Friday, January 8, 2010

ISI Web of Knowledge Alert - Holt JK

ISI Web of Knowledge Citation Alert

Cited Article: Holt JK. Fast mass transport through sub-2-nanometer carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 6 new records this week (6 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article, import the records into an
ISI ResearchSoft product, and Help Desk Contact information are at the end of the e-mail.
========================================================================

FN ISI Export Format
VR 1.0

PT J
*Record 1 of 6.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272904100043>
*Order Full Text [ ]
AU Fedorov, AS
Sadreev, AF
AF Fedorov, A. S.
Sadreev, A. F.
TI Ab-initio investigation of thermoactivated directional transport of
hydrogen molecules inside narrow carbon nanotubes
SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
LA English
DT Proceedings Paper
ID DIFFUSION; ENERGY
AB Using the pseudopotential DFT and the empirical potential methods we
calculate the potential acting to the hydrogen molecules in narrow
single-wall carbon nanotubes (SWCNT) (6,0),(7,0) and (3,3). The
potential forms a goffered potential surface and can be approximated as
V(z, r, phi) approximate to V-0 sin(2 pi z/a) + V(r). We show that in
these SWCNTs transport of molecules is given mainly by thermoactivated
hoppings between minima of the periodic potential along the tube axis.
Taking into account that hydrogen density distribution inside nanotube
is stationary and assuming the temperature is changed linearly along
the SWCNT length we show that the H-2 density is sufficiently variated,
especially for the case of (6,0)SWCNT where the density on both SWCNT
ends are different at similar to 30 times when the temperature is
changed along the SWCNT from 300K to 1200K. Suppose that H2 molecules
can penetrate in the both open SWCNT ends, the molecules would move in
the direction of the temperature decreasing. This effect may be used
potentially to build up a molecular pump driven by the temperature
gradient along narrow nanotube. (C) 2009 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim
C1 [Fedorov, A. S.; Sadreev, A. F.] Russian Acad Sci, LV Kirensky Phys Inst, Siberian Div, Krasnoyarsk 660036, Russia.
[Fedorov, A. S.] Krasnoyarsk Railway Transport Inst, Krasnoyarsk 660028, Russia.
RP Fedorov, AS, Russian Acad Sci, LV Kirensky Phys Inst, Siberian Div,
Krasnoyarsk 660036, Russia.
EM alex99@iph.krasn.ru
CR ARYA G, 2003, PHYS REV LETT, V91, P6102
BARREIRO A, 2008, SCIENCE, V320, P775, DOI 10.1126/science.1155559
BHATIA SK, 2006, AICHE J, V52, P29, DOI 10.1002/aic.10580
BHATIA SK, 2007, J CHEM PHYS, V127, P24701
CHEN HB, 2004, J AM CHEM SOC, V126, P7778, DOI 10.1021/ja039462d
FEDDERS PA, 1978, PHYS REV B, V17, P40
GUPTA V, 1996, SCIENCE, V274, P164
HINDS BJ, 2004, SCIENCE, V303, P62, DOI 10.1126/science.1092048
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
JEPPS OG, 2003, PHYS REV LETT, V91, P6102
KRESSE G, 1996, COMP MATER SCI, V6, P15
KRESSE G, 1996, PHYS REV B, V54, P11169
SADREEV AF, 2001, J CHEM PHYS, V115, P9513
SAITO R, 1998, PHYS REV B, V57, P4145
SKOULIDAS AI, 2002, PHYS REV LETT, V89, P5901
SOKHAN VP, 2004, J CHEM PHYS, V120, P3855, DOI 10.1063/1.1643726
SOMADA H, NANOLETTERS ASAP
SUN DY, 2007, PHYS REV B, V75, P5424
VINEYARD GH, 1957, J PHYS CHEM SOLIDS, V3, P121
VLUGT TJH, 2002, J PHYS CHEM B, V106, P12757, DOI 10.1021/jp0263931
WEI CY, 2003, PHYS REV LETT, V91, P5901
NR 21
TC 0
PU WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0370-1972
DI 10.1002/pssb.200982285
PD DEC
VL 246
IS 11-12
SI Sp. Iss. SI
BP 2598
EP 2601
SC Physics, Condensed Matter
GA 534NJ
UT ISI:000272904100043
ER

PT J
*Record 2 of 6.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272937500078>
*Order Full Text [ ]
AU Goswami, P
Chakraborty, S
AF Goswami, Prakash
Chakraborty, Suman
TI Energy Transfer through Streaming Effects in Time-Periodic
Pressure-Driven Nanochannel Flows with Interfacial Slip
SO LANGMUIR
LA English
DT Article
ID NANOFLUIDIC CHANNELS; HYDROPHOBIC MICROCHANNELS; CIRCULAR
MICROCHANNELS; CARBON NANOTUBES; APPARENT SLIP; CONVERSION; EFFICIENCY;
TRANSPORT; SURFACES; BATTERY
AB We analytically investigate the prospect of using electrokinetic
phenomena to transfer hydrostatic energy to electrical power with high
energy transfer efficiencies, by exploiting time periodic
pressure-driven flows in narrow fluidic confinements. An expression for
the energy transfer efficiency for such pulsating pressure-driven flows
is derived by considering wall-slip effects due to hydrophobic
interactions, strong electrical double layer interactions in the
confined now passages, possibilities of exploring the regimes of large
wall potentials, and the adverse consequences of the finite conductance
of the Stern layer. It is revealed from Our studies that high-frequency
pressure pulsations may be employed in practice to improve the
concerned energy transfer efficiency to a considerable extent, instead
of using a steady-state pressure field. Such favorable effects are
Found to be best exploited by utilizing "slipping"
electro-hydrodynamics in thick electrical double layers in the presence
of high surface potentials.
C1 [Chakraborty, Suman] Indian Inst Technol, Dept Mech Engn, Kharagpur 721302, W Bengal, India.
[Goswami, Prakash] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India.
