Friday, March 18, 2011

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 22 AUG 2011
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287953500004
*Order Full Text [ ]

Title:
Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory

Authors:
Simsek, M

Author Full Names:
Simsek, Mesut

Source:
STEEL AND COMPOSITE STRUCTURES 11 (1): 59-76 FEB 2011

Language:
English

Document Type:
Article

Author Keywords:
vibration; nonlocal Timoshenko beam theory; carbon nanotubes; moving loads

KeyWords Plus:
SHEAR DEFORMATION-THEORY; PRESTRESSED DAMPED BEAM; SMALL LENGTH SCALE; HARMONIC LOAD; WAVE-PROPAGATION; CONTINUUM-MECHANICS; DYNAMIC-ANALYSIS; ELASTICITY THEORY; MICROTUBULES; MODELS

Abstract:
Dynamic analysis of an embedded single-walled carbon nanotube (SWCNT) traversed by a moving nanoparticle, which is modeled as a moving load, is investigated in this study based on the nonlocal Timoshenko beam theory, including transverse shear deformation and rotary inertia. The governing equations and boundary conditions are derived by using the principle of virtual displacement. The Galerkin method and the direct integration method of Newmark are employed to find the dynamic response of the SWCNT. A detailed parametric study is conducted to study the influences of the nonlocal parameter, aspect ratio of the SWCNT, elastic medium constant and the moving load velocity on the dynamic responses of SWCNT. For comparison purpose, free vibration frequencies of the SWCNT are obtained and compared with a previously published study. Good agreement is observed. The results show that the above mentioned effects play an important role on the dynamic behaviour of the SWCNT.

Reprint Address:
Simsek, M, Yildiz Tech Univ, Dept Civil Engn, Davutpasa Campus, TR-34210 Esenler, Turkey.

Research Institution addresses:
Yildiz Tech Univ, Dept Civil Engn, TR-34210 Esenler, Turkey

E-mail Address:
mesutsimsek@gmail.com

Cited References:
ABUHILAL M, 2000, J SOUND VIB, V232, P703.
ADALI S, 2008, PHYS LETT A, V372, P5701, DOI 10.1016/j.physleta.2008.07.003.
AYDOGDU M, 2007, TURK J ENG ENV SCI, V31, P305.
AYDOGDU M, 2008, INT J MECH SCI, V50, P837, DOI 10.1016/j.ijmecsci.2007.10.003.
AYDOGDU M, 2009, COMPOS STRUCT, V89, P94, DOI 10.1016/j.compstruct.2008.07.008.
AYDOGDU M, 2009, PHYSICA E, V41, P1651, DOI 10.1016/j.physe.2009.05.014.
AYDOGDU M, 2009, PHYSICA E, V41, P861, DOI 10.1016/j.physe.2009.01.007.
CHOPRA AK, 2001, DYNAMICS STRUCTURES.
CIVALEK O, 2009, INT J ENG APPL SCI, V2, P47.
CIVALEK O, 2010, MATH COMPUT APPL, V15, P289.
CIVALEK O, 2010, SCI IRAN TRANS B, V17, P367.
COWPER GR, 1966, ASME, V33, P335.
DEDKOV GV, 2007, TECH PHYS LETT+, V33, P51, DOI 10.1134/S1063785007010142.
DEMIR C, 2010, MATH COMPUT APPL, V15, P57.
ECE MC, 2007, ACTA MECH, V190, P185, DOI 10.1007/s00707-006-0417-5.
ERINGEN AC, 1972, INT J ENG SCI, V10, P1.
ERINGEN AC, 1972, INT J ENGNG SCI, V10, P233.
ERINGEN AC, 1983, J APPL PHYS, V54, P4703.
FRYBA L, 1972, VIBRATION SOLIDS STR.
GARINEI A, 2006, INT J ENG SCI, V44, P778, DOI 10.1016/j.ijengsci.2006.04.013.
HEIRECHE H, 2008, PHYSICA E, V40, P2791, DOI 10.1016/j.physe.2007.12.021.
HU YG, 2009, J APPL PHYS, V106, ARTN 044301.
HUMMER G, 2001, NATURE, V414, P188.
IIJIMA S, 1991, NATURE, V354, P56.
KE LL, 2009, COMP MATER SCI, V47, P409, DOI 10.1016/j.commatsci.2009.09.002.
KIANI K, 2010, J SOUND VIB, V329, P2241, DOI 10.1016/j.jsv.2009.12.017.
KLASZTORNY M, 2001, STRUCT ENG MECH, V12, P267.
KOCATURK T, 2006, COMPUT STRUCT, V84, P2113, DOI 10.1016/j.compstruc.2006.08.062.
KOCATURK T, 2006, J SOUND VIB, V291, P302, DOI 10.1016/j.jsv.2005.06.024.
KUMAR D, 2008, J APPL PHYS, V103, ARTN 073521.
LEE HL, 2009, PHYSICA E, V41, P529, DOI 10.1016/j.physe.2008.10.002.
LEE HP, 1994, J SOUND VIB, V171, P361.
LI XF, 2009, APPL PHYS LETT, V94, ARTN 101903.
LIM CW, 2007, J APPL PHYS, V101, ARTN 054312.
LIM CW, 2009, INTERACTION MULTISCA, V2, P223.
LU P, 2006, J APPL PHYS, V99, ARTN 073510.
LU P, 2007, INT J SOLIDS STRUCT, V44, P5289, DOI 10.1016/j.ijsolstr.2006.12.034.
LU P, 2007, J APPL PHYS, V101, ARTN 073504.
MIR M, 2008, COMP MATER SCI, V43, P540, DOI 10.1016/j.commatsci.2007.12.024.
MURMU T, 2009, COMP MATER SCI, V46, P854, DOI 10.1016/j.commatsci.2009.04.019.
MURMU T, 2009, PHYSICA E, V41, P1232, DOI 10.1016/j.physe.2009.02.004.
MURMU T, 2009, PHYSICA E, V41, P1451, DOI 10.1016/j.physe.2009.04.015.
MURMU T, 2010, COMP MATER SCI, V47, P721, DOI 10.1016/j.commatsci.2009.10.015.
NARENDAR S, 2009, COMP MATER SCI, V47, P526, DOI 10.1016/j.commatsci.2009.09.021.
NEWMARK NM, 1959, ASCE J ENG MECH DIVI, V85, P67.
PEDDIESON J, 2003, INT J ENG SCI, V41, P305.
PRADHAN SC, 2009, STRUCT ENG MECH, V32, P811.
PRADHAN SC, 2009, STRUCT ENG MECH, V33, P193.
REDDY JN, 2007, INT J ENG SCI, V45, P288, DOI 10.1016/j.ijengsci.2007.04.004.
REDDY JN, 2008, J APPL PHYS, V103, ARTN 023511.
SATO M, 2009, INTERACT MULTI MECH, V2, P209.
SEARS A, 2004, PHYS REV B, V69, ARTN 235406.
SIMSEK M, 2007, J STRUCT ENG-ASCE, V133, P1733, DOI 10.1061/(ASCE)0733-9445(2007)133:12(1733).
SIMSEK M, 2009, COMPOS STRUCT, V90, P465, DOI 10.1016/j.compstruct.2009.04.024.
SIMSEK M, 2009, J SOUND VIB, V320, P235, DOI 10.1016/j.jsv.2008.07.012.
SIMSEK M, 2010, COMPOS STRUCT, V92, P2532, DOI 10.1016/j.compstruct.2010.02.008.
SIMSEK M, 2010, PHYSICA E, V43, P182, DOI 10.1016/j.physe.2010.07.003.
SIMSEK, 2010, COMPOS STRUCT, V92, P904.
SNIADY P, 2008, J APPL MECH-T ASME, V75, ARTN 024503.
SUDAK LJ, 2003, J APPL PHYS, V94, P7281, DOI 10.1063/1.1625437.
TIMOSHENKO S, 1955, VIBRATION PROBLEMS E.
TOUNSI A, 2008, J APPL PHYS, V104, ARTN 104301.
WANG CM, 2006, J SOUND VIB, V294, P1060, DOI 10.1016/j.jsv.2006.01.005.
WANG L, 2009, COMP MATER SCI, V45, P584, DOI 10.1016/j.commatsci.2008.12.006.
WANG L, 2009, PHYSICA E, V41, P1835, DOI 10.1016/j.physe.2009.07.011.
WANG LF, 2005, PHYS REV B, V71, ARTN 195412.
WANG Q, 2005, J APPL PHYS, V98, ARTN 124301.
WANG Q, 2006, PHYS LETT A, V357, P130, DOI 10.1016/j.physleta.2006.04.026.
WANG Q, 2007, PHYS LETT A, V363, P236, DOI 10.1016/j.physleta.2006.10.093.
WANG RT, 1997, J SOUND VIB, V207, P731.
WANG RT, 1998, STRUCT ENG MECH, V6, P229.
WANG RT, 1999, STRUCT ENG MECH, V7, P361.
XIAODONG Y, 2009, SCI CHINA SER E, V52, P617.
YOON J, 2003, COMPOS SCI TECHNOL, V63, P1533, DOI 10.1016/S0266-3538(03)00058-7.
YOON J, 2004, COMPOS PART B-ENG, V35, P87, DOI 10.1016/j.compositesb.2003.09.002.
YU L, 2008, STRUCT ENG MECH, V29, P155.
ZHANG YQ, 2004, PHYS REV B, V70, ARTN 205430.
ZHANG YQ, 2005, PHYS LETT A, V340, P258, DOI 10.1016/j.physleta.2005.03.064.
ZHANG YQ, 2005, PHYS REV B, V71, ARTN 195404.
ZHANG YQ, 2006, PHYS LETT A, V349, P370, DOI 10.1016/j.physleta.2005.09.036.
ZHENG DY, 1998, J SOUND VIB, V212, P455.
ZHU XQ, 1999, J SOUND VIB, V228, P377.

Cited Reference Count:
82

Times Cited:
0

Publisher:
TECHNO-PRESS; PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA

Subject Category:
Construction & Building Technology; Engineering, Civil; Materials Science, Composites

ISSN:
1229-9367

IDS Number:
729MH

========================================================================

*Record 2 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287844400012
*Order Full Text [ ]

Title:
Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture

Authors:
Zhao, HX; Kong, XJ; Li, H; Jin, YC; Long, LS; Zeng, XC; Huang, RB; Zheng, LS

Author Full Names:
Zhao, Hai-Xia; Kong, Xiang-Jian; Li, Hui; Jin, Yi-Chang; Long, La-Sheng; Zeng, Xiao Cheng; Huang, Rong-Bin; Zheng, Lan-Sun

Source:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 108 (9): 3481-3486 MAR 1 2011

Language:
English

Document Type:
Article

Author Keywords:
ab initio molecular dynamics; phase transition; supramolecular nanochannel

KeyWords Plus:
WALLED CARBON NANOTUBES; NEUTRON-DIFFRACTION; PHASE-TRANSITION; DENSITY; DYNAMICS; CRYSTAL; NANOSCALE; EXISTENCE

Abstract:
Ferroelectric materials are characterized by spontaneous electric polarization that can be reversed by inverting an external electric field. Owing to their unique properties, ferroelectric materials have found broad applications in microelectronics, computers, and transducers. Water molecules are dipolar and thus ferroelectric alignment of water molecules is conceivable when water freezes into special forms of ice. Although the ferroelectric ice XI has been proposed to exist on Uranus, Neptune, or Pluto, evidence of a fully proton-ordered ferroelectric ice is still elusive. To date, existence of ferroelectric ice with partial ferroelectric alignment has been demonstrated only in thin films of ice grown on platinum surfaces or within microdomains of alkali-hydroxide doped ice I. Here we report a unique structure of quasi-one-dimensional (H2O)(12n) wire confined to a 3D supramolecular architecture of [(Cu2CuII)-Cu-I(CDTA)(4,4'-bpy)(2)](n) H(4)CDTA, trans-1,2-diaminocyclohexane-
N,N,N',N'-tetraacetic acid; 4,4'-bpy, 4,4'-bipyridine). In stark contrast to the bulk, this 1D water wire not only exhibits enormous dielectric anomalies at approximately 175 and 277 K, respectively, but also undergoes a spontaneous transition between "1D liquid" and "1D ferroelectric ice" at approximately 277 K. Hitherto unrevealed properties of the 1D water wire will be valuable to the understanding of anomalous properties of water and synthesis of novel ferroelectric materials.

Reprint Address:
Long, LS, Xiamen Univ, State Key Lab Phys Chem Solid Surface, Xiamen 361005, Peoples R China.

Research Institution addresses:
[Zhao, Hai-Xia; Kong, Xiang-Jian; Jin, Yi-Chang; Long, La-Sheng; Huang, Rong-Bin; Zheng, Lan-Sun] Xiamen Univ, State Key Lab Phys Chem Solid Surface, Xiamen 361005, Peoples R China; [Zhao, Hai-Xia; Kong, Xiang-Jian; Jin, Yi-Chang; Long, La-Sheng; Huang, Rong-Bin; Zheng, Lan-Sun] Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China; [Li, Hui; Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA

E-mail Address:
lslong@xmu.edu.cn; xzeng1@unl.edu

Cited References:
*ACC, MAT STUD.
BAI JE, 2006, P NATL ACAD SCI USA, V103, P19664, DOI 10.1073/pnas.0608401104.
BECKE AD, 1988, PHYS REV A, V38, P3098.
BISHOP CL, 2009, FARADAY DISCUSS, V141, P277, DOI 10.1039/b807377p.
BRAMWELL ST, 1999, NATURE, V397, P212.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CHERUZEL LE, 2003, ANGEW CHEM INT EDIT, V42, P5452, DOI 10.1002/anie.200352157.
CROSS LE, 1987, FERROELECTRICS, V76, P241.
CUI H, 2008, ANGEW CHEM INT EDIT, V47, P3376, DOI 10.1002/anie.200705846.
DAUBEROSGUTHORP.P, 1998, PROTEIN-STRUCT FUNCT, V4, P31.
FEBLES M, 2006, J AM CHEM SOC, V128, ARTN JA063223J.
FUKAZAWA H, 2006, ASTROPHYS J 2, V652, L57.
FUKAZAWA H, 2009, NUCL INSTRUM METH A, V600, P279, DOI 10.1016/j.nima.2008.11.044.
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9.
GRIMME S, 2004, J COMPUT CHEM, V25, P1463, DOI 10.1002/jcc.20078.
GRIMME S, 2006, J COMPUT CHEM, V27, P1787, DOI 10.1002/jcc.20495.
HARTWIGSEN C, 1998, PHYS REV B, V58, P3641.
HORIUCHI S, 2008, J AM CHEM SOC, V130, P13382, DOI 10.1021/ja8032235.
HUMMER G, 2001, NATURE, V414, P188.
IEDEMA MJ, 1998, J PHYS CHEM B, V102, P9203.
JACKSON SM, 1997, J PHYS CHEM B, V101, P6177.
JANIAK C, 2002, J AM CHEM SOC, V124, P14010, DOI 10.1021/ja0274608.
KAO KC, 2004, DIELECTRIC PHENOMENA.
KOGA K, 2001, NATURE, V412, P802.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
LEBARD DN, 2010, J PHYS CHEM B, V114, P9246, DOI 10.1021/jp1006999.
LEE C, 1988, PHYS REV B, V37, P785, DOI 10.1103/PHYSREVB.37.785.
LEVINGER NE, 2002, SCIENCE, V298, P1722.
LINES ME, 1977, PRINCIPLES APPL FERR.
LIPPERT G, 1997, MOL PHYS, V92, P477.
LONG LS, 2004, INORG CHEM, V43, P3798, DOI 10.1021/ic0494354.
LUO CF, 2008, NANO LETT, V8, P2607, DOI 10.1021/nl072642r.
MANIWA Y, 2002, J PHYS SOC JPN, V71, P2863, DOI 10.1143/JPSJ.71.2863.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MIKAMI F, 2009, ACS NANO, V3, P1279, DOI 10.1021/nn900221t.
MURRELL JN, 1994, PROPERTIES LIQUIDS S.
PETRENKO VF, 1999, PHYS ICE.
PRATT LR, 2002, CHEM REV, V102, P2625, DOI 10.1021/cr000705j.
RAPPE AK, 1991, J PHYS CHEM-US, V95, P3358.
RUN CY, 2004, SCIENCE, V304, P80.
SAMARA GA, 2003, J PHYS-CONDENS MAT, V15, R367.
SANSOM MSP, 2001, NATURE, V414, P156.
SINGER SJ, 2005, PHYS REV LETT, V94, ARTN 135701.
SPEK AL, 2003, J APPL CRYSTALLOGR 1, V36, P7, DOI 10.1107/S0021889802022112.
SU XC, 1998, PHYS REV LETT, V80, P1533.
VANDEVONDELE J, 2005, COMPUT PHYS COMMUN, V167, P103, DOI 10.1016/j.cpc.2004.12.014.
ZUBAVICUS Y, 2004, SCIENCE, V304, P974.

Cited Reference Count:
47

Times Cited:
0

Publisher:
NATL ACAD SCIENCES; 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA

Subject Category:
Multidisciplinary Sciences

ISSN:
0027-8424

DOI:
10.1073/pnas.1010310108

IDS Number:
728AD

========================================================================

*Record 3 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287974300006
*Order Full Text [ ]

Title:
Vibrating carbon nanotubes as water pumps

Authors:
Qiu, H; Shen, R; Guo, WL

Author Full Names:
Qiu, Hu; Shen, Rong; Guo, Wanlin

Source:
NANO RESEARCH 4 (3): 284-289 MAR 2011

Language:
English

Document Type:
Article

Author Keywords:
Nanopump; carbon nanotube; nanofluidics; centrifugal forces; water dynamics

KeyWords Plus:
MOLECULAR-DYNAMICS; TRANSPORT; PERMEATION; DESALINATION; MEMBRANES; CHANNEL

Abstract:
Nanopumps conducting fluids directionally through nanopores and nanochannels have attracted considerable interest for their potential applications in nanofiltration, water purification, and hydroelectric power generation. Here, we demonstrate by molecular dynamics simulations that an excited vibrating carbon nanotube (CNT) cantilever can act as an efficient and simple nanopump. Water molecules inside the vibrating cantilever are driven by centrifugal forces and can undergo a continuous flow from the fixed to free ends of the CNT. Further extensive simulations show that the pumping function holds good not only for a single-file water chain in a narrow (6,6) CNT, but also for bulk-like water columns inside wider CNTs, and that the water flux increases monotonically with increasing diameter of the nanotube.

Reprint Address:
Guo, WL, Nanjing Univ Aeronaut & Astronaut, Inst Nano Sci, Nanjing 210016, Peoples R China.

Research Institution addresses:
[Qiu, Hu; Shen, Rong; Guo, Wanlin] Nanjing Univ Aeronaut & Astronaut, Inst Nano Sci, Nanjing 210016, Peoples R China

E-mail Address:
wlguo@nuaa.edu.cn

Cited References:
BABIC B, 2003, NANO LETT, V3, P1577, DOI 10.1021/nl0344716.
CHANG T, 2008, PHYS REV LETT, V101, ARTN 175501.
CHEN M, 2009, NANO RES, V2, P938, DOI 10.1007/s12274-009-9096-6.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DAI YT, 2008, NANO RES, V1, P176, DOI 10.1007/s12274-008-8014-7.
DEGROOT BL, 2001, SCIENCE, V294, P2353.
DUAN WH, 2010, ACS NANO, V4, P2338, DOI 10.1021/nn1001694.
ESSMANN U, 1995, J CHEM PHYS, V103, P8577.
GARCIASANCHEZ D, 2007, PHYS REV LETT, V99, ARTN 085501.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HOLT JK, 2009, ADV MATER, V21, P3542, DOI 10.1002/adma.200900867.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
JENSEN K, 2007, NANO LETT, V7, P3508, DOI 10.1021/nl0721113.
JENSEN K, 2008, NAT NANOTECHNOL, V3, P533, DOI 10.1038/nnano.2008.200.
JENSEN MO, 2003, BIOPHYS J, V85, P2884.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KALE L, 1999, J COMPUT PHYS, V151, P283.
LONGHURST MJ, 2007, NANO LETT, V7, P3324, DOI 10.1021/nl071537e.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
PONCHARAL P, 1999, SCIENCE, V283, P1513.
QIU H, 2010, BBA-BIOMEMBRANES, V1798, P318, DOI 10.1016/j.bbamem.2009.11.015.
SAZONOVA V, 2004, NATURE, V431, P284, DOI 10.1038/nature02905.
SERVICE RF, 2006, SCIENCE, V313, P1088.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
THOMAS JA, 2009, PHYS REV LETT, V102, ARTN 184502.
TREACY MMJ, 1996, NATURE, V381, P678.
WANG Q, 2009, NANO LETT, V9, P245, DOI 10.1021/nl802829z.
YUAN QZ, 2009, J AM CHEM SOC, V131, P6374, DOI 10.1021/ja8093372.
ZAMBRANO HA, 2009, NANO LETT, V9, P66, DOI 10.1021/nl802429s.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZUO GC, 2010, ACS NANO, V4, P205, DOI 10.1021/nn901334w.

Cited Reference Count:
34

Times Cited:
0

Publisher:
TSINGHUA UNIV PRESS; TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA

Subject Category:
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied

ISSN:
1998-0124

DOI:
10.1007/s12274-010-0080-y

IDS Number:
729TR

========================================================================

*Record 4 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287523900063
*Order Full Text [ ]

Title:
Density Functional Theory Study on the Water Clusters on Graphene Chip

Authors:
Abe, S; Nagoya, Y; Watari, F; Tachikawa, H

Author Full Names:
Abe, Shigeaki; Nagoya, Yoshinori; Watari, Fumio; Tachikawa, Hiroto

Source:
JAPANESE JOURNAL OF APPLIED PHYSICS 50 (1): Art. No. 01BJ02 Part 3 Sp. Iss. SI JAN 2011

Language:
English

Document Type:
Article

KeyWords Plus:
INITIO MOLECULAR-DYNAMICS; CARBON NANOTUBES; DIFFUSION DYNAMICS; AMORPHOUS-CARBON; THYMINE DIMER; SIMULATION; SURFACE; ION; MD

Abstract:
The structures and electronic states of graphene-water interaction systems have been investigated by means of density functional theory (DFT) method to elucidate the effects of water clusters on the electronic states of graphene chip. Solvation caused by five to eight water molecules (n = 5-8) was examined as the interaction systems. A graphene chip composed of 14 benzene rings was used as a model of finite-sized graphene (C42H16). The water clusters interact with the graphene chip with hydrogen bonds. The band gap of graphene was slightly red-shifted by the solvation and the first excitation energy was saturated around n = 5. The electronic states of graphene-water systems were discussed on the basis of theoretical results. (c) 2011 The Japan Society of Applied Physics

Reprint Address:
Abe, S, Hokkaido Univ, Grad Sch Dent Med, Dept Biomed Dent Med & Engn, Sapporo, Hokkaido 0608586, Japan.

Research Institution addresses:
[Abe, Shigeaki; Watari, Fumio] Hokkaido Univ, Grad Sch Dent Med, Dept Biomed Dent Med & Engn, Sapporo, Hokkaido 0608586, Japan; [Nagoya, Yoshinori; Tachikawa, Hiroto] Hokkaido Univ, Grad Sch Engn, Div Mat Chem, Sapporo, Hokkaido 0608628, Japan

E-mail Address:
sabe@den.hokudai.ac.jp

Cited References:
*GAUSS INC, 2003, AB IN MO CALC PROGR.
ABE S, 2010, JPN J APPL PHYS, V49, ARTN 01AH07.
C V, 2002, Nano Lett, V2, P2, DOI 10.1021/NL025689F.
ELLISON MD, 2005, J PHYS CHEM B, V109, P10640, DOI 10.1021/jp0444417.
HUMMER G, 2001, NATURE, V414, P188.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
RANA M, 2007, J CHEM SCI, V119, P367.
TACHIKAWA H, 2005, J PHYS CHEM B, V109, P13255, DOI 10.1021/jp051418s.
TACHIKAWA H, 2006, J CHEM PHYS, V125, ARTN 144307.
TACHIKAWA H, 2006, J PHYS CHEM A, V110, P153, DOI 10.1021/jp0550659.
TACHIKAWA H, 2006, J PHYS CHEM B, V110, P20445, DOI 10.1021/jp0616031.
TACHIKAWA H, 2007, J CHEM PHYS, V126, ARTN 194310.
TACHIKAWA H, 2008, CHEM PHYS LETT, V462, P321, DOI 10.1016/j.cplett.2008.07.107.
TACHIKAWA H, 2008, J PHYS CHEM B, V112, P7315, DOI 10.1021/jp801564t.
TACHIKAWA H, 2008, J PHYS CHEM C, V112, P10193, DOI 10.1021/jp800398y.
TACHIKAWA H, 2009, THIN SOLID FILMS, V518, P877, DOI 10.1016/j.tsf.2009.07.108.
TACHIKAWA H, 2010, JPN J APPL PHYS, V49.
WERDER T, 2001, NANO LETT, V1, P697, DOI 10.1021/nl015640u.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.

Cited Reference Count:
19

Times Cited:
0

Publisher:
JAPAN SOC APPLIED PHYSICS; KUDAN-KITA BUILDING 5TH FLOOR, 1-12-3 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN

Subject Category:
Physics, Applied

ISSN:
0021-4922

DOI:
10.1143/JJAP.50.01BJ02

IDS Number:
723RG

========================================================================

*Record 5 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000287924700016
*Order Full Text [ ]

Title:
Water and ion transport through functionalised carbon nanotubes: implications for desalination technology

Authors:
Corry, B

Author Full Names:
Corry, Ben

Source:
ENERGY & ENVIRONMENTAL SCIENCE 4 (3): 751-759 MAR 2011

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; MECHANOSENSITIVE CHANNEL; ACETYLCHOLINE-RECEPTOR; MEMBRANES; PERMEATION; PORES; AQUAPORIN-1; SELECTIVITY; CONDUCTION; NANOPORES

Abstract:
The use of semipermeable membranes containing carbon nanotubes (CNTs) that form continuous pores has been suggested as a way to reduce the cost of desalination via reverse osmosis. Example membranes containing aligned CNTs have been fabricated, but obtaining only the very narrow pores that are able to block the passage of ions while allowing a rapid flow of water remains a challenge and previous computational studies have focused on idealised tubes. Here molecular dynamics simulations are used to examine water and ion transport through functionalised CNTs with the aim of investigating whether such chemical modification allows the performance of CNT based membranes to be improved, or for larger diameter pores to be used. A range of different charged and polar functional groups were added to a 1.1 nm diameter (8,8) CNT that was previously found to be only moderately effective at rejecting ions. These CNTs were incorporated into membranes and simulations were conducted with a hy
drostatic pressure difference to determine the ion rejection and flux of water passing through each as well as the energy barriers presented to ions and water molecules. The results show that the addition of charges at the entrance of the pore can help to prevent the passage of ions, however, any functionalisation also reduces the flow of water through the membrane due to increased electrostatic interactions between the water molecules and the CNT. Assuming pore densities that have previously been achieved, the performance of these membranes in the simulations is still many times better than existing technology and thus the inclusion of functionalised CNTs in desalination membranes may prove to be useful in achieving salt rejection and rapid water flow.

Reprint Address:
Corry, B, Univ Western Australia, Sch Biomed Biomol & Chem Sci, Perth, WA 6009, Australia.

Research Institution addresses:
Univ Western Australia, Sch Biomed Biomol & Chem Sci, Perth, WA 6009, Australia

E-mail Address:
ben.corry@uwa.edu.au

Cited References:
*UNESCO, 2009, 3 UNESCO.
*WORLD BANK, 2010, WORLD DEV REP 2010 D.
ALLEN R, 2003, J CHEM PHYS, V119, P3905, DOI 10.1063/1.1590956.
ANISHKIN A, 2004, BIOPHYS J, V86, P2883.
BECKSTEIN O, 2003, P NATL ACAD SCI USA, V100, P7063, DOI 10.1073/pnas.1136844100.
BECKSTEIN O, 2004, PHYS BIOL, V1, P42, DOI 10.1088/1478-3967/1/1/005.
BECKSTEIN O, 2006, PHYS BIOL, V3, P147, DOI 10.1088/1478-3975/3/2/007.
CORRY B, 2006, BIOPHYS J, V90, P799, DOI 10.1529/biophysj.105.067868.
CORRY B, 2006, CELL MOL LIFE SCI, V63, P301, DOI 10.1007/s00018-005-5405-8.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
GROSSFIELD A, IMPLEMENTATION WHAM.
HILDER TA, 2009, SMALL, V5, P2183, DOI 10.1002/smll.200900349.
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HUMMER G, 2001, NATURE, V414, P188.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KUMAR S, 1992, J COMPUT CHEM, V13, P1011.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MAMONOV AB, 2007, J GEN PHYSIOL, V130, P111, DOI 10.1085/jgp.200709810.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289.
ROUX B, 1995, COMPUT PHYS COMMUN, V91, P275.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHIKLOMANOV IA, 2003, WATER RESOURCES BEGI.
SKOULIDAS AI, 2002, PHYS REV LETT, V89, ARTN 185901.
SONG C, 2009, J PHYS CHEM B, V113, P7642, DOI 10.1021/jp810102u.
SOTOMAYOR M, 2004, BIOPHYS J, V87, P3050, DOI 10.1529/biophysj.104.046045.
TORRIE GM, 1974, CHEM PHYS LETT, V28, P578.
ZHU FQ, 2002, BIOPHYS J, V83, P154.
ZHU FQ, 2003, BIOPHYS J, V85, P236.
ZHU FQ, 2004, BIOPHYS J 1, V86, P50.

Cited Reference Count:
35

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences

ISSN:
1754-5692

DOI:
10.1039/c0ee00481b

IDS Number:
729CE

========================================================================

*Record 6 of 6.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000285781600033
*Order Full Text [ ]

Title:
Behavior of Carbon Nanotube Membranes as Channels of Salt and Water in Forward Osmosis Process

Authors:
Jia, YX; Li, Y; Hu, YD

Author Full Names:
Jia Yu-Xiang; Li Yan; Hu Yang-Dong

Source:
ACTA PHYSICO-CHIMICA SINICA 27 (1): 228-232 JAN 2011

Language:
Chinese

Document Type:
Article

Author Keywords:
Forward osmosis; Membrane separation; Desalination; Carbon nanotube; Molecular dynamics simulation

KeyWords Plus:
HOLLOW-FIBER MEMBRANES; MOLECULAR-DYNAMICS; TRANSPORT; DESALINATION; CONDUCTION; MODELS

Abstract:
We investigated the influence of carbon nanotube (CNT) size using CNTs including CNT(6,6), CNT(7,7), CNT(8,8), CNT(9,9), CNT(10,10), and CNT(11,11), and the influence of draw solution concentrations, such as 2.5, 3.75, and 5.0 mol . L-1, on the permeation behaviors of salt and water molecules through the biomimetically manufactured forward osmosis (FO) membranes. Nanosecond-scale molecular dynamic simulations were carried out to obtain the relevant information, including the distributions of the water molecules, water flux, and salt permeation within the different CNT membranes. Simulation results show that the FO membrane incorporating CNT(8,8) can achieve the highest water flux and also the lowest salt permeation.

Reprint Address:
Jia, YX, Ocean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong Prov, Peoples R China.

Research Institution addresses:
[Jia Yu-Xiang; Li Yan; Hu Yang-Dong] Ocean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong Prov, Peoples R China

E-mail Address:
jiayx76@yahoo.com.cn

Cited References:
ALEXIADIS A, 2008, MOL SIMULAT, V34, P671, DOI 10.1080/08927020802073057.
BECKSTEIN O, 2004, PHYS BIOL, V1, P42, DOI 10.1088/1478-3967/1/1/005.
CATH TY, 2005, J MEMBRANE SCI, V257, P85, DOI 10.1016/j.memsci.2004.08.039.
CATH TY, 2006, J MEMBRANE SCI, V281, P70, DOI 10.1016/j.memsci.2006.05.048.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DELLAGO C, 2003, PHYS REV LETT, V90, ARTN 105902.
ELIMELECH M, 2007, MEMBR TECHNOL, V1, P7.
FU SQ, 2006, ENV SCI MANAG, V31, P96.
GAO CJ, 2008, TECHNOLOGY WATER TRE, V34, P1.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JIN KY, 2000, B SCI TECHNOL, V16, P125.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
MCCUTCHEON JR, 2006, J MEMBRANE SCI, V278, P114, DOI 10.1016/j.memsci.2005.10.048.
MI B, 2008, J MEMBRANE SCI, V320, P292, DOI 10.1016/j.memsci.2008.04.036.
PETER C, 2005, BIOPHYS J, V89, P2222, DOI 10.1529/biophysj.105.065946.
SHAO Q, 2009, NANO LETT, V9, P989, DOI 10.1021/nl803044k.
THOMAS JA, 2008, NANO LETT, V8, P2788, DOI 10.1021/nl8013617.
VANDERBRUGGEN B, 2003, ENVIRON SCI TECHNOL, V37, P3733, DOI 10.1021/es0201754.
WANG J, 2003, ACTA CHIM SINICA, V61, P1891.
WANG KY, 2007, J MEMBRANE SCI, V300, P6, DOI 10.1016/j.memsci.2007.05.035.
WANG KY, 2009, CHEM ENG SCI, V64, P1577, DOI 10.1016/j.ces.2008.12.032.
WANG R, 2010, J MEMBRANE SCI, V355, P158, DOI 10.1016/j.memsci.2010.03.017.
YANG Q, 2009, SEP PURIF TECHNOL, V69, P269, DOI 10.1016/j.seppur.2009.08.002.
ZHU FQ, 2003, BIOPHYS J, V85, P236.

Cited Reference Count:
25

Times Cited:
0

Publisher:
PEKING UNIV PRESS; PEKING UNIV, CHEMISTRY BUILDING, BEIJING 100871, PEOPLES R CHINA

Subject Category:
Chemistry, Physical

ISSN:
1000-6818

IDS Number:
700YN

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: