Friday, January 8, 2010

ISI Web of Knowledge Alert - Majumder M

ISI Web of Knowledge Citation Alert

Cited Article: Majumder M. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes
Alert Expires: 09 NOV 2010
Number of Citing Articles: 4 new records this week (4 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272937500078
*Order Full Text [ ]

Title:
Energy Transfer through Streaming Effects in Time-Periodic Pressure-Driven Nanochannel Flows with Interfacial Slip

Authors:
Goswami, P; Chakraborty, S

Author Full Names:
Goswami, Prakash; Chakraborty, Suman

Source:
LANGMUIR 26 (1): 581-590 JAN 5 2010

Language:
English

Document Type:
Article

KeyWords Plus:
NANOFLUIDIC CHANNELS; HYDROPHOBIC MICROCHANNELS; CIRCULAR MICROCHANNELS; CARBON NANOTUBES; APPARENT SLIP; CONVERSION; EFFICIENCY; TRANSPORT; SURFACES; BATTERY

Abstract:
We analytically investigate the prospect of using electrokinetic phenomena to transfer hydrostatic energy to electrical power with high energy transfer efficiencies, by exploiting time periodic pressure-driven flows in narrow fluidic confinements. An expression for the energy transfer efficiency for such pulsating pressure-driven flows is derived by considering wall-slip effects due to hydrophobic interactions, strong electrical double layer interactions in the confined now passages, possibilities of exploring the regimes of large wall potentials, and the adverse consequences of the finite conductance of the Stern layer. It is revealed from Our studies that high-frequency pressure pulsations may be employed in practice to improve the concerned energy transfer efficiency to a considerable extent, instead of using a steady-state pressure field. Such favorable effects are Found to be best exploited by utilizing "slipping" electro-hydrodynamics in thick electrical double layers !
in the presence of high surface potentials.

Reprint Address:
Chakraborty, S, Indian Inst Technol, Dept Mech Engn, Kharagpur 721302, W Bengal, India.

Research Institution addresses:
[Chakraborty, Suman] Indian Inst Technol, Dept Mech Engn, Kharagpur 721302, W Bengal, India; [Goswami, Prakash] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India

E-mail Address:
suman@2mech.iitkgp.ernet.in

Cited References:
BALDESSARI F, 2008, J COLLOID INTERF SCI, V325, P526, DOI 10.1016/j.jcis.2008.06.007.
BAUDRY J, 2001, LANGMUIR, V17, P5232.
BEHRENS SH, 1999, PHYS REV E B, V60, P7040.
BENZI R, 2006, EUROPHYS LETT, V74, P651, DOI 10.1209/epl/i2006-10022-0.
CHAKRABORTY S, 2007, APPL PHYS LETT, V90, ARTN 034108.
CHAKRABORTY S, 2007, J APPL PHYS, V102, ARTN 104907.
CHAKRABORTY S, 2007, LANGMUIR, V23, P12421, DOI 10.1021/la702109c.
CHAKRABORTY S, 2007, PHYS REV LETT, V99, ARTN 094504.
CHAKRABORTY S, 2008, PHYS FLUIDS, V20, ARTN 043602.
CHAKRABORTY S, 2008, PHYS FLUIDS, V20, ARTN 083602.
CHAKRABORTY S, 2008, PHYS REV E 2, V77, ARTN 037303.
CHAKRABORTY S, 2008, PHYS REV LETT, V100, ARTN 097801.
CHAKRABORTY S, 2008, PHYS REV LETT, V101, ARTN 184501.
CHOI CH, 2003, PHYS FLUIDS, V15, P2897, DOI 10.1063/1.1605425.
CHUN MS, 2005, J MICROMECH MICROENG, V15, P710, DOI 10.1088/0960-1317/15/4/007.
DAIGUJI H, 2004, NANO LETT, V4, P2315, DOI 10.1021/nl0489945.
DAVIDSON C, 2008, ELECTROPHORESIS, V29, P1125, DOI 10.1002/elps.200700549.
ERICKSON D, 2001, J COLLOID INTERF SCI, V237, P283.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUANG P, 2006, J FLUID MECH, V566, P477.
HUNTER RJ, 1981, ZETA POTENTIAL COLLO.
LAUGA E, 2004, PHYS REV E 2, V70, ARTN 026311.
LAUGA E, 2007, HDB EXPT FLUID DYNAM.
LU MC, 2006, J MICROMECH MICROENG, V16, P667, DOI 10.1088/0960-1317/16/4/001.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MEYER EE, 2006, P NATL ACAD SCI USA, V103, P15739, DOI 10.1073/pnas.0606422103.
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05.
OLTHUIS W, 2005, SENSOR ACTUAT B-CHEM, V111, P385, DOI 10.1016/j.snb.2005.03.039.
OSTERLE JF, 1964, J APPL MECH, V31, P161.
PENNATHUR S, 2007, LAB CHIP, V7, P1234, DOI 10.1039/b712893m.
REN YQ, 2008, NANOTECHNOLOGY, V19, ARTN 195707.
SBRAGAGLIA M, 2006, PHYS REV LETT, V97, ARTN 204503.
STEINBERGER A, 2007, NAT MATER, V6, P665, DOI 10.1038/nmat1962.
TRETHEWAY DC, 2004, PHYS FLUIDS, V16, P1509, DOI 10.1063/1.1669400.
VANDERHEYDEN FHJ, 2006, NANO LETT, V6, P2232, DOI 10.1021/nl061524l.
VANDERHEYDEN FHJ, 2006, PHYS REV LETT, V96, ARTN 224502.
VANDERHEYDEN FHJ, 2007, NANO LETT, V7, P1022, DOI 10.1021/nl070194h.
YANG J, 2003, J MICROMECH MICROENG, V13, P115.
YANG J, 2003, J MICROMECH MICROENG, V13, P963.
YANG J, 2003, LANGMUIR, V19, P1047, DOI 10.1021/la026201t.
YANG J, 2004, LANGMUIR, V20, P3863, DOI 10.1021/la035243u.
ZHU YX, 2002, PHYS REV LETT, V88, ARTN 106102.

Cited Reference Count:
42

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary

ISSN:
0743-7463

DOI:
10.1021/la901209a

IDS Number:
534ZY

========================================================================

*Record 2 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273038100013
*Order Full Text [ ]

Title:
A novel far-field nanoscopic velocimetry for nanofluidics

Authors:
Kuang, CF; Wang, GR

Author Full Names:
Kuang, Cuifang; Wang, Guiren

Source:
LAB ON A CHIP 10 (2): 240-245 2010

Language:
English

Document Type:
Article

KeyWords Plus:
EVANESCENT-WAVE ILLUMINATION; PARTICLE IMAGE VELOCIMETRY; ELECTROOSMOTIC FLOW; CARBON NANOTUBES; CAPILLARY-ELECTROPHORESIS; FLUORESCENCE MICROSCOPY; MICROFLUIDIC DEVICES; STED MICROSCOPY; DYNAMICS; RESOLUTION

Abstract:
For the first time we have been able to measure the flow velocity profile for nanofluidics with a spatial resolution better than 70 nm. Due to the diffraction resolution barrier, traditional optical methods have so far failed in measuring the velocity profile in a nanocapillary or a closed nanochannel without an opened sidewall. A novel optical point measurement method is presented which applies stimulated emission depletion (STED) microscopy to laser induced fluorescence photobleaching anemometer (LIFPA) techniques to measure flow velocity. Herein we demonstrate this far-field nanoscopic velocimetry method by measuring the velocity profile in a nanocapillary with an inner diameter of 360 nm. The closest measuring point to the wall is about 35 nm. This method opens up a new class of functional measuring techniques for nanofluidics and for nanoscale flows from the wall.

Reprint Address:
Wang, GR, Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA.

Research Institution addresses:
[Wang, Guiren] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA; Univ S Carolina, Biomed Engn Program, Columbia, SC 29208 USA

E-mail Address:
guirenwang@sc.edu

Cited References:
DONNERT G, 2006, P NATL ACAD SCI USA, V103, P11440, DOI 10.1073/pnas.0604965103.
DUONGHONG D, 2008, MICROFLUID NANOFLUID, V4, P219, DOI 10.1007/s10404-007-0170-7.
FLAMION B, 1991, BIOPHYS J, V60, P1229.
GAI HW, 2005, LAB CHIP, V5, P443, DOI 10.1039/b416476h.
HAGSATER SM, 2008, LAB CHIP, V8, P1178, DOI 10.1039/b801028e.
HAN KY, 2009, NANO LETT, V9, P3323, DOI 10.1021/nl901597v.
HELL SW, 2003, NAT BIOTECHNOL, V21, P1347, DOI 10.1038/nbt895.
HERR AE, 2000, ANAL CHEM, V72, P1053.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HU H, 2006, MEAS SCI TECHNOL, V17, P1269, DOI 10.1088/0957-0233/17/6/S06.
JIN S, 2004, EXP FLUIDS, V37, P825, DOI 10.1007/s00348-004-0870-7.
KIHM KD, 2004, EXP FLUIDS, V37, P811, DOI 10.1007/s00348-004-0865-4.
KINOSHITA H, 2007, LAB CHIP, V7, P338, DOI 10.1039/b617391h.
KOOCHESFAHANI MM, 2007, MOL TAGGING VELOCIME.
KUANG C, 2009, ULTRAFAST MEAS UNPUB.
KUANG CF, 2009, ANAL CHEM, V81, P6590, DOI 10.1021/ac901017a.
KUANG CF, 2009, MICROFLUID NANOFLUID, V7, P509, DOI 10.1007/s10404-009-0411-z.
KUZNETSOVA Y, 2007, OPT EXPRESS, V15, P6651.
LI HF, 2006, EXP FLUIDS, V41, P185, DOI 10.1007/s00348-006-0155-4.
LIU Y, 2009, LAB CHIP, V9, P1110, DOI 10.1039/b818617k.
LU HW, 2008, LAB CHIP, V8, P456, DOI 10.1039/b717141b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MATTIA D, 2008, MICROFLUID NANOFLUID, V5, P289, DOI 10.1007/s10404-008-0293-5.
MOLHO JI, 2001, ANAL CHEM, V73, P1350.
MOORE AW, 1993, ANAL CHEM, V65, P3550.
MOSIER BP, 2002, EXP FLUIDS, V33, P545, DOI 10.1007/s00348-002-0486-8.
MUKHOPADHYAY R, 2006, ANAL CHEM, V78, P7379.
NETO C, 2005, REP PROG PHYS, V68, P2859, DOI 10.1088/0034-4885/68/12/R05.
OH YJ, 2009, LAB CHIP, V9, P1609, DOI 10.1039/b816384g.
PAUL PH, 1998, ANAL CHEM, V70, P2459.
PIOREK B, 2006, APPL PHYS LETT, V89, ARTN 153123.
PIRUSKA A, 2008, LAB CHIP, V8, P1625.
PITTMAN JL, 2001, ANALYST, V126, P1240.
PITTMAN JL, 2003, ANAL CHEM, V75, P361, DOI 10.1021/ac026132n.
POUYA S, 2008, EXP FLUIDS, V44, P1035, DOI 10.1007/s00348-008-0491-7.
RALSTON J, 2008, ANNU REV MATER RES, V38, P23, DOI 10.1146/annurev.matsci.38.060407.130231.
RAUSCHER M, 2008, ANNU REV MATER RES, V38, P143, DOI 10.1146/annurev.matsci.38.060407.132451.
RICKA J, 1987, EXP FLUIDS, V5, P381.
RITTWEGER E, 2007, CHEM PHYS LETT, V442, P483, DOI 10.1016/j.cplett.2007.06.017.
RITTWEGER E, 2009, NAT PHOTONICS, V3, P144, DOI 10.1038/NPHOTON.2009.2.
ROSS D, 2001, ANAL CHEM, V73, P2509.
SANTIAGO JG, 1998, EXP FLUIDS, V25, P316.
SCHOCH RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839.
SCHRUM KF, 2000, ANAL CHEM, V72, P4317.
TAMAKI E, 2006, J CHROMATOGR A, V1137, P256, DOI 10.1016/j.chroma.2006.10.097.
TAS NR, 2004, APPL PHYS LETT, V85, P3274, DOI 10.1063/1.1804602.
WANG GR, 2005, LAB CHIP, V5, P450, DOI 10.1039/b416209a.
WANG GR, 2007, 7283215, US.
WANG GR, 2008, ELECTROPHORESIS, V29, P1253, DOI 10.1002/elps.200600855.
WHITE FM, 1991, VISCOUS FLUID FLOW.
WHITE J, 1999, TRENDS CELL BIOL, V9, P61.
ZETTNER CM, 2003, EXP FLUIDS, V34, P115, DOI 10.1007/s00348-002-0541-5.

Cited Reference Count:
52

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Biochemical Research Methods; Chemistry, Multidisciplinary; Nanoscience & Nanotechnology

ISSN:
1473-0197

DOI:
10.1039/b917584a

IDS Number:
536IM

========================================================================

*Record 3 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272916800004
*Order Full Text [ ]

Title:
Synthesis, Structure, and Properties of Single-Walled Carbon Nanotubes

Authors:
Zhou, WY; Bai, XD; Wang, EG; Xie, SS

Author Full Names:
Zhou, Weiya; Bai, Xuedong; Wang, Enge; Xie, Sishen

Source:
ADVANCED MATERIALS 21 (45): 4565-4583 Sp. Iss. SI DEC 4 2009

Language:
English

Document Type:
Review

KeyWords Plus:
FIELD-EFFECT TRANSISTORS; LARGE-SCALE SYNTHESIS; CHEMICAL-VAPOR-DEPOSITION; C-N NANOTUBES; TEMPERATURE-DEPENDENCE; ELECTRONIC-PROPERTIES; RAMAN-SPECTRA; DOPED CARBON; ELECTRICAL-TRANSPORT; GRAPHITIC CARBON

Abstract:
Great interest in single-walled carbon nanotubes (SWCNTs) derives from their remarkable electrical, thermal, optical, and mechanical properties together with their lower density, which promise extensive and unique applications. Much progress has been achieved in the fundamental and applied investigations of SWCNTs over the past decade. At the same time, many obstacles still remain, hampering further development in this field. To clarify the emerging problems and to provide a comprehensive understanding of the field, we review the recent progress of research on the synthesis, structure, and properties of SWCNTs, in particular the SWCNT non-woven film, SWCNT rings, boron-nitrogen (B-N) co-doped SWCNTs (BCN-SWNTs), and individual SWCNTs. Some long-standing problems and topics warranting further investigations in the near future are addressed.

Reprint Address:
Xie, SS, Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China.

Research Institution addresses:
[Zhou, Weiya; Bai, Xuedong; Wang, Enge; Xie, Sishen] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China

Cited References:
AHLSKOG M, 1999, CHEM PHYS LETT, V300, P202.
AJAYAN PM, 2000, ADV MATER, V12, P750.
AJIKI H, 1993, J PHYS SOC JPN, V62, P1225.
AMELINCKX S, 1994, SCIENCE, V265, P635.
ANGLARET E, 2006, J PHYS CHEM B, V110, P3949, DOI 10.1021/jp0547131.
ARTUKOVIC E, 2005, NANO LETT, V5, P757, DOI 10.1021/nl0505254o.
AZEVEDO S, 2006, EUROPHYS LETT, V75, P126, DOI 10.1209/epl/i2006-10066-0.
BAI XD, 2000, APPL PHYS LETT, V76, P2624.
BAI XD, 2000, APPL PHYS LETT, V77, P67.
BANHART F, 1999, REP PROG PHYS, V62, P1181.
BAUGHMAN RH, 2002, SCIENCE, V297, P787.
BEKYAROVA E, 2005, J AM CHEM SOC, V127, P5990, DOI 10.1021/ja0431531.
BEREZHKOVSKII A, 2002, PHYS REV LETT, V89, UNSP 064503.
BETHUNE DS, 1993, NATURE, V363, P605.
BLACKBURN JL, 2006, CHEM MATER, V18, P2558, DOI 10.1021/cm060192i.
BLACKBURN JL, 2008, ACS NANO, V2, P1266, DOI 10.1021/nn800200d.
BLASE X, 1997, APPL PHYS LETT, V70, P197.
BLASE X, 2000, COMP MATER SCI, V17, P107.
BONARD JM, 2002, PHYS REV LETT, V89, P1.
BOROWIAKPALEN E, 2004, CARBON, V42, P1123.
BRYSON JW, 1995, SCIENCE, V270, P935.
BURGHARD M, 1998, ADV MATER, V10, P584.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CAO J, 2005, NAT MATER, V4, P745, DOI 10.1038/nmat1478.
CAO Q, 2006, ADV MATER, V18, P304, DOI 10.1002/adma.200501740.
CAO Q, 2008, NATURE, V454, P495, DOI 10.1038/nature07110.
CAO Q, 2009, ADV MATER, V21, P29, DOI 10.1002/adma.200801995.
CARROLL DL, 1998, PHYS REV LETT, V81, P2332.
CASANOVAS J, 1996, J AM CHEM SOC, V118, P8071.
CHANDRA B, 2006, PHYS STATUS SOLIDI B, V243, P3359, DOI 10.1002/pssb.200669130.
CHATTOPADHYAY D, 2002, J AM CHEM SOC, V124, P728.
CHATTOPADHYAY D, 2003, J AM CHEM SOC, V125, P3370, DOI 10.1021/ja028599l.
CHEN J, 1998, SCIENCE, V282, P95.
CHENG TW, 2007, APPL PHY LETT, V90, P3.
CHO H, 2008, IEEE ELECTR DEVICE L, V29, P122, DOI 10.1109/LED.2007.911617.
CI LJ, 2001, CHEM PHYS LETT, V349, P191.
CI LJ, 2002, CHEM PHYS LETT, V359, P63.
CI LJ, 2003, APPL PHYS LETT, V82, P3098, DOI 10.1063/1.1572959.
COHEN G, 2007, PHYS REV B, V76, P235.
COLOMER JF, 2003, NANO LETT, V3, P685, DOI 10.1021/nl034159w.
CONTRERAS MA, 2007, J PHYS CHEM C, V111, P14045, DOI 10.1021/jp075507bCCC.
CREIGHTON TE, 1992, PROTEIN FOLDING.
CRONIN SB, 2004, PHYS REV LETT, V293, UNSP 167401.
CRONIN SB, 2005, PHYS REV B, V72, P8.
CUBERNATI G, 2002, APPL PHYS LETT, V81, P850.
DAI H, 1996, CHEM PHYS LETT, V260, P471.
DALTON AB, 2000, J PHYS CHEM B, V104, P10012.
DEAN KA, 2000, APPL PHYS LETT, V76, P375.
DESOUZA NR, 2006, J PHYS-CONDENS MAT, V18, S2321, DOI 10.1088/0953-8984/18/36/s07.
DILLON AC, 1999, ADV MATER, V11, P1354.
DING L, 2009, NANO LETT, V9, P800, DOI 10.1021/nl803496s.
DOORN SK, 2002, J AM CHEM SOC, V124, P3169.
DRESSELHAUS G, 1996, SCI FULLERENES CARBO.
DRESSELHAUS MS, 2001, CARBON NANOTUBES SYN, V80.
DUESBERG GS, 1999, SYNTHETIC MET, V103, P2484.
DUPASQUIER A, 2008, APPL PHYS LETT, V87, UNSP 203511.
DURKOP T, 2004, NANO LETT, V4, P35, DOI 10.1021/nl034841q.
EWELS CP, 2005, J NANOSCI NANOTECHNO, V5, P1345, DOI 10.1166/jnn.2005.304.
FARKAS E, 2002, CHEM PHYS LETT, V363, P111.
FISCHER JE, 1997, PHYS REV B, V55, P4921.
FUENTES GG, 2004, PHYS REV B, V69, P5403.
GAI PL, 2004, J MATER CHEM, V14, P669, DOI 10.1039/b311696d.
GAO B, 2004, PHYS REV LETT, V92, P6804.
GELB LD, 1999, REP PROG PHYS, V62, P1573.
GENG JX, 2008, J PHYS CHEM C, V112, P12264, DOI 10.1021/jp8037208.