RP Chakraborty, S, Indian Inst Technol, Dept Mech Engn, Kharagpur 721302,
W Bengal, India.
EM suman@2mech.iitkgp.ernet.in
CR BALDESSARI F, 2008, J COLLOID INTERF SCI, V325, P526, DOI
10.1016/j.jcis.2008.06.007
BAUDRY J, 2001, LANGMUIR, V17, P5232
BEHRENS SH, 1999, PHYS REV E B, V60, P7040
BENZI R, 2006, EUROPHYS LETT, V74, P651, DOI 10.1209/epl/i2006-10022-0
CHAKRABORTY S, 2007, APPL PHYS LETT, V90, ARTN 034108
CHAKRABORTY S, 2007, J APPL PHYS, V102, ARTN 104907
CHAKRABORTY S, 2007, LANGMUIR, V23, P12421, DOI 10.1021/la702109c
CHAKRABORTY S, 2007, PHYS REV LETT, V99, ARTN 094504
CHAKRABORTY S, 2008, PHYS FLUIDS, V20, ARTN 043602
CHAKRABORTY S, 2008, PHYS FLUIDS, V20, ARTN 083602
CHAKRABORTY S, 2008, PHYS REV E 2, V77, ARTN 037303
CHAKRABORTY S, 2008, PHYS REV LETT, V100, ARTN 097801
CHAKRABORTY S, 2008, PHYS REV LETT, V101, ARTN 184501
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425
CHUN MS, 2005, J MICROMECH MICROENG, V15, P710, DOI
10.1088/0960-1317/15/4/007
DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945
DAVIDSON C, 2008, ELECTROPHORESIS, V29, P1125, DOI
10.1002/elps.200700549
ERICKSON D, 2001, J COLLOID INTERF SCI, V237, P283
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HUANG P, 2006, J FLUID MECH, V566, P477
HUNTER RJ, 1981, ZETA POTENTIAL COLLO
LAUGA E, 2004, PHYS REV E 2, V70, ARTN 026311
LAUGA E, 2007, HDB EXPT FLUID DYNAM
LU MC, 2006, J MICROMECH MICROENG, V16, P667, DOI
10.1088/0960-1317/16/4/001
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MEYER EE, 2006, P NATL ACAD SCI USA, V103, P15739, DOI
10.1073/pnas.0606422103
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05
OLTHUIS W, 2005, SENSOR ACTUAT B-CHEM, V111, P385, DOI
10.1016/j.snb.2005.03.039
OSTERLE JF, 1964, J APPL MECH, V31, P161
PENNATHUR S, 2007, LAB CHIP, V7, P1234, DOI 10.1039/b712893m
REN YQ, 2008, NANOTECHNOLOGY, V19, ARTN 195707
SBRAGAGLIA M, 2006, PHYS REV LETT, V97, ARTN 204503
STEINBERGER A, 2007, NAT MATER, V6, P665, DOI 10.1038/nmat1962
TRETHEWAY DC, 2004, PHYS FLUIDS, V16, P1509, DOI 10.1063/1.1669400
VANDERHEYDEN FHJ, 2006, NANO LETT, V6, P2232, DOI 10.1021/nl061524l
VANDERHEYDEN FHJ, 2006, PHYS REV LETT, V96, ARTN 224502
VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h
YANG J, 2003, J MICROMECH MICROENG, V13, P115
YANG J, 2003, J MICROMECH MICROENG, V13, P963
YANG J, 2003, LANGMUIR, V19, P1047, DOI 10.1021/la026201t
YANG J, 2004, LANGMUIR, V20, P3863, DOI 10.1021/la035243u
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102
NR 42
TC 0
PU AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
DI 10.1021/la901209a
PD JAN 5
VL 26
IS 1
BP 581
EP 590
SC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
GA 534ZY
UT ISI:000272937500078
ER

PT J
*Record 3 of 6.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000273038100013>
*Order Full Text [ ]
AU Kuang, CF
Wang, GR
AF Kuang, Cuifang
Wang, Guiren
TI A novel far-field nanoscopic velocimetry for nanofluidics
SO LAB ON A CHIP
LA English
DT Article
ID EVANESCENT-WAVE ILLUMINATION; PARTICLE IMAGE VELOCIMETRY;
ELECTROOSMOTIC FLOW; CARBON NANOTUBES; CAPILLARY-ELECTROPHORESIS;
FLUORESCENCE MICROSCOPY; MICROFLUIDIC DEVICES; STED MICROSCOPY;
DYNAMICS; RESOLUTION
AB For the first time we have been able to measure the flow velocity
profile for nanofluidics with a spatial resolution better than 70 nm.
Due to the diffraction resolution barrier, traditional optical methods
have so far failed in measuring the velocity profile in a nanocapillary
or a closed nanochannel without an opened sidewall. A novel optical
point measurement method is presented which applies stimulated emission
depletion (STED) microscopy to laser induced fluorescence
photobleaching anemometer (LIFPA) techniques to measure flow velocity.
Herein we demonstrate this far-field nanoscopic velocimetry method by
measuring the velocity profile in a nanocapillary with an inner
diameter of 360 nm. The closest measuring point to the wall is about 35
nm. This method opens up a new class of functional measuring techniques
for nanofluidics and for nanoscale flows from the wall.
C1 [Wang, Guiren] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA.
Univ S Carolina, Biomed Engn Program, Columbia, SC 29208 USA.
RP Wang, GR, Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA.
EM guirenwang@sc.edu
CR DONNERT G, 2006, P NATL ACAD SCI USA, V103, P11440, DOI
10.1073/pnas.0604965103
DUONGHONG D, 2008, MICROFLUID NANOFLUID, V4, P219, DOI
10.1007/s10404-007-0170-7
FLAMION B, 1991, BIOPHYS J, V60, P1229
GAI HW, 2005, LAB CHIP, V5, P443, DOI 10.1039/b416476h
HAGSATER SM, 2008, LAB CHIP, V8, P1178, DOI 10.1039/b801028e
HAN KY, 2009, NANO LETT, V9, P3323, DOI 10.1021/nl901597v
HELL SW, 2003, NAT BIOTECHNOL, V21, P1347, DOI 10.1038/nbt895
HERR AE, 2000, ANAL CHEM, V72, P1053
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HU H, 2006, MEAS SCI TECHNOL, V17, P1269, DOI 10.1088/0957-0233/17/6/S06
JIN S, 2004, EXP FLUIDS, V37, P825, DOI 10.1007/s00348-004-0870-7
KIHM KD, 2004, EXP FLUIDS, V37, P811, DOI 10.1007/s00348-004-0865-4
KINOSHITA H, 2007, LAB CHIP, V7, P338, DOI 10.1039/b617391h
KOOCHESFAHANI MM, 2007, MOL TAGGING VELOCIME
KUANG C, 2009, ULTRAFAST MEAS UNPUB
KUANG CF, 2009, ANAL CHEM, V81, P6590, DOI 10.1021/ac901017a
KUANG CF, 2009, MICROFLUID NANOFLUID, V7, P509, DOI
10.1007/s10404-009-0411-z
KUZNETSOVA Y, 2007, OPT EXPRESS, V15, P6651
LI HF, 2006, EXP FLUIDS, V41, P185, DOI 10.1007/s00348-006-0155-4
LIU Y, 2009, LAB CHIP, V9, P1110, DOI 10.1039/b818617k
LU HW, 2008, LAB CHIP, V8, P456, DOI 10.1039/b717141b
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI
10.1007/s10404-008-0293-5
MOLHO JI, 2001, ANAL CHEM, V73, P1350
MOORE AW, 1993, ANAL CHEM, V65, P3550
MOSIER BP, 2002, EXP FLUIDS, V33, P545, DOI 10.1007/s00348-002-0486-8
MUKHOPADHYAY R, 2006, ANAL CHEM, V78, P7379
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05
OH YJ, 2009, LAB CHIP, V9, P1609, DOI 10.1039/b816384g
PAUL PH, 1998, ANAL CHEM, V70, P2459
PIOREK B, 2006, APPL PHYS LETT, V89, ARTN 153123
PIRUSKA A, 2008, LAB CHIP, V8, P1625
PITTMAN JL, 2001, ANALYST, V126, P1240
PITTMAN JL, 2003, ANAL CHEM, V75, P361, DOI 10.1021/ac026132n
POUYA S, 2008, EXP FLUIDS, V44, P1035, DOI 10.1007/s00348-008-0491-7
RALSTON J, 2008, ANNU REV MATER RES, V38, P23, DOI
10.1146/annurev.matsci.38.060407.130231
RAUSCHER M, 2008, ANNU REV MATER RES, V38, P143, DOI
10.1146/annurev.matsci.38.060407.132451
RICKA J, 1987, EXP FLUIDS, V5, P381
RITTWEGER E, 2007, CHEM PHYS LETT, V442, P483, DOI
10.1016/j.cplett.2007.06.017
RITTWEGER E, 2009, NAT PHOTONICS, V3, P144, DOI 10.1038/NPHOTON.2009.2
ROSS D, 2001, ANAL CHEM, V73, P2509
SANTIAGO JG, 1998, EXP FLUIDS, V25, P316
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839
SCHRUM KF, 2000, ANAL CHEM, V72, P4317
TAMAKI E, 2006, J CHROMATOGR A, V1137, P256, DOI
10.1016/j.chroma.2006.10.097
TAS NR, 2004, APPL PHYS LETT, V85, P3274, DOI 10.1063/1.1804602
WANG GR, 2005, LAB CHIP, V5, P450, DOI 10.1039/b416209a
WANG GR, 2007, 7283215, US
WANG GR, 2008, ELECTROPHORESIS, V29, P1253, DOI 10.1002/elps.200600855
WHITE FM, 1991, VISCOUS FLUID FLOW
WHITE J, 1999, TRENDS CELL BIOL, V9, P61
ZETTNER CM, 2003, EXP FLUIDS, V34, P115, DOI 10.1007/s00348-002-0541-5
NR 52
TC 0
PU ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,
CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1473-0197
DI 10.1039/b917584a
VL 10
IS 2
BP 240
EP 245
SC Biochemical Research Methods; Chemistry, Multidisciplinary; Nanoscience
& Nanotechnology
GA 536IM
UT ISI:000273038100013
ER

PT J
*Record 4 of 6.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272830700052>
*Order Full Text [ ]
AU She, FH
Nihara, K
Gao, WM
Hodgson, PD
Jinnai, H
Kong, LX
AF She, F. H.
Nihara, K.
Gao, W. M.
Hodgson, P. D.
Jinnai, H.
Kong, L. X.
TI 3-Dimensional characterization of membrane with nanoporous structure
using TEM tomography and image analysis
SO DESALINATION
LA English
DT Proceedings Paper
DE 3-D reconstruction; Nanoporous structure; Filtration membrane; Diatom;
Transmission electronic microtomography
ID PORE STRUCTURE; MICROTOMOGRAPHY; MORPHOLOGIES; DIATOMS; SCIENCE; RUBBER
AB The nanoporous structure of a membrane varies in a 3-dimensional (3-D)
space and has remarkable influences on the filtration or desalination
achieved, fouling potentials and therefore, the quality of yielded
water. Knowledge of the 3-D nanoporous structure is thus vital to
understanding and predicting its performance. A novel method by
incorporating transmission electronic microtomography, image processing
and 3-D reconstruction is introduced to characterize membranes with
nano structures. The reconstruction algorithm allows for the
visualization of 3-D nanoporous structure in a non-destructive way from
any directions. This novel technique leads to in-depth understanding
and accurate prediction of filtration performance. (C) 2009 Elsevier
B.V. All rights reserved.
C1 [She, F. H.; Gao, W. M.; Hodgson, P. D.; Kong, L. X.] Deakin Univ, Ctr Mat & Fibre Innovat, Waurn Ponds, Vic 3217, Australia.
[Nihara, K.; Jinnai, H.] Kyoto Inst Technol, Dept Macromol Sci & Engn, Grad Sch Sci & Engn, Kyoto 6068585, Japan.
RP Kong, LX, Deakin Univ, Ctr Mat & Fibre Innovat, Waurn Ponds, Vic 3217,
Australia.
EM lingxue.kong@deakin.edu.au
CR *L JEOL SYST TECHN, 2006, COMP VERS 2 5 US MAN
DOHI H, 2007, POLYM J, V39, P749
GREEN DL, 2006, J MEMBRANE SCI, V279, P100, DOI
10.1016/j.memsci.2005.11.051
HILAL N, 2003, DESALINATION, V157, P137
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
JINNAI H, 2006, MACROMOL RAPID COMM, V27, P1424, DOI
10.1002/marc.200600344
KAWASE N, 2007, ULTRAMICROSCOPY, V107, P8, DOI
10.1016/j.ultramic.2006.04.007
KOHJIYA S, 2005, POLYMER, V46, P4440, DOI 10.1016/j.polymer.2005.02.026
LENOCI L, 2008, LANGMUIR, V24, P217, DOI 10.1021/la702278f
LIANG Z, 2000, J COLLOID INTERF SCI, V221, P13
LOSIC D, 2006, J MATER CHEM, V16, P4029, DOI 10.1039/b610188g
LOSIC D, 2006, J NANOSCI NANOTECHNO, V6, P982, DOI 10.1166/jnn.2006.174
LU YY, 2007, CHEM MATER, V19, P3194, DOI 10.1021/cm070200a
OH KS, 2004, J KOREAN PHYS SOC S, V45, S855
PARKINSON J, 1999, TRENDS BIOTECHNOL, V17, P190
REMIGY JC, 2007, J MEMBRANE SCI, V305, P27, DOI
10.1016/j.memsci.2007.06.059
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
SHE FH, 2008, J CHIN INST CHEM ENG, V39, P313, DOI
10.1016/j.jcice.2008.01.008
SHE FH, 2008, ROBOT CIM-INT MANUF, V24, P427, DOI
10.1016/j.rcim.2007.02.023
SHE FH, 2009, DESALINATION, V236, P179
XU AW, 2007, J MATER CHEM, V17, P415, DOI 10.1039/b611918m
NR 21
TC 0
PU ELSEVIER SCIENCE BV; PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0011-9164
DI 10.1016/j.desal.2008.11.036
PD JAN 15
VL 250
IS 2
BP 757
EP 761
SC Engineering, Chemical; Water Resources
GA 533NL
UT ISI:000272830700052
ER

PT J
*Record 5 of 6.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272916800004>
*Order Full Text [ ]
AU Zhou, WY
Bai, XD
Wang, EG
Xie, SS
AF Zhou, Weiya
Bai, Xuedong
Wang, Enge
Xie, Sishen
TI Synthesis, Structure, and Properties of Single-Walled Carbon Nanotubes
SO ADVANCED MATERIALS
LA English
DT Review
ID FIELD-EFFECT TRANSISTORS; LARGE-SCALE SYNTHESIS;
CHEMICAL-VAPOR-DEPOSITION; C-N NANOTUBES; TEMPERATURE-DEPENDENCE;
ELECTRONIC-PROPERTIES; RAMAN-SPECTRA; DOPED CARBON;
ELECTRICAL-TRANSPORT; GRAPHITIC CARBON
AB Great interest in single-walled carbon nanotubes (SWCNTs) derives from
their remarkable electrical, thermal, optical, and mechanical
properties together with their lower density, which promise extensive
and unique applications. Much progress has been achieved in the
fundamental and applied investigations of SWCNTs over the past decade.
At the same time, many obstacles still remain, hampering further
development in this field. To clarify the emerging problems and to
provide a comprehensive understanding of the field, we review the
recent progress of research on the synthesis, structure, and properties
of SWCNTs, in particular the SWCNT non-woven film, SWCNT rings,
boron-nitrogen (B-N) co-doped SWCNTs (BCN-SWNTs), and individual
SWCNTs. Some long-standing problems and topics warranting further
investigations in the near future are addressed.
C1 [Zhou, Weiya; Bai, Xuedong; Wang, Enge; Xie, Sishen] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China.
RP Xie, SS, Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst
Phys, Beijing 100190, Peoples R China.
CR AHLSKOG M, 1999, CHEM PHYS LETT, V300, P202
AJAYAN PM, 2000, ADV MATER, V12, P750
AJIKI H, 1993, J PHYS SOC JPN, V62, P1225
AMELINCKX S, 1994, SCIENCE, V265, P635
ANGLARET E, 2006, J PHYS CHEM B, V110, P3949, DOI 10.1021/jp0547131
ARTUKOVIC E, 2005, NANO LETT, V5, P757, DOI 10.1021/nl0505254o
AZEVEDO S, 2006, EUROPHYS LETT, V75, P126, DOI 10.1209/epl/i2006-10066-0
BAI XD, 2000, APPL PHYS LETT, V76, P2624
BAI XD, 2000, APPL PHYS LETT, V77, P67
BANHART F, 1999, REP PROG PHYS, V62, P1181
BAUGHMAN RH, 2002, SCIENCE, V297, P787
BEKYAROVA E, 2005, J AM CHEM SOC, V127, P5990, DOI 10.1021/ja0431531
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503
BETHUNE DS, 1993, NATURE, V363, P605
BLACKBURN JL, 2006, CHEM MATER, V18, P2558, DOI 10.1021/cm060192i
BLACKBURN JL, 2008, ACS NANO, V2, P1266, DOI 10.1021/nn800200d
BLASE X, 1997, APPL PHYS LETT, V70, P197
BLASE X, 2000, COMP MATER SCI, V17, P107
BONARD JM, 2002, PHYS REV LETT, V89, P1
BOROWIAKPALEN E, 2004, CARBON, V42, P1123
BRYSON JW, 1995, SCIENCE, V270, P935
BURGHARD M, 1998, ADV MATER, V10, P584
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u
CAO J, 2005, NAT MATER, V4, P745, DOI 10.1038/nmat1478
CAO Q, 2006, ADV MATER, V18, P304, DOI 10.1002/adma.200501740
CAO Q, 2008, NATURE, V454, P495, DOI 10.1038/nature07110
CAO Q, 2009, ADV MATER, V21, P29, DOI 10.1002/adma.200801995
CARROLL DL, 1998, PHYS REV LETT, V81, P2332
CASANOVAS J, 1996, J AM CHEM SOC, V118, P8071
CHANDRA B, 2006, PHYS STATUS SOLIDI B, V243, P3359, DOI
10.1002/pssb.200669130
CHATTOPADHYAY D, 2002, J AM CHEM SOC, V124, P728
CHATTOPADHYAY D, 2003, J AM CHEM SOC, V125, P3370, DOI 10.1021/ja028599l
CHEN J, 1998, SCIENCE, V282, P95
CHENG TW, 2007, APPL PHY LETT, V90, P3
CHO H, 2008, IEEE ELECTR DEVICE L, V29, P122, DOI
10.1109/LED.2007.911617
CI LJ, 2001, CHEM PHYS LETT, V349, P191
CI LJ, 2002, CHEM PHYS LETT, V359, P63
CI LJ, 2003, APPL PHYS LETT, V82, P3098, DOI 10.1063/1.1572959
COHEN G, 2007, PHYS REV B, V76, P235
COLOMER JF, 2003, NANO LETT, V3, P685, DOI 10.1021/nl034159w
CONTRERAS MA, 2007, J PHYS CHEM C, V111, P14045, DOI
10.1021/jp075507bCCC
CREIGHTON TE, 1992, PROTEIN FOLDING
CRONIN SB, 2004, PHYS REV LETT, V293, UNSP 167401
CRONIN SB, 2005, PHYS REV B, V72, P8
CUBERNATI G, 2002, APPL PHYS LETT, V81, P850
DAI H, 1996, CHEM PHYS LETT, V260, P471
DALTON AB, 2000, J PHYS CHEM B, V104, P10012
DEAN KA, 2000, APPL PHYS LETT, V76, P375
DESOUZA NR, 2006, J PHYS-CONDENS MAT, V18, S2321, DOI
10.1088/0953-8984/18/36/s07
DILLON AC, 1999, ADV MATER, V11, P1354
DING L, 2009, NANO LETT, V9, P800, DOI 10.1021/nl803496s
DOORN SK, 2002, J AM CHEM SOC, V124, P3169
DRESSELHAUS G, 1996, SCI FULLERENES CARBO
DRESSELHAUS MS, 2001, CARBON NANOTUBES SYN, V80
DUESBERG GS, 1999, SYNTHETIC MET, V103, P2484
DUPASQUIER A, 2008, APPL PHYS LETT, V87, UNSP 203511
DURKOP T, 2004, NANO LETT, V4, P35, DOI 10.1021/nl034841q
EWELS CP, 2005, J NANOSCI NANOTECHNO, V5, P1345, DOI
10.1166/jnn.2005.304
FARKAS E, 2002, CHEM PHYS LETT, V363, P111
FISCHER JE, 1997, PHYS REV B, V55, P4921
FUENTES GG, 2004, PHYS REV B, V69, P5403
GAI PL, 2004, J MATER CHEM, V14, P669, DOI 10.1039/b311696d
GAO B, 2004, PHYS REV LETT, V92, P6804
GELB LD, 1999, REP PROG PHYS, V62, P1573
GENG JX, 2008, J PHYS CHEM C, V112, P12264, DOI 10.1021/jp8037208
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9
GHOSH S, 2004, PHYS REV B, V70, ARTN 205423
GIRIFALCO LA, 2000, PHYS REV B, V62, P13104
GLERUP M, 2004, CHEM PHYS LETT, V387, P193, DOI
10.1016/j.cplett.2004.02.005
GOLBERG D, 1999, CHEM PHYS LETT, V308, P337
GOLBERG D, 2000, CARBON, V38, P2017
GOLBERG D, 2002, CHEM PHYS LETT, V359, P220, PII S0009-2614(02)00536-5
GREEN AA, 2008, NANO LETT, V8, P1417, DOI 10.1021/nl080302f
GRIMM D, 2007, SMALL, V3, P1900, DOI 10.1002/smll.200700327
GUO A, 2007, J PHYS CHEM C, V111, P3555, DOI 10.1021/jp068304g
GUO JD, 2002, APPL PHYS LETT, V80, P124
HADDON RC, 1997, NATURE, V388, P31
HAMADA N, 1992, PHYS REV LETT, V68, P1579
HAN WQ, 1998, APPL PHYS LETT, V73, P3085
HAN WQ, 1999, CHEM MATER, V11, P3620
HAN WQ, 2000, APPL PHYS LETT, V77, P1807
HATA K, 2004, SCIENCE, V306, P1362
HELLER DA, 2004, J AM CHEM SOC, V126, P14567, DOI 10.1021/ja046450z
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
HONE J, 2000, APPL PHYS LETT, V77, P666
HU H, 2003, J AM CHEM SOC, V125, P14893, DOI 10.1021/ja0356737
HUANG FM, 1998, J APPL PHYS, V84, P4022
HUMMER G, 2001, NATURE, V414, P188
IHARA S, 1993, PHYS REV B, V48, P5643
IIJIMA S, 1991, NATURE, V354, P56
IIJIMA S, 1993, NATURE, V363, P603
ISHIKAWA FN, 2009, ACS NANO, V3, P73, DOI 10.1021/nn800434d
JAVEY A, 2003, NATURE, V424, P654, DOI 10.1038/nature01797
JIANG KL, 2002, NATURE, V419, P801
KAMARAS K, 2003, SCIENCE, V301, P1501
KATAURA H, 1999, SYNTHETIC MET, V103, P2555
KESKAR G, 2005, CHEM PHYS LETT, V412, P269, DOI
10.1016/j.cplett.2005.07.007
KHANG DY, 2008, NANO LETT, V8, P124, DOI 10.1021/nlo72203s
KIM JH, 2003, J MEMBRANE SCI, V216, P107, DOI
10.1016/S0376-7388(03)00063-2
KIM W, 2002, NANO LETTERS, V2, P703
KIM W, 2003, NANO LETT, V3, P193, DOI 10.1021/nl0259232
KIM YH, 2001, PHYS REV B, V63, ARTN 205408
KIS A, 2004, NAT MATER, V3, P153, DOI 10.1038/nmat1076
KOCABAS C, 2007, NANO LETT, V7, P1195, DOI 10.1021/nl062907m
KOCIAK M, 2002, PHYS REV LETT, V89, ARTN 155501
KOGA K, 2001, NATURE, V412, P802
KOHLERREDLICH P, 1999, CHEM PHYS LETT, V310, P459
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503
KONG J, 2001, PHYS REV LETT, V87, ARTN 106801
KOZIOL K, 2007, SCIENCE, V318, P1892, DOI 10.1126/science.1147635
KRAL P, 2001, PHYS REV LETT, V86, P131
KRUPKE R, 2003, SCIENCE, V301, P344, DOI 10.1126/science.1086534
KRUPKE R, 2005, ADV ENG MATER, V7, P111, DOI 10.1002/adem.200400170
LATIL S, 2003, PHYS REV B, V67, ARTN 165420
LI HD, 2000, APPL PHYS LETT, V76, P2053
LI HP, 2004, J AM CHEM SOC, V126, P1014, DOI 10.1021/ja037142o
LI WZ, 1996, SCIENCE, V274, P1701
LI YM, 2004, NANO LETT, V4, P317, DOI 10.1021/nl035097c
LI YM, 2005, J PHYS CHEM B, V109, P6968, DOI 10.1021/jp050868h
LIN H, 2006, APPL PHYS LETT, V89, ARTN 073507
LIN MF, 1998, PHYS REV B, V57, P6731
LIU AY, 1989, PHYS REV B, V39, P1760
LIU AY, 1989, SCIENCE, V245, P841
LIU GT, 2009, NANO LETT, V9, P239, DOI 10.1021/nl802827m
LIU J, 1997, NATURE, V385, P780
LIU J, 1998, SCIENCE, V280, P1253
LIU J, 2006, J MATER RES, V21, P2835, DOI 10.1557/JMR.2006.0346
LIU KH, 2009, J AM CHEM SOC, V131, P62, DOI 10.1021/ja808593v
LIU YC, 2005, PHYS REV B, V72, ARTN 085420
LU DY, 2004, NANO LETT, V4, P2383, DOI 10.1021/nl0485511
MA R, 2004, PHILOS T R SOC LON A, V362, P216
MA WJ, 2007, NANO LETT, V7, P2307, DOI 10.1021/nl070915c
MA WJ, 2009, ADV MATER, V21, P603, DOI 10.1002/adma.200801335
MAEDA Y, 2005, J AM CHEM SOC, V127, P10287, DOI 10.1021/ja051774o
MAEDA Y, 2006, J AM CHEM SOC, V128, P12239, DOI 10.1021/ja063776u
MAITI A, 2001, PHYS REV LETT, V87, ARTN 155502
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
MALOLA S, 2008, PHYS REV B, V78, ARTN 153409
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI
10.1016/j.cplett.2004.11.112
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823
MAO SH, 2006, CHEM PHYS LETT, V421, P513, DOI
10.1016/j.cplett.2006.02.011
MARTEL R, 1999, J PHYS CHEM B, V103, P7551
MARTEL R, 1999, NATURE, V398, P299
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415
MCGUIRE K, 2005, CARBON, V43, P219, DOI 10.1016/j.cardon.2004.11.001
MIYAMOTO Y, 1994, PHYS REV B, V50, P18360
MIYAMOTO Y, 1994, PHYS REV B, V50, P4976
MIYAMOTO Y, 1997, SOLID STATE COMMUN, V102, P605
MOORE VC, 2003, NANO LETT, V3, P1379
NAEEMI A, 2007, IEEE T ELECTRON DEV, V54, P26, DOI
10.1109/TED.2006.887210
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907
NIYOGI S, 2001, J AM CHEM SOC, V123, P733
NOZAKI H, 1996, J PHYS CHEM SOLIDS, V57, P41
OCONNELL MJ, 2002, SCIENCE, V297, P593
OUYANG ZC, 1997, PHYS REV LETT, V78, P4055
PAN ZW, 1999, APPL PHYS LETT, V74, P3152
PONCHARAL P, 1999, SCIENCE, V283, P1513
QIAN D, 2003, COMPOS SCI TECHNOL, V63, P1561, DOI
10.1016/S0266-3538(03)00064-2
QUINN BM, 2006, ADV MATER, V18, P855, DOI 10.1002/adma.200502438
RAO AM, 1997, SCIENCE, V275, P187
RAO AM, 2001, PHYS REV LETT, V86, P3895
RARAVIKAR NR, 2002, PHYS REV B, V66, ARTN 235424
RINZLER AG, 1998, APPL PHYS A-MATER, V67, P29
ROBERTSON J, 1995, DIAM RELAT MATER, V4, P441
ROCHEFORT A, 1998, CHEM PHYS LETT, V297, P45
SAITO R, 1998, PHYS PROPERTIES CARB
SALVETAT JP, 1999, PHYS REV LETT, V82, P944
SANO M, 2001, SCIENCE, V293, P1299
SEO K, 2003, J AM CHEM SOC, V125, P13946, DOI 10.1021/ja035262q
SETTON R, 1997, CARBON, V35, P497
SHARMA P, 2008, MATER RES BULL, V43, P2517, DOI
10.1016/j.materresbull.2007.10.012
SHEA HR, 2000, PHYS REV LETT, V84, P4441
SHIMOYAMA I, 2000, PHYS REV B, V62, R6053
SHIN HJ, 2008, J AM CHEM SOC, V130, P2062, DOI 10.1021/ja7100036e
SKAKALOVA V, 2005, J PHYS CHEM B, V109, P7174, DOI 10.1021/jp044741o
SKAKALOVA V, 2006, PHYS REV B, V74, ARTN 085403
SONG L, 2004, ADV MATER, V16, P1529, DOI 10.1002/adma.200306393
SONG L, 2006, ADV MATER, V18, P1817, DOI 10.1002/adma.200502372
SONG L, 2006, NANOTECHNOLOGY, V17, P2355, DOI 10.1088/0957-4484/17/9/046
SONG L, 2008, APPL PHYS LETT, V92, ARTN 121905
STEPHAN O, 1994, SCIENCE, V266, P1683
STRANO MS, 2003, J NANOSCI NANOTECHNO, V3, P81, DOI 10.1166/jnn.2003.194
STRANO MS, 2003, SCIENCE, V301, P1519
SUENAGA K, 1997, SCIENCE, V278, P653
SUENAGA K, 1999, CHEM PHYS LETT, V300, P695
SUN CL, 2006, J AM CHEM SOC, V128, P8368, DOI 10.1021/ja0587852
SUZUKI S, 2004, JPN J APPL PHYS 2, V43, L1118, DOI 10.1143/JJAP.43.L1118
SZABO A, 2005, CARBON, V43, P1628, DOI 10.1016/j.carbon.2005.01.025
TAKENOBU T, 2006, APPL PHYS LETT, V88, ARTN 033511
TERRONES M, 1999, ADV MATER, V11, P655
TERRONES M, 1999, APPL PHYS LETT, V75, P3932
TERRONES M, 2002, CARBON, V40, P1665
TERRONES M, 2002, PHYS REV LETT, V89, ARTN 075505
TERSOFF J, 1994, PHYS REV LETT, V73, P676
TETER DM, 1996, SCIENCE, V271, P53
THESS A, 1996, SCIENCE, V273, P483
THOSTENSON ET, 2001, COMPOS SCI TECHNOL, V61, P1899
TREACY MMJ, 1996, NATURE, V381, P678
TSUKRUK VV, 2004, PHYS REV LETT, V92, ARTN 065502
VANDELAGEMAAT J, 2006, APPL PHYS LETT, V88, ARTN 233503
VENKATESWARAN UD, 2001, PHYS STATUS SOLIDI B, V223, P225
VIJAYARAGHAVAN A, 2005, NANO LETT, V5, P1575, DOI 10.1021/nl0509935
VOSSMEYER T, 1998, ADV MATER, V10, P351
WALTERS DA, 1999, APPL PHYS LETT, V74, P3803
WANG CJ, 2005, J AM CHEM SOC, V127, P11460, DOI 10.1021/ja0526564
WANG W, 2008, J AM CHEM SOC, V130, P1415, DOI 10.1021/ja0768035
WANG WL, 2006, J AM CHEM SOC, V128, P6530, DOI 10.1021/ja0606733
WANG XB, 2001, CHEM PHYS LETT, V339, P36
WANG YH, 2006, P NATL ACAD SCI USA, V103, P2026, DOI
10.1073/pnas.0511022103
WATANABE H, 2001, APPL PHYS LETT, V78, P2928
WEI DC, 2008, ADV MATER, V20, P2815, DOI 10.1002/adma.200800589
WENSELEERS W, 2004, ADV FUNCT MATER, V14, P1105, DOI
10.1002/adfm.200400130
WENSELEERS W, 2007, ADV MATER, V19, P2274, DOI 10.1002/adma.200700773
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175
WHITE CT, 1998, NATURE, V393, P240
WHITESIDES GM, 1991, SCIENCE, V254, P1312
WONG EW, 1997, SCIENCE, V277, P1971
WOOD J, 2008, MATER TODAY, V11, P40
WU ZC, 2004, SCIENCE, V305, P1273
XIE SS, 2005, SCI TECHNOL ADV MAT, V6, P725, DOI
10.1016/j.stam.2005.05.008
XU Z, 2008, ADV MATER, V20, P3615, DOI 10.1002/adma.200800830
YAKOBSON BI, 1996, PHYS REV LETT, V76, P2511
YAKOBSON BI, 2001, APPL PHYS, V80, P287
YAO YG, 2007, NAT MATER, V6, P283, DOI 10.1038/nmat1865
YAO Z, 2000, PHYS REV LETT, V84, P2941
YU MF, 2000, PHYS REV LETT, V84, P5552
YU MF, 2000, SCIENCE, V287, P637
YUAN DN, 2007, SMALL, V3, P366, DOI 10.1002/smll.200600705
ZETTL A, 1996, ADV MATER, V8, P443
ZHA FX, 2004, CARBON, V42, P885
ZHANG DH, 2006, NANO LETT, V6, P1880, DOI 10.1021/nl0608543
ZHANG GY, 2006, SCIENCE, V314, P974, DOI 10.1126/science.1133781
ZHANG M, 2005, SCIENCE, V309, P1215, DOI 10.1126/science.1115311
ZHANG SL, 2002, PHYS REV B, V65, ARTN 235411
ZHANG SL, 2003, PHYS REV B, V68, ARTN 245419
ZHANG XF, 1995, PHYS REV B, V52, P5313
ZHANG XF, 2004, J PHYS CHEM B, V108, P16435, DOI 10.1021/jp0475988
ZHANG XF, 2007, ADV MATER, V19, P4198, DOI 10.1002/adma.200700776
ZHANG Y, 1997, CHEM PHYS LETT, V279, P264
ZHANG YY, 2005, J AM CHEM SOC, V127, P17156, DOI 10.1021/ja056793c
ZHANG YY, 2007, J PHYS CHEM C, V111, P14031, DOI 10.1021/jp075058fCCC
ZHAO JJ, 2002, NANOTECHNOLOGY, V13, P195
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956
ZHENG LX, 2004, NAT MATER, V3, P673, DOI 10.1038/nmat1216
ZHENG M, 2003, NAT MATER, V2, P338, DOI 10.1038/nmat877
ZHENG M, 2003, SCIENCE, V302, P1545
ZHI CY, 2002, J APPL PHYS, V91, P5325
ZHI CY, 2004, J NANOSCI NANOTECHNO, V4, P35, DOI 10.1166/jnn.2004.018
ZHONG XH, 2008, APPL PHYS A-MATER, V92, P709, DOI
10.1007/s00339-008-4629-5
ZHOU ZP, 2003, CARBON, V41, P2607, DOI 10.1016/S0008-6223(03)00336-1
ZHOU ZP, 2004, J PHYS CHEM B, V108, P10751, DOI 10.1021/jp036949
ZHOU ZP, 2006, J PHYS CHEM B, V110, P1206, DOI 10.1021/jp053268r
ZHU HY, 1998, J PHYS CHEM SOLIDS, V59, P1303
ZOU SL, 2007, NANO LETT, V7, P276, DOI 10.1021/nl062258e
NR 255
TC 0
PU WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0935-9648
DI 10.1002/adma.200901071
PD DEC 4
VL 21
IS 45
SI Sp. Iss. SI
BP 4565
EP 4583
SC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
GA 534SE
UT ISI:000272916800004
ER

PT J
*Record 6 of 6.
L5 <http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=000272914200009>
*Order Full Text [ ]
AU Zhang, XW
Zhang, T
Ng, J
Sun, DD
AF Zhang, Xiwang
Zhang, Tong
Ng, Jiawei
Sun, Darren Delai
TI High-Performance Multifunctional TiO2 Nanowire Ultrafiltration Membrane
with a Hierarchical Layer Structure for Water Treatment
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
ID METAL-OXIDE NANOFIBERS; CARBON NANOTUBES; ENVIRONMENTAL APPLICATIONS;
PHOTOCATALYTIC OXIDATION; CERAMIC MEMBRANES; FLUX; SEPARATION;
TRANSPARENT; FILTRATION; SHEETS
AB A novel, multifunctional TiO2 nanowire ultrafiltration (UF) membrane
with a layered hierarchical structure is made via alkaline hydrothermal
synthesis, followed by a filtration and hot-press process. The TO2 UF
membrane has high surface porosity (21.3%) and pore size values around
20 nm. The membrane possesses multifunctional capabilities under UV
irradiation, such as anti-fouling, anti-bacterial, concurrent
separation, and photocatalyic oxidation. The unique properties of the
membrane indicate its potential in applications for environmental
purification.
C1 [Zhang, Xiwang; Zhang, Tong; Ng, Jiawei; Sun, Darren Delai] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore.
RP Zhang, XW, Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore
639798, Singapore.
CR ALBU SP, 2007, NANO LETT, V7, P1286, DOI 10.1021/nl070264k
CHOI H, 2006, ADV FUNCT MATER, V16, P1067, DOI 10.1002/adfm.200500658
CHOI H, 2006, APPL CATAL B-ENVIRON, V63, P60, DOI
10.1016/j.apcatb.2005.09.012
DEVOS RM, 1998, SCIENCE, V279, P1710
DONG WJ, 2006, J PHYS CHEM B, V110, P16819, DOI 10.1021/jp0637633
ENDO M, 2005, NATURE, V433, P476, DOI 10.1038/433476a
FUJISHIMA A, 2000, J PHOTOCH PHOTOBIO C, V1, P1
GU G, 2003, NAT MATER, V2, P316, DOI 10.1038/nmat880
HOFFMANN MR, 1995, CHEM REV, V95, P69
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298
IIJIMA S, 1991, NATURE, V354, P56
KE XB, 2007, ADV MATER, V19, P785
KE XB, 2008, J PHYS CHEM B, V112, P5000, DOI 10.1021/jp709837r
LAW M, 2004, ANNU REV MATER RES, V34, P83, DOI
10.1146/annurev.matsci.34.040203.112300
LI D, 2004, ADV MATER, V16, P1151, DOI 10.1002/adma.200400719
LI XZ, 2003, ENVIRON SCI TECHNOL, V37, P3989, DOI 10.1021/es0262941
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a
RAJCA M, 2009, DESALINATION, V239, P100, DOI 10.1016/j.desal.2008.03.010
REMSKAR M, 2004, ADV MATER, V16, P1497, DOI 10.1002/adma.200306428
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261
TANG CY, 2007, J MEMBRANE SCI, V290, P86, DOI
10.1016/j.memsci.2006.12.017
TENNE R, 1992, NATURE, V360, P444
THORSEN T, 1999, WATER SCI TECHNOL, V40, P105
VANDENBERG A, 2007, NATURE, V445, P726
WANG YM, 2008, ADV FUNCT MATER, V18, P1131, DOI 10.1002/adfm.200701120
WU ZC, 2004, SCIENCE, V305, P1273
YUAN ZY, 2004, COLLOID SURFACE A, V241, P173, DOI
10.1016/colsurfa.2004.04.030
ZHANG M, 2005, SCIENCE, V309, P1215, DOI 10.1126/science.1115311
ZHANG XW, 2008, APPL CATAL B-ENVIRON, V84, P262, DOI
10.1016/j.apcatb.2008.04.009
ZHANG XW, 2008, J MEMBRANE SCI, V313, P44, DOI
10.1016/j.memsci.2007.12.045
ZHANG XW, 2009, WATER RES, V43, P1179, DOI 10.1016/j.watres.2008.12.021
NR 32
TC 0
PU WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1616-301X
DI 10.1002/adfm.200901435
PD DEC 9
VL 19
IS 23
BP 3731
EP 3736
SC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
GA 534RE
UT ISI:000272914200009
ER

EF

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Import Records into an ISI ResearchSoft product*
1) Save the email as a text file. If your e-mail software removed extra line breaks, restore them before saving.
2) From within an ISI ResearchSoft product, import the text file using the ISI-CE filter.
========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: