Cited Article:    Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
 Alert Expires:    09 NOV 2010
 Number of Citing Articles:    6 new records this week (6 in this e-mail)
 Organization ID:  3b97d1bbc1878baed0ab183d8b03130b
========================================================================
 Note:  Instructions on how to purchase the full text of an article, import the records into an 
 ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================
FN ISI Export Format
VR 1.0
PT J
*Record 1 of 6. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272904100043>
*Order Full Text [ ]
AU Fedorov, AS
   Sadreev, AF
AF Fedorov, A. S.
   Sadreev, A. F.
TI Ab-initio investigation of thermoactivated directional transport of
   hydrogen molecules inside narrow carbon nanotubes
SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
LA English
DT Proceedings Paper
ID DIFFUSION; ENERGY
AB Using the pseudopotential DFT and the empirical potential methods we
   calculate the potential acting to the hydrogen molecules in narrow
   single-wall carbon nanotubes (SWCNT) (6,0),(7,0) and (3,3). The
   potential forms a goffered potential surface and can be approximated as
   V(z, r, phi) approximate to V-0 sin(2 pi z/a) + V(r). We show that in
   these SWCNTs transport of molecules is given mainly by thermoactivated
   hoppings between minima of the periodic potential along the tube axis.
   Taking into account that hydrogen density distribution inside nanotube
   is stationary and assuming the temperature is changed linearly along
   the SWCNT length we show that the H-2 density is sufficiently variated,
   especially for the case of (6,0)SWCNT where the density on both SWCNT
   ends are different at similar to 30 times when the temperature is
   changed along the SWCNT from 300K to 1200K. Suppose that H2 molecules
   can penetrate in the both open SWCNT ends, the molecules would move in
   the direction of the temperature decreasing. This effect may be used
   potentially to build up a molecular pump driven by the temperature
   gradient along narrow nanotube. (C) 2009 WILEY-VCH Verlag GmbH & Co.
   KGaA, Weinheim
C1 [Fedorov, A. S.; Sadreev, A. F.] Russian Acad Sci, LV Kirensky Phys Inst, Siberian Div, Krasnoyarsk 660036, Russia.
   [Fedorov, A. S.] Krasnoyarsk Railway Transport Inst, Krasnoyarsk 660028, Russia.
RP Fedorov, AS, Russian Acad Sci, LV Kirensky Phys Inst, Siberian Div,
   Krasnoyarsk 660036, Russia.
EM alex99@iph.krasn.ru
CR ARYA G, 2003, PHYS REV LETT, V91, P6102
   BARREIRO A, 2008, SCIENCE, V320, P775, DOI 10.1126/science.1155559
   BHATIA SK, 2006, AICHE J, V52, P29, DOI 10.1002/aic.10580
   BHATIA SK, 2007, J CHEM PHYS, V127, P24701
   CHEN HB, 2004, J AM CHEM SOC, V126, P7778, DOI 10.1021/ja039462d
   FEDDERS PA, 1978, PHYS REV B, V17, P40
   GUPTA V, 1996, SCIENCE, V274, P164
   HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   JEPPS OG, 2003, PHYS REV LETT, V91, P6102
   KRESSE G, 1996, COMP MATER SCI, V6, P15
   KRESSE G, 1996, PHYS REV B, V54, P11169
   SADREEV AF, 2001, J CHEM PHYS, V115, P9513
   SAITO R, 1998, PHYS REV B, V57, P4145
   SKOULIDAS AI, 2002, PHYS REV LETT, V89, P5901
   SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726
   SOMADA H, NANOLETTERS ASAP
   SUN DY, 2007, PHYS REV B, V75, P5424
   VINEYARD GH, 1957, J PHYS CHEM SOLIDS, V3, P121
   VLUGT TJH, 2002, J PHYS CHEM B, V106, P12757, DOI 10.1021/jp0263931
   WEI CY, 2003, PHYS REV LETT, V91, P5901
NR 21
TC 0
PU WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0370-1972
DI 10.1002/pssb.200982285
PD DEC
VL 246
IS 11-12
SI Sp. Iss. SI
BP 2598
EP 2601
SC Physics, Condensed Matter
GA 534NJ
UT ISI:000272904100043
ER
PT J
*Record 2 of 6. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272937500078>
*Order Full Text [ ]
AU Goswami, P
   Chakraborty, S
AF Goswami, Prakash
   Chakraborty, Suman
TI Energy Transfer through Streaming Effects in Time-Periodic
   Pressure-Driven Nanochannel Flows with Interfacial Slip
SO LANGMUIR
LA English
DT Article
ID NANOFLUIDIC CHANNELS; HYDROPHOBIC MICROCHANNELS; CIRCULAR
   MICROCHANNELS; CARBON NANOTUBES; APPARENT SLIP; CONVERSION; EFFICIENCY;
   TRANSPORT; SURFACES; BATTERY
AB We analytically investigate the prospect of using electrokinetic
   phenomena to transfer hydrostatic energy to electrical power with high
   energy transfer efficiencies, by exploiting time periodic
   pressure-driven flows in narrow fluidic confinements. An expression for
   the energy transfer efficiency for such pulsating pressure-driven flows
   is derived by considering wall-slip effects due to hydrophobic
   interactions, strong electrical double layer interactions in the
   confined now passages, possibilities of exploring the regimes of large
   wall potentials, and the adverse consequences of the finite conductance
   of the Stern layer. It is revealed from Our studies that high-frequency
   pressure pulsations may be employed in practice to improve the
   concerned energy transfer efficiency to a considerable extent, instead
   of using a steady-state pressure field. Such favorable effects are
   Found to be best exploited by utilizing "slipping"
   electro-hydrodynamics in thick electrical double layers in the presence
   of high surface potentials.
C1 [Chakraborty, Suman] Indian Inst Technol, Dept Mech Engn, Kharagpur 721302, W Bengal, India.
   [Goswami, Prakash] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India.
RP Chakraborty, S, Indian Inst Technol, Dept Mech Engn, Kharagpur 721302,
   W Bengal, India.
EM suman@2mech.iitkgp.ernet.in
CR BALDESSARI F, 2008, J COLLOID INTERF SCI, V325, P526, DOI
   10.1016/j.jcis.2008.06.007
   BAUDRY J, 2001, LANGMUIR, V17, P5232
   BEHRENS SH, 1999, PHYS REV E B, V60, P7040
   BENZI R, 2006, EUROPHYS LETT, V74, P651, DOI 10.1209/epl/i2006-10022-0
   CHAKRABORTY S, 2007, APPL PHYS LETT, V90, ARTN 034108
   CHAKRABORTY S, 2007, J APPL PHYS, V102, ARTN 104907
   CHAKRABORTY S, 2007, LANGMUIR, V23, P12421, DOI 10.1021/la702109c
   CHAKRABORTY S, 2007, PHYS REV LETT, V99, ARTN 094504
   CHAKRABORTY S, 2008, PHYS FLUIDS, V20, ARTN 043602
   CHAKRABORTY S, 2008, PHYS FLUIDS, V20, ARTN 083602
   CHAKRABORTY S, 2008, PHYS REV E 2, V77, ARTN 037303
   CHAKRABORTY S, 2008, PHYS REV LETT, V100, ARTN 097801
   CHAKRABORTY S, 2008, PHYS REV LETT, V101, ARTN 184501
   CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425
   CHUN MS, 2005, J MICROMECH MICROENG, V15, P710, DOI
   10.1088/0960-1317/15/4/007
   DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945
   DAVIDSON C, 2008, ELECTROPHORESIS, V29, P1125, DOI
   10.1002/elps.200700549
   ERICKSON D, 2001, J COLLOID INTERF SCI, V237, P283
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HUANG P, 2006, J FLUID MECH, V566, P477
   HUNTER RJ, 1981, ZETA POTENTIAL COLLO
   LAUGA E, 2004, PHYS REV E 2, V70, ARTN 026311
   LAUGA E, 2007, HDB EXPT FLUID DYNAM
   LU MC, 2006, J MICROMECH MICROENG, V16, P667, DOI
   10.1088/0960-1317/16/4/001
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MEYER EE, 2006, P NATL ACAD SCI USA, V103, P15739, DOI
   10.1073/pnas.0606422103
   NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05
   OLTHUIS W, 2005, SENSOR ACTUAT B-CHEM, V111, P385, DOI
   10.1016/j.snb.2005.03.039
   OSTERLE JF, 1964, J APPL MECH, V31, P161
   PENNATHUR S, 2007, LAB CHIP, V7, P1234, DOI 10.1039/b712893m
   REN YQ, 2008, NANOTECHNOLOGY, V19, ARTN 195707
   SBRAGAGLIA M, 2006, PHYS REV LETT, V97, ARTN 204503
   STEINBERGER A, 2007, NAT MATER, V6, P665, DOI 10.1038/nmat1962
   TRETHEWAY DC, 2004, PHYS FLUIDS, V16, P1509, DOI 10.1063/1.1669400
   VANDERHEYDEN FHJ, 2006, NANO LETT, V6, P2232, DOI 10.1021/nl061524l
   VANDERHEYDEN FHJ, 2006, PHYS REV LETT, V96, ARTN 224502
   VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h
   YANG J, 2003, J MICROMECH MICROENG, V13, P115
   YANG J, 2003, J MICROMECH MICROENG, V13, P963
   YANG J, 2003, LANGMUIR, V19, P1047, DOI 10.1021/la026201t
   YANG J, 2004, LANGMUIR, V20, P3863, DOI 10.1021/la035243u
   ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102
NR 42
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
DI 10.1021/la901209a
PD JAN 5
VL 26
IS 1
BP 581
EP 590
SC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
   Multidisciplinary
GA 534ZY
UT ISI:000272937500078
ER
PT J
*Record 3 of 6. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000273038100013>
*Order Full Text [ ]
AU Kuang, CF
   Wang, GR
AF Kuang, Cuifang
   Wang, Guiren
TI A novel far-field nanoscopic velocimetry for nanofluidics
SO LAB ON A CHIP
LA English
DT Article
ID EVANESCENT-WAVE ILLUMINATION; PARTICLE IMAGE VELOCIMETRY;
   ELECTROOSMOTIC FLOW; CARBON NANOTUBES; CAPILLARY-ELECTROPHORESIS;
   FLUORESCENCE MICROSCOPY; MICROFLUIDIC DEVICES; STED MICROSCOPY;
   DYNAMICS; RESOLUTION
AB For the first time we have been able to measure the flow velocity
   profile for nanofluidics with a spatial resolution better than 70 nm.
   Due to the diffraction resolution barrier, traditional optical methods
   have so far failed in measuring the velocity profile in a nanocapillary
   or a closed nanochannel without an opened sidewall. A novel optical
   point measurement method is presented which applies stimulated emission
   depletion (STED) microscopy to laser induced fluorescence
   photobleaching anemometer (LIFPA) techniques to measure flow velocity.
   Herein we demonstrate this far-field nanoscopic velocimetry method by
   measuring the velocity profile in a nanocapillary with an inner
   diameter of 360 nm. The closest measuring point to the wall is about 35
   nm. This method opens up a new class of functional measuring techniques
   for nanofluidics and for nanoscale flows from the wall.
C1 [Wang, Guiren] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA.
   Univ S Carolina, Biomed Engn Program, Columbia, SC 29208 USA.
RP Wang, GR, Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA.
EM guirenwang@sc.edu
CR DONNERT G, 2006, P NATL ACAD SCI USA, V103, P11440, DOI
   10.1073/pnas.0604965103
   DUONGHONG D, 2008, MICROFLUID NANOFLUID, V4, P219, DOI
   10.1007/s10404-007-0170-7
   FLAMION B, 1991, BIOPHYS J, V60, P1229
   GAI HW, 2005, LAB CHIP, V5, P443, DOI 10.1039/b416476h
   HAGSATER SM, 2008, LAB CHIP, V8, P1178, DOI 10.1039/b801028e
   HAN KY, 2009, NANO LETT, V9, P3323, DOI 10.1021/nl901597v
   HELL SW, 2003, NAT BIOTECHNOL, V21, P1347, DOI 10.1038/nbt895
   HERR AE, 2000, ANAL CHEM, V72, P1053
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HU H, 2006, MEAS SCI TECHNOL, V17, P1269, DOI 10.1088/0957-0233/17/6/S06
   JIN S, 2004, EXP FLUIDS, V37, P825, DOI 10.1007/s00348-004-0870-7
   KIHM KD, 2004, EXP FLUIDS, V37, P811, DOI 10.1007/s00348-004-0865-4
   KINOSHITA H, 2007, LAB CHIP, V7, P338, DOI 10.1039/b617391h
   KOOCHESFAHANI MM, 2007, MOL TAGGING VELOCIME
   KUANG C, 2009, ULTRAFAST MEAS UNPUB
   KUANG CF, 2009, ANAL CHEM, V81, P6590, DOI 10.1021/ac901017a
   KUANG CF, 2009, MICROFLUID NANOFLUID, V7, P509, DOI
   10.1007/s10404-009-0411-z
   KUZNETSOVA Y, 2007, OPT EXPRESS, V15, P6651
   LI HF, 2006, EXP FLUIDS, V41, P185, DOI 10.1007/s00348-006-0155-4
   LIU Y, 2009, LAB CHIP, V9, P1110, DOI 10.1039/b818617k
   LU HW, 2008, LAB CHIP, V8, P456, DOI 10.1039/b717141b
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI
   10.1007/s10404-008-0293-5
   MOLHO JI, 2001, ANAL CHEM, V73, P1350
   MOORE AW, 1993, ANAL CHEM, V65, P3550
   MOSIER BP, 2002, EXP FLUIDS, V33, P545, DOI 10.1007/s00348-002-0486-8
   MUKHOPADHYAY R, 2006, ANAL CHEM, V78, P7379
   NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05
   OH YJ, 2009, LAB CHIP, V9, P1609, DOI 10.1039/b816384g
   PAUL PH, 1998, ANAL CHEM, V70, P2459
   PIOREK B, 2006, APPL PHYS LETT, V89, ARTN 153123
   PIRUSKA A, 2008, LAB CHIP, V8, P1625
   PITTMAN JL, 2001, ANALYST, V126, P1240
   PITTMAN JL, 2003, ANAL CHEM, V75, P361, DOI 10.1021/ac026132n
   POUYA S, 2008, EXP FLUIDS, V44, P1035, DOI 10.1007/s00348-008-0491-7
   RALSTON J, 2008, ANNU REV MATER RES, V38, P23, DOI
   10.1146/annurev.matsci.38.060407.130231
   RAUSCHER M, 2008, ANNU REV MATER RES, V38, P143, DOI
   10.1146/annurev.matsci.38.060407.132451
   RICKA J, 1987, EXP FLUIDS, V5, P381
   RITTWEGER E, 2007, CHEM PHYS LETT, V442, P483, DOI
   10.1016/j.cplett.2007.06.017
   RITTWEGER E, 2009, NAT PHOTONICS, V3, P144, DOI 10.1038/NPHOTON.2009.2
   ROSS D, 2001, ANAL CHEM, V73, P2509
   SANTIAGO JG, 1998, EXP FLUIDS, V25, P316
   SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839
   SCHRUM KF, 2000, ANAL CHEM, V72, P4317
   TAMAKI E, 2006, J CHROMATOGR A, V1137, P256, DOI
   10.1016/j.chroma.2006.10.097
   TAS NR, 2004, APPL PHYS LETT, V85, P3274, DOI 10.1063/1.1804602
   WANG GR, 2005, LAB CHIP, V5, P450, DOI 10.1039/b416209a
   WANG GR, 2007, 7283215, US
   WANG GR, 2008, ELECTROPHORESIS, V29, P1253, DOI 10.1002/elps.200600855
   WHITE FM, 1991, VISCOUS FLUID FLOW
   WHITE J, 1999, TRENDS CELL BIOL, V9, P61
   ZETTNER CM, 2003, EXP FLUIDS, V34, P115, DOI 10.1007/s00348-002-0541-5
NR 52
TC 0
PU ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,
   CAMBRIDGE CB4 0WF, CAMBS,
      ENGLAND
SN 1473-0197
DI 10.1039/b917584a
VL 10
IS 2
BP 240
EP 245
SC Biochemical Research Methods; Chemistry, Multidisciplinary; Nanoscience
   & Nanotechnology
GA 536IM
UT ISI:000273038100013
ER
PT J
*Record 4 of 6. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272830700052>
*Order Full Text [ ]
AU She, FH
   Nihara, K
   Gao, WM
   Hodgson, PD
   Jinnai, H
   Kong, LX
AF She, F. H.
   Nihara, K.
   Gao, W. M.
   Hodgson, P. D.
   Jinnai, H.
   Kong, L. X.
TI 3-Dimensional characterization of membrane with nanoporous structure
   using TEM tomography and image analysis
SO DESALINATION
LA English
DT Proceedings Paper
DE 3-D reconstruction; Nanoporous structure; Filtration membrane; Diatom;
   Transmission electronic microtomography
ID PORE STRUCTURE; MICROTOMOGRAPHY; MORPHOLOGIES; DIATOMS; SCIENCE; RUBBER
AB The nanoporous structure of a membrane varies in a 3-dimensional (3-D)
   space and has remarkable influences on the filtration or desalination
   achieved, fouling potentials and therefore, the quality of yielded
   water. Knowledge of the 3-D nanoporous structure is thus vital to
   understanding and predicting its performance. A novel method by
   incorporating transmission electronic microtomography, image processing
   and 3-D reconstruction is introduced to characterize membranes with
   nano structures. The reconstruction algorithm allows for the
   visualization of 3-D nanoporous structure in a non-destructive way from
   any directions. This novel technique leads to in-depth understanding
   and accurate prediction of filtration performance. (C) 2009 Elsevier
   B.V. All rights reserved.
C1 [She, F. H.; Gao, W. M.; Hodgson, P. D.; Kong, L. X.] Deakin Univ, Ctr Mat & Fibre Innovat, Waurn Ponds, Vic 3217, Australia.
   [Nihara, K.; Jinnai, H.] Kyoto Inst Technol, Dept Macromol Sci & Engn, Grad Sch Sci & Engn, Kyoto 6068585, Japan.
RP Kong, LX, Deakin Univ, Ctr Mat & Fibre Innovat, Waurn Ponds, Vic 3217,
   Australia.
EM lingxue.kong@deakin.edu.au
CR *L JEOL SYST TECHN, 2006, COMP VERS 2 5 US MAN
   DOHI H, 2007, POLYM J, V39, P749
   GREEN DL, 2006, J MEMBRANE SCI, V279, P100, DOI
   10.1016/j.memsci.2005.11.051
   HILAL N, 2003, DESALINATION, V157, P137
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   JINNAI H, 2006, MACROMOL RAPID COMM, V27, P1424, DOI
   10.1002/marc.200600344
   KAWASE N, 2007, ULTRAMICROSCOPY, V107, P8, DOI
   10.1016/j.ultramic.2006.04.007
   KOHJIYA S, 2005, POLYMER, V46, P4440, DOI 10.1016/j.polymer.2005.02.026
   LENOCI L, 2008, LANGMUIR, V24, P217, DOI 10.1021/la702278f
   LIANG Z, 2000, J COLLOID INTERF SCI, V221, P13
   LOSIC D, 2006, J MATER CHEM, V16, P4029, DOI 10.1039/b610188g
   LOSIC D, 2006, J NANOSCI NANOTECHNO, V6, P982, DOI 10.1166/jnn.2006.174
   LU YY, 2007, CHEM MATER, V19, P3194, DOI 10.1021/cm070200a
   OH KS, 2004, J KOREAN PHYS SOC S, V45, S855
   PARKINSON J, 1999, TRENDS BIOTECHNOL, V17, P190
   REMIGY JC, 2007, J MEMBRANE SCI, V305, P27, DOI
   10.1016/j.memsci.2007.06.059
   SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
   SHE FH, 2008, J CHIN INST CHEM ENG, V39, P313, DOI
   10.1016/j.jcice.2008.01.008
   SHE FH, 2008, ROBOT CIM-INT MANUF, V24, P427, DOI
   10.1016/j.rcim.2007.02.023
   SHE FH, 2009, DESALINATION, V236, P179
   XU AW, 2007, J MATER CHEM, V17, P415, DOI 10.1039/b611918m
NR 21
TC 0
PU ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0011-9164
DI 10.1016/j.desal.2008.11.036
PD JAN 15
VL 250
IS 2
BP 757
EP 761
SC Engineering, Chemical; Water Resources
GA 533NL
UT ISI:000272830700052
ER
PT J
*Record 5 of 6. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272916800004>
*Order Full Text [ ]
AU Zhou, WY
   Bai, XD
   Wang, EG
   Xie, SS
AF Zhou, Weiya
   Bai, Xuedong
   Wang, Enge
   Xie, Sishen
TI Synthesis, Structure, and Properties of Single-Walled Carbon Nanotubes
SO ADVANCED MATERIALS
LA English
DT Review
ID FIELD-EFFECT TRANSISTORS; LARGE-SCALE SYNTHESIS;
   CHEMICAL-VAPOR-DEPOSITION; C-N NANOTUBES; TEMPERATURE-DEPENDENCE;
   ELECTRONIC-PROPERTIES; RAMAN-SPECTRA; DOPED CARBON;
   ELECTRICAL-TRANSPORT; GRAPHITIC CARBON
AB Great interest in single-walled carbon nanotubes (SWCNTs) derives from
   their remarkable electrical, thermal, optical, and mechanical
   properties together with their lower density, which promise extensive
   and unique applications. Much progress has been achieved in the
   fundamental and applied investigations of SWCNTs over the past decade.
   At the same time, many obstacles still remain, hampering further
   development in this field. To clarify the emerging problems and to
   provide a comprehensive understanding of the field, we review the
   recent progress of research on the synthesis, structure, and properties
   of SWCNTs, in particular the SWCNT non-woven film, SWCNT rings,
   boron-nitrogen (B-N) co-doped SWCNTs (BCN-SWNTs), and individual
   SWCNTs. Some long-standing problems and topics warranting further
   investigations in the near future are addressed.
C1 [Zhou, Weiya; Bai, Xuedong; Wang, Enge; Xie, Sishen] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China.
RP Xie, SS, Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst
   Phys, Beijing 100190, Peoples R China.
CR AHLSKOG M, 1999, CHEM PHYS LETT, V300, P202
   AJAYAN PM, 2000, ADV MATER, V12, P750
   AJIKI H, 1993, J PHYS SOC JPN, V62, P1225
   AMELINCKX S, 1994, SCIENCE, V265, P635
   ANGLARET E, 2006, J PHYS CHEM B, V110, P3949, DOI 10.1021/jp0547131
   ARTUKOVIC E, 2005, NANO LETT, V5, P757, DOI 10.1021/nl0505254o
   AZEVEDO S, 2006, EUROPHYS LETT, V75, P126, DOI 10.1209/epl/i2006-10066-0
   BAI XD, 2000, APPL PHYS LETT, V76, P2624
   BAI XD, 2000, APPL PHYS LETT, V77, P67
   BANHART F, 1999, REP PROG PHYS, V62, P1181
   BAUGHMAN RH, 2002, SCIENCE, V297, P787
   BEKYAROVA E, 2005, J AM CHEM SOC, V127, P5990, DOI 10.1021/ja0431531
   BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503
   BETHUNE DS, 1993, NATURE, V363, P605
   BLACKBURN JL, 2006, CHEM MATER, V18, P2558, DOI 10.1021/cm060192i
   BLACKBURN JL, 2008, ACS NANO, V2, P1266, DOI 10.1021/nn800200d
   BLASE X, 1997, APPL PHYS LETT, V70, P197
   BLASE X, 2000, COMP MATER SCI, V17, P107
   BONARD JM, 2002, PHYS REV LETT, V89, P1
   BOROWIAKPALEN E, 2004, CARBON, V42, P1123
   BRYSON JW, 1995, SCIENCE, V270, P935
   BURGHARD M, 1998, ADV MATER, V10, P584
   BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u
   CAO J, 2005, NAT MATER, V4, P745, DOI 10.1038/nmat1478
   CAO Q, 2006, ADV MATER, V18, P304, DOI 10.1002/adma.200501740
   CAO Q, 2008, NATURE, V454, P495, DOI 10.1038/nature07110
   CAO Q, 2009, ADV MATER, V21, P29, DOI 10.1002/adma.200801995
   CARROLL DL, 1998, PHYS REV LETT, V81, P2332
   CASANOVAS J, 1996, J AM CHEM SOC, V118, P8071
   CHANDRA B, 2006, PHYS STATUS SOLIDI B, V243, P3359, DOI
   10.1002/pssb.200669130
   CHATTOPADHYAY D, 2002, J AM CHEM SOC, V124, P728
   CHATTOPADHYAY D, 2003, J AM CHEM SOC, V125, P3370, DOI 10.1021/ja028599l
   CHEN J, 1998, SCIENCE, V282, P95
   CHENG TW, 2007, APPL PHY LETT, V90, P3
   CHO H, 2008, IEEE ELECTR DEVICE L, V29, P122, DOI
   10.1109/LED.2007.911617
   CI LJ, 2001, CHEM PHYS LETT, V349, P191
   CI LJ, 2002, CHEM PHYS LETT, V359, P63
   CI LJ, 2003, APPL PHYS LETT, V82, P3098, DOI 10.1063/1.1572959
   COHEN G, 2007, PHYS REV B, V76, P235
   COLOMER JF, 2003, NANO LETT, V3, P685, DOI 10.1021/nl034159w
   CONTRERAS MA, 2007, J PHYS CHEM C, V111, P14045, DOI
   10.1021/jp075507bCCC
   CREIGHTON TE, 1992, PROTEIN FOLDING
   CRONIN SB, 2004, PHYS REV LETT, V293, UNSP 167401
   CRONIN SB, 2005, PHYS REV B, V72, P8
   CUBERNATI G, 2002, APPL PHYS LETT, V81, P850
   DAI H, 1996, CHEM PHYS LETT, V260, P471
   DALTON AB, 2000, J PHYS CHEM B, V104, P10012
   DEAN KA, 2000, APPL PHYS LETT, V76, P375
   DESOUZA NR, 2006, J PHYS-CONDENS MAT, V18, S2321, DOI
   10.1088/0953-8984/18/36/s07
   DILLON AC, 1999, ADV MATER, V11, P1354
   DING L, 2009, NANO LETT, V9, P800, DOI 10.1021/nl803496s
   DOORN SK, 2002, J AM CHEM SOC, V124, P3169
   DRESSELHAUS G, 1996, SCI FULLERENES CARBO
   DRESSELHAUS MS, 2001, CARBON NANOTUBES SYN, V80
   DUESBERG GS, 1999, SYNTHETIC MET, V103, P2484
   DUPASQUIER A, 2008, APPL PHYS LETT, V87, UNSP 203511
   DURKOP T, 2004, NANO LETT, V4, P35, DOI 10.1021/nl034841q
   EWELS CP, 2005, J NANOSCI NANOTECHNO, V5, P1345, DOI
   10.1166/jnn.2005.304
   FARKAS E, 2002, CHEM PHYS LETT, V363, P111
   FISCHER JE, 1997, PHYS REV B, V55, P4921
   FUENTES GG, 2004, PHYS REV B, V69, P5403
   GAI PL, 2004, J MATER CHEM, V14, P669, DOI 10.1039/b311696d
   GAO B, 2004, PHYS REV LETT, V92, P6804
   GELB LD, 1999, REP PROG PHYS, V62, P1573
   GENG JX, 2008, J PHYS CHEM C, V112, P12264, DOI 10.1021/jp8037208
   GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080
   GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9
   GHOSH S, 2004, PHYS REV B, V70, ARTN 205423
   GIRIFALCO LA, 2000, PHYS REV B, V62, P13104
   GLERUP M, 2004, CHEM PHYS LETT, V387, P193, DOI
   10.1016/j.cplett.2004.02.005
   GOLBERG D, 1999, CHEM PHYS LETT, V308, P337
   GOLBERG D, 2000, CARBON, V38, P2017
   GOLBERG D, 2002, CHEM PHYS LETT, V359, P220, PII S0009-2614(02)00536-5
   GREEN AA, 2008, NANO LETT, V8, P1417, DOI 10.1021/nl080302f
   GRIMM D, 2007, SMALL, V3, P1900, DOI 10.1002/smll.200700327
   GUO A, 2007, J PHYS CHEM C, V111, P3555, DOI 10.1021/jp068304g
   GUO JD, 2002, APPL PHYS LETT, V80, P124
   HADDON RC, 1997, NATURE, V388, P31
   HAMADA N, 1992, PHYS REV LETT, V68, P1579
   HAN WQ, 1998, APPL PHYS LETT, V73, P3085
   HAN WQ, 1999, CHEM MATER, V11, P3620
   HAN WQ, 2000, APPL PHYS LETT, V77, P1807
   HATA K, 2004, SCIENCE, V306, P1362
   HELLER DA, 2004, J AM CHEM SOC, V126, P14567, DOI 10.1021/ja046450z
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   HONE J, 2000, APPL PHYS LETT, V77, P666
   HU H, 2003, J AM CHEM SOC, V125, P14893, DOI 10.1021/ja0356737
   HUANG FM, 1998, J APPL PHYS, V84, P4022
   HUMMER G, 2001, NATURE, V414, P188
   IHARA S, 1993, PHYS REV B, V48, P5643
   IIJIMA S, 1991, NATURE, V354, P56
   IIJIMA S, 1993, NATURE, V363, P603
   ISHIKAWA FN, 2009, ACS NANO, V3, P73, DOI 10.1021/nn800434d
   JAVEY A, 2003, NATURE, V424, P654, DOI 10.1038/nature01797
   JIANG KL, 2002, NATURE, V419, P801
   KAMARAS K, 2003, SCIENCE, V301, P1501
   KATAURA H, 1999, SYNTHETIC MET, V103, P2555
   KESKAR G, 2005, CHEM PHYS LETT, V412, P269, DOI
   10.1016/j.cplett.2005.07.007
   KHANG DY, 2008, NANO LETT, V8, P124, DOI 10.1021/nlo72203s
   KIM JH, 2003, J MEMBRANE SCI, V216, P107, DOI
   10.1016/S0376-7388(03)00063-2
   KIM W, 2002, NANO LETTERS, V2, P703
   KIM W, 2003, NANO LETT, V3, P193, DOI 10.1021/nl0259232
   KIM YH, 2001, PHYS REV B, V63, ARTN 205408
   KIS A, 2004, NAT MATER, V3, P153, DOI 10.1038/nmat1076
   KOCABAS C, 2007, NANO LETT, V7, P1195, DOI 10.1021/nl062907m
   KOCIAK M, 2002, PHYS REV LETT, V89, ARTN 155501
   KOGA K, 2001, NATURE, V412, P802
   KOHLERREDLICH P, 1999, CHEM PHYS LETT, V310, P459
   KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503
   KONG J, 2001, PHYS REV LETT, V87, ARTN 106801
   KOZIOL K, 2007, SCIENCE, V318, P1892, DOI 10.1126/science.1147635
   KRAL P, 2001, PHYS REV LETT, V86, P131
   KRUPKE R, 2003, SCIENCE, V301, P344, DOI 10.1126/science.1086534
   KRUPKE R, 2005, ADV ENG MATER, V7, P111, DOI 10.1002/adem.200400170
   LATIL S, 2003, PHYS REV B, V67, ARTN 165420
   LI HD, 2000, APPL PHYS LETT, V76, P2053
   LI HP, 2004, J AM CHEM SOC, V126, P1014, DOI 10.1021/ja037142o
   LI WZ, 1996, SCIENCE, V274, P1701
   LI YM, 2004, NANO LETT, V4, P317, DOI 10.1021/nl035097c
   LI YM, 2005, J PHYS CHEM B, V109, P6968, DOI 10.1021/jp050868h
   LIN H, 2006, APPL PHYS LETT, V89, ARTN 073507
   LIN MF, 1998, PHYS REV B, V57, P6731
   LIU AY, 1989, PHYS REV B, V39, P1760
   LIU AY, 1989, SCIENCE, V245, P841
   LIU GT, 2009, NANO LETT, V9, P239, DOI 10.1021/nl802827m
   LIU J, 1997, NATURE, V385, P780
   LIU J, 1998, SCIENCE, V280, P1253
   LIU J, 2006, J MATER RES, V21, P2835, DOI 10.1557/JMR.2006.0346
   LIU KH, 2009, J AM CHEM SOC, V131, P62, DOI 10.1021/ja808593v
   LIU YC, 2005, PHYS REV B, V72, ARTN 085420
   LU DY, 2004, NANO LETT, V4, P2383, DOI 10.1021/nl0485511
   MA R, 2004, PHILOS T R SOC LON A, V362, P216
   MA WJ, 2007, NANO LETT, V7, P2307, DOI 10.1021/nl070915c
   MA WJ, 2009, ADV MATER, V21, P603, DOI 10.1002/adma.200801335
   MAEDA Y, 2005, J AM CHEM SOC, V127, P10287, DOI 10.1021/ja051774o
   MAEDA Y, 2006, J AM CHEM SOC, V128, P12239, DOI 10.1021/ja063776u
   MAITI A, 2001, PHYS REV LETT, V87, ARTN 155502
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   MALOLA S, 2008, PHYS REV B, V78, ARTN 153409
   MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI
   10.1016/j.cplett.2004.11.112
   MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823
   MAO SH, 2006, CHEM PHYS LETT, V421, P513, DOI
   10.1016/j.cplett.2006.02.011
   MARTEL R, 1999, J PHYS CHEM B, V103, P7551
   MARTEL R, 1999, NATURE, V398, P299
   MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415
   MCGUIRE K, 2005, CARBON, V43, P219, DOI 10.1016/j.cardon.2004.11.001
   MIYAMOTO Y, 1994, PHYS REV B, V50, P18360
   MIYAMOTO Y, 1994, PHYS REV B, V50, P4976
   MIYAMOTO Y, 1997, SOLID STATE COMMUN, V102, P605
   MOORE VC, 2003, NANO LETT, V3, P1379
   NAEEMI A, 2007, IEEE T ELECTRON DEV, V54, P26, DOI
   10.1109/TED.2006.887210
   NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907
   NIYOGI S, 2001, J AM CHEM SOC, V123, P733
   NOZAKI H, 1996, J PHYS CHEM SOLIDS, V57, P41
   OCONNELL MJ, 2002, SCIENCE, V297, P593
   OUYANG ZC, 1997, PHYS REV LETT, V78, P4055
   PAN ZW, 1999, APPL PHYS LETT, V74, P3152
   PONCHARAL P, 1999, SCIENCE, V283, P1513
   QIAN D, 2003, COMPOS SCI TECHNOL, V63, P1561, DOI
   10.1016/S0266-3538(03)00064-2
   QUINN BM, 2006, ADV MATER, V18, P855, DOI 10.1002/adma.200502438
   RAO AM, 1997, SCIENCE, V275, P187
   RAO AM, 2001, PHYS REV LETT, V86, P3895
   RARAVIKAR NR, 2002, PHYS REV B, V66, ARTN 235424
   RINZLER AG, 1998, APPL PHYS A-MATER, V67, P29
   ROBERTSON J, 1995, DIAM RELAT MATER, V4, P441
   ROCHEFORT A, 1998, CHEM PHYS LETT, V297, P45
   SAITO R, 1998, PHYS PROPERTIES CARB
   SALVETAT JP, 1999, PHYS REV LETT, V82, P944
   SANO M, 2001, SCIENCE, V293, P1299
   SEO K, 2003, J AM CHEM SOC, V125, P13946, DOI 10.1021/ja035262q
   SETTON R, 1997, CARBON, V35, P497
   SHARMA P, 2008, MATER RES BULL, V43, P2517, DOI
   10.1016/j.materresbull.2007.10.012
   SHEA HR, 2000, PHYS REV LETT, V84, P4441
   SHIMOYAMA I, 2000, PHYS REV B, V62, R6053
   SHIN HJ, 2008, J AM CHEM SOC, V130, P2062, DOI 10.1021/ja7100036e
   SKAKALOVA V, 2005, J PHYS CHEM B, V109, P7174, DOI 10.1021/jp044741o
   SKAKALOVA V, 2006, PHYS REV B, V74, ARTN 085403
   SONG L, 2004, ADV MATER, V16, P1529, DOI 10.1002/adma.200306393
   SONG L, 2006, ADV MATER, V18, P1817, DOI 10.1002/adma.200502372
   SONG L, 2006, NANOTECHNOLOGY, V17, P2355, DOI 10.1088/0957-4484/17/9/046
   SONG L, 2008, APPL PHYS LETT, V92, ARTN 121905
   STEPHAN O, 1994, SCIENCE, V266, P1683
   STRANO MS, 2003, J NANOSCI NANOTECHNO, V3, P81, DOI 10.1166/jnn.2003.194
   STRANO MS, 2003, SCIENCE, V301, P1519
   SUENAGA K, 1997, SCIENCE, V278, P653
   SUENAGA K, 1999, CHEM PHYS LETT, V300, P695
   SUN CL, 2006, J AM CHEM SOC, V128, P8368, DOI 10.1021/ja0587852
   SUZUKI S, 2004, JPN J APPL PHYS 2, V43, L1118, DOI 10.1143/JJAP.43.L1118
   SZABO A, 2005, CARBON, V43, P1628, DOI 10.1016/j.carbon.2005.01.025
   TAKENOBU T, 2006, APPL PHYS LETT, V88, ARTN 033511
   TERRONES M, 1999, ADV MATER, V11, P655
   TERRONES M, 1999, APPL PHYS LETT, V75, P3932
   TERRONES M, 2002, CARBON, V40, P1665
   TERRONES M, 2002, PHYS REV LETT, V89, ARTN 075505
   TERSOFF J, 1994, PHYS REV LETT, V73, P676
   TETER DM, 1996, SCIENCE, V271, P53
   THESS A, 1996, SCIENCE, V273, P483
   THOSTENSON ET, 2001, COMPOS SCI TECHNOL, V61, P1899
   TREACY MMJ, 1996, NATURE, V381, P678
   TSUKRUK VV, 2004, PHYS REV LETT, V92, ARTN 065502
   VANDELAGEMAAT J, 2006, APPL PHYS LETT, V88, ARTN 233503
   VENKATESWARAN UD, 2001, PHYS STATUS SOLIDI B, V223, P225
   VIJAYARAGHAVAN A, 2005, NANO LETT, V5, P1575, DOI 10.1021/nl0509935
   VOSSMEYER T, 1998, ADV MATER, V10, P351
   WALTERS DA, 1999, APPL PHYS LETT, V74, P3803
   WANG CJ, 2005, J AM CHEM SOC, V127, P11460, DOI 10.1021/ja0526564
   WANG W, 2008, J AM CHEM SOC, V130, P1415, DOI 10.1021/ja0768035
   WANG WL, 2006, J AM CHEM SOC, V128, P6530, DOI 10.1021/ja0606733
   WANG XB, 2001, CHEM PHYS LETT, V339, P36
   WANG YH, 2006, P NATL ACAD SCI USA, V103, P2026, DOI
   10.1073/pnas.0511022103
   WATANABE H, 2001, APPL PHYS LETT, V78, P2928
   WEI DC, 2008, ADV MATER, V20, P2815, DOI 10.1002/adma.200800589
   WENSELEERS W, 2004, ADV FUNCT MATER, V14, P1105, DOI
   10.1002/adfm.200400130
   WENSELEERS W, 2007, ADV MATER, V19, P2274, DOI 10.1002/adma.200700773
   WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
   WHITE CT, 1998, NATURE, V393, P240
   WHITESIDES GM, 1991, SCIENCE, V254, P1312
   WONG EW, 1997, SCIENCE, V277, P1971
   WOOD J, 2008, MATER TODAY, V11, P40
   WU ZC, 2004, SCIENCE, V305, P1273
   XIE SS, 2005, SCI TECHNOL ADV MAT, V6, P725, DOI
   10.1016/j.stam.2005.05.008
   XU Z, 2008, ADV MATER, V20, P3615, DOI 10.1002/adma.200800830
   YAKOBSON BI, 1996, PHYS REV LETT, V76, P2511
   YAKOBSON BI, 2001, APPL PHYS, V80, P287
   YAO YG, 2007, NAT MATER, V6, P283, DOI 10.1038/nmat1865
   YAO Z, 2000, PHYS REV LETT, V84, P2941
   YU MF, 2000, PHYS REV LETT, V84, P5552
   YU MF, 2000, SCIENCE, V287, P637
   YUAN DN, 2007, SMALL, V3, P366, DOI 10.1002/smll.200600705
   ZETTL A, 1996, ADV MATER, V8, P443
   ZHA FX, 2004, CARBON, V42, P885
   ZHANG DH, 2006, NANO LETT, V6, P1880, DOI 10.1021/nl0608543
   ZHANG GY, 2006, SCIENCE, V314, P974, DOI 10.1126/science.1133781
   ZHANG M, 2005, SCIENCE, V309, P1215, DOI 10.1126/science.1115311
   ZHANG SL, 2002, PHYS REV B, V65, ARTN 235411
   ZHANG SL, 2003, PHYS REV B, V68, ARTN 245419
   ZHANG XF, 1995, PHYS REV B, V52, P5313
   ZHANG XF, 2004, J PHYS CHEM B, V108, P16435, DOI 10.1021/jp0475988
   ZHANG XF, 2007, ADV MATER, V19, P4198, DOI 10.1002/adma.200700776
   ZHANG Y, 1997, CHEM PHYS LETT, V279, P264
   ZHANG YY, 2005, J AM CHEM SOC, V127, P17156, DOI 10.1021/ja056793c
   ZHANG YY, 2007, J PHYS CHEM C, V111, P14031, DOI 10.1021/jp075058fCCC
   ZHAO JJ, 2002, NANOTECHNOLOGY, V13, P195
   ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956
   ZHENG LX, 2004, NAT MATER, V3, P673, DOI 10.1038/nmat1216
   ZHENG M, 2003, NAT MATER, V2, P338, DOI 10.1038/nmat877
   ZHENG M, 2003, SCIENCE, V302, P1545
   ZHI CY, 2002, J APPL PHYS, V91, P5325
   ZHI CY, 2004, J NANOSCI NANOTECHNO, V4, P35, DOI 10.1166/jnn.2004.018
   ZHONG XH, 2008, APPL PHYS A-MATER, V92, P709, DOI
   10.1007/s00339-008-4629-5
   ZHOU ZP, 2003, CARBON, V41, P2607, DOI 10.1016/S0008-6223(03)00336-1
   ZHOU ZP, 2004, J PHYS CHEM B, V108, P10751, DOI 10.1021/jp036949
   ZHOU ZP, 2006, J PHYS CHEM B, V110, P1206, DOI 10.1021/jp053268r
   ZHU HY, 1998, J PHYS CHEM SOLIDS, V59, P1303
   ZOU SL, 2007, NANO LETT, V7, P276, DOI 10.1021/nl062258e
NR 255
TC 0
PU WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0935-9648
DI 10.1002/adma.200901071
PD DEC 4
VL 21
IS 45
SI Sp. Iss. SI
BP 4565
EP 4583
SC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
   Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
   Physics, Condensed Matter
GA 534SE
UT ISI:000272916800004
ER
PT J
*Record 6 of 6. 
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272914200009>
*Order Full Text [ ]
AU Zhang, XW
   Zhang, T
   Ng, J
   Sun, DD
AF Zhang, Xiwang
   Zhang, Tong
   Ng, Jiawei
   Sun, Darren Delai
TI High-Performance Multifunctional TiO2 Nanowire Ultrafiltration Membrane
   with a Hierarchical Layer Structure for Water Treatment
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
ID METAL-OXIDE NANOFIBERS; CARBON NANOTUBES; ENVIRONMENTAL APPLICATIONS;
   PHOTOCATALYTIC OXIDATION; CERAMIC MEMBRANES; FLUX; SEPARATION;
   TRANSPARENT; FILTRATION; SHEETS
AB A novel, multifunctional TiO2 nanowire ultrafiltration (UF) membrane
   with a layered hierarchical structure is made via alkaline hydrothermal
   synthesis, followed by a filtration and hot-press process. The TO2 UF
   membrane has high surface porosity (21.3%) and pore size values around
   20 nm. The membrane possesses multifunctional capabilities under UV
   irradiation, such as anti-fouling, anti-bacterial, concurrent
   separation, and photocatalyic oxidation. The unique properties of the
   membrane indicate its potential in applications for environmental
   purification.
C1 [Zhang, Xiwang; Zhang, Tong; Ng, Jiawei; Sun, Darren Delai] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore.
RP Zhang, XW, Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore
   639798, Singapore.
CR ALBU SP, 2007, NANO LETT, V7, P1286, DOI 10.1021/nl070264k
   CHOI H, 2006, ADV FUNCT MATER, V16, P1067, DOI 10.1002/adfm.200500658
   CHOI H, 2006, APPL CATAL B-ENVIRON, V63, P60, DOI
   10.1016/j.apcatb.2005.09.012
   DEVOS RM, 1998, SCIENCE, V279, P1710
   DONG WJ, 2006, J PHYS CHEM B, V110, P16819, DOI 10.1021/jp0637633
   ENDO M, 2005, NATURE, V433, P476, DOI 10.1038/433476a
   FUJISHIMA A, 2000, J PHOTOCH PHOTOBIO C, V1, P1
   GU G, 2003, NAT MATER, V2, P316, DOI 10.1038/nmat880
   HOFFMANN MR, 1995, CHEM REV, V95, P69
   HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
   IIJIMA S, 1991, NATURE, V354, P56
   KE XB, 2007, ADV MATER, V19, P785
   KE XB, 2008, J PHYS CHEM B, V112, P5000, DOI 10.1021/jp709837r
   LAW M, 2004, ANNU REV MATER RES, V34, P83, DOI
   10.1146/annurev.matsci.34.040203.112300
   LI D, 2004, ADV MATER, V16, P1151, DOI 10.1002/adma.200400719
   LI XZ, 2003, ENVIRON SCI TECHNOL, V37, P3989, DOI 10.1021/es0262941
   MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
   RAJCA M, 2009, DESALINATION, V239, P100, DOI 10.1016/j.desal.2008.03.010
   REMSKAR M, 2004, ADV MATER, V16, P1497, DOI 10.1002/adma.200306428
   SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
   SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261
   TANG CY, 2007, J MEMBRANE SCI, V290, P86, DOI
   10.1016/j.memsci.2006.12.017
   TENNE R, 1992, NATURE, V360, P444
   THORSEN T, 1999, WATER SCI TECHNOL, V40, P105
   VANDENBERG A, 2007, NATURE, V445, P726
   WANG YM, 2008, ADV FUNCT MATER, V18, P1131, DOI 10.1002/adfm.200701120
   WU ZC, 2004, SCIENCE, V305, P1273
   YUAN ZY, 2004, COLLOID SURFACE A, V241, P173, DOI
   10.1016/colsurfa.2004.04.030
   ZHANG M, 2005, SCIENCE, V309, P1215, DOI 10.1126/science.1115311
   ZHANG XW, 2008, APPL CATAL B-ENVIRON, V84, P262, DOI
   10.1016/j.apcatb.2008.04.009
   ZHANG XW, 2008, J MEMBRANE SCI, V313, P44, DOI
   10.1016/j.memsci.2007.12.045
   ZHANG XW, 2009, WATER RES, V43, P1179, DOI 10.1016/j.watres.2008.12.021
NR 32
TC 0
PU WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1616-301X
DI 10.1002/adfm.200901435
PD DEC 9
VL 19
IS 23
BP 3731
EP 3736
SC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
   Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
   Physics, Condensed Matter
GA 534RE
UT ISI:000272914200009
ER
EF
========================================================================
 *Order Full Text* 
 All Customers
--------------
    Please contact your library administrator, or person(s) responsible for 
    document delivery, to find out more about your organization's policy for 
    obtaining the full text of the above articles. If your organization does 
    not have a current document delivery provider, your administrator can 
    contact ISI Document Solution at service@isidoc.com, or call 800-603-4367 
    or 734-459-8565.
 IDS Customers
--------------
    IDS customers can purchase the full text of an article (having page number, 
    volume, and issue information) by returning this ENTIRE message as a Reply 
    to Sender or Forward to orders@isidoc.com. Mark your choices with an X in 
    the "Order Full Text: []" brackets for each item. For example, [X].
Please enter your account number here:
========================================================================
 *Import Records into an ISI ResearchSoft product*
 1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
 2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
 *Help Desk Contact Information*
 If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================
 
No comments:
Post a Comment