GHOSH S, 2003, SCIENCE, V299, P1042, DOI 10.1126/science.1079080.
GHOSH S, 2004, EUROPHYS LETT, V65, P678, DOI 10.1209/epl/i2003-10160-9.
GHOSH S, 2004, PHYS REV B, V70, ARTN 205423.
GIRIFALCO LA, 2000, PHYS REV B, V62, P13104.
GLERUP M, 2004, CHEM PHYS LETT, V387, P193, DOI 10.1016/j.cplett.2004.02.005.
GOLBERG D, 1999, CHEM PHYS LETT, V308, P337.
GOLBERG D, 2000, CARBON, V38, P2017.
GOLBERG D, 2002, CHEM PHYS LETT, V359, P220, PII S0009-2614(02)00536-5.
GREEN AA, 2008, NANO LETT, V8, P1417, DOI 10.1021/nl080302f.
GRIMM D, 2007, SMALL, V3, P1900, DOI 10.1002/smll.200700327.
GUO A, 2007, J PHYS CHEM C, V111, P3555, DOI 10.1021/jp068304g.
GUO JD, 2002, APPL PHYS LETT, V80, P124.
HADDON RC, 1997, NATURE, V388, P31.
HAMADA N, 1992, PHYS REV LETT, V68, P1579.
HAN WQ, 1998, APPL PHYS LETT, V73, P3085.
HAN WQ, 1999, CHEM MATER, V11, P3620.
HAN WQ, 2000, APPL PHYS LETT, V77, P1807.
HATA K, 2004, SCIENCE, V306, P1362.
HELLER DA, 2004, J AM CHEM SOC, V126, P14567, DOI 10.1021/ja046450z.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HONE J, 2000, APPL PHYS LETT, V77, P666.
HU H, 2003, J AM CHEM SOC, V125, P14893, DOI 10.1021/ja0356737.
HUANG FM, 1998, J APPL PHYS, V84, P4022.
HUMMER G, 2001, NATURE, V414, P188.
IHARA S, 1993, PHYS REV B, V48, P5643.
IIJIMA S, 1991, NATURE, V354, P56.
IIJIMA S, 1993, NATURE, V363, P603.
ISHIKAWA FN, 2009, ACS NANO, V3, P73, DOI 10.1021/nn800434d.
JAVEY A, 2003, NATURE, V424, P654, DOI 10.1038/nature01797.
JIANG KL, 2002, NATURE, V419, P801.
KAMARAS K, 2003, SCIENCE, V301, P1501.
KATAURA H, 1999, SYNTHETIC MET, V103, P2555.
KESKAR G, 2005, CHEM PHYS LETT, V412, P269, DOI 10.1016/j.cplett.2005.07.007.
KHANG DY, 2008, NANO LETT, V8, P124, DOI 10.1021/nlo72203s.
KIM JH, 2003, J MEMBRANE SCI, V216, P107, DOI 10.1016/S0376-7388(03)00063-2.
KIM W, 2002, NANO LETTERS, V2, P703.
KIM W, 2003, NANO LETT, V3, P193, DOI 10.1021/nl0259232.
KIM YH, 2001, PHYS REV B, V63, ARTN 205408.
KIS A, 2004, NAT MATER, V3, P153, DOI 10.1038/nmat1076.
KOCABAS C, 2007, NANO LETT, V7, P1195, DOI 10.1021/nl062907m.
KOCIAK M, 2002, PHYS REV LETT, V89, ARTN 155501.
KOGA K, 2001, NATURE, V412, P802.
KOHLERREDLICH P, 1999, CHEM PHYS LETT, V310, P459.
KOLESNIKOV AI, 2004, PHYS REV LETT, V93, ARTN 035503.
KONG J, 2001, PHYS REV LETT, V87, ARTN 106801.
KOZIOL K, 2007, SCIENCE, V318, P1892, DOI 10.1126/science.1147635.
KRAL P, 2001, PHYS REV LETT, V86, P131.
KRUPKE R, 2003, SCIENCE, V301, P344, DOI 10.1126/science.1086534.
KRUPKE R, 2005, ADV ENG MATER, V7, P111, DOI 10.1002/adem.200400170.
LATIL S, 2003, PHYS REV B, V67, ARTN 165420.
LI HD, 2000, APPL PHYS LETT, V76, P2053.
LI HP, 2004, J AM CHEM SOC, V126, P1014, DOI 10.1021/ja037142o.
LI WZ, 1996, SCIENCE, V274, P1701.
LI YM, 2004, NANO LETT, V4, P317, DOI 10.1021/nl035097c.
LI YM, 2005, J PHYS CHEM B, V109, P6968, DOI 10.1021/jp050868h.
LIN H, 2006, APPL PHYS LETT, V89, ARTN 073507.
LIN MF, 1998, PHYS REV B, V57, P6731.
LIU AY, 1989, PHYS REV B, V39, P1760.
LIU AY, 1989, SCIENCE, V245, P841.
LIU GT, 2009, NANO LETT, V9, P239, DOI 10.1021/nl802827m.
LIU J, 1997, NATURE, V385, P780.
LIU J, 1998, SCIENCE, V280, P1253.
LIU J, 2006, J MATER RES, V21, P2835, DOI 10.1557/JMR.2006.0346.
LIU KH, 2009, J AM CHEM SOC, V131, P62, DOI 10.1021/ja808593v.
LIU YC, 2005, PHYS REV B, V72, ARTN 085420.
LU DY, 2004, NANO LETT, V4, P2383, DOI 10.1021/nl0485511.
MA R, 2004, PHILOS T R SOC LON A, V362, P216.
MA WJ, 2007, NANO LETT, V7, P2307, DOI 10.1021/nl070915c.
MA WJ, 2009, ADV MATER, V21, P603, DOI 10.1002/adma.200801335.
MAEDA Y, 2005, J AM CHEM SOC, V127, P10287, DOI 10.1021/ja051774o.
MAEDA Y, 2006, J AM CHEM SOC, V128, P12239, DOI 10.1021/ja063776u.
MAITI A, 2001, PHYS REV LETT, V87, ARTN 155502.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MALOLA S, 2008, PHYS REV B, V78, ARTN 153409.
MANIWA Y, 2005, CHEM PHYS LETT, V401, P534, DOI 10.1016/j.cplett.2004.11.112.
MANIWA Y, 2007, NAT MATER, V6, P135, DOI 10.1038/nmat1823.
MAO SH, 2006, CHEM PHYS LETT, V421, P513, DOI 10.1016/j.cplett.2006.02.011.
MARTEL R, 1999, J PHYS CHEM B, V103, P7551.
MARTEL R, 1999, NATURE, V398, P299.
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415.
MCGUIRE K, 2005, CARBON, V43, P219, DOI 10.1016/j.cardon.2004.11.001.
MIYAMOTO Y, 1994, PHYS REV B, V50, P18360.
MIYAMOTO Y, 1994, PHYS REV B, V50, P4976.
MIYAMOTO Y, 1997, SOLID STATE COMMUN, V102, P605.
MOORE VC, 2003, NANO LETT, V3, P1379.
NAEEMI A, 2007, IEEE T ELECTRON DEV, V54, P26, DOI 10.1109/TED.2006.887210.
NAGUIB N, 2004, NANO LETT, V4, P2237, DOI 10.1021/nl0484907.
NIYOGI S, 2001, J AM CHEM SOC, V123, P733.
NOZAKI H, 1996, J PHYS CHEM SOLIDS, V57, P41.
OCONNELL MJ, 2002, SCIENCE, V297, P593.
OUYANG ZC, 1997, PHYS REV LETT, V78, P4055.
PAN ZW, 1999, APPL PHYS LETT, V74, P3152.
PONCHARAL P, 1999, SCIENCE, V283, P1513.
QIAN D, 2003, COMPOS SCI TECHNOL, V63, P1561, DOI 10.1016/S0266-3538(03)00064-2.
QUINN BM, 2006, ADV MATER, V18, P855, DOI 10.1002/adma.200502438.
RAO AM, 1997, SCIENCE, V275, P187.
RAO AM, 2001, PHYS REV LETT, V86, P3895.
RARAVIKAR NR, 2002, PHYS REV B, V66, ARTN 235424.
RINZLER AG, 1998, APPL PHYS A-MATER, V67, P29.
ROBERTSON J, 1995, DIAM RELAT MATER, V4, P441.
ROCHEFORT A, 1998, CHEM PHYS LETT, V297, P45.
SAITO R, 1998, PHYS PROPERTIES CARB.
SALVETAT JP, 1999, PHYS REV LETT, V82, P944.
SANO M, 2001, SCIENCE, V293, P1299.
SEO K, 2003, J AM CHEM SOC, V125, P13946, DOI 10.1021/ja035262q.
SETTON R, 1997, CARBON, V35, P497.
SHARMA P, 2008, MATER RES BULL, V43, P2517, DOI 10.1016/j.materresbull.2007.10.012.
SHEA HR, 2000, PHYS REV LETT, V84, P4441.
SHIMOYAMA I, 2000, PHYS REV B, V62, R6053.
SHIN HJ, 2008, J AM CHEM SOC, V130, P2062, DOI 10.1021/ja7100036e.
SKAKALOVA V, 2005, J PHYS CHEM B, V109, P7174, DOI 10.1021/jp044741o.
SKAKALOVA V, 2006, PHYS REV B, V74, ARTN 085403.
SONG L, 2004, ADV MATER, V16, P1529, DOI 10.1002/adma.200306393.
SONG L, 2006, ADV MATER, V18, P1817, DOI 10.1002/adma.200502372.
SONG L, 2006, NANOTECHNOLOGY, V17, P2355, DOI 10.1088/0957-4484/17/9/046.
SONG L, 2008, APPL PHYS LETT, V92, ARTN 121905.
STEPHAN O, 1994, SCIENCE, V266, P1683.
STRANO MS, 2003, J NANOSCI NANOTECHNO, V3, P81, DOI 10.1166/jnn.2003.194.
STRANO MS, 2003, SCIENCE, V301, P1519.
SUENAGA K, 1997, SCIENCE, V278, P653.
SUENAGA K, 1999, CHEM PHYS LETT, V300, P695.
SUN CL, 2006, J AM CHEM SOC, V128, P8368, DOI 10.1021/ja0587852.
SUZUKI S, 2004, JPN J APPL PHYS 2, V43, L1118, DOI 10.1143/JJAP.43.L1118.
SZABO A, 2005, CARBON, V43, P1628, DOI 10.1016/j.carbon.2005.01.025.
TAKENOBU T, 2006, APPL PHYS LETT, V88, ARTN 033511.
TERRONES M, 1999, ADV MATER, V11, P655.
TERRONES M, 1999, APPL PHYS LETT, V75, P3932.
TERRONES M, 2002, CARBON, V40, P1665.
TERRONES M, 2002, PHYS REV LETT, V89, ARTN 075505.
TERSOFF J, 1994, PHYS REV LETT, V73, P676.
TETER DM, 1996, SCIENCE, V271, P53.
THESS A, 1996, SCIENCE, V273, P483.
THOSTENSON ET, 2001, COMPOS SCI TECHNOL, V61, P1899.
TREACY MMJ, 1996, NATURE, V381, P678.
TSUKRUK VV, 2004, PHYS REV LETT, V92, ARTN 065502.
VANDELAGEMAAT J, 2006, APPL PHYS LETT, V88, ARTN 233503.
VENKATESWARAN UD, 2001, PHYS STATUS SOLIDI B, V223, P225.
VIJAYARAGHAVAN A, 2005, NANO LETT, V5, P1575, DOI 10.1021/nl0509935.
VOSSMEYER T, 1998, ADV MATER, V10, P351.
WALTERS DA, 1999, APPL PHYS LETT, V74, P3803.
WANG CJ, 2005, J AM CHEM SOC, V127, P11460, DOI 10.1021/ja0526564.
WANG W, 2008, J AM CHEM SOC, V130, P1415, DOI 10.1021/ja0768035.
WANG WL, 2006, J AM CHEM SOC, V128, P6530, DOI 10.1021/ja0606733.
WANG XB, 2001, CHEM PHYS LETT, V339, P36.
WANG YH, 2006, P NATL ACAD SCI USA, V103, P2026, DOI 10.1073/pnas.0511022103.
WATANABE H, 2001, APPL PHYS LETT, V78, P2928.
WEI DC, 2008, ADV MATER, V20, P2815, DOI 10.1002/adma.200800589.
WENSELEERS W, 2004, ADV FUNCT MATER, V14, P1105, DOI 10.1002/adfm.200400130.
WENSELEERS W, 2007, ADV MATER, V19, P2274, DOI 10.1002/adma.200700773.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WHITE CT, 1998, NATURE, V393, P240.
WHITESIDES GM, 1991, SCIENCE, V254, P1312.
WONG EW, 1997, SCIENCE, V277, P1971.
WOOD J, 2008, MATER TODAY, V11, P40.
WU ZC, 2004, SCIENCE, V305, P1273.
XIE SS, 2005, SCI TECHNOL ADV MAT, V6, P725, DOI 10.1016/j.stam.2005.05.008.
XU Z, 2008, ADV MATER, V20, P3615, DOI 10.1002/adma.200800830.
YAKOBSON BI, 1996, PHYS REV LETT, V76, P2511.
YAKOBSON BI, 2001, APPL PHYS, V80, P287.
YAO YG, 2007, NAT MATER, V6, P283, DOI 10.1038/nmat1865.
YAO Z, 2000, PHYS REV LETT, V84, P2941.
YU MF, 2000, PHYS REV LETT, V84, P5552.
YU MF, 2000, SCIENCE, V287, P637.
YUAN DN, 2007, SMALL, V3, P366, DOI 10.1002/smll.200600705.
ZETTL A, 1996, ADV MATER, V8, P443.
ZHA FX, 2004, CARBON, V42, P885.
ZHANG DH, 2006, NANO LETT, V6, P1880, DOI 10.1021/nl0608543.
ZHANG GY, 2006, SCIENCE, V314, P974, DOI 10.1126/science.1133781.
ZHANG M, 2005, SCIENCE, V309, P1215, DOI 10.1126/science.1115311.
ZHANG SL, 2002, PHYS REV B, V65, ARTN 235411.
ZHANG SL, 2003, PHYS REV B, V68, ARTN 245419.
ZHANG XF, 1995, PHYS REV B, V52, P5313.
ZHANG XF, 2004, J PHYS CHEM B, V108, P16435, DOI 10.1021/jp0475988.
ZHANG XF, 2007, ADV MATER, V19, P4198, DOI 10.1002/adma.200700776.
ZHANG Y, 1997, CHEM PHYS LETT, V279, P264.
ZHANG YY, 2005, J AM CHEM SOC, V127, P17156, DOI 10.1021/ja056793c.
ZHANG YY, 2007, J PHYS CHEM C, V111, P14031, DOI 10.1021/jp075058fCCC.
ZHAO JJ, 2002, NANOTECHNOLOGY, V13, P195.
ZHAO YC, 2008, ADV MATER, V20, P1772, DOI 10.1002/adma.200702956.
ZHENG LX, 2004, NAT MATER, V3, P673, DOI 10.1038/nmat1216.
ZHENG M, 2003, NAT MATER, V2, P338, DOI 10.1038/nmat877.
ZHENG M, 2003, SCIENCE, V302, P1545.
ZHI CY, 2002, J APPL PHYS, V91, P5325.
ZHI CY, 2004, J NANOSCI NANOTECHNO, V4, P35, DOI 10.1166/jnn.2004.018.
ZHONG XH, 2008, APPL PHYS A-MATER, V92, P709, DOI 10.1007/s00339-008-4629-5.
ZHOU ZP, 2003, CARBON, V41, P2607, DOI 10.1016/S0008-6223(03)00336-1.
ZHOU ZP, 2004, J PHYS CHEM B, V108, P10751, DOI 10.1021/jp036949.
ZHOU ZP, 2006, J PHYS CHEM B, V110, P1206, DOI 10.1021/jp053268r.
ZHU HY, 1998, J PHYS CHEM SOLIDS, V59, P1303.
ZOU SL, 2007, NANO LETT, V7, P276, DOI 10.1021/nl062258e.

Cited Reference Count:
255

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
0935-9648

DOI:
10.1002/adma.200901071

IDS Number:
534SE

========================================================================

*Record 4 of 4.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000272914200009
*Order Full Text [ ]

Title:
High-Performance Multifunctional TiO2 Nanowire Ultrafiltration Membrane with a Hierarchical Layer Structure for Water Treatment

Authors:
Zhang, XW; Zhang, T; Ng, J; Sun, DD

Author Full Names:
Zhang, Xiwang; Zhang, Tong; Ng, Jiawei; Sun, Darren Delai

Source:
ADVANCED FUNCTIONAL MATERIALS 19 (23): 3731-3736 DEC 9 2009

Language:
English

Document Type:
Article

KeyWords Plus:
METAL-OXIDE NANOFIBERS; CARBON NANOTUBES; ENVIRONMENTAL APPLICATIONS; PHOTOCATALYTIC OXIDATION; CERAMIC MEMBRANES; FLUX; SEPARATION; TRANSPARENT; FILTRATION; SHEETS

Abstract:
A novel, multifunctional TiO2 nanowire ultrafiltration (UF) membrane with a layered hierarchical structure is made via alkaline hydrothermal synthesis, followed by a filtration and hot-press process. The TO2 UF membrane has high surface porosity (21.3%) and pore size values around 20 nm. The membrane possesses multifunctional capabilities under UV irradiation, such as anti-fouling, anti-bacterial, concurrent separation, and photocatalyic oxidation. The unique properties of the membrane indicate its potential in applications for environmental purification.

Reprint Address:
Zhang, XW, Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore.

Research Institution addresses:
[Zhang, Xiwang; Zhang, Tong; Ng, Jiawei; Sun, Darren Delai] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore

Cited References:
ALBU SP, 2007, NANO LETT, V7, P1286, DOI 10.1021/nl070264k.
CHOI H, 2006, ADV FUNCT MATER, V16, P1067, DOI 10.1002/adfm.200500658.
CHOI H, 2006, APPL CATAL B-ENVIRON, V63, P60, DOI 10.1016/j.apcatb.2005.09.012.
DEVOS RM, 1998, SCIENCE, V279, P1710.
DONG WJ, 2006, J PHYS CHEM B, V110, P16819, DOI 10.1021/jp0637633.
ENDO M, 2005, NATURE, V433, P476, DOI 10.1038/433476a.
FUJISHIMA A, 2000, J PHOTOCH PHOTOBIO C, V1, P1.
GU G, 2003, NAT MATER, V2, P316, DOI 10.1038/nmat880.
HOFFMANN MR, 1995, CHEM REV, V95, P69.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
IIJIMA S, 1991, NATURE, V354, P56.
KE XB, 2007, ADV MATER, V19, P785.
KE XB, 2008, J PHYS CHEM B, V112, P5000, DOI 10.1021/jp709837r.
LAW M, 2004, ANNU REV MATER RES, V34, P83, DOI 10.1146/annurev.matsci.34.040203.112300.
LI D, 2004, ADV MATER, V16, P1151, DOI 10.1002/adma.200400719.
LI XZ, 2003, ENVIRON SCI TECHNOL, V37, P3989, DOI 10.1021/es0262941.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
RAJCA M, 2009, DESALINATION, V239, P100, DOI 10.1016/j.desal.2008.03.010.
REMSKAR M, 2004, ADV MATER, V16, P1497, DOI 10.1002/adma.200306428.
SHANNON MA, 2008, NATURE, V452, P301, DOI 10.1038/nature06599.
SHOLL DS, 2006, SCIENCE, V312, P1003, DOI 10.1126/science.1127261.
TANG CY, 2007, J MEMBRANE SCI, V290, P86, DOI 10.1016/j.memsci.2006.12.017.
TENNE R, 1992, NATURE, V360, P444.
THORSEN T, 1999, WATER SCI TECHNOL, V40, P105.
VANDENBERG A, 2007, NATURE, V445, P726.
WANG YM, 2008, ADV FUNCT MATER, V18, P1131, DOI 10.1002/adfm.200701120.
WU ZC, 2004, SCIENCE, V305, P1273.
YUAN ZY, 2004, COLLOID SURFACE A, V241, P173, DOI 10.1016/colsurfa.2004.04.030.
ZHANG M, 2005, SCIENCE, V309, P1215, DOI 10.1126/science.1115311.
ZHANG XW, 2008, APPL CATAL B-ENVIRON, V84, P262, DOI 10.1016/j.apcatb.2008.04.009.
ZHANG XW, 2008, J MEMBRANE SCI, V313, P44, DOI 10.1016/j.memsci.2007.12.045.
ZHANG XW, 2009, WATER RES, V43, P1179, DOI 10.1016/j.watres.2008.12.021.

Cited Reference Count:
32

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1616-301X

DOI:
10.1002/adfm.200901435

IDS Number:
534RE

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: