702031000103239.
AGO H, 1999, J PHYS CHEM B, V103, P8116.
ARMSTRONG DW, 1986, ANAL CHEM, V58, P579.
ARYA G, 2003, MOL SIMULAT, V29, P697, DOI 10.1080/0892702031000103257.
ARYA G, 2003, PHYS REV LETT, V91, ARTN 026102.
BHATIA SK, 2005, MOL SIMULAT, V31, P643, DOI 10.1080/00268970500108403.
BITTNER EW, 2003, CARBON, V41, P1231, DOI 10.1016/S0008-6223(03)0005-1.
CHIANG IW, 2001, J PHYS CHEM B, V105, P1157.
CHOPRA N, 2005, ADV FUNCT MATER, V15, P858, DOI 10.1002/adfm.200400399.
COOPER SM, 2004, NANO LETT, V4, P377, DOI 10.1021/nl0350682.
CUSSLER EL, 2003, DIFFUSION MASS TRANS, P176.
DEGENNES PG, 2002, LANGMUIR, V18, P3413.
DELANGE RSA, 1995, J MEMBRANE SCI, V104, P81.
DOMINGOGARCIA M, 2000, J COLLOID INTERF SCI, V222, P233.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FU Y, 2006, J PHYS CHEM B, V110, P9164, DOI 10.1021/jp054178p.
FUERTES AB, 2000, J MEMBRANE SCI, V177, P9.
GRULKE JBE, 1999, POLYM HDB, P675.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JIRAGE KB, 1997, SCIENCE, V278, P655.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KIM S, 2007, NANO LETT, V7, P2806, DOI 10.1021/nl071414u.
LAUGA E, 2004, PHYS REV E 2, V70, ARTN 026311.
LEE SB, 2002, SCIENCE, V296, P2198.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAJUMDER M, 2007, LANGMUIR, V23, P8624, DOI 10.1021/la700686k.
MAJUMDER M, 2008, J MEMBRANE SCI, V316, P89, DOI 10.1016/j.memsci.2007.09.068.
MAO ZG, 2001, J PHYS CHEM B, V105, P6916, DOI 10.1021/jp0103272.
MARTIN CR, 1983, J ELECTROANAL CHEM, P151.
MARTIN CR, 2001, ADV MATER, V13, P1351.
MATRANGA C, 2006, LANGMUIR, V22, P1235, DOI 10.1021/la0516577.
MATTIA D, 2006, LANGMUIR, V22, P1789, DOI 10.1021/la0518288.
MI WL, 2007, J MEMBRANE SCI, V304, P1, DOI 10.1016/j.memsci.2007.07.021.
MILLER SA, 2001, J AM CHEM SOC, V123, P12335.
MULDER M, 1997, BASIC PRINCIPLES MEM.
MURATA K, 2000, NATURE, V407, P599.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
OHBA T, 2005, NANO LETT, V5, P227, DOI 10.1021/nl048327b.
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946.
RANI SA, 2005, ANTIMICROB AGENTS CH, V49, P728, DOI 10.1128/AAC.49.2.728-732.2005.
RAO MB, 1993, J MEMBRANE SCI, V85, P253.
ROY S, 2003, J APPL PHYS, V93, P4870, DOI 10.1063/1.1559936.
ROY S, 2005, J MEMBRANE SCI, V253, P209, DOI 10.1016/j.memsci.2004.11.033.
SINNOTT SB, 2002, CMES-COMP MODEL ENG, V3, P575.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SMITH I, 1983, J COLLOID INTERF SCI, V91, P571.
SOKHAN VP, 2002, J CHEM PHYS, V117, P8531, DOI 10.1063/1.1512643.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
STEINLE ED, 2002, ANAL CHEM, V74, P2416.
THORTON A, 2011, NANO LETT UNPUB.
WU J, 2010, P NATL ACAD SCI USA, V107, P11698, DOI 10.1073/pnas.1004714107.
YAWS CL, 2001, MATHESON GAS HDB.
YU M, 2009, NANO LETT, V9, P225, DOI 10.1021/nl802816h.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.

Cited Reference Count:
57

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn200222g

IDS Number:
767AD

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000290826800071
*Order Full Text [ ]

Title:
Self-Cleaning Flexible Infrared Nanosensor Based on Carbon Nanoparticles

Authors:
Yuan, LY; Dai, JJ; Fan, XH; Song, T; Tao, YT; Wang, K; Xu, Z; Zhang, J; Bai, XD; Lu, PX; Chen, J; Zhou, J; Wang, ZL

Author Full Names:
Yuan, Longyan; Dai, Junjie; Fan, Xiaohong; Song, Ting; Tao, Yu Ting; Wang, Kai; Xu, Zhi; Zhang, Jun; Bai, Xuedong; Lu, Peixiang; Chen, Jian; Zhou, Jun; Wang, Zhong Lin

Source:
ACS NANO 5 (5): 4007-4013 MAY 2011

Language:
English

Document Type:
Article

Author Keywords:
carbon nanoparticles; flexible electronics; infrared sensor; self-cleaning; polydimethylsiloxane

KeyWords Plus:
NANOWIRE TRANSISTOR ARRAYS; SEMICONDUCTING POLYMER; PHOTOVOLTAIC DEVICES; RAMAN-SPECTROSCOPY; NANOTUBE FILMS; PHOTOCONDUCTIVITY; SURFACES; SOOT; PHOTODETECTORS; SPECTRA

Abstract:
Highly flexible, robust, and sensitive Infrared nanosensors were fabricated based on carbon nanoparticles that were synthesized through a simple and low-cost flame method. The infrared nanosensor devices showed sharp infrared photoresponse with a response time of similar to 68 ms and a maximum photocurrent change of similar to 52.9%. The devices showed a superhydrophobic property with a contact angle larger than 150 degrees and a sliding angle of similar to 4 degrees. The mechanism for the enhanced Infrared photoresponse from carbon nanoparticles is discussed.

Reprint Address:
Zhou, J, Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China.

Research Institution addresses:
[Yuan, Longyan; Dai, Junjie; Fan, Xiaohong; Song, Ting; Wang, Kai; Zhang, Jun; Lu, Peixiang; Zhou, Jun; Wang, Zhong Lin] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China; [Tao, Yu Ting; Chen, Jian] Sun Yat Sen Univ, Instrumental Anal & Res Ctr, Guangzhou 510275, Guangdong, Peoples R China; [Yuan, Longyan; Dai, Junjie; Fan, Xiaohong; Song, Ting; Wang, Kai; Zhang, Jun; Lu, Peixiang; Zhou, Jun; Wang, Zhong Lin] Huazhong Univ Sci & Technol, Coll Optoelect Sci & Engn, Wuhan 430074, Peoples R China; [Xu, Zhi; Bai, Xuedong] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China; [Wang, Zhong Lin] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA

E-mail Address:
jun.zhou@mail.hust.edu.cn; zlwang@gatech.edu

Cited References:
AKHTER MS, 1985, APPL SPECTROSC, V39, P143.
BACHILO SM, 2002, SCIENCE, V298, P2361, DOI 10.1126/science.1078727.
BARONE PW, 2005, NAT MATER, V4, P86, DOI 10.1038/nmat1276.
BRABEC CJ, 2002, ADV FUNCT MATER, V12, P709.
CANCADO LG, 2006, APPL PHYS LETT, V88, ARTN 163106.
CHOI M, 2004, ADV MATER, V16, P1721, DOI 10.1002/adma.200400179.
COHENKARNI T, 2009, P NATL ACAD SCI USA, V106, P7309, DOI 10.1073/pnas.0902752106.
CONG HL, 2008, ADV FUNCT MATER, V18, P1912, DOI 10.1002/adfm.200701437.
ERICKSON D, 2003, LAB CHIP, V3, P141, DOI 10.1039/b306158b.
FAN ZY, 2008, P NATL ACAD SCI USA, V105, P11066, DOI 10.1073/pnas.0801994105.
FAN ZY, 2009, NAT MATER, V8, P648, DOI 10.1038/NMAT2493.
FENG L, 2002, ADV MATER, V14, P1857.
FERRARI AC, 2000, PHYS REV B, V61, P14095.
FERRARI AC, 2006, PHYS REV LETT, V97, ARTN 187401.
FREITAG M, 2003, NANO LETT, V3, P1067, DOI 10.1021/nl034313e.
FUJIWARA A, 2001, JPN J APPL PHYS 2, V40, L1229.
FUJIWARA A, 2004, CARBON, V42, P919, DOI 10.1016/j.carbon.2003.12.063.
HALLROBERTS VJ, 2000, COMBUST FLAME, V120, P578.
HUMMER G, 2001, NATURE, V414, P188.
ITKIS ME, 2006, SCIENCE, V312, P413, DOI 10.1126/science.1125695.
JOHNSTON KW, 2008, APPL PHYS LETT, V92, ARTN 151115.
KIM UJ, 2005, J AM CHEM SOC, V127, P15437, DOI 10.1021/ja052951o.
KIND H, 2002, ADV MATER, V14, P158.
KIRCHNER U, 2000, J PHYS CHEM A, V104, P8908.
KLEM EJD, 2008, ADV MATER, V20, P3433, DOI 10.1002/adma.200800326.
KOLEILAT GI, 2008, ACS NANO, V2, P833, DOI 10.1021/nn800093v.
KONSTANTATOS G, 2006, NATURE, V442, P180, DOI 10.1038/nature04855.
LAU KKS, 2003, NANO LETT, V3, P1701, DOI 10.1021/nl034704t.
LEVITSKY IA, 2003, APPL PHYS LETT, V83, P1857, DOI 10.1063/1.1606099.
LIU HP, 2007, ANGEW CHEM INT EDIT, V46, P6473, DOI 10.1002/anie.200701271.
MARK J, 1999, POLYM DATA HDB.
MCALPINE MC, 2007, NAT MATER, V6, P379, DOI 10.1038/nmat1891.
MCDONALD SA, 2005, NAT MATER, V4, P138, DOI 10.1038/nmat1299.
MOCHALIN VN, 2009, J AM CHEM SOC, V131, P4594, DOI 10.1021/ja9004514.
MULLER JO, 2005, CATAL TODAY, V102, P259, DOI 10.1016/j.cattod.2005.02.025.
NAKANISHI T, 2008, ADV MATER, V20, P443, DOI 10.1002/adma.200701537.
NORTON TS, 1991, S INT COMBUST P, V23, P179.
PATANKAR NA, 2004, LANGMUIR, V20, P7097, DOI 10.1021/la049329e.
PIMENTA MA, 2007, PHYS CHEM CHEM PHYS, V9, P1276, DOI 10.1039/b613962k.
PRADHAN B, 2008, NANO LETT, V8, P1142, DOI 10.1021/nl0732880.
QING Q, 2010, P NATL ACAD SCI USA, V107, P1882, DOI 10.1073/pnas.0914737107.
QIU XH, 2005, NANO LETT, V5, P749, DOI 10.1021/nl050227y.
RAUCH T, 2009, NAT PHOTONICS, V3, P332, DOI 10.1038/NPHOTON.2009.72.
RICHTER H, 2000, PROG ENERG COMBUST, V26, P565.
ROGERS JA, 2009, P NATL ACAD SCI USA, V106, P10875, DOI 10.1073/pnas.0905723106.
SCHMITT JM, 1998, J OPT SOC AM A, V15, P2288.
SCHODEL R, 2002, NATURE, V419, P694, DOI 10.1038/nature01121.
SEKITANI T, 2009, SCIENCE, V326, P1516, DOI 10.1126/science.1179963.
SOMEYA T, 2005, P NATL ACAD SCI USA, V102, P12321, DOI 10.1073/pnas.0502392102.
SUN TL, 2005, ACCOUNTS CHEM RES, V38, P644, DOI 10.1021/ar040224c.
TUTEJA A, 2007, SCIENCE, V318, P1618, DOI 10.1126/science.1148326.
UGARTE D, 1992, NATURE, V359, P707.
VANDERWAL RL, 2003, NANO LETT, V3, P223, DOI 10.1021/nl020232r.
XU FL, 2005, IEEE T INTELL TRANSP, V6, P63, DOI 10.1109/TITS.2004.838222.
YANG ST, 2009, J AM CHEM SOC, V131, P11308, DOI 10.1021/ja904843x.
YOON J, 2008, NAT MATER, V7, P907, DOI 10.1038/nmat2287.
YOSHINO K, 1999, ADV MATER, V11, P1382.

Cited Reference Count:
57

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary

ISSN:
1936-0851

DOI:
10.1021/nn200571q

IDS Number:
767AD

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: