Friday, November 13, 2009

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271222500017
*Order Full Text [ ]

Title:
Water-mediated signal multiplication with Y-shaped carbon nanotubes

Authors:
Tu, YS; Xiu, P; Wan, RZ; Hu, J; Zhou, RH; Fang, HP

Author Full Names:
Tu, Yusong; Xiu, Peng; Wan, Rongzheng; Hu, Jun; Zhou, Ruhong; Fang, Haiping

Source:
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 106 (43): 18120-18124 OCT 27 2009

Language:
English

Document Type:
Article

Author Keywords:
confined water; molecular dynamics; molecular signal transmission; Y-shaped nanochannel; signal transduction

KeyWords Plus:
MOLECULAR-DYNAMICS; CHANNEL; MECHANISM; TRANSPORT; CONDUCTION; JUNCTIONS; ELECTRON; LOGIC; FLOW

Abstract:
Molecular scale signal conversion and multiplication is of particular importance in many physical and biological applications, such as molecular switches, nano-gates, biosensors, and various neural systems. Unfortunately, little is currently known regarding the signal processing at the molecular level, partly due to the significant noises arising from the thermal fluctuations and interferences between branch signals. Here, we use molecular dynamics simulations to show that a signal at the single-electron level can be converted and multiplied into 2 or more signals by water chains confined in a narrow Y-shaped nanochannel. This remarkable transduction capability of molecular signal by Y-shaped nanochannel is found to be attributable to the surprisingly strong dipole-induced ordering of such water chains, such that the concerted water orientations in the 2 branches of the Y-shaped nanotubes can be modulated by the water orientation in the main channel. The response to the swit!
ching of the charge signal is very rapid, from a few nanoseconds to a few hundred nanoseconds. Furthermore, simulations with various water models, including TIP3P, TIP4P, and SPC/E, show that the transduction capability of the Y-shaped carbon nanotubes is very robust at room temperature, with the interference between branch signals negligible.

Reprint Address:
Zhou, RH, IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA.

Research Institution addresses:
[Zhou, Ruhong] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA; [Tu, Yusong; Xiu, Peng; Wan, Rongzheng; Hu, Jun; Fang, Haiping] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China; [Tu, Yusong] Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China; [Xiu, Peng] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China; [Zhou, Ruhong] Columbia Univ, Dept Chem, New York, NY 10027 USA

E-mail Address:
ruhongz@us.ibm.com; fanghaiping@sinap.ac.cn

Cited References:
BACHTOLD A, 2001, SCIENCE, V294, P1317.
BALL P, 2008, CHEM REV, V108, P74, DOI 10.1021/cr068037a.
BANDARU PR, 2005, NAT MATER, V4, P663, DOI 10.1038/nmat1450.
BECKSTEIN O, 2001, J PHYS CHEM B, V105, P12902, DOI 10.1021/jp012233y.
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BOURLON B, 2007, NAT NANOTECHNOL, V2, P104, DOI 10.1038/nnano.2006.211.
BREWER ML, 2001, BIOPHYS J, V80, P1691.
CHOPRA N, 2005, J ADV FUNCT MAT, V15, P858.
CHOUDHURY N, 2005, J AM CHEM SOC, V127, P3556, DOI 10.1021/ja0441817.
DARDEN T, 1993, J CHEM PHYS, V98, P10089.
DEEPAK FL, 2001, CHEM PHYS LETT, V345, P5.
FAN R, 2005, PHYS REV LETT, V95, ARTN 086607.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GONG XJ, 2007, NAT NANOTECHNOL, V2, P709, DOI 10.1038/nnano.2007.320.
GOTHARD N, 2004, NANO LETT, V4, P213, DOI 10.1021/nl0349294.
GROOT BLD, 2001, SCIENCE, V294, P2353.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
JOSEPH S, 2008, NANO LETT, V8, P452, DOI 10.1021/nl072385q.
KOENIG DR, 2008, NAT NANOTECHNOL, V3, P482, DOI 10.1038/nnano.2008.178.
KOGA K, 2001, NATURE, V412, P802.
KOTINGER J, 2008, P NATL ACAD SCI USA, V105, P13218.
KRASHENINNIKOV AV, 2007, NAT MATER, V6, P723.
KRONE MG, 2008, J AM CHEM SOC, V130, P11066, DOI 10.1021/ja8017303.
KWOK KS, 2002, MATER TODAY, V5, P28.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LI WZ, 2001, APPL PHYS LETT, V79, P1879.
LINDAHL E, 2001, J MOL MODEL, V7, P306.
LITVINCHUK S, 2007, NAT MATER, V6, P576, DOI 10.1038/nmat1933.
LUNA VM, 2008, BIOCHEMISTRY-US, V47, P4657, DOI 10.1021/bi800045y.
MAJUMDER M, 2005, NATURE, V438, P930, DOI 10.1038/438930b.
MOUSTAFA IM, 2006, J MOL BIOL, V364, P991, DOI 10.1016/j.jmb.2006.09.032.
PAPADOPOULOS C, 2000, PHYS REV LETT, V85, P3476.
POMES R, 2002, BIOPHYS J, V82, P2304.
REITER G, 2006, PHYS REV LETT, V97, ARTN 247801.
SATISHKUMAR BC, 2000, APPL PHYS LETT, V77, P2530.
TAJKHORSHID E, 2002, SCIENCE, V296, P525.
TERRONES M, 2002, PHYS REV LETT, V89, ARTN 075505.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
XU HQ, 2005, NAT MATER, V4, P649, DOI 10.1038/nmat1471.
ZHOU RH, 2004, SCIENCE, V305, P1605.

Cited Reference Count:
42

Times Cited:
0

Publisher:
NATL ACAD SCIENCES; 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA

Subject Category:
Multidisciplinary Sciences

ISSN:
0027-8424

DOI:
10.1073/pnas.0902676106

IDS Number:
512DB

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271350400094
*Order Full Text [ ]

Title:
Effects of fluid flow on the oligonucleotide folding in single-walled carbon nanotubes

Authors:
Lim, MCG; Zhong, ZW

Author Full Names:
Lim, M. C. G.; Zhong, Z. W.

Source:
PHYSICAL REVIEW E 80 (4): Art. No. 041915 Part 1 OCT 2009

Language:
English

Document Type:
Article

Author Keywords:
carbon nanotubes; DNA; high-pressure effects; molecular biophysics; molecular dynamics method; nanobiotechnology; van der Waals forces; water

KeyWords Plus:
MOLECULAR-DYNAMICS SIMULATION; SOLID-STATE NANOPORE; DNA TRANSLOCATION; LIQUID WATER; INSERTION; CHANNELS; TRANSPORT; DIAMETER

Abstract:
This paper presents molecular-dynamics (MD) simulations of DNA oligonucleotide and water molecules translocating through carbon nanotube (CNT) channels. An induced pressure difference is applied to the system by pushing a layer of water molecules toward the flow direction to drive the oligonucleotide and other molecules. This MD simulation investigates the changes that occur in the conformation of the oligonucleotide due to water molecules in nanochannels while controlling the temperature and volume of the system in a canonical ensemble. The results show that the oligonucleotide in the (8,8)-(12,12) CNT channel forms a folded state at a lower pressure, whereas the oligonucleotide in the (10,10)-(14,14) CNT channel forms a folded state at a higher pressure instead. The van der Waals forces between the water molecules and the oligonucleotide suggest that the attraction between these two types of molecules results in the linear arrangements of the bases of the oligonucleotide. !
For a larger nanotube channel, the folding of the oligonucleotide is mainly dependent on the solvent (water molecules), whereas pressure, the size of the nanotube junction, and water molecules are the considering factors of the folding of the oligonucleotide at a smaller nanotube channel. For a folded oligonucleotide, the water distribution around the oligonucleotide is concentrated at a smaller range than that for the distribution around an unfolded oligonucleotide.

Reprint Address:
Lim, MCG, Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore.

Research Institution addresses:
[Lim, M. C. G.; Zhong, Z. W.] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore

Cited References:
ARAKI S, 2006, CHEM PHYS LETT, V418, P255, DOI 10.1016/j.cplett.2005.10.115.
BETHUNE DS, 1993, NATURE, V363, P605.
BONTHUIS DJ, 2008, PHYS REV LETT, V101, ARTN 108303.
FOLOGEA D, 2005, NANO LETT, V5, P1734, DOI 10.1021/nl051063o.
GAO HJ, 2003, NANO LETT, V3, P471, DOI 10.1021/nl025967a.
GAO HJ, 2004, ANNU REV MATER RES, V34, P123, DOI 10.1146/annurev.matsci.34.040203.120402.
GIGLIOTTI B, 2006, NANO LETT, V6, P159, DOI 10.1021/nl0518775.
HANASAKI I, 2006, MODEL SIMUL MATER SC, V14, S9, DOI 10.1088/0965-0393/14/5/S02.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
IIJIMA S, 1993, NATURE, V363, P603.
JOHNSON ATC, 2006, PHYS STATUS SOLIDI B, V243, P3252, DOI 10.1002/pssb.200669148.
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926.
KATZ E, 2004, CHEMPHYSCHEM, V5, P1084.
LAU EY, 2005, CHEM PHYS LETT, V412, P82, DOI 10.1016/j.cplett.2005.05.129.
LI J, 1998, PHYS REV E, V57, P7259.
LIM MCG, 2008, PHYSICA A, V387, P3111, DOI 10.1016/j.physa.2008.01.111.
LIU GR, 2005, INT J MOD PHYS C, V16, P1239.
LIU Z, 2007, ANGEW CHEM INT EDIT, V46, P2023, DOI 10.1002/anie.200604295.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MUTHUKUMAR M, 1999, J CHEM PHYS, V111, P10371.
NAGUIB NN, 2005, NANOTECHNOLOGY, V16, P567, DOI 10.1088/0957-4484/16/4/038.
OKADA T, 2006, JPN J APPL PHYS 1, V45, P8335.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781.
PONNUSWAMY PK, 1994, J THEOR BIOL, V169, P419.
RATHORE N, 2006, BIOPHYS J, V90, P1767, DOI 10.1529/biophysj.105.071076.
SAITO R, 1996, PHYS REV B, V53, P2044.
SHI XH, 2005, ACTA MECH SINICA, V21, P249, DOI 10.1007/s10409-005-0027-9.
SINHA N, 2005, IEEE T NANOBIOSCI, V4, P180, DOI 10.1109/TNB.2005.850478.
STAR A, 2006, P NATL ACAD SCI USA, V103, P921.
STORM AJ, 2005, NANO LETT, V5, P1193, DOI 10.1021/nl048030d.
STRIOLO A, 2006, NANO LETT, V6, P633, DOI 10.1021/nl052254u.
SUN M, 1992, PHYS REV A, V46, P4813.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WEI C, 2005, INT J NANOSCI, V4, P363.
WONG KY, 2004, BIOPOLYMERS, V73, P570, DOI 10.1002/bip.20004.
XUE YQ, 2006, NANOTECHNOLOGY, V17, P5216, DOI 10.1088/0957-4484/17/20/029.
YEH IC, 2004, P NATL ACAD SCI USA, V101, P12177, DOI 10.1073/pnas.0402699101.
ZHANG C, 2008, J CHEM PHYS, V128, P25109, ARTN 225109.
ZHENG J, 2005, J CHEM PHYS, V122, P14702, ARTN 214702.

Cited Reference Count:
42

Times Cited:
0

Publisher:
AMER PHYSICAL SOC; ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA

Subject Category:
Physics, Fluids & Plasmas; Physics, Mathematical

ISSN:
1539-3755

DOI:
10.1103/PhysRevE.80.041915

IDS Number:
513UV

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271272000028
*Order Full Text [ ]

Title:
Characterization of Water Wires inside Hydrophobic Tubular Peptide Structures

Authors:
Raghavender, US; Aravinda, S; Shamala, N; Kantharaju; Rai, R; Balaram, P

Author Full Names:
Raghavender, Upadhyayula S.; Aravinda, Subrayashastry; Shamala, Narayanaswamy; Kantharaju; Rai, Rajkishor; Balaram, Padmanabhan

Source:
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 131 (42): 15130-+ OCT 28 2009

Language:
English

Document Type:
Article

KeyWords Plus:
CARBON NANOTUBES; CHANNELS; DYNAMICS

Abstract:
The crystallographic observation of a hydrophobic, empty channel (diameter similar to 5.2 angstrom) in the peptide Boc-(D)Pro-Aib-Leu-Aib-Val-OMe, prompted the investigation of the analog Boc-(D)Pro-Aib-Val-Aib-Val-OMe in which the side chain at position 3 was shortened, resulting in the structure of a channel (diameter similar to 7.5 angstrom) containing a one-dimensional wire of water molecules. Crystallization in the space group P6(5) facilitates formation of a pore tined entirety by hydrocarbon side chains. Two forms of the entrapped water wires, with O center dot center dot center dot O separations of 3.5 and 2.6 angstrom, are discussed. A lone hydrogen bond between the adjacent pairs of water molecules in the wire, with no strong interactions between the second water hydrogen and the hydrophobic walls of the channel, is a feature of the one-dimensional array. The structure provides the first crystallographic characterization of a water wire in a hydrophobic channel wit!
h implications in water and proton transport in membranes and carbon nanotubes

Reprint Address:
Shamala, N, Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India.

Research Institution addresses:
[Raghavender, Upadhyayula S.; Aravinda, Subrayashastry; Shamala, Narayanaswamy] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India; [Kantharaju; Rai, Rajkishor; Balaram, Padmanabhan] Indian Inst Sci, Mol Biophys Unit, Bangalore 560012, Karnataka, India

E-mail Address:
shamala@physics.iisc.ernet.in; pb@mbu.iisc.ernet.in

Cited References:
*ACC INC, 2002, DS VIEWERPRO 5 0.
AGMON N, 1995, CHEM PHYS LETT, V244, P456.
AGRE P, 2002, J PHYSIOL-LONDON, V542, P3.
AGRE P, 2004, ANGEW CHEM INT EDIT, V43, P4278, DOI 10.1002/anie.200460804.
ALEXIADIS A, 2008, CHEM REV, V108, P5014, DOI 10.1021/cr078140f.
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P380.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
ENGELS M, 1995, J AM CHEM SOC, V117, P9151.
GHADIRI MR, 1993, NATURE, V366, P324.
GHADIRI MR, 1994, NATURE, V369, P301.
GORBITZ CH, 2007, CHEM-EUR J, V13, P1022, DOI 10.1002/chem.200601427.
HARTGERINK JD, 1996, J AM CHEM SOC, V118, P43.
HILLE B, 1992, ION CHANNELS EXCITAB.
HUMMER G, 2001, NATURE, V414, P188.
JEFFREY GA, 1991, HYDROGEN BONDING BIO.
KARLE IL, 1990, BIOCHEMISTRY-US, V29, P6747.
POMES R, 1996, BIOPHYS J, V71, P19.
RAO CP, 1981, BIOCHEM BIOPH RES CO, V103, P898.
RASAIAH JC, 2008, ANNU REV PHYS CHEM, V59, P713.
RECHES M, 2003, SCIENCE, V300, P625.
SAPAROV SM, 2006, PHYS REV LETT, V96, ARTN 148101.
VENKATRAMAN J, 2001, CHEM REV, V101, P3131.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.

Cited Reference Count:
23

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary

ISSN:
0002-7863

DOI:
10.1021/ja9038906

IDS Number:
512SX

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: