Friday, November 13, 2009

ISI Web of Knowledge Alert - Thompson, P

ISI Web of Knowledge Citation Alert

Cited Article: Thompson, P. A general boundary condition for liquid flow at solid surfaces
Alert Expires: 09 NOV 2010
Number of Citing Articles: 3 new records this week (3 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271358900012
*Order Full Text [ ]

Title:
Enhanced slip on a patterned substrate due to depinning of contact line

Authors:
Gao, P; Feng, JJ

Author Full Names:
Gao, Peng; Feng, James J.

Source:
PHYSICS OF FLUIDS 21 (10): Art. No. 102102 OCT 2009

Language:
English

Document Type:
Article

KeyWords Plus:
PHASE-FIELD SIMULATIONS; APPARENT FLUID SLIP; NO-SHEAR CONDITIONS; BOUNDARY-CONDITION; HYDROPHOBIC MICROCHANNELS; SURFACES; FLOWS; DYNAMICS; LIQUIDS; INTERFACE

Abstract:
We perform numerical simulations of a shear flow over a periodically patterned substrate with entrapped gas bubbles. A diffuse-interface model is employed to handle the liquid-gas interface deformation and the three-phase contact line. Depending on the shear rate and the pattern geometry, four flow regimes are observed. The contact lines can be pinned, depinned, or eliminated depending on the competition between the shear force and the surface tension. The effective slip length is found to be dependent on the morphology of the menisci and hence on the shear rate. In particular, the bubbles are transformed into a continuous gas film when the shear rate is larger than a critical value, resulting in a significantly enhanced slip length proportional to the liquid-gas viscosity ratio. The present results have interesting implications for effective slip on superhydrophobic surfaces. (C) 2009 American Institute of Physics. [doi:10.1063/1.3254253]

Reprint Address:
Feng, JJ, Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada.

Research Institution addresses:
[Gao, Peng; Feng, James J.] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada; [Feng, James J.] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada

E-mail Address:
jfeng@chbe.ubc.ca

Cited References:
BYUN D, 2008, PHYS FLUIDS, V20, ARTN 113601.
CAGINALP G, 1998, EUR J APPL MATH 4, V9, P417.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
CHOI CH, 2006, PHYS FLUIDS, V18, ARTN 087105.
CHOI CH, 2006, PHYS REV LETT, V96, ARTN 066001.
COTTINBIZONNE C, 2003, NAT MATER, V2, P237, DOI 10.1038/nmat857.
COTTINBIZONNE C, 2008, LANGMUIR, V24, P1165, DOI 10.1021/la7024044.
COX RG, 1986, J FLUID MECH, V168, P169.
CRAIG VSJ, 2001, PHYS REV LETT, V87, P4504.
DAVIES J, 2006, PHYS FLUIDS, V18, ARTN 087110.
DEGENNES PG, 2002, LANGMUIR, V18, P3413.
HYVALUOMA J, 2008, PHYS REV LETT, V100, ARTN 246001.
JACQMIN D, 2000, J FLUID MECH, V402, P57.
JOSEPH DD, 1997, POWDER TECHNOL, V94, P211.
JOSEPH P, 2006, PHYS REV LETT, V97, ARTN 156104.
LAUGA E, 2003, J FLUID MECH, V489, P55, DOI 10.1017/S0022112003004695.
LAUGA E, 2004, PHYS REV E 2, V70, ARTN 026311.
LAUGA E, 2005, HDB EXPT FLUID DYNAM, CH15.
LEE C, 2008, PHYS REV LETT, V101, ARTN 064501.
MAYNES D, 2007, PHYS FLUIDS, V19, ARTN 093603.
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05.
OLIVER JF, 1977, J COLLOID INTERF SCI, V59, P568.
OU J, 2004, PHYS FLUIDS, V16, P4635, DOI 10.1063/1.1812011.
PATANKAR NA, 2009, J ADHES SCI TECHNOL, V23, P413, DOI 10.1163/156856108X370073.
PHILIP JR, 1972, Z ANGEW MATH PHYS, V23, P353.
PHILIP JR, 1972, Z ANGEW MATH PHYS, V23, P960.
QIAN TZ, 2006, J FLUID MECH, V564, P333, DOI 10.1017/S0022112006001935.
QUERE D, 2008, ANNU REV MATER RES, V38, P71, DOI 10.1146/annurev.matsci.38.060407.132434.
STEINBERGER A, 2007, NAT MATER, V6, P665, DOI 10.1038/nmat1962.
STEINBERGER A, 2008, PHYS REV LETT, V100, ARTN 134501.
THOMPSON PA, 1997, NATURE, V389, P360.
TRETHEWAY DC, 2002, PHYS FLUIDS, V14, L9.
TRETHEWAY DC, 2004, PHYS FLUIDS, V16, P1509, DOI 10.1063/1.1669400.
TRUESDELL R, 2006, PHYS REV LETT, V97, ARTN 044504.
TYRRELL JWG, 2002, LANGMUIR, V18, P160.
YBERT C, 2007, PHYS FLUIDS, V19, ARTN 123601.
YUE P, J FLUID MEC IN PRESS.
YUE PT, 2006, J COMPUT PHYS, V219, P47, DOI 10.1016/j.jcp.2006.03.016.
YUE PT, 2007, J COMPUT PHYS, V223, P1, DOI 10.1016/j.jcp.2006.11.020.
ZHOU CF, 2003, J COMPUT PH IN PRESS.
ZHU YX, 2001, PHYS REV LETT, V87, ARTN 096105.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.

Cited Reference Count:
42

Times Cited:
0

Publisher:
AMER INST PHYSICS; CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA

Subject Category:
Mechanics; Physics, Fluids & Plasmas

ISSN:
1070-6631

DOI:
10.1063/1.3254253

IDS Number:
513YA

========================================================================

*Record 2 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271268400021
*Order Full Text [ ]

Title:
Spreading dynamics of power-law fluid droplets

Authors:
Liang, ZP; Wang, XD; Lee, DJ; Peng, XF; Su, A

Author Full Names:
Liang, Zhan-Peng; Wang, Xiao-Dong; Lee, Duu-Jong; Peng, Xiao-Feng; Su, Ay

Source:
JOURNAL OF PHYSICS-CONDENSED MATTER 21 (46): Art. No. 464117 NOV 18 2009

Language:
English

Document Type:
Article

KeyWords Plus:
MOVING CONTACT LINES; NON-NEWTONIAN FLUIDS; DIFFUSE-INTERFACE MODEL; SOLID-SURFACES; HORIZONTAL SURFACES; WETTING KINETICS; LIQUID-FILMS; THIN-FILMS; DROPS; HYDRODYNAMICS

Abstract:
This paper aims at providing a summary of the theoretical models available for non-Newtonian fluid spreading dynamics. Experimental findings and model predictions for a Newtonian fluid spreading test are briefly reviewed. Then how the complete wetting and partial wetting power-law fluids spread over a solid substrate is examined. The possible extension of Newtonian fluid models to power-law fluids is also discussed.

Reprint Address:
Lee, DJ, Natl Taiwan Univ, Dept Chem Engn, Taipei 106, Taiwan.

Research Institution addresses:
[Lee, Duu-Jong] Natl Taiwan Univ, Dept Chem Engn, Taipei 106, Taiwan; [Liang, Zhan-Peng; Peng, Xiao-Feng] Tsinghua Univ, Dept Thermal Engn, Lab Phase Change & Interfacial Transport Phenomen, Beijing 100084, Peoples R China; [Wang, Xiao-Dong] Univ Sci & Technol Beijing, Dept Thermal Engn, Sch Mech Engn, Beijing 100083, Peoples R China; [Su, Ay] Yuan Ze Univ, Fuel Cell Ctr, Dept Mech Engn, Tao Yuan 300, Taiwan

E-mail Address:
djlee@ntu.edu.tw

Cited References:
ANSINI L, 2002, NONLINEARITY, V15, P2147.
AUSSERRE D, 1986, PHYS REV LETT, V57, P2671.
BEAGLEHOLE D, 1989, J PHYS CHEM-US, V93, P893.
BETELU SI, 2003, APPL MATH LETT, V16, P1315, DOI 10.1016/S0893-9659(03)00196-4.
BETELU SI, 2004, MATH COMPUT MODEL, V40, P729, DOI 10.1016/j.mcm.2004.10.004.
BIANCE AL, 2004, PHYS REV E 2, V69, ARTN 016301.
BLAKE TD, 1969, J COLLOID INTERF SCI, V30, P421.
BLAKE TD, 1993, WETTABILITY, P251.
BLAKE TD, 2002, ADV COLLOID INTERFAC, V96, P21.
BLAKE TD, 2006, J COLLOID INTERF SCI, V299, P1, DOI 10.1016/j.jcis.2006.03.051.
BOUDAOUD A, 2007, EUR PHYS J E, V22, P107, DOI 10.1140/epje/e2007-00026-9.
CARRE A, 2000, LANGMUIR, V16, P2936.
CARRE A, 2006, LANGMUIR, V22, P134, DOI 10.1021/la0518997.
CAZABAT AM, 1986, J PHYS CHEM-US, V90, P5845.
COX RG, 1986, J FLUID MECH, V168, P169.
COX RG, 1998, J FLUID MECH, V357, P249.
DEGENNES PG, 1985, REV MOD PHYS, V57, P827.
DEGENNES PG, 2004, CAPILLARITY WETTING.
DERUIJTER MJ, 1999, LANGMUIR, V15, P2209.
EHRHARD P, 1993, J FLUID MECH, V257, P463.
GLASSTONE S, 1941, THEORY RATE PROCESSE.
HERVET H, 1984, CR ACAD SCI II-MEC P, V299, P499.
HOCKING LM, 2002, J FLUID MECH, V467, P1, DOI 10.1017/S0022112002008637.
HOFFMAN RL, 1975, J COLLOID INTERF SCI, V50, P228.
HUH C, 1971, J COLLOID INTERF SCI, V35, P85.
JACQMIN D, 2000, J FLUID MECH, V402, P57.
JOANNY JF, 1984, CR ACAD SCI II-MEC P, V299, P605.
KAVEHPOUR HP, 2003, PHYS REV LETT, V91, ARTN 196104.
KAVEHPOUR P, 2002, COLLOID SURFACE A, V206, P409.
KHATAVKAR VV, 2007, J FLUID MECH, V572, P367, DOI 10.1017/S0022112006003533.
KOPLIK J, 1989, PHYS FLUIDS A-FLUID, V1, P781.
LAVI B, 2004, COLLOID SURFACE A, V250, P409, DOI 10.1016/j.colsurfa.2004.04.079.
LEGER L, 1992, REP PROG PHYS, V55, P431.
LOPEZ J, 1976, J COLLOID INTERF SCI, V56, P460.
NEOGI P, 2001, J CHEM PHYS, V115, P7811.
NIEH SY, 1996, MACROMOLECULES, V29, P320.
OGAREV VA, 1974, J ADHESION, V6, P337.
PISMEN LM, 2000, PHYS REV E B, V62, P2480.
POMEAU Y, 2002, C R MECANIQUE, V330, P207.
QIAN TZ, 2006, J FLUID MECH, V564, P333, DOI 10.1017/S0022112006001935.
RAFAI S, 2004, J FLUID MECH, V513, P77, DOI 10.1017/S0022112004000278.
RAFAI S, 2005, PHYSICA A, V358, P58, DOI 10.1016/j.physa.2005.06.017.
SEEVARATNAM GK, 2007, PHYS FLUIDS, V19, ARTN 012103.
SEPPECHER P, 1996, INT J ENG SCI, V34, P977.
SHIKHMURZAEV YD, 1993, INT J MULTIPHAS FLOW, V19, P589.
SHIKHMURZAEV YD, 1994, FLUID DYN RES, V13, P45.
SHIKHMURZAEV YD, 1997, J FLUID MECH, V334, P211.
STAROV VM, 2003, J COLLOID INTERF SCI, V257, P284.
STAROV VM, 2007, WETTING SPREADING DY.
STOEV K, 1999, PHYS FLUIDS, V11, P3209.
TANNER LH, 1979, J PHYS D APPL PHYS, V12, P1473.
THOMPSON PA, 1989, PHYS REV LETT, V63, P766.
THOMPSON PA, 1997, NATURE, V389, P360.
VOINOV OV, 1976, FLUID DYN, V11, P714.
VOINOV OV, 2002, ENCY SURFACE COLLOID, P1546.
WANG XD, 2007, LANGMUIR, V23, P8042, DOI 10.1021/1a0701125.
WANG XD, 2007, LANGMUIR, V23, P9258, DOI 10.1021/la700232y.
WEIDNER DE, 1994, PHYS FLUIDS, V6, P3535.

Cited Reference Count:
58

Times Cited:
0

Publisher:
IOP PUBLISHING LTD; DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND

Subject Category:
Physics, Condensed Matter

ISSN:
0953-8984

DOI:
10.1088/0953-8984/21/46/464117

IDS Number:
512RR

========================================================================

*Record 3 of 3.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000271276600007
*Order Full Text [ ]

Title:
Moving Contact Line with Balanced Stress Singularities

Authors:
Hu, XY; Adams, NA

Author Full Names:
Hu, X. Y.; Adams, N. A.

Source:
IUTAM SYMPOSIUM ON ADVANCES IN MICRO- AND NANOFLUIDICS 15: 87-94 2009

Language:
English

Document Type:
Proceedings Paper

KeyWords Plus:
FLUID INTERFACE; STEADY MOVEMENT; SOLID-SURFACES; CAPILLARY-TUBE; FLOW; DYNAMICS; LIQUIDS; MOTION; SLIP

Abstract:
A difficulty in the classical hydrodynamic analysis of moving contact-line problems, associated with the no-slip wall boundary condition resulting in an unbalanced divergence of the viscous stresses, is reexamined with a smoothed, finite-width interface model. The analysis in the sharp-interface limit shows that the singularity of the viscous stress can be balanced by another singularity of the unbalanced surface stress. The dynamic contact angle is determined by surface tension, viscosity, contact-line velocity and a single non-dimensional parameter reflecting the length-scale ratio between interface width and the thickness of the first molecule layer at the wall surface. The widely used Navier boundary condition and Cox's hypothesis are also derived following the same procedure by permitting finite-wall slip.

Reprint Address:
Hu, XY, Tech Univ Munich, Lehrstuhl Aerodynam, D-85748 Garching, Germany.

Research Institution addresses:
[Hu, X. Y.; Adams, N. A.] Tech Univ Munich, Lehrstuhl Aerodynam, D-85748 Garching, Germany

Cited References:
BLAKE TD, 1993, WETTABILITY.
BLAKE TD, 2006, J COLLOID INTERF SCI, V299, P1, DOI 10.1016/j.jcis.2006.03.051.
CHEN HY, 2000, PHYS REV LETT, V85, P1686.
COX RG, 1986, J FLUID MECH, V168, P169.
DUSSAN EB, 1979, ANNU REV FLUID MECH, V11, P371.
HOCKING LM, 1977, J FLUID MECH, V79, P209.
HUH C, 1971, J COLLOID INTERF SCI, V35, P85.
HUH C, 1977, J FLUID MECH, V81, P401.
JACQMIN D, 1999, J COMPUT PHYS, V155, P96.
JACQMIN D, 2000, J FLUID MECH, V402, P57.
KOPLIK J, 1988, PHYS REV LETT, V60, P1282.
MONAGHAN JJ, 1992, ANNU REV ASTRON ASTR, V30, P543.
NATANSON IP, 2000, THEORY FUNCTION REAL, V2.
QIAN TZ, 2003, PHYS REV E 2, V68, ARTN 016306.
REN WQ, 2007, PHYS FLUIDS, V19, P22101.
ROBBINS M, 2005, APS M NOV 2005.
SHIHKMURAEV YD, 1997, J FLUID MECH, V334, P211.
THOMPSON PA, 1989, PHYS REV LETT, V63, P766.
THOMPSON PA, 1997, NATURE, V389, P360.
ZHOU MY, 1990, PHYS REV LETT, V64, P882.

Cited Reference Count:
20

Times Cited:
0

Publisher:
SPRINGER; 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES

IDS Number:
BLX34

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: