Friday, November 14, 2008

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert (Solaris 2.1)
Cited Article:   Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires:   21 OCT 2009
Number of Citing Articles:   3 new records this week (3 in this e-mail)
Organization ID:   3b97d1bbc1878baed0ab183d8b03130b

Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.

*Record 1 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: Dynamic Forces between Bubbles and Surfaces and Hydrodynamic Boundary Conditions
Authors: Manor, O; Vakarelski, IU; Stevens, GW; Grieser, F; Dagastine, RR; Chan, DYC
Author Full Names: Manor, Ofer; Vakarelski, Ivan U.
Source: LANGMUIR 24 (20): 11533-11543 OCT 21 2008
Language: English
Document Type: Article
Keywords Plus: FLUID-SOLID INTERFACE; THIN-FILM DRAINAGE; NEWTONIAN LIQUIDS; DEFORMABLE DROPS; SLIP; WATER; FLOW; AFM; VISCOSITY; CONSTANT
Abstract: A bubble attached to the end of an atomic force microscope cantilever and driven toward or away from a flat mica surface across an aqueous film is used to characterize the dynamic force that arises from hydrodynamic drainage and electrical double layer interactions across the nanometer thick intervening aqueous film. The hydrodynamic response of the air/water interface can range from a classical fully immobile, no-slip surface in the presence of added surfactants to a partially mobile interface in an electrolyte solution without added surfactants. A model that includes the convection and diffusion of trace surface contaminants can account for the observed behavior presented. This model predicts quantitatively different interfacial dynamics to the Navier slip model that can also be used to fit dynamic force data with a post hoc choice of a slip length.
Reprint Address: Chan, DYC, Univ Melbourne, Particulate Fluids Proc Ctr, Parkville, Vic 3010, Australia.
Research Institution addresses: Univ Melbourne, Particulate Fluids Proc Ctr, Parkville, Vic 3010, Australia; Natl Univ Singapore, Dept Math, Singapore 117543, Singapore; Inst High Performance Comp, Singapore 117528, Singapore; Inst Chem & Engn Sci, Singapore 627833, Singapore
Cited References: BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BONACCURSO E, 2002, PHYS REV LETT, V88, ARTN 076103.
BONACCURSO E, 2003, PHYS REV LETT, V90, ARTN 144501.
CARNIE SL, 1994, LANGMUIR, V10, P2993.
CARNIE SL, 2005, LANGMUIR, V21, P2912, DOI 10.1021/la0475371.
CHAN DYC, 1985, J CHEM PHYS, V83, P5311.
CHESTERS AK, 2000, J COLLOID INTERF SCI, V230, P229.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
CLASOHM LY, 2005, LANGMUIR, V21, P8243, DOI 10.1021/la0508588.
CLEVELAND JP, 1993, REV SCI INSTRUM, V64, P403.
CONNOR JN, 2003, FARADAY DISCUSS, V123, P193, DOI 10.1039/b204500c.
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI 10.1140/epje/i2002-10112-9.
COTTINBIZONNE C, 2005, PHYS REV LETT, V9.
COTTINBIZONNE C, 2008, LANGMUIR, V24, P1165, DOI 10.1021/la7024044.
DAGASTINE RR, 2004, J COLLOID INTERF SCI, V273, P339, DOI 10.1016/j.jcis.2003.11.001.
DAGASTINE RR, 2005, FARADAY DISCUSS, V129, P111, DOI 10.1039/b405750c.
DAGASTINE RR, 2006, SCIENCE, V313, P210, DOI 10.1126/science.1125527.
HONIG CDF, 2007, PHYS REV LETT, V273.
HORN RG, 1989, CHEM PHYS LETT, V162, P404.
ISRAELACHVILI JN, 1986, J COLLOID INTERF SCI, V110, P263.
KIM JY, 2000, J COLLOID INTERF SCI, V223, P285.
LEVICH VG, 1962, PHYSICOCHEMICAL HYDR.
LOHSE D, 2003, PHYS TODAY, V56, P36.
MANICA R, 2007, LANGMUIR, V23, P626, DOI 10.1021/la0620760.
MANICA R, 2008, LANGMUIR, V24, P1381, DOI 10.1021/la701562q.
MANICA R, 2008, PHYS FLUIDS, V20, ARTN 032101.
MANICA R, 2008, SOFT MATTER, V4, P1613.
MANOR O, 2008, PHYS REV LETT, V101, ARTN 024501.
MCCORMACK D, 1995, J COLLOID INTERF SCI, V169, P177.
NETO C, 2003, EUR PHYS J E S1, V12, S71, DOI 10.1140/epjed/e2003-01-018-0.
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05.
PIT R, 2000, PHYS REV LETT, V85, P980.
SCALES PJ, 1990, LANGMUIR, V6, P582.
SOLOMENTSEV Y, 1999, J COLLOID INTERF SCI, V218, P122.
STEINBERGER A, 2008, PHYS REV LETT, V100, ARTN 134501.
TAKAHASHI M, 2005, J PHYS CHEM B, V109, P21858, DOI 10.1021/jp0445270.
TAYLOR CA, 2004, ANNU REV FLUID MECH, V36, P197, DOI 10.1146/annurev.fluid.36.050802.121944.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1997, NATURE, V389, P360.
VAKARELSKI IU, 2008, LANGMUIR, V24, P603, DOI 10.1021/la7032059.
VINOGRADOVA OI, 1996, LANGMUIR, V12, P5963.
WEBBER GB, 2008, J PHYS CHEM C, V112, P567, DOI 10.1021/jp076215d.
WEBBER GB, 2008, SOFT MATTER, V4, P1270, DOI 10.1039/b717303b.
WHITESIDES GM, 2006, NATURE, V442, P368, DOI 10.1038/nature05058.
Cited Reference Count: 44
Times Cited: 0
Publisher: AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
Subject Category: Chemistry, Physical
ISSN: 0743-7463
DOI: 10.1021/la802206q
IDS Number: 360HT

*Record 2 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: Molecular theory of hydrodynamic boundary conditions in nanofluidics
Authors: Kobryn, AE; Kovalenko, A
Author Full Names: Kobryn, Alexander E.; Kovalenko, Andriy
Source: JOURNAL OF CHEMICAL PHYSICS 129 (13): Art. No. 134701 OCT 7 2008
Language: English
Document Type: Review
Keywords Plus: INTERACTION SITE MODEL; INTERMOLECULAR POTENTIAL FUNCTIONS; EXCESS THERMODYNAMIC PROPERTIES; STATISTICAL-MECHANICAL THEORY; AMBIENT AQUEOUS-SOLUTION; FLUID-SOLID INTERFACE; DIMETHYL-SULFOXIDE; CONFINED FLUIDS; MEAN FORCE; 298.15 K
Abstract: Motivated by the fundamental questions raised by the most recent experimental achievements in nanofluidics, we propose the first-ever derivation and calculation of the hydrodynamic slip length from the first principles of statistical mechanics, namely, a combination of linear response theory and equilibrium molecular theory of solvation. The slip length derived is related to the fluid organization near the solid surface, as governed by the solid-liquid interaction. In the wide range of shear rates and surface-liquid interactions, the slip length is expressed in terms of the Green-Kubo-Nakano relations as a function of the anisotropic inhomogeneous time-correlation function of density fluctuations of the liquid in contact with the surface. The time dependence of the correlation function is factored out by treating it in the hydrodynamic limit. The spatially inhomogeneous two-body correlation function is represented in the Kirkwood-type approximation as a product of the three-! dimensional density distributions of interaction sites of the liquid near the surface and the site-site pair correlations of the bulk liquid. The presented treatment generalizes the phenomenological definition of the friction coefficient (as well as the slip length) to a tensor quantity, which reflects an anisotropic nature of an ordered crystalline or nanopatterned surface. This enables theoretical prediction of friction forces acting aslant to the liquid flow direction for such surfaces. We derive generic analytical expressions for the liquid-surface friction coefficient (and slip length) for an arbitrary surface-liquid interaction potential. We further illustrate it by numerical calculations for a laminar flow of nine different molecular liquids, including water, at ambient conditions in contact with the (100) face-centered cubic cell surface of gold, copper, and nickel modeled by using optimized potential for liquid simulation models for liquids and the Steele potential! for crystalline surfaces. The obtained values for slip length! range f rom few to hundreds of nanometers and microns and are consistent with experimental measurements. (C) 2008 American Institute of Physics.
Reprint Address: Kovalenko, A, Natl Res Council Canada, Natl Inst Nanotechnol, 11421 Saskatchewan Dr, Edmonton, AB T6G 2M9, Canada.
Research Institution addresses: Natl Res Council Canada, Natl Inst Nanotechnol, Edmonton, AB T6G 2M9, Canada; Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2G8, Canada
Cited References: AHN CH, 2007, SPRINGER HDB NANOTEC, P523.
AKHADOV YY, 1981, DIELECTRIC PROPERTIE.
AMINABHAVI TM, 1995, J CHEM ENG DATA, V40, P856.
BAKSHI MS, 1996, J CHEM ENG DATA, V41, P1459.
BALUCANI U, 1994, OXFORD SERIES NEUTRO, V10.
BALUCANI U, 2003, PHYS REP, V373, P409.
BARRAT JL, 1999, FARADAY DISCUSS, V112, P119.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BASHIR R, 2006, BIOMOLECULAR SENSING, V4.
BEGGEROW G, 1980, HIGH PRESSURE PROPER, V4.
BEGLOV D, 1997, J PHYS CHEM B, V101, P7821.
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269.
BHUSHAN B, 2007, SPRINGER HDB NANOTEC, P1575.
BOCQUET L, 1993, PHYS REV LETT, V70, P2726.
BOCQUET L, 1994, PHYS REV E A, V49, P3079.
BOCQUET L, 1996, J PHYS-CONDENS MAT, V8, P9297.
BOCQUET L, 2007, SOFT MATTER, V3, P685, DOI 10.1039/b616490k.
BRENNER H, 2005, PHYSICA A, V349, P60, DOI 10.1016/j.physa.2004.10.034.
CADUSCH PJ, 2008, J PHYS A-MATH THEOR, V41, ARTN 035501.
CHEN YC, 2007, J CHEM PHYS, V127, ARTN 044904.
CHEN Z, 2005, FINITE ELEMENT METHO.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
CONNER WC, 2006, NATO SCI SERIES, V2.
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI 10.1140/epje/i2002-10112-9.
COTTINBIZONNE C, 2004, EUR PHYS J E, V15, P427, DOI 10.1140/epje/i2004-10061-9.
DAIGUJI H, 2004, NANO LETT, V4, P137, DOI 10.1021/nl0348185.
DANS J, 1974, DENSITIES LIQUID S B, V1.
DARHUBER AA, 2005, ANNU REV FLUID MECH, V37, P425, DOI 10.1146/annurev.fluid.36.050802.122052.
DASILVA EF, 2005, THESIS NORVEGIAN U S.
DEFABRITIIS G, 2006, PHYS REV LETT, V97, ARTN 134501.
DEFABRITIIS G, 2007, PHYS REV E 2, V75, ARTN 026307.
DESAI T, 2006, THERAPEUTIC MICRONAN, V3.
DIVENTRA M, 2004, INTRO NANOSCALE SCI.
DUBBELDAM JLA, 2007, PHYS REV E 1, V76, ARTN 010801.
DUKE T, 1997, LECT NOTE PHYS, V480, P11.
EDWARDS DMF, 1984, MOL PHYS, V51, P1141.
EIJKEL JCT, 2005, MICROFLUID NANOFLUID, V1, P249, DOI 10.1007/s10404-004-0012-9.
EINZEL D, 1990, PHYS REV LETT, V64, P2269.
ELLIS JS, 2005, ADV CHEM PHYS, V131, P61.
ERKOC S, 2001, ANN REV COMP PHYS, V9, P1.
EVANS DJ, 1990, STAT MECH NONEQUILIB.
FERRARI M, 2006, BIOMEMS BIOMEDICAL N.
FLEKKOY EG, 2000, EUROPHYS LETT, V52, P271.
FRANCESCHETTI G, 2007, SCATTERING NATURAL S.
FUCHS M, 2002, J PHYS-CONDENS MAT, V14, P9223.
GALEA TM, 2004, LANGMUIR, V20, P3477, DOI 10.1021/la035880k.
GREEN MS, 1952, J CHEM PHYS, V20, P1281.
GREEN MS, 1954, J CHEM PHYS, V22, P398.
GROTH C, 2006, COMPUTATIONAL FLUID.
GUO ZL, 2005, PHYS REV E 2, V71, ARTN 035301.
GUO ZL, 2006, PHYS FLUIDS, V18, ARTN 067107.
HADJICONSTANTINOU NG, 2006, PHYS FLUIDS, V18, ARTN 111301.
HAN J, 2004, INTRO NANOSCALE SCI, P575.
HANSEN JP, 2006, THEORY SIMPLE LIQUID.
HARDT S, 2007, MICROFLUIDIC TECHNOL.
HARDT S, 2007, MICROFLUIDIC TECHNOL, P1.
HARRISON DJ, 1993, SCIENCE, V261, P895.
HENDERSON D, 1992, FUNDAMENTALS INHOMOG.
HIRATA F, 2003, MOL THEORY SOLVATION, V24.
HU JH, 1997, FLUID PHASE EQUILIBR, V131, P197.
HU JH, 1997, FLUID PHASE EQUILIBR, V134, P239.
HUANG CK, 2007, J CHEM PHYS, V126, ARTN 224702.
IANNELLI J, 2006, CHARACTERISTICS FINI.
ICHIKI K, 2008, J COMPUT THEOR NANOS, V5, P2004.
JORGENSEN WL, 1984, J AM CHEM SOC, V106, P6638.
JORGENSEN WL, 1986, J PHYS CHEM-US, V90, P1276.
JOSEPH P, 2005, PHYS REV E 2, V71, ARTN 035303.
JOSEPH P, 2006, PHYS REV LETT, V97, ARTN 156104.
KAATZE U, 1990, J MOL LIQ, V44, P197.
KARNIADAKIS G, 2005, INTERDISCIPLINARY AP, V29.
KISELEV M, 2004, J MOL LIQ, V110, P193, DOI 10.1016/s0167-7322(03)00247-2.
KOBRYN AE, 2005, J CHEM PHYS, V122, ARTN 184511.
KOBRYN AE, 2005, J MOL LIQ, V119, P7, DOI 10.1016/j.molliq.2004.10.003.
KOBRYN AE, 2006, J MOL LIQ, V125, P14, DOI 10.1016/j.molliq.2005.11.012.
KOBRYN AE, 2007, J CHEM PHYS, V126, ARTN 044504.
KOPLIK J, 1998, PHYS REV LETT, V80, P5125.
KOTSEV S, 2007, J CHEM PHYS, V127, ARTN 185103.
KOVALENKO A, 1998, CHEM PHYS LETT, V290, P237.
KOVALENKO A, 1999, J CHEM PHYS, V110, P10095.
KOVALENKO A, 1999, J PHYS CHEM B, V103, P7942.
KOVALENKO A, 2000, J CHEM PHYS, V112, P10391.
KOVALENKO A, 2000, J CHEM PHYS, V112, P10403.
KOVALENKO A, 2003, UNDERS CH R, V24, P169.
KREITH F, 2000, CRC HDB THERMAL ENG.
KUBO R, 1957, J PHYS SOC JPN, V12, P1203.
KUBO R, 1957, J PHYS SOC JPN, V12, P570.
LACMANN R, 1974, DENSITIES LIQUID S A, V1.
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695.
LAUGA E, 2007, SPRINGER HDB EXPT ME, P1219.
LEE AP, 2006, BIOL BIOMEDICAL NANO, V1.
LEE H, 2007, CMOS BIOTECHNOLOGY.
LENG YS, 2005, PHYS REV LETT, V94, ARTN 026101.
LEONDES CT, 2006, MEMS NEMS HDB TECHNI, V1.
LEONDES CT, 2006, MEMS NEMS HDB TECHNI, V2.
LEONDES CT, 2006, MEMS NEMS HDB TECHNI, V3.
LEONDES CT, 2006, MEMS NEMS HDB TECHNI, V4.
LEONDES CT, 2006, MEMS NEMS HDB TECHNI, V5.
LIDE DR, 2007, CRC HDB CHEM PHYS.
LINKE H, 2007, LECT NOTES PHYS, V711.
LIOU WW, 2006, MICROFLUID MECH PRIN.
LIU HY, 1995, J AM CHEM SOC, V117, P4363.
LIU JL, 2007, J PHYS-CONDENS MAT, V19, ARTN 356002.
LIU Q, 2007, PHYS REV E 1, V75, ARTN 051201.
MIYANAGA S, 1992, THERMOCHIM ACTA, V198, P237.
MORI H, 1965, PROG THEOR PHYS SUPP, V33, P423.
MORI H, 1965, PROG THEOR PHYS, V34, P399.
MOSELER M, 2000, SCIENCE, V289, P1165.
MUTHUKUMAR M, 2007, ANNU REV BIOPH BIOM, V36, P435, DOI 10.1146/annurev.biophys.36.040306.132622.
NAKANO H, 1955, BUSSERION KENKYU, V84, P25.
NAKANO H, 1993, INT J MOD PHYS B, V7, P2397.
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05.
NIE XB, 2004, J FLUID MECH, V500, P55, DOI 10.1017/S0022112003007225.
NIETODRAGHI C, 2003, J CHEM PHYS, V119, P4782, DOI 10.1063/1.1595637.
NOMOTO O, 1954, J PHYS SOC JPN, V9, P73.
OZKAN M, 2006, MICRONANOTECHNOLOGY, V2.
PANZER P, 1992, INT J MOD PHYS B, V6, P3251.
PELESKO JA, 2003, MODELING MEMS NEMS.
PERKYNS J, 1992, J CHEM PHYS, V97, P7656.
PERKYNS JS, 1992, CHEM PHYS LETT, V190, P626.
PETRAVIC J, 2007, J CHEM PHYS, V127, ARTN 174706.
PETRAVIC J, 2008, J CHEM PHYS, V128, ARTN 209901.
POZHAR LA, 2000, PHYS REV E, V61, P1432.
PRIEZJEV NV, 2006, J FLUID MECH, V554, P25, DOI 10.1017/S0022112006009086.
PRIEZJEV NV, 2007, PHYS REV E 1, V75, ARTN 051605.
QIAO R, 2005, COLLOID SURFACE A, V267, P103, DOI 10.1016/j.colsurfa.2005.06.067.
QIAO R, 2007, MICROFLUID NANOFLUID, V3, P33, DOI 10.1007/s10404-006-0103-x.
RICCO AJ, 2006, BIOSENSING INT RES D, P79.
SCHOCH RB, 2005, PHYS FLUIDS, V17, ARTN 100604.
SINNOTT SB, 2007, SPRINGER HDB NANOTEC, P1051.
SQUIRES TM, 2005, REV MOD PHYS, V77, P977.
STEELE WA, 1973, SURF SCI, V36, P317.
SUN M, 1992, PHYS REV LETT, V69, P3491.
TAKABA H, 2007, J CHEM PHYS, V127, ARTN 054703.
TAMURA K, 1977, J PHYS CHEM-US, V81, P2122.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1997, NATURE, V389, P360.
TRAVIS KP, 1997, PHYS REV E, V55, P4288.
VAISMAN II, 1992, J AM CHEM SOC, V114, P7889.
VISWANATH DS, 2007, VISCOSITY LIQUIDS TH.
WAGNER W, 2002, J PHYS CHEM REF DATA, V31, P387.
WANG W, 2007, BIOMEMS TECHNOLOGIE.
WEI DS, 2007, J CHEM PHYS, V126, ARTN 204901.
WERDER T, 2005, J COMPUT PHYS, V205, P373, DOI 10.1016/j.jcp.2004.11.019.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WOHLFARTH C, 1991, STATIC DIELECTRIC CO, V6.
WOHLFARTH C, 2001, VISCOSITY PURE ORG A, V18.
WOHLFARTH C, 2002, VISCOSITY PURE ORG B, V18.
YEN TH, 2007, MICROFLUID NANOFLUID, V3, P665, DOI 10.1007/s10404-007-0154-7.
YURISH SY, 2004, NATO SCI SERIES, V2.
ZENG Y, 2007, THESIS U ALBERTA.
ZHANG HF, 2005, MEAS SCI TECHNOL, V16, P1430, DOI 10.1088/0957-0233/16/7/004.
ZHENG YJ, 1996, J AM CHEM SOC, V118, P4175.
Cited Reference Count: 152
Times Cited: 0
Publisher: AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA
Subject Category: Physics, Atomic, Molecular & Chemical
ISSN: 0021-9606
DOI: 10.1063/1.2972978
IDS Number: 357WA

*Record 3 of 3.
*Click Here to View Full Record
*Order Full Text [ ]
Title: Rheological study of polymer flow past rough surfaces with slip boundary conditions
Authors: Niavarani, A; Priezjev, NV
Author Full Names: Niavarani, Anoosheh; Priezjev, Nikolai V.
Source: JOURNAL OF CHEMICAL PHYSICS 129 (14): Art. No. 144902 OCT 14 2008
Language: English
Document Type: Article
Keywords Plus: MOLECULAR-DYNAMICS SIMULATION; FLUID-SOLID INTERFACE; SHEAR-FLOW; WALL ROUGHNESS; FILMS; MELTS; HEXADECANE; LIQUIDS; MICROCHANNELS; BEHAVIOR
Abstract: The slip phenomena in thin polymer films confined by either flat or periodically corrugated surfaces are investigated by molecular dynamics and continuum simulations. For atomically flat surfaces and weak wall-fluid interactions, the shear rate dependence of the slip length has a distinct local minimum which is followed by a rapid increase at higher shear rates. For corrugated surfaces with wavelength larger than the radius of gyration of polymer chains, the effective slip length decays monotonically with increasing corrugation amplitude. At small amplitudes, this decay is reproduced accurately by the numerical solution of the Stokes equation with constant and rate-dependent local slip length. When the corrugation wavelength is comparable to the radius of gyration, the continuum predictions overestimate the effective slip length obtained from molecular dynamics simulations. The analysis of the conformational properties indicates that polymer chains tend to stretch in the dir! ection of shear flow above the crests of the wavy surface. (C) 2008 American Institute of Physics.
Reprint Address: Niavarani, A, Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA.
Research Institution addresses: Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
Cited References: ALLEN MP, 1987, COMPUTER SIMULATION.
AOYAGI T, 2001, J CHEM PHYS, V115, P552.
BARRAT JL, 1999, PHYS REV LETT, V82, P4671.
BIRD RB, 1987, DYNAMICS POLYM LIQUI.
BITSANIS I, 1990, J CHEM PHYS, V92, P3827.
BONACCURSO E, 2003, PHYS REV LETT, V90, ARTN 144501.
BOON JP, 1980, MOL HYDRODYNAMICS.
BOSKO JT, 2004, J CHEM PHYS, V121, P12050, DOI 10.1063/1.1818678.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
CHOI CH, 2006, PHYS REV LETT, V96, ARTN 066001.
CHURAEV NV, 1984, J COLLOID INTERF SCI, V97, P574.
CIEPLAK M, 2001, PHYS REV LETT, V86, P803.
COTTINBIZONNE C, 2002, EUR PHYS J E, V9, P47, DOI 10.1140/epje/i2002-10112-9.
COTTINBIZONNE C, 2003, NAT MATER, V2, P237, DOI 10.1038/nmat857.
COTTINBIZONNE C, 2004, EUR PHYS J E, V15, P427, DOI 10.1140/epje/i2004-10061-9.
CRAIG VSJ, 2001, PHYS REV LETT, V87, ARTN 054504.
DARHUBER AA, 2005, ANNU REV FLUID MECH, V37, P425, DOI 10.1146/annurev.fluid.36.050802.122052.
EINZEL D, 1990, PHYS REV LETT, V64, P2269.
GALEA TM, 2004, LANGMUIR, V20, P3477, DOI 10.1021/la035880k.
GAO JP, 2000, TRIBOL LETT, V9, P3.
GREST GS, 1986, PHYS REV A, V33, P3628.
HEINRICH JC, 1999, INTERMEDIATE FINITE.
HENDY SC, 2005, PHYS REV E 2, V72, ARTN 016303.
HENDY SC, 2007, PHYS REV E 2, V76, ARTN 066313.
HOCKING LM, 1976, J FLUID MECH, V76, P801.
HORN RG, 2000, J CHEM PHYS, V112, P6424.
IRVING JH, 1950, J CHEM PHYS, V18, P817.
JABBARZADEH A, 1999, J CHEM PHYS, V110, P2612.
JABBARZADEH A, 2000, PHYS REV E, V61, P690.
JOLY L, 2006, PHYS REV LETT, V96, ARTN 046101.
JOSEPH P, 2006, PHYS REV LETT, V97, ARTN 156104.
KHARE R, 1996, MACROMOLECULES, V29, P7910.
KOIKE A, 1998, J PHYS CHEM B, V102, P3669.
KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781.
KREMER K, 1990, J CHEM PHYS, V92, P5057.
KUNERT C, 2007, PHYS REV LETT, V99, ARTN 176001.
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695.
MIGLER KB, 1993, PHYS REV LETT, V70, P287.
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05.
NIAVARANI A, 2008, PHYS REV E 1, V77, ARTN 041606.
OU J, 2004, PHYS FLUIDS, V16, P4635, DOI 10.1063/1.1812011.
PANZER P, 1992, INT J MOD PHYS B, V6, P3251.
PIT R, 2000, PHYS REV LETT, V85, P980.
PLIMPTON S, 1995, J COMPUT PHYS, V117, P1.
PRIEZJEV NV, 2004, PHYS REV LETT, V92, ARTN 018302.
PRIEZJEV NV, 2005, PHYS REV E 1, V71, ARTN 041608.
PRIEZJEV NV, 2006, J FLUID MECH, V554, P25, DOI 10.1017/S0022112006009086.
PRIEZJEV NV, 2007, J CHEM PHYS, V127, ARTN 144708.
PRIEZJEV NV, 2007, PHYS REV E 1, V75, ARTN 051605.
QIAN TZ, 2005, PHYS REV E 1, V72, ARTN 022501.
RICHARDSON S, 1973, J FLUID MECHANICS 4, V59, P707.
SANCHEZREYES J, 2003, LANGMUIR, V19, P3304, DOI 10.1021/la0265326.
SBRAGAGLIA M, 2006, PHYS REV LETT, V97, ARTN 204503.
SBRAGAGLIA M, 2007, PHYS FLUIDS, V19, ARTN 043603.
SCHMATKO T, 2005, PHYS REV LETT, V94, ARTN 244501.
SCHMATKO T, 2006, LANGMUIR, V22, P6843, DOI 10.1021/la060061w.
THOMPSON PA, 1990, PHYS REV A, V41, P6830.
THOMPSON PA, 1995, ISRAEL J CHEM, V35, P93.
THOMPSON PA, 1997, NATURE, V389, P360.
TUCK EO, 1995, J FLUID MECH, V300, P59.
VINOGRADOVA OI, 2006, PHYS REV E 2, V73, ARTN 045302.
XU Z, 1995, J CHEM PHYS, V102, P5836.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.
Cited Reference Count: 64
Times Cited: 0
Publisher: AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA
Subject Category: Physics, Atomic, Molecular & Chemical
ISSN: 0021-9606
DOI: 10.1063/1.2988496
IDS Number: 359ZD

Order Full Text

All Customers
    Please contact your library administrator, or person(s) responsible for document delivery, to find out more about your organization's policy for obtaining the full text of the above articles. If your organization does not have a current document delivery provider, your administrator can contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 or 734-459-8565.
IDS Customers
    IDS customers can purchase the full text of an article (having page number, volume, and issue information) by returning this ENTIRE message as a Reply to Sender or Forward to orders@isidoc.com. Mark your choices with an X in the "Order Full Text: []" brackets for each item. For example, [X].

 Please enter your account number here:

Help Desk Contact Information
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page.