Friday, March 11, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 11 new records this week (11 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287411700047
*Order Full Text [ ]

Title:
Carbon nanotubes in benzene: internal and external solvation

Authors:
Shim, Y; Jung, Y; Kim, HJ

Author Full Names:
Shim, Youngseon; Jung, YounJoon; Kim, Hyung J.

Source:
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 13 (9): 3969-3978 2011

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATION; IONIC LIQUID; ROTATIONAL DIFFUSION; COMPUTER-SIMULATION; WATER; RELAXATION; TRANSITION; TRANSPORT; PRESSURE

Abstract:
The structure and dynamics of benzene inside and outside of single-walled carbon nanotubes (SWNTs) in the (n,n) armchair configuration are studied via molecular dynamics computer simulations. Irrespective of the nanotube diameter, benzene molecules form cylindrical solvation shell structures on the outside of the nanotubes. Their molecular planes near the SWNTs in the first external solvation shell are oriented parallel to the nanotube surface, forming a pi-stacked structure between the two. By contrast, the benzene distributions in the interior of the SWNTs are found to vary markedly with the nanotube diameter. In the case of the (7,7) and (8,8) nanotubes, internal benzene forms a single-file distribution, either in a vertex-to-vertex (n = 7) or face-to-face (n = 8) orientation between two neighboring molecules. Inside a slightly wider (9,9) nanotube channel, however, a cylindrical single-shell distribution of benzene arises. A secondary solvation structure, which begins to
appear inside (10,10), develops into a full structure separate from the first internal solvation shell in (12,12). The ring orientation of internal benzene is generally parallel to the nanotube wall for n = 9-12, while it becomes either slanted with respect to (n = 7), or perpendicular to (n = 8), the nanotube axis. The confinement inside the small nanotube pores exerts a strong influence on the dynamics of benzene. Both translational and rotational dynamics inside SWNTs are slower and more anisotropic than in liquid benzene. It is also found that reorientational dynamics of internal benzene deviate dramatically from the rotational diffusion regime and change substantially with the nanotube diameter.

Reprint Address:
Jung, Y, Seoul Natl Univ, Dept Chem, Seoul 151747, South Korea.

Research Institution addresses:
[Shim, Youngseon; Jung, YounJoon] Seoul Natl Univ, Dept Chem, Seoul 151747, South Korea; [Shim, Youngseon; Kim, Hyung J.] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA; [Kim, Hyung J.] Korea Inst Adv Study, Sch Computat Sci, Seoul 130722, South Korea

E-mail Address:
yjjung@snu.ac.kr; hjkim@cmu.edu

Cited References:
BARROS EB, 2006, PHYS REP, V431, P261, DOI 10.1016/j.physrep.2006.05.007.
BHIDE SY, 2000, J PHYS CHEM B, V104, P11977.
CHEN RJ, 2001, J AM CHEM SOC, V123, P3838, DOI 10.1021/ja010172b.
CHEN SM, 2007, J AM CHEM SOC, V129, P2416, DOI 10.1021/ja067972c.
DRAKE JM, 1999, DYNAMICS SMALL CONFI, V543, P372.
FORESTER TR, 2001, DL POLY 2 13 USER MA.
GAO HJ, 2004, ANNU REV MATER RES, V34, P123, DOI 10.1146/annurev.matsci.34.040203.120402.
GORDON RG, 1966, J CHEM PHYS, V44, P1830.
HAN SH, 2010, NAT PHYS, V6, P685, DOI 10.1038/NPHYS1708.
HANKE CG, 2003, CHEM PHYS LETT, V374, P85, DOI 10.1016/S0009-2614(03)00703-6.
HARRIS TE, 1965, J APPL PROBAB, V2, P323.
HEYES DM, 1981, J CHEM PHYS, V74, P1924.
HUMMER G, 2001, NATURE, V414, P188.
KARGER J, 1992, PHYS REV A, V45, P4173.
KOGA K, 2001, NATURE, V412, P802.
KOLLMANN M, 2003, PHYS REV LETT, V90, ARTN 180602.
KUMAR PV, 1995, J CHEM PHYS, V103, P3038.
LEE KH, 2004, J PHYS CHEM B, V108, P9861, DOI 10.1021/jp036791j.
LEVITT DG, 1973, PHYS REV A, V8, P3050.
LINSE P, 1985, CHEM PHYS LETT, V115, P95.
LIU YC, 2005, J CHEM PHYS, V123, ARTN 234701.
LIU YC, 2005, PHYS REV B, V72, ARTN 085420.
LU DY, 2005, J PHYS CHEM B, V109, P11461, DOI 10.1021/jp050420g.
MAO ZG, 2000, J PHYS CHEM B, V104, P4618.
MAOLIN S, 2008, J CHEM PHYS, V128, UNSP 134504.
MCCOOL MA, 1972, J CHEM SOC FARAD T 1, V68, P1489.
MUKHERJEE B, 2007, J CHEM PHYS, V126, ARTN 124704.
ODOM TW, 1998, NATURE, V391, P62.
PENZA M, 2004, SENSOR ACTUAT B-CHEM, V100, P47, DOI 10.1016/j.snb.2003.12.019.
PIERRE AG, 1969, PHYS REV, V184, P172.
PINILLA C, 2005, J PHYS CHEM B, V109, P17922, DOI 10.1021/jp052999o.
PRANATA J, 1991, J AM CHEM SOC, V113, P2810.
SCHWARTZ M, 2005, J PHYS CHEM A, V109, P8637, DOI 10.1021/jp0530799.
SHIM Y, 2005, J CHEM PHYS, V122, ARTN 044510.
SHIM Y, 2006, J CHEM PHYS, V125, ARTN 061102.
SHIM Y, 2009, ACS NANO, V3, P1693, DOI 10.1021/nn900195b.
SHIM Y, 2010, ACS NANO, V4, P2345, DOI 10.1021/nn901916m.
SNOW ES, 2005, SCIENCE, V307, P1942, DOI 10.1126/science.1109128.
STEELE WA, 1976, ADV CHEM PHYS, V34, P1.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
WATANABE A, 1999, CHEM PHYS LETT, V305, P71.
WEI C, 2007, ENVIRON SCI TECHNOL, V41, P8295.
WINKLER RG, 1993, J CHEM PHYS, V99, P5405.
WITT R, 2000, J PHYS CHEM A, V104, P5716.
WOODS LM, 2007, PHYS REV B, V75, ARTN 155415.
XIA YD, 2006, J PHYS CHEM B, V110, P19735, DOI 10.1021/jp063393i.
YI J, 1996, J PHYS CHEM-US, V100, P16789.
ZHU X, 2005, J PHYS CHEM B, V109, P12724, DOI 10.1021/jp051384o.

Cited Reference Count:
48

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1463-9076

DOI:
10.1039/c0cp01845g

IDS Number:
722DP

========================================================================

*Record 2 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285485600035
*Order Full Text [ ]

Title:
Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory

Authors:
Simsek, M

Author Full Names:
Simsek, Mesut

Source:
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES 43 (1): 182-191 NOV 2010

Language:
English

Document Type:
Article

Author Keywords:
Vibration; Nonlocal elasticity theory; Carbon nanotubes; Moving loads

KeyWords Plus:
FUNCTIONALLY GRADED BEAM; SHEAR DEFORMATION-THEORY; PRESTRESSED DAMPED BEAM; TIMOSHENKO-BEAM; DYNAMIC-ANALYSIS; CONTINUUM-MECHANICS; MODELS; FORCE; TUBES

Abstract:
In the present study, forced vibration of a simply supported single-walled carbon nanotube (SWCNT) subjected to a moving harmonic load is investigated by using nonlocal Euler-Bernoulli beam theory. The time-domain responses are obtained by using both the modal analysis method and the direct integration method. The effects of nonlocal parameter, aspect ratio, velocity and the excitation frequency of the moving load on the dynamic responses of SWCNT is discussed. For comparison purposes, free vibration frequencies and static deflections of the SWCNT subjected to a point load at the midpoint are obtained and compared with previously published studies. Good agreement is observed. The results show that dynamic deflections of the SWCNT increase with increase in the nonlocal parameter, which means that dynamic deflections based on the local beam theory are underestimated, and the effect of nonlocal parameter is dependent on the aspect ratio. Furthermore, load velocity and the excita
tion frequency play an important role on the dynamic behavior of the SWCNT. (C) 2010 Elsevier B.V. All rights reserved.

Reprint Address:
Simsek, M, Yildiz Tech Univ, Dept Civil Engn, Davutpasa Campus, TR-34210 Esenler, Turkey.

Research Institution addresses:
Yildiz Tech Univ, Dept Civil Engn, TR-34210 Esenler, Turkey

E-mail Address:
msimsek@yildiz.edu.tr

Cited References:
ADALI S, 2008, PHYS LETT A, V372, P5701, DOI 10.1016/j.physleta.2008.07.003.
AYDOGDU M, 2007, TURK J ENG ENV SCI, V31, P305.
AYDOGDU M, 2008, INT J MECH SCI, V50, P837, DOI 10.1016/j.ijmecsci.2007.10.003.
AYDOGDU M, 2009, PHYSICA E, V41, P1651, DOI 10.1016/j.physe.2009.05.014.
AYDOGDU M, 2009, PHYSICA E, V41, P861, DOI 10.1016/j.physe.2009.01.007.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BERBER S, 2000, PHYS REV LETT, V84, P4613.
CHOPRA AK, 2001, DYNAMICS STRUCTURES.
CIVALEK O, 2009, INT J ENG APPL SCI, V2, P47.
DEDKOV GV, 2007, TECH PHYS LETT+, V33, P51, DOI 10.1134/S1063785007010142.
DRESSELHAUS MS, 2004, PHILOS T R SOC A, V362, P2065, DOI 10.1098/rsta.2004.1430.
ECE MC, 2007, ACTA MECH, V190, P185, DOI 10.1007/s00707-006-0417-5.
ERINGEN AC, 1983, J APPL PHYS, V54, P4703.
FRYBA L, 1972, VIBRATION SOLIDS STR.
GUPTA SS, 2010, COMP MATER SCI, V47, P1049, DOI 10.1016/j.commatsci.2009.12.007.
HEIRECHE H, 2008, PHYSICA E, V40, P27911.
HONG S, 2007, NAT NANOTECHNOL, V2, P207, DOI 10.1038/nnano.2007.89.
HU YG, 2009, J APPL PHYS, V106, ARTN 044301.
HUMMER G, 2001, NATURE, V414, P188.
KE LL, 2009, COMP MATER SCI, V47, P409, DOI 10.1016/j.commatsci.2009.09.002.
KE LL, 2010, COMPOS STRUCT, V92, P676, DOI 10.1016/j.compstruct.2009.09.024.
KEMPA K, 2007, ADV MATER, V19, P421, DOI 10.1002/adma.20061187.
KOCATURK T, 2006, COMPUT STRUCT, V84, P2113, DOI 10.1016/j.compstruc.2006.08.062.
KOCATURK T, 2006, J SOUND VIB, V291, P302, DOI 10.1016/j.jsv.2005.06.024.
KUMAR D, 2008, J APPL PHYS, V103, ARTN 073521.
LAU KT, 2002, COMPOS PART B-ENG, V33, P263.
LEE HL, 2009, PHYSICA E, V41, P529, DOI 10.1016/j.physe.2008.10.002.
LEVINSON M, 1981, J SOUND VIB, V74, P81.
LI X, 2009, APPL PHYS LETT, V94, ARTN 063111.
LIJIMA S, 1991, NATURE, V354, P56.
LIM CW, 2007, J APPL PHYS, V101, ARTN 054312.
LU P, 2006, J APPL PHYS, V99, ARTN 073510.
LU P, 2007, INT J SOLIDS STRUCT, V44, P5289, DOI 10.1016/j.ijsolstr.2006.12.034.
LU P, 2007, J APPL PHYS, V101, ARTN 073504.
LU X, 2005, CHEM REV, V105, P3643, DOI 10.1021/cr030093d.
MA RZ, 1998, J MATER SCI, V33, P5243.
MEYYAPPAN M, 2005, CARBON NANOTUBES SCI.
MIR M, 2008, COMP MATER SCI, V43, P540, DOI 10.1016/j.commatsci.2007.12.024.
MURMU T, 2009, COMP MATER SCI, V46, P854, DOI 10.1016/j.commatsci.2009.04.019.
MURMU T, 2009, PHYSICA E, V41, P1232, DOI 10.1016/j.physe.2009.02.004.
MURMU T, 2009, PHYSICA E, V41, P1451, DOI 10.1016/j.physe.2009.04.015.
MURMU T, 2010, COMP MATER SCI, V47, P721, DOI 10.1016/j.commatsci.2009.10.015.
NEWMARK NM, 1959, ASCE J ENG MECH DIVI, V85, P67.
PEDDIESON J, 2003, INT J ENG SCI, V41, P305.
REDDY JN, 1984, J APPL MECH-T ASME, V51, P745.
REDDY JN, 2007, ENG SCI, V45, P288.
REDDY JN, 2008, J APPL PHYS, V103, ARTN 023511.
SEARS A, 2004, PHYS REV B, V69, ARTN 235406.
SIMSEK M, 2007, J STRUCT ENG-ASCE, V133, P1733, DOI 10.1061/(ASCE)0733-9445(2007)133:12(1733).
SIMSEK M, 2009, COMPOS STRUCT, V90, P465, DOI 10.1016/j.compstruct.2009.04.024.
SIMSEK M, 2009, J SOUND VIB, V320, P235, DOI 10.1016/j.jsv.2008.07.012.
SIMSEK M, 2010, COMPOS STRUCT, V92, P2532, DOI 10.1016/j.compstruct.2010.02.008.
SIMSEK M, 2010, COMPOS STRUCT, V92, P904, DOI 10.1016/j.compstruct.2009.09.030.
SUDAK LJ, 2003, J APPL PHYS, V94, P7281, DOI 10.1063/1.1625437.
TOUNSI A, 2008, J APPL PHYS, V104, ARTN 104301.
TSUKAGOSHI K, 2002, PHYSICA B, V323, P107.
WANG CM, 2006, J SOUND VIB, V294, P1060, DOI 10.1016/j.jsv.2006.01.005.
WANG CY, 2007, J NANOSCI NANOTECHNO, V7, P4221, DOI 10.1166/jnn.2007.924.
WANG CY, 2008, NANOTECHNOLOGY, V19, ARTN 075705.
WANG L, 2009, COMP MATER SCI, V45, P584, DOI 10.1016/j.commatsci.2008.12.006.
WANG L, 2009, PHYSICA E, V41, P1835, DOI 10.1016/j.physe.2009.07.011.
WANG LF, 2005, PHYS REV B, V71, ARTN 195412.
WANG Q, 2005, J APPL PHYS, V98, ARTN 124301.
WANG Q, 2007, PHYS LETT A, V363, P236, DOI 10.1016/j.physleta.2006.10.093.
XIAODONG Y, 2009, SCI CHINA SER E, V52, P617.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2004, COMPOS PART B-ENG, V35, P87, DOI 10.1016/j.compositesb.2003.09.002.
ZHANG YQ, 2005, PHYS LETT A, V340, P258, DOI 10.1016/j.physleta.2005.03.064.
ZHANG YQ, 2005, PHYS REV B, V71, ARTN 195404.

Cited Reference Count:
69

Times Cited:
2

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Nanoscience & Nanotechnology; Physics, Condensed Matter

ISSN:
1386-9477

DOI:
10.1016/j.physe.2010.07.003

IDS Number:
697AS

========================================================================

*Record 3 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286461400006
*Order Full Text [ ]

Title:
Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration

Authors:
Cunha, C; Panseri, S; Antonini, S

Author Full Names:
Cunha, Carla; Panseri, Silvia; Antonini, Stefania

Source:
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 7 (1): 50-59 FEB 2011

Language:
English

Document Type:
Review

Author Keywords:
Nervous regeneration; Nanobiomaterials; Nanofibers; Neural stem cells; Drug delivery

KeyWords Plus:
ELECTROSPUN NANOFIBROUS SCAFFOLDS; BOMBYX-MORI SILK; EXTRACELLULAR-MATRIX; CARBON NANOTUBE; BIOMEDICAL APPLICATIONS; MECHANICAL-PROPERTIES; POLY(ETHYLENE OXIDE); CONTROLLED-RELEASE; AXONAL GROWTH; SPINAL-CORD

Abstract:
Effective nerve regeneration and functional recovery subsequent to peripheral nerve injury is still a clinical challenge. Autologous nerve graft transplantation is a feasible treatment in several clinical cases, but it is limited by donor site morbidity and insufficient donor tissue, impairing complete functional recovery. Tissue engineering has introduced innovative approaches to promote and guide peripheral nerve regeneration by using biomimetic conduits creating favorable microenvironments for nervous ingrowth, but despite the development of a plethora of nerve prostheses, few approaches have as yet entered the clinic. Promising strategies using nanotechnology have recently been proposed, such as the use of scaffolds with functionalized cell-binding domains, the use of guidance channels with cell-scale internally oriented fibers, and the possibility of sustained release of neurotrophic factors. This review addresses the fabrication, advantages, drawbacks, and results achie
ved by the most recent nanotechnology approaches in view of future solutions for peripheral nerve repair.
From the Clinical Editor: Peripheral nerve repair strategies are very limited despite numerous advances on the field of neurosciences and regenerative medicine. This review discusses nanotechnology based strategies including scaffolds with functionalized cell binding domains, the use of guidance channels, and the potential use of sustained release neurotropic factors. (C) 2011 Elsevier Inc. All rights reserved.

Reprint Address:
Panseri, S, Univ Bologna, Biomech Lab, Rizzoli Orthopaed Inst, Dept Human Anat & Physiopathol Locomotor Apparat, Via Barbiano 1-10, I-40136 Bologna, Italy.

Research Institution addresses:
[Cunha, Carla] Univ Milano Bicocca, Dept Biotechnol & Biosci, Milan, Italy; [Panseri, Silvia] Rizzoli Orthopaed Inst, Lab Biomech & Technol Innovat, Bologna, Italy; [Panseri, Silvia] Univ Bologna, Biomech Lab, Rizzoli Orthopaed Inst, Dept Human Anat & Physiopathol Locomotor Apparat, I-40136 Bologna, Italy; [Antonini, Stefania] Ist Sci San Raffaele, Div Regenerat Med, I-20132 Milan, Italy

E-mail Address:
panseri@biomec.ior.it

Cited References:
BAWA P, 2009, BIOMED MATER, V4, ARTN 022001.
BERTHIAUME F, 1996, FASEB J, V10, P1471.
BHATTARAI N, 2005, BIOMATERIALS, V26, P6176, DOI 10.1016/j.biomaterials.2005.03.027.
BRANCO MC, 2009, BIOMATERIALS, V30, P1339, DOI 10.1016/j.biomaterials.2008.11.019.
CAI J, 2005, J BIOMED MATER RES A, V75, P374, DOI 10.1002/jbm.a.30432.
CELLOT G, 2009, NAT NANOTECHNOL, V4, P126, DOI 10.1038/NNANO.2008.374.
CHAMBERLAIN LJ, 1998, EXP NEUROL, V154, P315.
CHAUHAN NB, 1999, INT J DEV NEUROSCI, V17, P255.
CHEW SY, 2005, BIOMACROMOLECULES, V6, P2017, DOI 10.1021/bm0501149.
CHEW SY, 2008, BIOMATERIALS, V29, P653, DOI 10.1016/j.biomaterials.2007.10.025.
COREY JM, 2007, J BIOMED MATER RES A, V83, P636, DOI 10.1002/jbm.a.31285.
DAVIS ME, 2005, CIRCULATION, V111, P442, DOI 10.1161/01.CIR.0000153847.47301.80.
DAWSON E, 2008, ADV DRUG DELIVER REV, V60, P215, DOI 10.1016/j.addr.2007.08.037.
DESAI TA, 2000, MED ENG PHYS, V22, P595.
ELBERT DL, 2001, J CONTROL RELEASE, V76, P11.
ELIAS KL, 2002, BIOMATERIALS, V23, P3279.
ELLISBEHNKE RG, 2006, NANOMED-NANOTECHNOL, V2, P207, DOI 10.1016/j.nano.2006.08.001.
ELLISBEHNKE RG, 2006, P NATL ACAD SCI USA, V103, P5054, DOI 10.1073/pnas.0600559103.
EVANS GRD, 2000, J BIOMAT SCI-POLYM E, V11, P869.
FAIRMAN R, 2005, CURR OPIN STRUC BIOL, V15, P453, DOI 10.1016/j.sbi.2005.07.005.
FLEMMING RG, 1999, BIOMATERIALS, V20, P573.
GALVANGARCIA P, 2007, J BIOMAT SCI-POLYM E, V18, P1245.
GELAIN F, 2006, PLOS ONE, V119, P1.
GENG XY, 2005, BIOMATERIALS, V26, P5427, DOI 10.1016/j.biomaterials.2005.01.066.
GERSBACH CA, 2004, BIOTECHNOL BIOENG, V88, P369.
GHASEMIMOBARAKEH L, 2008, BIOMATERIALS, V29, P4532, DOI 10.1016/j.biomaterials.2008.08.007.
HADLOCK T, 1998, ARCH OTOLARYNGOL, V124, P1081.
HUA FJ, 2002, J BIOMED MATER RES, V63, P161.
HUANG ZM, 2004, POLYMER, V45, P5361, DOI 10.1016/j.polymer.2004.04.005.
HUMMER G, 2001, NATURE, V414, P188.
HWANG NS, 2008, ADV DRUG DELIVER REV, V60, P199, DOI 10.1016/j.addr.2007.08.036.
JIN HJ, 2002, BIOMACROMOLECULES, V3, P1233, DOI 10.1021/bm025581u.
JIN HJ, 2004, BIOMACROMOLECULES, V5, P711, DOI 10.1021/bm0343287.
JIN HJ, 2004, BIOMATERIALS, V25, P1039, DOI 10.1016/S0142-9612(03)00609-4.
KEELEY RD, 1991, J RECONSTR MICROSURG, V7, P93.
KHAN T, 1991, BRAIN RES, V541, P139.
KIM K, 2004, J CONTROL RELEASE, V98, P47, DOI 10.1016/j.jconrel.2004.04.009.
KLEINMAN HK, 1986, BIOCHEMISTRY-US, V25, P312.
KOH HS, 2008, BIOMATERIALS, V29, P3574, DOI 10.1016/j.biomaterials.2008.05.014.
KOKKOLI E, 2006, SOFT MATTER, V2, P1015, DOI 10.1039/b608929a.
KOUTSOPOULOS S, 2009, P NATL ACAD SCI USA, V106, P4623, DOI 10.1073/pnas.0807506106.
KYLE S, 2009, TRENDS BIOTECHNOL, V27, P423, DOI 10.1016/j.tibtech.2009.04.002.
LEE CH, 2001, INT J PHARM, V221, P1.
LI CM, 2006, BIOMATERIALS, V27, P3115, DOI 10.1016/j.biomaterials.2006.01.022.
LIANG D, 2007, ADV DRUG DELIVER REV, V59, P1392, DOI 10.1016/j.addr.2007.04.021.
LIU W, 2007, BIOMATERIALS, V28, P5078, DOI 10.1016/j.biomaterials.2007.07.028.
LIU XH, 2004, ANN BIOMED ENG, V32, P477.
LIU Y, 2008, TRENDS BIOTECHNOL, V26, P201, DOI 10.1016/j.tibtech.2008.01.003.
LOVAT V, 2005, NANO LETT, V5, P1107, DOI 10.1021/nl050637m.
LUIS AL, 2008, TISSUE ENG PT A, V14, P979, DOI 10.1089/ten.tea.2007.0273.
LUU YK, 2003, J CONTROL RELEASE, V89, P341, DOI 10.1016/S0168-3659(03)00097-X.
LYONS J, 2004, POLYMER, V45, P7597, DOI 10.1016/j.polymer.2004.08.071.
MA PX, 1999, J BIOMED MATER RES, V46, P60.
MA PX, 2001, J BIOMED MATER RES, V56, P469.
MADAGHIELE M, 2008, J BIOMED MATER RES A, V85, P757, DOI 10.1002/jbm.a.31517.
MADURANTAKAM PA, 2009, NANOMEDICINE-UK, V4, P193, DOI 10.2217/17435889.4.2.193.
MANN BK, 2001, BIOMATERIALS, V22, P3045.
MATTHEWS JA, 2002, BIOMACROMOLECULES, V3, P232.
MAZZATENTA A, 2007, J NEUROSCI, V27, P6931, DOI 10.1523/JNEUROSCI.1051-07.2007.
MCKENZIE JL, 2004, BIOMATERIALS, V25, P1309, DOI 10.1016/j.biomaterials.2003.08.006.
NAGAI Y, 2006, J CONTROL RELEASE, V115, P18, DOI 10.1016/j.jconrel.2006.06.031.
NEAL RA, 2009, TISSUE ENG PT C-METH, V15, P11, DOI 10.1089/ten.tec.2007.0366.
OHKAWA K, 2004, MACROMOL RAPID COMM, V25, P1600, DOI 10.1002/marc.200400253.
PANSERI S, 2008, BMC BIOTECHNOL, V8, ARTN 39.
PATEL S, 2007, NANO LETT, V7, P2122, DOI 10.1021/nl071182z.
PESAKOVA V, 2000, J MATER SCI-MATER M, V11, P793.
SACHLOS E, 2003, EUR CELLS MATER, V5, P29.
SCHENSE JC, 2000, NAT BIOTECHNOL, V18, P415.
SCHNELL E, 2007, BIOMATERIALS, V28, P3012, DOI 10.1016/j.biomaterials.2007.03.009.
SHIELDS KJ, 2004, TISSUE ENG, V10, P1510.
SPILKER MH, 2001, RESTOR NEUROL NEUROS, V18, P23.
SUN ZC, 2003, ADV MATER, V15, P1929, DOI 10.1002/adma.200305136.
TAIPALE J, 1997, FASEB J, V11, P51.
TAN SH, 2005, POLYMER, V46, P6128, DOI 10.1016/j.polymer.2005.05.068.
TARABALLI F, 2009, SOFT MATTER, V5, P660, DOI 10.1039/b809236b.
TARABALLI F, 2010, FRONT NEUROENGINEERI, V3, P1.
UM IC, 2004, BIOMACROMOLECULES, V5, P1428.
VLEGGEERTLANKAMP CLAM, 2007, J BIOMED MATER RES A, V80, P965, DOI 10.1002/jbm.a.30941.
VLEGGEERTLANKAMP CLAM, 2008, J NEUROSURG, V109, P294, DOI 10.3171/JNS/2008/109/8/0294.
WANG W, 2008, J BIOMED MATER RES A, V84, P557, DOI 10.1002/jbm.a.31536.
WANG W, 2008, J BIOMED MATER RES A, V85, P919, DOI 10.1002/jbm.a.31522.
XIE JW, 2009, BIOMATERIALS, V30, P354, DOI 10.1016/j.biomaterials.2008.09.046.
YANG F, 2004, BIOMATERIALS, V25, P1891, DOI 10.1016/j.biomaterials.2003.08.062.
YANG F, 2005, BIOMATERIALS, V26, P2603, DOI 10.1016/j.biomaterials.2004.06.051.
YANNAS IV, 2001, TISSUE ORGAN REGENER, V10.
ZHANG S, 1995, BIOMATERIALS, V16, P1385.
ZHANG YZ, 2004, CHEM MATER, V16, P3406, DOI 10.1021/cm049580f.

Cited Reference Count:
87

Times Cited:
0

Publisher:
ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Subject Category:
Nanoscience & Nanotechnology; Medicine, Research & Experimental

ISSN:
1549-9634

DOI:
10.1016/j.nano.2010.07.004

IDS Number:
709SJ

========================================================================

*Record 4 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286471900070
*Order Full Text [ ]

Title:
Water clusters on Cu(110): Chain versus cyclic structures

Authors:
Kumagai, T; Okuyama, H; Hatta, S; Aruga, T; Hamada, I

Author Full Names:
Kumagai, T.; Okuyama, H.; Hatta, S.; Aruga, T.; Hamada, I.

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (2): Art. No. 024703 JAN 14 2011

Language:
English

Document Type:
Article

KeyWords Plus:
SCANNING TUNNELING MICROSCOPE; METAL-SURFACES; ADSORPTION; PSEUDOPOTENTIALS; FLAT

Abstract:
Water clusters are assembled and imaged on Cu(110) by using a scanning tunneling microscope. Water molecules are arranged along the Cu row to form "ferroelectric" zigzag chains of trimer to hexamer. The trimer prefers the chain form to a cyclic one in spite of the reduced number of hydrogen bonds, highlighting the crucial role of the water-substrate interaction in the clustering of adsorbed water molecules. On the other hand, the cyclic form with maximal hydrogen bonds becomes more favorable for the tetramer, indicating the crossover from chain to cyclic configurations as the constituent number increases. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3525645]

Reprint Address:
Okuyama, H, Kyoto Univ, Grad Sch Sci, Dept Chem, Kyoto 6068502, Japan.

Research Institution addresses:
[Kumagai, T.; Okuyama, H.; Hatta, S.; Aruga, T.] Kyoto Univ, Grad Sch Sci, Dept Chem, Kyoto 6068502, Japan; [Hatta, S.; Aruga, T.] JST CREST, Kawaguchi, Saitama 3320012, Japan; [Hamada, I.] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan

E-mail Address:
hokuyama@kuchem.kyoto-u.ac.jp

Cited References:
BARTELS L, 1997, PHYS REV LETT, V79, P697.
CARRASCO J, 2009, NAT MATER, V8, P427, DOI 10.1038/NMAT2403.
CRUZAN JD, 1996, SCIENCE, V271, P59.
DION M, 2004, PHYS REV LETT, V92, ARTN 246401.
GRECEA ML, 2004, J PHYS CHEM B, V108, P12575, DOI 10.1021/jp049392c.
HAMADA I, 2009, PHYS REV B, V80, ARTN 165411.
HAMADA I, 2010, PHYS REV B, V81, ARTN 115452.
HENDERSON MA, 2002, SURF SCI REP, V46, P1.
HODGSON A, 2009, SURF SCI REP, V64, P381, DOI 10.1016/j.surfrep.2009.07.001.
HOHENBERG P, 1964, PHYS REV, V136, B684, DOI 10.1103/PHYSREV.136.B864.
HUMMER G, 2001, NATURE, V414, P188.
KOHN W, 1965, PHYS REV, V140, P1133.
KUMAGAI T, 2008, E J SURF SCI NANOTEC, V6, P296.
KUMAGAI T, 2008, PHYS REV LETT, V100, ARTN 166101.
KUMAGAI T, 2009, PHYS REV B, V79, ARTN 035423.
KUMAGAI T, 2010, PHYS REV B, V81, ARTN 045402.
MANN DJ, 2003, PHYS REV LETT, V90, ARTN 195503.
MENG S, 2004, PHYS REV B, V69, ARTN 195404.
MICHAELIDES A, 2007, FARADAY DISCUSS, V136, P287, DOI 10.1039/b616689j.
MICHAELIDES A, 2007, NAT MATER, V6, P597, DOI 10.1038/nmat1940.
MITSUI T, 2002, SCIENCE, V297, P1850.
MONKHORST HJ, 1976, PHYS REV B, V13, P5188.
MORGENSTERN K, 2002, J CHEM PHYS, V116, P5746.
MORGENSTERN K, 2002, PHYS REV LETT, V88, ARTN 066102.
MORGENSTERN M, 1996, PHYS REV LETT, V77, P703.
MORIKAWA Y, 2004, PHYS REV B, V69, ARTN 041403.
NAKAMURA M, 2009, J PHYS CHEM C, V113, P4538, DOI 10.1021/jp808336k.
OTANI M, 2006, PHYS REV B, V73, ARTN 115407.
PERDEW JP, 1996, PHYS REV LETT, V77, P3865.
PUGLIANO N, 1992, SCIENCE, V257, P1937.
RANEA VA, 2004, PHYS REV LETT, V92, ARTN 136104.
REN J, 2008, PHYS REV B, V77, ARTN 054110.
SEBASTIANI D, 2005, J CHEM THEORY COMPUT, V1, P78, DOI 10.1021/ct049955o.
STOWELL MHB, 1997, SCIENCE, V276, P812.
TANG QL, 2007, J CHEM PHYS, V127, ARTN 104707.
TANG QL, 2007, SURF SCI, V601, P954, DOI 10.1016/j.susc.2006.11.036.
THIEL PA, 1987, SURF SCI REP, V7, P211.
TROULLIER N, 1991, PHYS REV B, V43, P1993.
VANDERBILT D, 1990, PHYS REV B, V41, P7892.
VERDAGUER A, 2006, CHEM REV, V106, P1478, DOI 10.1021/cr040376l.
YAMADA T, 2006, PHYS REV LETT, V96, ARTN 036105.

Cited Reference Count:
41

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3525645

IDS Number:
709WK

========================================================================

*Record 5 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286897600124
*Order Full Text [ ]

Title:
Multicomponent ballistic transport in narrow single wall carbon nanotubes: Analytic model and molecular dynamics simulations

Authors:
Mutat, T; Adler, J; Sheintuch, M

Author Full Names:
Mutat, T.; Adler, J.; Sheintuch, M.

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (4): Art. No. 044908 JAN 28 2011

Language:
English

Document Type:
Article

KeyWords Plus:
DIFFUSION; ADSORPTION; MEMBRANES; ZEOLITES; FLUIDS

Abstract:
The transport of gas mixtures through molecular-sieve membranes such as narrow nanotubes has many potential applications, but there remain open questions and a paucity of quantitative predictions. Our model, based on extensive molecular dynamics simulations, proposes that ballistic motion, hindered by counter diffusion, is the dominant mechanism. Our simulations of transport of mixtures of molecules between control volumes at both ends of nanotubes give quantitative support to the model's predictions. The combination of simulation and model enable extrapolation to longer tubes and pore networks. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3532083]

Reprint Address:
Mutat, T, Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.

Research Institution addresses:
[Mutat, T.; Adler, J.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel; [Sheintuch, M.] Technion Israel Inst Technol, Dept Chem Engn, IL-32000 Haifa, Israel

E-mail Address:
phr76ja@tx.technion.ac.il

Cited References:
ADLER J, 2002, COMPUT PHYS COMMUN, V147, P665.
BHATIA SK, 2006, ADSORPT SCI TECHNOL, V24, P101.
BRENNER DW, 1990, PHYS REV B, V42, P9458.
CLERC MG, 2006, PHYS REV LETT, V97, ARTN 176102.
DILLON AC, 1997, NATURE, V386, P377.
DUREN T, 2002, MOL PHYS, V100, P3741, DOI 10.1080/0026897021000028429.
EBBESEN TW, 1996, J PHYS CHEM SOLIDS, V57, P951.
ESWARAMOORTHY M, 1999, CHEM PHYS LETT, V304, P207.
GAVALAS GR, 2008, IND ENG CHEM RES, V47, P5797, DOI 10.1021/ie800420z.
GAVALDA S, 2002, LANGMUIR, V18, P2141.
GRUENER S, 2008, PHYS REV LETT, V100, ARTN 064502.
HEFFELFINGER GS, 1994, J CHEM PHYS, V100, P7548.
HEINKE L, 2007, PHYS REV LETT, V99, ARTN 228301.
HUMMER G, 2001, NATURE, V414, P188.
JAKOBTORWEIHEN S, 2005, PHYS REV LETT, V95, ARTN 044501.
KAGANOV IV, 2003, PHYS REV E, V68, P46701.
KEIL FJ, 2000, REV CHEM ENG, V16, P71.
MUTAT T, 2007, THESIS TECHNION.
POWER TD, 2002, J AM CHEM SOC, V124, P1858.
REN ZF, 1998, SCIENCE, V282, P1105.
SHEINTUCH M, 2004, CHEM ENG SCI, V59, P4739, DOI 10.1016/j.ces.2004.09.016.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SZNEJER GA, 2004, AICHE J, V50, P596, DOI 10.1002/aic.10054.
UGARTE D, 1996, SCIENCE, V274, P1897.
VIEIRALINHARES AM, 2003, CHEM ENG SCI, V58, P4129, DOI 10.1016/S0009-2509(03)00304-X.
WANG QY, 1999, PHYS REV LETT, V82, P956.

Cited Reference Count:
26

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3532083

IDS Number:
715PY

========================================================================

*Record 6 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287095500046
*Order Full Text [ ]

Title:
Hydrogen bond and halogen bond inside the carbon nanotube

Authors:
Wang, WZ; Wang, DL; Zhang, Y; Ji, BM; Tian, AM

Author Full Names:
Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (5): Art. No. 054317 FEB 7 2011

Language:
English

Document Type:
Article

KeyWords Plus:
DENSITY FUNCTIONALS; S(N)2 REACTION; LENGTH CHANGE; WATER CHAINS; CHEMISTRY; COMPLEXES; TRANSPORT; CHANNEL; CL

Abstract:
The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electronrich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-den
sity transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated. (C) 2011 American Institute of Physics. [doi:10.1063/1.3549572]

Reprint Address:
Wang, WZ, Luoyang Normal Univ, Coll Chem & Chem Engn, Luoyang 471022, Peoples R China.

Research Institution addresses:
[Wang, Weizhou; Zhang, Yu; Ji, Baoming] Luoyang Normal Univ, Coll Chem & Chem Engn, Luoyang 471022, Peoples R China; [Wang, Donglai] Anshan Normal Univ, Dept Chem, Anshan 114005, Peoples R China; [Tian, Anmin] Sichuan Univ, Fac Chem, Chengdu 610014, Peoples R China

E-mail Address:
wzwanglab@yahoo.com

Cited References:
BERLIN T, 1951, J CHEM PHYS, V19, P208.
BOYS SF, 1970, MOL PHYS, V19, P553, DOI 10.1080/00268977000101561.
DESIRAJU GR, 1999, WEAK HYDROGEN BOND.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FRISCH MJ, 2010, GAUSSIAN 09 REVISION.
FU DX, 2000, SCIENCE, V290, P481.
HALLS MD, 2002, J PHYS CHEM B, V106, P1921.
HALLS MD, 2005, NANO LETT, V5, P1861, DOI 10.1021/nl050722u.
HOBZA P, 1998, J PHYS CHEM A, V102, P2501.
HOBZA P, 2000, CHEM REV, V100, P4253.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JEFFREY GA, 1997, INTRO HYDROGEN BONDI.
JOUNG SK, 2010, PHYS CHEM CHEM PHYS, V12, P8118, DOI 10.1039/c000102c.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2001, NATURE, V412, P802.
LEGON AC, 2010, PHYS CHEM CHEM PHYS, V12, P7736, DOI 10.1039/c002129f.
MCDOWELL SAC, 2005, J AM CHEM SOC, V127, P15515.
METRANGOLO P, 2008, HALOGEN BONDING FUND.
NATARAJAN R, 2010, ANGEW CHEM INT EDIT, V49, P5125, DOI 10.1002/anie.201002418.
NISHIO M, 1998, CH PI INTERACTION EV.
NOY A, 2007, NANO TODAY, V2, P22.
POLITZER P, 1981, CHEM APPL ATOMIC MOL.
POLITZER P, 2010, PHYS CHEM CHEM PHYS, V12, P7748, DOI 10.1039/c004189k.
REED AE, 1988, CHEM REV, V88, P899.
SCHEINER S, 1997, HYDROGEN BONDING.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
TAKAIWA D, 2008, P NATL ACAD SCI USA, V105, P39, DOI 10.1073/pnas.0707917105.
TASIS D, 2006, CHEM REV, V106, P1105, DOI 10.1021/cr050569o.
TOMASI J, 1998, ENCY COMPUTATIONAL C, P2547.
WANG DL, 2006, J ATOM MOL PHYS, V23, P821.
WANG HJ, 2008, SCIENCE, V322, P80, DOI 10.1126/science.1162412.
WANG L, 2009, J PHYS CHEM C, V113, P5368, DOI 10.1021/jp808873r.
WANG WZ, 2004, J PHYS CHEM A, V108, P1799, DOI 10.1021/jp036769q.
WANG WZ, 2008, COLLECT CZECH CHEM C, V73, P862, DOI 10.1135/cccc20080862.
WANG WZ, 2008, J PHYS CHEM A, V112, P4114, DOI 10.1021/jp710992h.
WANG WZ, 2010, J PHYS CHEM A, V114, P7257, DOI 10.1021/jp103457u.
WANG ZY, 2010, CHEM-ASIAN J, V5, P1030, DOI 10.1002/asia.200900557.
XIAO B, 2009, SCI CHINA SER B, V52, P1969, DOI 10.1007/s11426-009-0282-x.
ZHAO Y, 2008, ACCOUNTS CHEM RES, V41, P157, DOI 10.1021/ar700111a.
ZHAO Y, 2008, THEOR CHEM ACC, V120, P215, DOI 10.1007/s00214-007-0310-x.
ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702.

Cited Reference Count:
42

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3549572

IDS Number:
718BT

========================================================================

*Record 7 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287327400054
*Order Full Text [ ]

Title:
Structural studies of water in hydrophilic and hydrophobic mesoporous silicas: An x-ray and neutron diffraction study at 297 K

Authors:
Jelassi, J; Grosz, T; Bako, I; Bellissent-Funel, MC; Dore, JC; Castricum, HL; Sridi-Dorbez, R

Author Full Names:
Jelassi, J.; Grosz, T.; Bako, I.; Bellissent-Funel, M. -C.; Dore, J. C.; Castricum, H. L.; Sridi-Dorbez, R.

Source:
JOURNAL OF CHEMICAL PHYSICS 134 (6): Art. No. 064509 FEB 14 2011

Language:
English

Document Type:
Article

KeyWords Plus:
SUPERCOOLED CONFINED WATER; LIQUID WATER; VYCOR GLASS; CYLINDRICAL PORES; CARBON NANOTUBES; POROUS-GLASS; SCATTERING; DYNAMICS; MOLECULES; MCM-41

Abstract:
Water confined in a sol-gel network has been characterized by x-ray and neutron diffraction for two samples of mesoporous silica: one with a hydrophilic character (a nonmodified one) and another with a hydrophobic character (a modified one with a methylated internal pore surface). The pore size has been previously characterized [J. Jelassi et al., Phys. Chem. Chem. Phys. 134, 1039 (2010)] to have a mean pore diameter of approximately 55 angstrom. The diffraction measurements presented in this paper have been made at room temperature [293 K] for a filling factor of 0.45, giving a mean thickness of 8-9 angstrom for the water layer. The results show that the local order of the confined water molecules in the intermediate region of 3-6 angstrom is significantly different from that of the bulk water and also for the two different environments. For the hydrophilic sample, the siloxyl groups at the surface modify the water structure through the effects of interfacial hydrogen-bondin
g, which influences the orientational configuration of local water molecules and creates a modified spatial arrangement in the pore. In the case of the hydrophobic sample, there is no specific interaction with the pore wall, which is primarily van der Waals type, and the water molecules at the interface are differently oriented to create a hydrogen-bonded network linked more directly to the rest of the water volume. In the present circumstances, the thickness of the water layer has a relatively small dimension so that the interpretation of the measured diffraction pattern is not as straightforward as for the bulk liquids, and it is necessary to consider the effects of diffraction-broadening from a distributed sample volume and also the contribution from cross-terms that remain after conducting a "wet-minus-dry" analysis procedure. These analytic difficulties are discussed in the context of the present measurements and compared with the work of other groups engaged in the stu
dy of water confined in different environments. The present !
results,
again, emphasize the complexity influencing the properties of water in a confined geometry and the strong influence of surface interactions on its behavior. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3530584]

Reprint Address:
Bellissent-Funel, MC, CEA Saclay, Lab Leon Brillouin, CEA, CNRS, F-91191 Gif Sur Yvette, France.

Research Institution addresses:
[Jelassi, J.; Bellissent-Funel, M. -C.] CEA Saclay, Lab Leon Brillouin, CEA, CNRS, F-91191 Gif Sur Yvette, France; [Jelassi, J.; Sridi-Dorbez, R.] Univ Monastir, Dept Phys, Tunis, Tunisia; [Grosz, T.; Bako, I.] Hungarian Acad Sci, Chem Res Ctr, H-1051 Budapest, Hungary; [Dore, J. C.] Univ Kent, Sch Phys Sci, Canterbury CT2 7NH, Kent, England; [Castricum, H. L.] Univ Amsterdam, Vant Hoff Inst Mol Sci, NL-1012 WX Amsterdam, Netherlands

E-mail Address:
marie-claire.bellissent-funel@cea.fr

Cited References:
BAKO I, UNPUB.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BELLISSENTFUNEL MC, 1991, J PHYS-CONDENS MAT, V3, P4065.
BELLISSENTFUNEL MC, 1993, J CHEM PHYS, V98, P4246.
BELLISSENTFUNEL MC, 1993, PHYSICA A, V201, P277.
BELLISSENTFUNEL MC, 1996, J CHEM PHYS, V104, P10023.
BELLISSENTFUNEL MC, 2005, CR GEOSCI, V337, P173, DOI 10.1016/j.crte.2004.10.011.
BERTAGNOLLI H, 1976, MOL PHYS, V32, P759.
BROVCHENKO I, 2000, J CHEM PHYS, V113, P5026.
BROVCHENKO I, 2005, HDB THEORETICAL COMP, V1, P1.
BROVCHENKO IV, 2001, FLUID PHASE EQUILIBR, V183, P331.
CASTRICUM HL, 2006, MICROPOR MESOPOR MAT, V88, P63, DOI 10.1016/j.micromeso.2005.08.033.
CHEN Q, 2008, NANO LETT, V8, P1902, DOI 10.1021/nl080569e.
CHEN SH, 1994, NATO ASI SER C-MATH, V337, P435.
DORE J, 2000, CHEM PHYS, V258, P327.
FOUZRI A, 2002, J CHEM PHYS, V116, P791.
GALLO P, 2000, PHYS REV LETT, V85, UNSP 174714.
GALLO P, 2002, J CHEM PHYS, V116, P342.
GALLO P, 2002, J CHEM PHYS, V117, P369.
GILIJAMSE JJ, 2005, P NATL ACAD SCI USA, V102, P3202, DOI 10.1073/pnas.0404916102.
GIOVAMBATTISTA N, 2006, PHYS REV E 1, V73, ARTN 041604.
GORBATY YE, 1985, MOL PHYS, V55, P571.
GUEGAN R, 2005, CHEM PHYS, V317, P236, DOI 10.1016/j.chemphys.2005.04.034.
HAJDU F, 1972, J APPL CRYSTALLOGR, V5, P395.
HUMMER G, 2001, NATURE, V414, P188.
IIYAMA T, 1995, J PHYS CHEM-US, V99, P10075.
ILER RK, 1979, CHEM SILICA, CH6.
JELASSI J, 2010, PHYS CHEM CHEM PHYS, V10, P1039.
KOCHERBITOV V, 2007, J PHYS CHEM C, V111, P12906, DOI 10.1021/jp072474r.
LIYAMA T, 1997, CHEM PHYS LETT, V274, P152.
LIYAMA T, 2000, CHEM PHYS LETT, V331, P359.
MANCINELLI R, 2010, J PHYS CHEM LETT, V1, P1277, DOI 10.1021/jz100236j.
MORINEAU D, 2003, J CHEM PHYS, V118, P9389, DOI 10.1063/1.1568932.
MORINEAU D, 2004, J CHEM PHYS, V121, P1466, DOI 10.1063/1.1762872.
MORISHIGE K, 2005, J CHEM PHYS, V122, ARTN 044711.
NARTEN AH, 1971, J CHEM PHYS, V55, P2263.
OKHULKOV AV, 1994, J CHEM PHYS, V100, P1578.
PAALMAN HH, 1962, J APPL PHYS, V33, P2635.
SEYEDYAZDI J, 2008, J PHYS-CONDENS MAT, V20, ARTN 205107.
SLIWINSKABARTKOWIAK M, 2008, PHYS CHEM CHEM PHYS, V10, P4909, DOI 10.1039/b808246d.
SMIRNOV P, 2000, J PHYS CHEM B, V104, P5498.
SOPER A, 1999, PHYS REV LETT, V84, P2881.
SOPER AK, 1998, J CHEM PHYS, V109, P1486.
SRIDIDORBEZ R, 2002, J CHEM PHYS, V116, P7269.
STEYTLER DC, 1983, MOL PHYS, V48, P1031.
TAKAHARA S, 1999, J PHYS CHEM B, V103, P5814.
TAKAHARA S, 2005, ADSORPTION S1, V11, P479.
WEBBER JBW, 2007, J PHYS-CONDENS MAT, V19, ARTN 415117.
WOUTERSEN S, 1999, NATURE, V402, P507.
YOSHIDA K, 2008, J CHEM PHYS, V129, ARTN 054702.
ZANOTTI JM, 1999, PHYS REV E B, V59, P3084.
ZHANG Y, 2009, J PHYS CHEM B, V113, P15.

Cited Reference Count:
52

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Physics, Atomic, Molecular & Chemical

ISSN:
0021-9606

DOI:
10.1063/1.3530584

IDS Number:
721BW

========================================================================

*Record 8 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286111300005
*Order Full Text [ ]

Title:
Syntheses, structures and properties of two unusual silver-organic coordination networks: 1D -> 1D tubular intertwinement and existence of an infinite winding water chain

Authors:
Li, B; Zang, SQ; Ji, C; Du, CX; Hou, HW; Mak, TCW

Author Full Names:
Li, Bo; Zang, Shuang-Quan; Ji, Can; Du, Chen-Xia; Hou, Hong-Wei; Mak, Thomas C. W.

Source:
DALTON TRANSACTIONS 40 (4): 788-792 2011

Language:
English

Document Type:
Article

KeyWords Plus:
CRYSTAL-STRUCTURES; MOLECULAR LADDERS; HYDROTHERMAL SYNTHESIS; 3-DIMENSIONAL NETWORK; BLUE FLUORESCENCE; METAL; POLYMERS; FRAMEWORKS; ARCHITECTURES; LIGANDS

Abstract:
Two unusual metal-organic frameworks {[Ag-2(Hbtc)(bpy)(2)]center dot(H2O)(2)}(n) (1), {[Ag-3(btc)(bpy)(3)(H2O)]center dot(H2O)(7)}(n) (2) (H(3)btc = 1,2,3-benzenetricarboxylic acid, bpy = 4,4'-bipyridine) have been synthesized and characterized by single crystal X-ray diffraction. Complex 1 features an infinite 1D -> 1D tubular intertwinement network, while complex 2 exhibits a double ladder structure which contains rare winding water chains. Both infinite 1D -> 1D tubular chains in complex 1 and double ladder in 2 are mutually interconnected by hydrogen bonding and pi ... pi stacking interactions into three-dimensional (3D) supramolecular networks. In addition, thermogravimetric analysis, powder X-ray diffraction (XRD), and photoluminescent behavior of the complexes have also been investigated.

Reprint Address:
Zang, SQ, Zhengzhou Univ, Dept Chem, Zhengzhou 450001, Peoples R China.

Research Institution addresses:
[Li, Bo; Zang, Shuang-Quan; Ji, Can; Du, Chen-Xia; Hou, Hong-Wei; Mak, Thomas C. W.] Zhengzhou Univ, Dept Chem, Zhengzhou 450001, Peoples R China; [Mak, Thomas C. W.] Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China

E-mail Address:
zangsqzg@zzu.edu.cn

Cited References:
*SIEM ANAL XRAY SY, 1996, AR DET CONTR INT SOF.
ALLENDORF MD, 2009, CHEM SOC REV, V38, P1330, DOI 10.1039/b802352m.
BARBOUR LJ, 1998, NATURE, V393, P671.
BARNETT SA, 2001, J CHEM SOC DALTON, P567.
BATTEN SR, 1998, ANGEW CHEM INT EDIT, V37, P1460.
BATTEN SR, 2001, CRYSTENGCOMM, V3, P76.
BIRADHA K, 2000, J CHEM SOC DALTON, P3837, DOI 10.1039/b003733h.
BLAKE AJ, 1997, CHEM COMMUN 1107, P2027.
BONDI A, 1964, J PHYS CHEM-US, V68, P441.
BRIZARD A, 2008, ANGEW CHEM INT EDIT, V47, P2063, DOI 10.1002/anie.200704609.
CARLUCCI L, 2000, CHEM COMMUN, P1319.
CARLUCCI L, 2003, COORDIN CHEM REV, V246, P247, DOI 10.1016/S0010-8545(03)00126-7.
CARLUCCI L, 2003, CRYSTENGCOMM, V5, P269, DOI 10.1039/b305246j.
CARLUCCI L, 2004, CHEM COMMUN 0221, P380, DOI 10.1039/b314322h.
CARLUCCI L, 2008, CRYST GROWTH DES, V8, P162, DOI 10.1021/cg700884q.
CHEN XD, 2008, CHEM COMMUN 0321, P1296, DOI 10.1039/b716461k.
CHEN XD, 2009, CHEM-EUR J, V15, P12974, DOI 10.1002/chem.200902306.
CHEON YE, 2008, CHEM-EUR J, V14, P3961, DOI 10.1002/chem.200701813.
CUKIERMAN S, 2000, BIOPHYS J, V78, P1825.
CUSTELCEAN R, 2000, ANGEW CHEM INT EDIT, V39, P3094.
DU M, 2005, CHEM COMMUN 1128, P5521, DOI 10.1039/b509875k.
DU M, 2007, INORG CHEM, V46, P3984, DOI 10.1021/ic062098+.
DU M, 2008, CRYSTENGCOMM, V10, P1855, DOI 10.1039/b810121c.
DU M, 2009, CRYST GROWTH DES, V9, P1655, DOI 10.1021/cg801393a.
DU M, 2010, CRYST GROWTH DES, V10, P3285, DOI 10.1021/cg100465u.
EVANS OR, 2001, CHEM MATER, V13, P2705, DOI 10.1021/cm010301n.
FEI Z, 2005, ANGEW CHEM INT EDIT, V44, P5720.
FRASER CSA, 2001, CHEM COMMUN, P1310.
FUJITA M, 1996, COORDIN CHEM REV, V148, P249.
GENUIS ED, 2008, INORG CHEM, V47, P6184, DOI 10.1021/ic800069f.
GUTSCHKE SOH, 2001, ANGEW CHEM INT EDIT, V40, P1920.
HABIB HA, 2008, DALTON T, P4877, DOI 10.1039/b803813a.
HARVEY PD, 1998, COORDIN CHEM REV, V171, P351.
HUMMER G, 2001, NATURE, V414, P188.
INFANTES L, 2002, CRYSTENGCOMM 0722, P454, DOI 10.1039/b204934a.
INFANTES L, 2003, CRYSTENGCOMM, V5, P480, DOI 10.1039/b312846f.
JANSEN M, 1987, ANGEW CHEM INT EDIT, V26, P1098.
JIN CM, 2006, CHEM COMMUN, P5039, DOI 10.1039/b612885h.
JUDE KM, 2002, BIOCHEMISTRY-US, V41, P2485.
LEE EY, 2005, J AM CHEM SOC, V127, P6374, DOI 10.1021/ja043756x.
LI SG, 2010, CRYSTENGCOMM, V12, P2001, DOI 10.1039/b922566h.
LI X, 2010, INORG CHEM, V49, P1865, DOI 10.1021/ic902241n.
LIU B, 2006, INORG CHEM COMMUN, V9, P364, DOI 10.1016/j.inoche.2006.01.004.
LIU JQ, 2009, CRYSTENGCOMM, V11, P1207, DOI 10.1039/b905427h.
LIU YY, 2008, J COORD CHEM, V61, P3450, DOI 10.1080/00958970802064895.
LUAN XJ, 2005, ANGEW CHEM INT EDIT, V44, P3864, DOI 10.1002/anie.200500744.
LUAN XJ, 2006, CHEM-EUR J, V12, P6281, DOI 10.1002/chem.200501559.
LUDWIG R, 2001, ANGEW CHEM INT EDIT, V40, P1808.
LUO F, 2007, CHEM COMMUN, P3744, DOI 10.1039/b706177c.
MAHMOUDI G, 2009, CRYSTENGCOMM, V11, P50, DOI 10.1039/b813701n.
MAK TCW, 2007, COORDIN CHEM REV, V251, P2311, DOI 10.1016/j.ccr.2006.11.001.
MASCAL M, 2006, ANGEW CHEM INT EDIT, V45, P32, DOI 10.1002/anie.200501839.
MIR MH, 2008, INORG CHEM, V47, P7728, DOI 10.1021/ic800766q.
MIR MH, 2009, CHEM COMMUN, P4539, DOI 10.1039/b906270j.
NG MT, 2004, CHEM-EUR J, V10, P5853, DOI 10.1002/chem.200400551.
NI Z, 2001, CRYST GROWTH DES, V1, P195.
NIU CY, 2007, DALTON T, P5710, DOI 10.1039/b709204k.
PAL S, 2003, ANGEW CHEM INT EDIT, V42, P1741, DOI 10.1002/anie.200250444.
PIGGE FC, 2009, CRYSTENGCOMM, V11, P1227, DOI 10.1039/b906196g.
PLATER MJ, 2000, J CHEM SOC DALTON, P1995.
PYYKKO P, 1997, CHEM REV, V97, P597.
ROUX B, 1999, SCIENCE, V285, P100.
SARKAR M, 2005, CHEM COMMUN, P2229, DOI 10.1039/b500666j.
SHELDRICK GM, SADABS 2 O5.
SHELDRICK GM, 1985, CRYSTALLOGRAPHIC COM, P1175.
SHELDRICK GM, 2008, FOUND CRYSTALLOGR, V64, P112.
SONG JL, 2004, INORG CHEM, V43, P5630, DOI 10.1021/ic049376u.
SREENIVASULU B, 2004, ANGEW CHEM INT EDIT, V43, P5769, DOI 10.1002/anie.200460516.
TAN HQ, 2007, J AM CHEM SOC, V129, P10066, DOI 10.1021/ja073153w.
TONG ML, 2000, INORG CHEM, V39, P2235.
WANG DX, 2010, CRYSTENGCOMM, V12, P1041, DOI 10.1039/b910988a.
WANG PS, 2005, CHEM COMMUN, P4405, DOI 10.1039/b505327g.
WANG XB, 2006, J MOL STRUCT, V796, P28, DOI 10.1016/j.molstruc.2006.03.090.
XU L, 2006, INORG CHEM COMMUN, V9, P220, DOI 10.1016/j.inoche.2005.10.032.
YAM VWW, 1998, COORDIN CHEM REV, V171, P17.
YANG CT, 2001, INORG CHEM, V40, P5934.
YANG EC, 2009, CRYST GROWTH DES, V9, P4933, DOI 10.1021/cg9007119.
YE BH, 2004, INORG CHEM, V43, P6866, DOI 10.1021/ic0492321.
ZANG SQ, 2006, CHEM COMMUN, P4997, DOI 10.1039/b611994h.
ZAWOROTKO MJ, 2001, CHEM COMMUN, P1.
ZHANG JP, 2008, J AM CHEM SOC, V130, P907, DOI 10.1021/ja075408b.
ZHANG ZJ, 2009, INORG CHEM COMMUN, V12, P223, DOI 10.1016/j.inoche.2008.12.017.
ZHENG YZ, 2004, NEW J CHEM, V28, P1412, DOI 10.1039/b409696g.
ZHENG YZ, 2009, DALTON T, P1396, DOI 10.1039/b815843f.
ZHU HF, 2002, CHEM LETT 0905, P898.

Cited Reference Count:
85

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Inorganic & Nuclear

ISSN:
1477-9226

DOI:
10.1039/c0dt00949k

IDS Number:
705EI

========================================================================

*Record 9 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000286691100025
*Order Full Text [ ]

Title:
Emerging Applications of Carbon Nanotubes

Authors:
Schnorr, JM; Swager, TM

Author Full Names:
Schnorr, Jan M.; Swager, Timothy M.

Source:
CHEMISTRY OF MATERIALS 23 (3): 646-657 FEB 8 2011

Language:
English

Document Type:
Review

KeyWords Plus:
MEMBRANE FUEL-CELLS; FIELD-EFFECT TRANSISTORS; DOUBLE-LAYER CAPACITORS; LITHIUM-ION BATTERY; MODIFIED ELECTRODES; HIGH-PERFORMANCE; ELECTROCHEMICAL CHARACTERIZATION; SELECTIVE HYDROGENATION; COMPOSITE ELECTRODES; MOLECULAR SWITCH

Abstract:
On the basis of their unique electrical and mechanical properties, carbon nanotubes (CNTs) have attracted great attention in recent years. A diverse array of methods has been developed to modify CNTs and to assemble them into devices. On the basis of these innovations, many applications that include the use of CNTs have been demonstrated. Transparent electrodes for organic light-emitting diodes (OLEDs), lithium-ion batteries, supercapacitors, and CNT-based electronic components such as field-effect transistors (FETs) have been demonstrated. Furthermore, CNTs have been employed in catalysis and sensing as well as filters and mechanical and biomedical applications. This review highlights illustrative examples from these areas to give an overview of applications of CNTs.

Reprint Address:
Swager, TM, MIT, Dept Chem, 77 Massachusetts Ave, Cambridge, MA 02139 USA.

Research Institution addresses:
[Swager, Timothy M.] MIT, Dept Chem, Cambridge, MA 02139 USA; MIT, Inst Soldier Nanotechnol, Cambridge, MA 02139 USA

E-mail Address:
tswager@mit.edu

Cited References:
AGUIRRE CM, 2009, NANO LETT, V9, P1457, DOI 10.1021/nl8033152.
AJAYAN PM, 1999, CHEM REV, V99, P1787.
AN KH, 2001, ADV MATER, V13, P497.
ASURI P, 2006, BIOTECHNOL BIOENG, V95, P804, DOI 10.1002/bit.21016.
BACKES C, 2009, J AM CHEM SOC, V131, P2172, DOI 10.1021/ja805660b.
BANKS CE, 2005, CHEM COMMUN, P829, DOI 10.1039/b413177k.
BANKS CE, 2006, ANGEW CHEM INT EDIT, V45, P2533, DOI 10.1002/anie.200600033.
BARAVIK I, 2009, LANGMUIR, V25, P13978, DOI 10.1021/la902074w.
BARISCI JN, 2003, SMART MATER STRUCT, V12, P549.
BAUGHMAN RH, 1999, SCIENCE, V284, P1340.
BERTONCELLO P, 2007, J AM CHEM SOC, V129, P10982, DOI 10.1021/ja073360w.
BESTEMAN K, 2003, NANO LETT, V3, P727, DOI 10.1021/nl034139u.
BRADYESTEVEZ AS, 2008, SMALL, V4, P481, DOI 10.1002/smll.200700863.
BRADYESTEVEZ AS, 2010, WATER RES, V44, P3773, DOI 10.1016/j.watres.2010.04.023.
CAI H, 2003, ANAL BIOANAL CHEM, V375, P287, DOI 10.1007/s00216-002-1652-9.
CHEN HJ, 2007, BIOSENS BIOELECTRON, V22, P1811, DOI 10.1016/j.bios.2006.08.013.
CHEN J, 2007, CHEM MATER, V19, P3595, DOI 10.1021/cm070991g.
CHEN JH, 2002, CARBON, V40, P1193.
CHEN RJ, 2001, J AM CHEM SOC, V123, P3838, DOI 10.1021/ja010172b.
CHEN WX, 2003, CARBON, V41, P959, DOI 10.1016/S0008-6223(02)00425-6.
CHENG HM, 1998, APPL PHYS LETT, V72, P3282.
CHIANG IW, 2001, J PHYS CHEM B, V105, P8297.
CHIEN YM, 2010, NANOTECHNOLOGY, V21, ARTN 134020.
COLLIER CP, 2000, SCIENCE, V289, P1172.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DERVISHI E, 2009, J MATER CHEM, V19, P3004, DOI 10.1039/b822469b.
DOMINKO R, 2002, ADV MATER, V14, P1531.
DU CS, 2006, J POWER SOURCES, V160, P1487, DOI 10.1016/j.jpowsour.2006.02.092.
DULIC D, 2003, PHYS REV LETT, V91, P1.
DUMEE LF, 2010, J MEMBRANE SCI, V351, P36, DOI 10.1016/j.memsci.2010.01.025.
EBBESEN TW, 1992, NATURE, V358, P220.
FALVO MR, 1997, NATURE, V389, P582.
FANG HT, 2004, CHEM MATER, V16, P5744, DOI 10.1021/cm035263h.
FEAZELL RP, 2007, J AM CHEM SOC, V129, P8438, DOI 10.1021/ja073231f.
FENG YY, 2009, APPL PHYS LETT, V94, ARTN 123302.
FLAHAUT E, 2003, CHEM COMMUN, P1442, DOI 10.1039/b301514a.
FRANKLIN NR, 2002, APPL PHYS LETT, V81, P913.
FUTABA DN, 2006, NAT MATER, V5, P987, DOI 10.1038/nmat1782.
GEORGAKILAS V, 2002, CHEM COMMUN, P3050, DOI 10.1039/b209843a.
GHEITH MK, 2006, ADV MATER, V18, P2975, DOI 10.1002/adma.200600878.
GOLDONI A, 2010, J PHYS-CONDENS MAT, V22, ARTN 013001.
GOLIKAND AN, 2009, J APPL ELECTROCHEM, V39, P2421, DOI 10.1007/s10800-009-9930-2.
GU H, 2008, ADV MATER, V20, P4433, DOI 10.1002/adma.200801062.
GUAN TJ, 2010, J AEROSOL SCI, V41, P611, DOI 10.1016/j.jaerosci.2010.03.002.
HARUTYUNYAN AR, 2009, SCIENCE, V326, P116, DOI 10.1126/science.1177599.
HATA K, 2004, SCIENCE, V306, P1362.
HENDRICKS TR, 2010, NANOTECHNOLOGY, V21, ARTN 115301.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOEFER M, 2009, APPL PHYS LETT, V95, ARTN 183108.
HONG K, 2009, ORG ELECTRON, V10, P363, DOI 10.1016/j.orgel.2008.11.008.
HOU PX, 2008, CARBON, V46, P2003, DOI 10.1016/j.carbon.2008.09.009.
HU H, 2005, J PHYS CHEM B, V109, P11520, DOI 10.1021/jp050781w.
HU LB, 2010, NANOTECHNOLOGY, V21, ARTN 155202.
HUMMER G, 2001, NATURE, V414, P188.
HUTCHISON JL, 2001, CARBON, V39, P761.
JAVEY A, 2003, NATURE, V424, P654, DOI 10.1038/nature01797.
JENSEN K, 2007, NANO LETT, V7, P3508, DOI 10.1021/nl0721113.
JIANG LC, 2009, J MOL CATAL A-CHEM, V310, P144, DOI 10.1016/j.molcata.2009.06.009.
JIANG LC, 2010, BIOSENS BIOELECTRON, V25, P1402, DOI 10.1016/j.bios.2009.10.038.
KAM NWS, 2009, NANO LETT, V9, P273, DOI 10.1021/nl802859a.
KHOMENKO V, 2005, ELECTROCHIM ACTA, V50, P2499, DOI 10.1016/j.electacta.2004.10.078.
KIM MJ, 2009, CARBON, V47, P3461, DOI 10.1016/j.carbon.2009.08.013.
KONG J, 2000, SCIENCE, V287, P622.
KONG LT, 2010, ANALYST, V135, P368, DOI 10.1039/b920266h.
KREUPL F, 2002, MICROELECTRON ENG, V64, P399.
LAMBERT JM, 1994, CHEM PHYS LETT, V226, P364.
LANDI BJ, 2002, NANO LETT, V2, P1329, DOI 10.1021/nl025800h.
LEGOFF A, 2009, SCIENCE, V326, P1384, DOI 10.1126/science.1179773.
LI F, 2000, CARBON, V38, P2041.
LI HM, 2005, J AM CHEM SOC, V127, P14518, DOI 10.1021/ja054958b.
LI J, 2003, NANO LETT, V3, P597, DOI 10.1021/nl0340677.
LI J, 2003, NANO LETT, V3, P929, DOI 10.1021/nl034220x.
LI WZ, 2003, J PHYS CHEM B, V107, P6292, DOI 10.1021/jp022505c.
LI XF, 2009, APPL PHYS LETT, V95, ARTN 232118.
LI Y, 2004, NANOTECHNOLOGY, V15, P1645, DOI 10.1088/0957-4484/15/11/047.
LIJIMA S, 1991, NATURE, V354, P56.
LIJIMA S, 1993, NATURE, V363, P603.
LIN YH, 2004, NANO LETT, V4, P191, DOI 10.1021/nl0347233.
LIU J, 1998, SCIENCE, V280, P1253.
LIU Z, 2007, ANGEW CHEM INT EDIT, V46, P2023, DOI 10.1002/anie.200604295.
LOBEZ JM, 2010, ANGEW CHEM INT EDIT, V49, P95, DOI 10.1002/anie.200904936.
LOPEZ BP, 2009, ANALYST, V134, P60, DOI 10.1039/b808387h.
LOPEZLORENTE AI, 2010, ANAL CHEM, V82, P5399, DOI 10.1021/ac902629n.
LORDI V, 2001, CHEM MATER, V13, P733, DOI 10.1021/cm000210a.
LU W, 2009, J POWER SOURCES, V189, P1270, DOI 10.1016/j.jpowsour.2009.01.009.
LUO XJ, 2009, J BIOL INORG CHEM, V14, P1275, DOI 10.1007/s00775-009-0572-y.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MINTMIRE JW, 1992, PHYS REV LETT, V68, P631.
MIYATA Y, 2008, J PHYS CHEM C, V112, P3591, DOI 10.1021/jp077709d.
MORIGUCHI I, 2006, ADV MATER, V18, P69, DOI 10.1002/adma.200501366.
MORRIS RS, 2004, J POWER SOURCES, V138, P277, DOI 10.1016/j.jpowsour.2004.06.014.
NG SH, 2005, ELECTROCHIM ACTA, V51, P23, DOI 10.1016/j.electacta.2005.04.045.
NOVAK JP, 2003, APPL PHYS LETT, V83, P4026, DOI 10.1063/1.1626265.
PAWELEC B, 2006, CARBON, V44, P84, DOI 10.1016/j.carbon.2005.07.004.
PHAM XH, 2010, ANAL CHIM ACTA, V671, P36, DOI 10.1016/j.aca.2010.05.010.
POLAND CA, 2008, NAT NANOTECHNOL, V3, P423, DOI 10.1038/nnano.2008.111.
PRABHURAM J, 2006, J PHYS CHEM B, V110, P5245, DOI 10.1021/jp0567063.
PUMERA M, 2007, CARBON, P6453.
QI P, 2003, NANO LETT, V3, P347.
QI PF, 2004, J AM CHEM SOC, V126, P11774, DOI 10.1021/ja045900k.
RAKHI RB, 2009, J PHYS CHEM B, V113, P3190, DOI 10.1021/jp810235v.
REDDY ALM, 2009, NANO LETT, V9, P1002, DOI 10.1021/nl803081j.
ROBINSON JA, 2006, NANO LETT, V6, P1747, DOI 10.1021/nl0612289.
RUOFF RS, 1995, CARBON, V33, P925.
SAITO R, 1992, PHYS REV B, V46, P1804.
SALVETAT JP, 1999, APPL PHYS A-MATER, V69, P255.
SHELIMOV KB, 1998, CHEM PHYS LETT, V282, P429.
SIGNORELLI R, 2009, P IEEE, V97, P1837, DOI 10.1109/JPROC.2009.2030240.
SIVAKKUMAR SR, 2007, ELECTROCHIM ACTA, V52, P7377, DOI 10.1016/j.electacta.2007.06.023.
SLJUKIC B, 2006, NANO LETT, V6, P1556, DOI 10.1021/nl060366v.
SNOW ES, 2005, SCIENCE, V307, P1942, DOI 10.1126/science.1109128.
SOMANI SP, 2009, DIAM RELAT MATER, V18, P497, DOI 10.1016/j.diamond.2008.10.042.
SOUTHARD A, 2009, ORG ELECTRON, V10, P1556, DOI 10.1016/j.orgel.2009.09.001.
SRIVASTAVA A, 2004, NAT MATER, V3, P610, DOI 10.1038/nmat1192.
STAII C, 2005, NANO LETT, V5, P1774, DOI 10.1021/nl051261f.
STAR A, 2002, ANGEW CHEM INT EDIT, V41, P2508.
SULLIVAN JA, 2009, CATAL TODAY, V145, P108, DOI 10.1016/j.cattod.2008.05.026.
SWAGER TM, 1998, ACCOUNTS CHEM RES, V31, P201.
TAN XS, 2009, CHEM COMMUN, P7179, DOI 10.1039/b917224f.
TANG H, 2004, CARBON, V42, P191, DOI 10.1016/j.carbon.2003.10.023.
TANG Z, 2010, J ELECTROCHEM SOC, V157, B245, DOI 10.1149/1.3266933.
TANS SJ, 1997, NATURE, V386, P474.
TANS SJ, 1998, NATURE, V393, P49.
TASIS D, 2003, CHEM-EUR J, V9, P4000.
THESS A, 1996, SCIENCE, V273, P483.
TIAN ZQ, 2006, J PHYS CHEM B, V110, P5343, DOI 10.1021/jp056401o.
TOUPIN M, 2004, CHEM MATER, V16, P3184, DOI 10.1021/cm049649j.
TUUKKANEN S, 2006, NANO LETT, V6, P1339, DOI 10.1021/nl060771m.
UDOMVECH A, 2005, CHEM PHYS LETT, V406, P161, DOI 10.1016/j.cplett.2005.02.084.
VASILYEVA SV, 2009, ACS APPL MATER INTER, V1, P2288, DOI 10.1021/am900435j.
VLANDAS A, 2010, ANAL CHEM, V82, P6090, DOI 10.1021/ac1007656.
WALTERS DA, 1999, APPL PHYS LETT, V74, P3803.
WANG C, 2004, NANO LETT, V4, P345, DOI 10.1021/nl034952p.
WANG F, 2008, ANGEW CHEM INT EDIT, V47, P8394, DOI 10.1002/anie.200802762.
WANG F, 2008, J AM CHEM SOC, V130, P5392, DOI 10.1021/ja710795k.
WANG J, 2005, LANGMUIR, V21, P9, DOI 10.1021/la0475977.
WEE G, 2010, J ELECTROCHEM SOC, V157, A179, DOI 10.1149/1.3267874.
WEI BQ, 2001, APPL PHYS LETT, V79, P1172.
WEN YL, 2009, ELECTROCHIM ACTA, V54, P7078, DOI 10.1016/j.electacta.2009.07.038.
WHITE CT, 1998, NATURE, V393, P240.
WIGGINSCAMACHO JD, 2009, J PHYS CHEM C, V113, P19082, DOI 10.1021/jp907160v.
XIE XF, 2007, CARBON, V45, P2365, DOI 10.1016/j.carbon.2007.07.014.
YAMADA Y, 2010, ENERG FUEL, V24, P3373, DOI 10.1021/ef9015203.
YANG JB, 2007, CARBON, V45, P2845, DOI 10.1016/j.carbon.2007.09.030.
YANG WR, 2007, NANOTECHNOLOGY, V18, ARTN 412001.
YOON B, 2009, J PHYS CHEM C, P1520.
YOON BJ, 2004, CHEM PHYS LETT, V388, P170, DOI 10.1016/j.cplett.2004.02.071.
YU MA, 2010, J AM CHEM SOC, V132, P8285, DOI 10.1021/ja9091769.
YUN YH, 2005, SMART MATER STRUCT, V14, P1526, DOI 10.1088/0964-1726/14/6/045.
YUN YS, 2010, SYNTHETIC MET, V160, P561, DOI 10.1016/j.synthmet.2009.12.003.
ZARE HR, 2010, SENSOR ACTUAT B-CHEM, V143, P666, DOI 10.1016/j.snb.2009.10.030.
ZHANG CH, 2010, ELECTROCHIM ACTA, V55, P2835, DOI 10.1016/j.electacta.2009.12.068.
ZHANG M, 2004, SCIENCE, V306, P1358.
ZHANG M, 2005, SCIENCE, V309, P1215, DOI 10.1126/science.1115311.
ZHANG MG, 2004, ANAL CHEM, V76, P5045, DOI 10.1021/ac049519u.
ZHANG W, 2009, CHEM MATER, V21, P3234, DOI 10.1021/cm900747t.
ZHANG WD, 2009, PURE APPL CHEM, V81, P2317, DOI 10.1351/PAC-CON-08-11-25.
ZHANG XZ, 2009, ANAL CHEM, V81, P6006, DOI 10.1021/ac802026j.
ZHAO HZ, 2010, CARBON, V48, P1508, DOI 10.1016/j.carbon.2009.12.046.
ZHAO J, 2000, PHYS REV LETT, V85, P1706.
ZHAO P, 2009, PHYSICA E, V41, P474, DOI 10.1016/j.physe.2008.09.008.
ZHAO P, 2009, SOLID STATE COMMUN, V149, P928, DOI 10.1016/j.ssc.2009.03.027.
ZHOU YK, 2004, ELECTROCHIM ACTA, V49, P257, DOI 10.1016/j.electacta.2003.08.007.
ZHU HW, 2002, SCIENCE, V296, P884.

Cited Reference Count:
164

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0897-4756

DOI:
10.1021/cm102406h

IDS Number:
712UG

========================================================================

*Record 10 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285572800112
*Order Full Text [ ]

Title:
Variational Principle of Carbon Nanotubes with Temperature Changes

Authors:
Fan, T

Author Full Names:
Fan, Tao

Source:
FOURTH INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS 7522: Art. No. 752236 2010

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
carbon nanotubes; temperature changes; variational principle; stationary value conditions; vibration characteristics; Galerkin method

Abstract:
In this paper, the CNS are considered as the Euler-Bernoulli beams which have been used in many references about the CNS. Taken the thermal-mechanical coupling into account, the variational principle for the CNS is presented by the variational integral method. With the derivation of the varitional principle, the stationary value conditions are obtained. At last, the vibration governing equation is illustrated, which will be benefit for the numerical simulation with finite element method in further investigations. From the stationary value conditions deduced by the variational principle, it can be observed that the vibration characteristics of the CNS can be influenced by the temperature changes. It is expected to be useful for the design and application of the nano scale devices.

Reprint Address:
Fan, T, Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin 150001, Peoples R China.

Research Institution addresses:
Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin 150001, Peoples R China

E-mail Address:
fantaoheu@gmail.com

Cited References:
HUMMER G, 2001, NATURE, V414, P188.
LU P, 2006, J APPL PHYS, V99, ARTN 073510.
LZHANG YQ, 2004, PHYS REV B, V70, UNSP 205430.
SHEN HS, 2006, PHYS REV B, V74, ARTN 035410.
WANG Q, 2005, J APPL PHYS, V98, ARTN 124301.
ZHANG YQ, 2008, PHYS LETT A, V372, P1676, DOI 10.1016/j.physleta.2007.10.033.

Cited Reference Count:
6

Times Cited:
0

Publisher:
SPIE-INT SOC OPTICAL ENGINEERING; 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA

Subject Category:
Optics

ISSN:
0277-786X

DOI:
10.1117/12.851464

IDS Number:
BSR97

========================================================================

*Record 11 of 11.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287421700197
*Order Full Text [ ]

Title:
Variational Principle of Carbon Nanotubes with Temperature Changes Based on Nonlocal Euler-Bernoulli Beam Model

Authors:
Fan, T

Author Full Names:
Fan, Tao

Source:
ADVANCES IN FRACTURE AND DAMAGE MECHANICS IX 452-453: 785-788 2011

Language:
English

Document Type:
Proceedings Paper

Author Keywords:
carbon nanotubes; temperature changes; variational principle; nonlocal Euler-Bernoulli Beam Model; critical buckling load

Abstract:
In this paper, the CNTS are considered as the Euler-Bernoulli beams which have been used in many references about the CNTS. Taken the thermal-mechanical coupling and small scale effect into account, the variational principle for the CNTS is presented by the variational integral method. With the derivation of the varitional principle, the vibration governing equation is illustrated, which will be benefit for the numerical simulation with finite element method in further investigations. From the stationary value conditions deduced by the variational principle, the influences of the temperature changes and the thermal expansion coefficients based on nonlocal Euler-Bernoulli beam model are presented.

Reprint Address:
Fan, T, Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin 150001, Peoples R China.

Research Institution addresses:
Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin 150001, Peoples R China

E-mail Address:
fantao19812005@yahoo.com.cn

Cited References:
HUMMER G, 2001, NATURE, V414, P188.
LU P, 2006, J APPL PHYS, V99, ARTN 073510.
SHEN HS, 2006, PHYS REV B, V74, ARTN 035410.
WANG Q, 2005, J APPL PHYS, V98, ARTN 124301.
ZHANG YQ, 2004, PHYS REV B, V70, ARTN 205430.
ZHANG YQ, 2008, PHYS LETT A, V372, P1676, DOI 10.1016/j.physleta.2007.10.033.

Cited Reference Count:
6

Times Cited:
0

Publisher:
TRANS TECH PUBLICATIONS LTD; LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND

ISSN:
1013-9826

DOI:
10.4028/www.scientific.net/KEM.452-453.785

IDS Number:
BTN77

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: