Friday, January 22, 2010

ISI Web of Knowledge Alert - Hummer, G

ISI Web of Knowledge Citation Alert

Cited Article: Hummer, G. Water conduction through the hydrophobic channel of a carbon nanotube
Alert Expires: 09 NOV 2010
Number of Citing Articles: 5 new records this week (5 in this e-mail)
Organization ID: 3b97d1bbc1878baed0ab183d8b03130b
========================================================================
Note: Instructions on how to purchase the full text of an article and Help Desk Contact information are at the end of the e-mail.
========================================================================

*Record 1 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273412000018
*Order Full Text [ ]

Title:
Boron Nitride Nanotubes Selectively Permeable to Cations or Anions

Authors:
Hilder, TA; Gordon, D; Chung, SH

Author Full Names:
Hilder, Tamsyn A.; Gordon, Daniel; Chung, Shin-Ho

Source:
SMALL 5 (24): 2870-2875 DEC 4 2009

Language:
English

Document Type:
Article

Author Keywords:
engineered ion channels; ion selectivity; membranes; molecular dynamics; nanotubes

KeyWords Plus:
CARBON NANOTUBE; MOLECULAR-DYNAMICS; BROWNIAN DYNAMICS; WATER; TRANSPORT; PERMEATION; MEMBRANES; ENERGY; FUNCTIONALIZATION; CONDUCTION

Abstract:
Biological ion channels in membranes are selectively permeable to specific ionic species. They maintain the resting membrane potential, generate propagated action potentials, and control a wide variety of cell functions. Here it is demonstrated theoretically that boron nitride nanotubes have the ability to carry out some of the important functions of biological ion channels. Boron nitride nanotubes with radii of 4.83 and 5.52 angstrom embedded in a silicon nitride membrane are selectively permeable to cations and anions, respectively. They broadly mimic some of the permeation characteristics of gramicidin and chloride channels. Using distributional molecular dynamics, which is a combination of molecular and stochastic dynamics simulations, the properties of these engineered nanotubes are characterized, such as the free energy encountered by charged particles, the water-ion structure within the pore, and the current-voltage and current-concentration profiles. These engineered!
nanotubes have potential applications as sensitive biosensors, antibiotics, or filtration devices.

Reprint Address:
Hilder, TA, Australian Natl Univ, Res Sch Biol, Computat Biophys Grp, GPO Box 4, Canberra, ACT 2601, Australia.

Research Institution addresses:
[Hilder, Tamsyn A.; Gordon, Daniel; Chung, Shin-Ho] Australian Natl Univ, Res Sch Biol, Computat Biophys Grp, Canberra, ACT 2601, Australia

E-mail Address:
tamsyn.hilder@anu.edu.au

Cited References:
*U IL I ADV SCI TE, BION TUT.
AKSIMENTIEV A, 2004, BIOPHYS J, V87, P2086, DOI 10.1529/biophysj.104.042960.
ANDERSEN OS, 2007, BIOL MED PHYS BIOMED, P33.
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
CHEN X, 2009, J AM CHEM SOC, V131, P890, DOI 10.1021/ja807334b.
CHUNG SH, 1999, BIOPHYS J, V77, P2517.
CORRY B, 2004, BIOPHYS J, V86, P846.
CORRY B, 2008, J PHYS CHEM B, V112, P1427, DOI 10.1021/jp709845u.
DRESSELHAUS MS, 1995, CARBON, V33, P883.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FORTINA P, 2005, TRENDS BIOTECHNOL, V23, P168, DOI 10.1016/j.tibtech.2005.02.007.
GARATE JA, 2009, MOL SIMULAT, V35, P2.
GORDON D, 2009, J CHEM PHYS IN PRESS.
GROSSFIELD A, IMPLEMENTATION WHAM.
HENG JB, 2005, NANO LETT, V5, P1883, DOI 10.1021/nl0510816.
HILDER TA, 2009, SMALL IN PRESS, DOI 10.1002/SMLL.200900349.
HILLE B, 1992, IONIC CHANNELS EXCIT.
HOLT JK, 2004, NANO LETT, V4, P2245, DOI 10.1021/nl048876h.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
ISHIGAMI M, 2003, AIP CONF PROC, V696, P94.
JOSEPH S, 2003, NANO LETT, V3, P1399, DOI 10.1021/nl0346326.
KALE L, 1999, J COMPUT PHYS, V151, P283.
KALRA A, 2003, P NATL ACAD SCI USA, V100, P10175.
KOGA K, 2000, J CHEM PHYS, V113, P5037.
KOGA K, 2001, NATURE, V412, P802.
KUMAR S, 1995, J COMPUT CHEM, V16, P1339.
KUYUCAK S, 2001, REP PROG PHYS, V64, P1427.
LIU HM, 2008, MOL SIMULAT, V34, P169, DOI 10.1080/08927020801966087.
LOPEZ CF, 2004, P NATL ACAD SCI USA, V101, P4431, DOI 10.1073/pnas.0400352101.
MACKERELL AD, 1998, ENCY COMPUTATIONAL C, V1, P271.
MAJUMDER M, 2005, J AM CHEM SOC, V127, P9062, DOI 10.1021/ja043013b.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
OMARA M, 2005, BIOPHYS J, V88, P3286, DOI 10.1529/biophysj.104.051664.
PARK JH, 2006, NANOTECHNOLOGY, V17, P895, DOI 10.1088/0957-4484/17/3/046.
PARK N, 2004, J PHYS SOC JPN, V73, P2469.
SOLOZHENKO VL, 2001, J PHYS CHEM SOLIDS, V62, P1331.
SUK ME, 2008, APPL PHYS LETT, V92, ARTN 133120.
WAGHE A, 2002, J CHEM PHYS, V117, P10789, DOI 10.1063/1.1519861.
WIDMAYER P, 1999, PHYS REV B, V59, P5233.
WON CY, 2007, J AM CHEM SOC, V129, P2748, DOI 10.1021/ja0687318.
WON CY, 2008, J PHYS CHEM C, V112, P1812, DOI 10.1021/jp076747u.
WU XJ, 2006, J AM CHEM SOC, V128, ARTN JA063653+.
ZHI CY, 2005, J AM CHEM SOC, V127, P15996, DOI 10.1021/ja053917c.

Cited Reference Count:
44

Times Cited:
0

Publisher:
WILEY-V C H VERLAG GMBH; PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY

Subject Category:
Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter

ISSN:
1613-6810

DOI:
10.1002/smll.200901229

IDS Number:
541JV

========================================================================

*Record 2 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273517200012
*Order Full Text [ ]

Title:
Influence of endohedral water on diameter sorting of single-walled carbon nanotubes by density gradient centrifugation

Authors:
Quintilla, A; Hennrich, F; Lebedkin, S; Kappes, MM; Wenzel, W

Author Full Names:
Quintilla, A.; Hennrich, F.; Lebedkin, S.; Kappes, Manfred M.; Wenzel, Wolfgang

Source:
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 12 (4): 902-908 2010

Language:
English

Document Type:
Article

KeyWords Plus:
MOLECULAR-DYNAMICS; SIMULATIONS; BEHAVIOR; GROMACS

Abstract:
Separation of single-walled carbon nanotubes (SWNT) by diameter is an important prerequisite for controlled experimental studies and efficient application of these systems. By comparing experimental data with molecular dynamics (MD) simulations, we demonstrate that water filling has a significant, tube-diameter dependent effect on the effective mass density of individual single-walled carbon nanotubes suspended in aqueous surfactant suspensions. We present a model for the effective density of the nanotube-surfactant complex in aqueous solution that permits a comprehensive description of its density across the entire, experimentally relevant range of SWNT diameters. Parameters for this model can be obtained from molecular dynamics simulations and/or experiment and help explain the subtle interplay of surfactant coverage and endohedral water in the separation of a particular diameter species of SWNT by gradient centrifugation.

Reprint Address:
Wenzel, W, Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany.

Research Institution addresses:
[Quintilla, A.; Hennrich, F.; Lebedkin, S.; Kappes, Manfred M.; Wenzel, Wolfgang] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany; [Kappes, Manfred M.] Univ Karlsruhe, Inst Phys Chem, D-76128 Karlsruhe, Germany; [Kappes, Manfred M.; Wenzel, Wolfgang] Univ Karlsruhe, DFG Zentrum Funkt Nanostrukturen, D-76131 Karlsruhe, Germany

E-mail Address:
wolfgang.wenzel@kit.edu

Cited References:
ARNOLD MS, 2005, NANO LETT, V5, P713, DOI 10.1021/nl050133o.
ARNOLD MS, 2006, NAT NANOTECHNOL, V1, P60, DOI 10.1038/nnano.2006.52.
ARNOLD MS, 2008, ACS NANO, V2, P2291, DOI 10.1021/nn800512t.
BACHILO SM, 2002, SCIENCE, V298, P2361, DOI 10.1126/science.1078727.
BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43.
BRONIKOWSKI MJ, 2001, J VAC SCI TECHNOL 2, V19, P1800.
BROVCHENKO I, 2005, EUR PHYS J B, V44, P345, DOI 10.1140/epjb/e2005-00133-4.
BYL O, 2006, J AM CHEM SOC, V128, P12090, DOI 10.1021/ja057856u.
CALVARESI M, 2009, SMALL, V5, P2191, DOI 10.1002/smll.200900528.
DUJARDIN E, 1998, ADV MATER, V10, P1472.
EVANS DJ, 1985, J CHEM PHYS, V83, P4069.
HINSEN K, 2000, J COMPUT CHEM, V21, P79.
HUANG BD, 2005, J CHEM PHYS, V122, ARTN 084708.
HUMMER G, 2001, NATURE, V414, P188.
JORGENSEN WL, 1998, J MOL STRUC-THEOCHEM, V424, P145.
KRUPKE R, 2003, SCIENCE, V301, P344, DOI 10.1126/science.1086534.
LEBEDKIN S, 2003, NEW J PHYS, V5, P140.
MATSUDA K, 2006, PHYS REV B, V74, ARTN 073415.
NAIR N, 2008, LANGMUIR, V24, P1790, DOI 10.1021/la702516u.
NIYOGI S, 2009, J AM CHEM SOC, V131, P1144.
NOON WH, 2002, CHEM PHYS LETT, V355, P445.
PARINELLO M, 1981, J APPL PHYS, V52, P7182.
REICH S, 2005, PHYS REV LETT, V95, ARTN 077402.
ROSSI MP, 2004, NANO LETT, V4, P989, DOI 10.1021/nl049688u.
SOUZA NRD, 2006, J PHYS CONDENS MATT, V18, S2321.
STRIOLO A, 2008, NANOTECHNOLOGY, V19, ARTN 445606.
TUMMALA NR, 2009, ACS NANO, V3, P595, DOI 10.1021/nn8007756.
VANDERSPOEL D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291.
WALLACE EJ, 2007, NANO LETT, V7, P1923, DOI 10.1021/nl070602h.
WANG J, 2004, PHYS CHEM CHEM PHYS, V6, P829, DOI 10.1039/b313307a.
WANG K, 2004, BMC STRUCT BIOL, V4, P8.
WERDER T, 2003, J PHYS CHEM B, V107, P1345, DOI 10.1021/jp0268112.
YIN B, 2009, CHIN PHYS LETT, V26.
YUREKLI K, 2004, J AM CHEM SOC, V126, P9902, DOI 10.1021/ja047451u.

Cited Reference Count:
34

Times Cited:
0

Publisher:
ROYAL SOC CHEMISTRY; THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

Subject Category:
Chemistry, Physical; Physics, Atomic, Molecular & Chemical

ISSN:
1463-9076

DOI:
10.1039/b912847f

IDS Number:
542TB

========================================================================

*Record 3 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273404500055
*Order Full Text [ ]

Title:
Molecular Modeling of Two Distinct Triangular Oligomers in Amyloid beta-protein

Authors:
Zheng, J; Yu, X; Wang, JD; Yang, JC; Wang, QM

Author Full Names:
Zheng, Jie; Yu, Xiang; Wang, Jingdai; Yang, Jui-Chen; Wang, Qiuming

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (1): 463-470 JAN 14 2010

Language:
English

Document Type:
Article

KeyWords Plus:
ALZHEIMERS A-BETA(1-40) PEPTIDE; DYNAMICS SIMULATIONS; FIBRIL ELONGATION; ATOMIC STRUCTURES; COMMON MECHANISM; ION CHANNELS; DISEASE; A-BETA(17-42); POLYMORPHISM; PATHOGENESIS

Abstract:
Arnyloid-beta (A beta) peptides exhibit many distinct structural morphology at the early aggregate stage, some of which are biological relevant to the pathogenesis of Alzheimer's disease (AD). Atomic-resolution structures of the early A beta aggregates and their conformational changes in amyloid aggregation remain elusive. Here, we perform all-atom molecular modeling and dynamics simulations to obtain two stable triangular-like A beta structures with the lowest packing energy, one corresponding to the Tycko's model (Paravastu, A.; Leapman, R.; Yau, W.; Tycko, R. Proc. Nat. Acad. Soc. U.S.A. 2008, 105, 18349-18354) (referred to C-WT model) and the other corresponding to computational model (N-WT model). Both models have the same 3-fold symmetry but distinct beta-sheet organizations in which three A beta hexamers pack together via either C-terminal beta-strand residues or N-terminal beta-strand residues forming distinct hydrophobic cross section. Structural and energetic compa!
risons of two 3-fold A beta oligomers, coupled with Structural changes upon the mutations Occurring at the interacting interfaces, reveal that although hydrophobic interactions are still dominant forces, electrostatic interactions are more favorable in the N-WT model due to the formation of more and stable intersheet salt bridges, while solvation energy is more favorable in the C-WT model due to more exposed hydrophilic residues to solvent. Both models display many common features similar to other amyloid oligomers and therefore are likely to be biologically relevant.

Reprint Address:
Zheng, J, Univ Akron, Dept Chem & Biomol Engn, Akron, OH 44325 USA.

Research Institution addresses:
[Zheng, Jie; Yu, Xiang; Yang, Jui-Chen; Wang, Qiuming] Univ Akron, Dept Chem & Biomol Engn, Akron, OH 44325 USA; [Wang, Jingdai] Zhejiang Univ, Dept Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China

E-mail Address:
zhengj@uakron.edu

Cited References:
BROOKS BR, 1983, J COMPUT CHEM, V4, P187.
BUCCIANTINI M, 2002, NATURE, V416, P507.
BUCHETE NV, 2005, J MOL BIOL, V353, P804, DOI 10.1016/j.jmb.2005.08.066.
BUCHETE NV, 2007, BIOPHYS J, V92, P3032, DOI 10.1529/biophysj.106.100404.
BUXBAUM JD, 1993, P NATL ACAD SCI USA, V90, P9195.
CHIMON S, 2007, NAT STRUCT MOL BIOL, V14, P1157, DOI 10.1038/nsmb1345.
CLEARY JP, 2005, NAT NEUROSCI, V8, P79, DOI 10.1038/nn1372.
FAWZI NL, 2007, J MOL BIOL, V365, P535, DOI 10.1016/j.jmb.2006.10.011.
FAWZI NL, 2008, BIOPHYS J, V94, P2007, DOI 10.1529/biophysj.107.121467.
HUMMER G, 2001, NATURE, V414, P188.
HUMMER G, 2007, P NATL ACAD SCI USA, V104, P14883, DOI 10.1073/pnas.0706633104.
IM WP, 2003, J COMPUT CHEM, V24, P1691, DOI 10.1002/jcc.10321.
JIANG DL, 2009, J PHYS CHEM B, V113, P3160, DOI 10.1021/jp8085792.
KALE L, 1999, J COMPUT PHYS, V151, P283.
KAYED R, 2003, SCIENCE, V300, P486.
KAYED R, 2009, J BIOL CHEM, V284, P4230, DOI 10.1074/jbc.M808591200.
KRONE MG, 2008, J MOL BIOL, V381, P221, DOI 10.1016/j.jmb.2008.05.069.
LASHUEL HA, 2006, Q REV BIOPHYS, V39, P167, DOI 10.1017/S0033583506004422.
LEE YH, 2009, J BIOL CHEM, V284, P2169, DOI 10.1074/jbc.M806939200.
LIN H, 2001, FASEB J, V15, P2433.
MA BY, 2003, P NATL ACAD SCI USA, V100, P5772, DOI 10.1073/pnas.1030237100.
MAKABE K, 2006, P NATL ACAD SCI USA, V103, P17753, DOI 10.1073/pnas.0606690103.
MILLER Y, 2009, BIOPHYS J, V97, P1168, DOI 10.1016/j.bpj.2009.05.042.
MUKHERJEE S, 2009, J PHYS CHEM B, V113, P531, DOI 10.1021/jp809817s.
MURAKAMI K, 2003, J BIOL CHEM, V278, P46179, DOI 10.1074/jbc.M301874200.
NGUYEN HD, 2004, P NATL ACAD SCI USA, V101, P16180, DOI 10.1073/pnas.0407273101.
OLOFSSON A, 2006, J BIOL CHEM, V281, P477, DOI 10.1074/jbc.M508962200.
PARAVASTU AK, 2008, P NATL ACAD SCI USA, V105, P18349, DOI 10.1073/pnas.0806270105.
PETKOVA AT, 2005, SCIENCE, V307, P262, DOI 10.1126/science.1105850.
PETKOVA AT, 2006, BIOCHEMISTRY-US, V45, P498, DOI 10.1021/bi051952q.
QUIST A, 2005, P NATL ACAD SCI USA, V102, P10427, DOI 10.1073/pnas.0502066102.
REDDY G, 2009, P NATL ACAD SCI USA, V106, P11948, DOI 10.1073/pnas.0902473106.
SABATE R, 2005, J PHYS CHEM B, V109, P11027, DOI 10.1021/jp050716m.
SATO T, 2006, BIOCHEMISTRY-US, V45, P5503, DOI 10.1021/bi052485f.
SAWAYA MR, 2007, NATURE, V447, P453, DOI 10.1038/nature05695.
SILVA JL, 2009, PHYS BIOL, UNSP 015002.
SMART OS, 1993, BIOPHYS J, V65, P2455.
TAKEDA T, 2009, BIOPHYS J, V96, P4428, DOI 10.1016/j.bpj.2009.03.015.
WACKER JL, 2004, NAT STRUCT MOL BIOL, V11, P1215, DOI 10.1038/nsmb860.
WEI GH, 2006, BIOPHYS J, V91, P1638, DOI 10.1529/biophysj.105.079186.
WERTKIN AM, 1993, P NATL ACAD SCI USA, V90, P9513.
YAMAZAKI T, 2008, BIOPHYS J, V95, P4540, DOI 10.1529/biophysj.107.123000.
YAN L, 2009, PROTEIN-STRUCT FUNCT, V75, P954.
YONG W, 2002, P NATL ACAD SCI USA, V99, P150.
ZHANG R, 2009, P NATL ACAD SCI USA, V106, P4653, DOI 10.1073/pnas.0901085106.
ZHENG J, 2005, J CHEM PHYS, V122, ARTN 214702.
ZHENG J, 2007, BIOPHYS J, V93, P3046, DOI 10.1529/biophysj.107.110700.
ZHENG J, 2008, FRONT BIOSCI, V13, P3919, DOI 10.2741/2980.
ZHENG J, 2008, J PHYS CHEM B, V112, P6856, DOI 10.1021/jp711335b.
ZHU M, 2004, J BIOL CHEM, V279, P24452, DOI 10.1074/jbc.M400004200.

Cited Reference Count:
50

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp907608s

IDS Number:
541GY

========================================================================

*Record 4 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273404500074
*Order Full Text [ ]

Title:
Higher Susceptibility to Halothane Modulation in Open- Than in Closed-Channel alpha 4 beta 2 nAChR Revealed by Molecular Dynamics Simulations

Authors:
Liu, LT; Haddadian, EJ; Willenbring, D; Xu, Y; Tang, P

Author Full Names:
Liu, Lu Tian; Haddadian, Esmael J.; Willenbring, Dan; Xu, Yan; Tang, Pei

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (1): 626-632 JAN 14 2010

Language:
English

Document Type:
Article

KeyWords Plus:
NICOTINIC ACETYLCHOLINE-RECEPTOR; LIGAND-BINDING DOMAIN; NORMAL-MODE ANALYSIS; GATED ION CHANNELS; GENERAL-ANESTHETICS; GABA(A) RECEPTOR; AGONIST BINDING; VOLATILE ANESTHETICS; GATING MECHANISM; IDENTIFICATION

Abstract:
The neuronal alpha 4 beta 2 nicotinic acetylcholine receptor (nAChR) is a potential molecular target for general anesthetics. It is unclear, however, whether anesthetic action produces the same effect oil the open and closed channels. Computations parallel to Our previous open channel Study (J. Phys. Chem. B 2009, 113, 12581) were performed oil the closed-channel alpha 4 beta 2 nAChR to investigate the conformation-dependent anesthetic effects oil channel Structures and dynamics. Flexible ligand docking and over 20 ns molecular dynamics simulations revealed similar halothane-binding sites in the closed and open channels. The sites with relatively high binding affinities (similar to -6.0 kcal/mol) were identified at the interface of extracellular (EC) and transmembrane (TM) domains or at the interface between alpha 4 and beta 2 Subunits. Despite similar sites for halothane binding, the closed-channel conformation showed much less sensitivity than the open channel to the struc!
tural and dynamical perturbations from halothane. Compared to the systems Without anesthetics, the amount of water inside the pore decreased by 22% in the presence of halothane in the open channel but only by 6% in the closed channel. Comparison of the nonbonded interactions at the EC/TM interfaces suggested that the beta 2 Subunits were more prone than the alpha 4 subunits to halothane binding. In addition, our data Support the notion that halothane exerts its effect by disturbing the quaternary structure and dynamics of the channel. The study Concludes that sensitivity and global dynamics responsiveness of alpha 4 beta 2 nAChR to halothane are conformation dependent. The effect of halothane on the global dynamics of the open-channel conformation might also account for the action of other inhaled general anesthetics.

Reprint Address:
Tang, P, Univ Pittsburgh, Sch Med, Dept Anesthesiol, 2049 Biomed Sci Tower 3,3501 5th Ave, Pittsburgh, PA 15261 USA.

Research Institution addresses:
[Liu, Lu Tian; Haddadian, Esmael J.; Willenbring, Dan; Xu, Yan; Tang, Pei] Univ Pittsburgh, Sch Med, Dept Anesthesiol, Pittsburgh, PA 15261 USA; [Xu, Yan; Tang, Pei] Univ Pittsburgh, Sch Med, Dept Pharmacol & Chem Biol, Pittsburgh, PA 15261 USA; [Xu, Yan] Univ Pittsburgh, Sch Med, Dept Biol Struct, Pittsburgh, PA 15261 USA; [Tang, Pei] Univ Pittsburgh, Sch Med, Dept Computat Biol, Pittsburgh, PA 15261 USA

E-mail Address:
tangp@anes.upmc.edu

Cited References:
ARIAS HR, 2003, INT REV NEUROBIOL, V54, P1.
BAHAR I, 1997, FOLD DES, V2, P173.
BAHAR I, 1999, J MOL BIOL, V285, P1023.
BECKSTEIN O, 2004, PHYS BIOL, V1, P42.
BREJC K, 2001, NATURE, V411, P269.
CELIE PHN, 2004, NEURON, V41, P907.
CHENG MHY, 2007, J PHYS CHEM B, V111, P14186, DOI 10.1021/jp075467b.
CHENG XL, 2007, BIOPHYS J, V93, P2622, DOI 10.1529/biophysj.107.109843.
CHIARA DC, 2003, BIOCHEMISTRY-US, V42, P13457, DOI 10.1021/bi0351561.
CHIARA DC, 2009, MOL PHARMACOL, V75, P1084, DOI 10.1124/mol.108.054353.
CHIPOT C, 2002, MOL SIMULAT, V28, P1.
CORRINGER PJ, 1995, J BIOL CHEM, V270, P11749.
DILGER JP, 1992, MOL PHARMACOL, V41, P127.
DILGER JP, 1993, MOL PHARMACOL, V44, P1056.
DILGER JP, 2002, BRIT J ANAESTH, V89, P41.
DUNDAS J, 2006, NUCLEIC ACIDS RES, V34, P116.
ECKENHOFF RG, 1996, P NATL ACAD SCI USA, V93, P2807.
ECKENHOFF RG, 1998, BIOPHYS J, V75, P477.
FLOOD P, 1997, ANESTHESIOLOGY, V86, P859.
FLOOD P, 1998, TOXICOL LETT, V100, P149.
FORMAN SA, 1995, MOL PHARMACOL, V48, P574.
GALZI JL, 1991, P NATL ACAD SCI USA, V88, P5051.
GALZI JL, 1992, NATURE, V359, P500.
HADDADIAN EJ, 2008, J PHYS CHEM B, V112, P13981, DOI 10.1021/jp804868s.
HANSEN SB, 2005, EMBO J, V24, P3635, DOI 10.1038/sj.emboj.7600828.
HARA K, 2002, ANESTH ANALG, V94, P313.
HEMMINGS HC, 2005, TRENDS PHARMACOL SCI, V26, P503, DOI 10.1016/j.tips.2005.08.006.
HENCHMAN RH, 2003, BIOPHYS J, V85, P3007.
HOLLADAY MW, 1997, J MED CHEM, V40, P4169.
HUMMER G, 2001, NATURE, V414, P188.
KARLIN A, 2002, NAT REV NEUROSCI, V3, P102.
KASH TL, 2003, NATURE, V421, P272, DOI 10.1038/nature01280.
KERAMIDAS A, 2006, J PHYSIOL-LONDON, V575, P11, DOI 10.1113/jphysiol.2005.102756.
KOTZYBAHIBERT F, 1999, MOL NEUROBIOL, V20, P45.
LAW RJ, 2005, P NATL ACAD SCI USA, V102, P6813.
LEE WY, 2005, NATURE, V438, P243, DOI 10.1038/nature04156.
LI GD, 2006, J NEUROSCI, V26, P11599, DOI 10.1523/JNEUROSCI.3467-06.2006.
LIU LT, 2009, J PHYS CHEM B, V113, P12581, DOI 10.1021/jp9039513.
LIU Y, 1994, MOL PHARMACOL, V45, P1235.
LIU ZW, 2004, J PHYS CHEM A, V108, P781, DOI 10.1021/jp0368482.
LIU ZW, 2006, J PHYS CHEM B, V110, P12789, DOI 10.1021/jp060688n.
LYNDENBELL RM, 1996, J CHEM PHYS, V105, P9266.
MA JP, 2004, CURR PROTEIN PEPT SC, V5, P119.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MORI T, 2001, MOL PHARMACOL, V59, P732.
MORRIS GM, 1998, J COMPUT CHEM, V19, P1639.
NIRTHANAN S, 2008, J BIOL CHEM, V283, P22051, DOI 10.1074/jbc.M801332200.
PHILLIPS JC, 2005, J COMPUT CHEM, V26, P1781.
RADA EM, 2003, ANESTH ANALG, V96, P108, DOI 10.1213/01.ANE.0000041901.85266.92.
REVAH F, 1991, NATURE, V353, P846.
SINE SM, 2006, NATURE, V440, P448, DOI 10.1038/nature04708.
SMART OS, 1996, J MOL GRAPH MODEL, V14, P354.
SZARECKA A, 2007, PROTEINS, V68, P948, DOI 10.1002/prot.21462.
TAMA F, 2001, PROTEIN ENG, V14, P1.
UNWIN N, 2005, J MOL BIOL, V346, P967, DOI 10.1016/j.jmb.2004.12.031.
VEMPARALA S, 2008, BIOPHYS J, V94, P4260, DOI 10.1529/biophysj.107.119958.
VIOLET JM, 1997, ANESTHESIOLOGY, V86, P866.
WANG HL, 2008, PLOS COMPUT BIOL, V4, ARTN e41.
WILSON GG, 1998, NEURON, V20, P1269.
WILSON GG, 2001, P NATL ACAD SCI USA, V98, P1241.
XI J, 2004, J BIOL CHEM, V279, P19628, DOI 10.1074/jbc.M313864200.
YAMASHITA M, 2005, ANESTHESIOLOGY, V102, P76.
YAMASHITA M, 2005, T C SER, V1283, P243.
YANG LW, 2005, BIOINFORMATICS, V21, P2978, DOI 10.1093/bioinformatics/bti469.
YANG LW, 2005, STRUCTURE, V13, P893, DOI 10.1016/j.str.2005.03.015.
ZACHARIAS M, 1994, J CHEM PHYS, V100, P9025.
ZUO Y, 2001, MOL PHARMACOL, V60, P700.

Cited Reference Count:
67

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp908944e

IDS Number:
541GY

========================================================================

*Record 5 of 5.
*View Full Record: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000273405000059
*Order Full Text [ ]

Title:
Controllable Synthetic Molecular Channels: Biomimetic Ammonia Switch

Authors:
Titov, AV; Wang, BY; Sint, K; Kral, P

Author Full Names:
Titov, Alexey V.; Wang, Boyang; Sint, Kyaw; Kral, Petr

Source:
JOURNAL OF PHYSICAL CHEMISTRY B 114 (2): 1174-1179 JAN 21 2010

Language:
English

Document Type:
Article

KeyWords Plus:
FUNCTIONALIZED CARBON NANOTUBES; AQUAPORIN WATER CHANNELS; ION CHANNELS; DYNAMICS SIMULATIONS; PEPTIDE NANOTUBES; FLOWING LIQUIDS; GAS SEPARATION; K+ CHANNEL; PROTEIN; DESIGN

Abstract:
We use molecular dynamics simulations combined with iterative screening to test if one can design mechanically controllable and selective molecular pores. The first model pore is formed by two stacked carbon nanocones connected by aliphatic chains at their open tips, in analogy to aquaporins. It turns out that when one nanocone is gradually rotated with respect to the other, the molecular chains alter the size of the nanopore formed at the cone tips and control the flow rates of liquid pentane through it. The second model pore is formed by two carbon nanotubes joined by a cylindrical structure of antiparallel peptides. By application of a torque to one of the nanotubes, while holding the other, we can reversibly fold the peptides into forward or backward-twisted barrels. We have modified the internal residues in these barrels to make these pores selective and controllable. Eventually, we found a nanopore that in the two folded configurations has very different transmission r!
ates for hydrated NH3 molecules.

Reprint Address:
Kral, P, Univ Illinois, Dept Chem, Chicago, IL 60607 USA.

Research Institution addresses:
[Titov, Alexey V.; Wang, Boyang; Sint, Kyaw; Kral, Petr] Univ Illinois, Dept Chem, Chicago, IL 60607 USA

E-mail Address:
pkral@uic.edu

Cited References:
ADIGA SP, 2005, NANO LETT, V5, P2509, DOI 10.1021/nl051843x.
ALI M, 2008, J AM CHEM SOC, V130, P16351, DOI 10.1021/ja8071258.
ALI M, 2009, LANGMUIR, V25, P11993, DOI 10.1021/la902792f.
BALASUBRAMANIAN K, 2005, SMALL, V1, P180, DOI 10.1002/smll.200400118.
BAUDRY Y, 2006, ADV FUNCT MATER, V16, P169, DOI 10.1002/adfm.200500198.
BIANCO A, 2005, CHEM COMMUN, P571, DOI 10.1039/b410943k.
BICHET D, 2003, NAT REV NEUROSCI, V4, P957, DOI 10.1038/nrn1244.
BOON JM, 2002, CURR OPIN CHEM BIOL, V6, P749.
BORGNIA M, 1999, ANNU REV BIOCHEM, V68, P425.
CUMINGS J, 2000, SCIENCE, V289, P602.
DOYLE DA, 1998, SCIENCE, V280, P69.
DUKE MC, 2006, ADV FUNCT MATER, V16, P1215, DOI 10.1002/adfm.200500456.
ELLIS RJ, 1991, ANNU REV BIOCHEM, V60, P321.
ERILOV D, 2007, J AM CHEM SOC, V129, P8938, DOI 10.1021/ja0718927.
FASSHAUER D, 2002, NAT STRUCT BIOL, V9, P144.
FELLER SE, 1995, J CHEM PHYS, V103, P4613.
FIAMMENGO R, 2001, CURR OPIN CHEM BIOL, V5, P660.
FORNASIERO F, 2008, P NATL ACAD SCI USA, V105, P17250, DOI 10.1073/pnas.0710437105.
FUJIYOSHI Y, 2002, CURR OPIN STRUC BIOL, V12, P509.
GANDHI CS, 2008, SCIENCE, V321, P1166, DOI 10.1126/science.1162963.
GHADIRI MR, 1993, NATURE, V366, P324.
GHADIRI MR, 1994, NATURE, V369, P301.
GILJE S, 2007, NANO LETT, V7, P3394, DOI 10.1021/n10717715.
GUMBART J, 2005, CURR OPIN STRUC BIOL, V15, P423, DOI 10.1016/j.sbi.2005.07.007.
GUO XF, 2007, NANO LETT, V7, P1119, DOI 10.1021/nl070245a.
HARRIS RA, 1995, FASEB J, V9, P1454.
HASHIMOTO A, 2004, P NATL ACAD SCI USA, V101, P8527, DOI 10.1073/pnas.0400596101.
HOLT JK, 2006, SCIENCE, V312, P1034, DOI 10.1126/science.1126298.
HUMMER G, 2001, NATURE, V414, P188.
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33.
IIJIMA S, 1999, CHEM PHYS LETT, V309, P165.
JACKEL C, 2008, ANN REV BIOPHYS, V37, P153, DOI 10.1146/anuurev.biophys.37.032807.125832.
JORDAN E, 2006, J AM CHEM SOC, V128, P558, DOI 10.1021/ja0551887.
KALE L, 1999, J COMPUT PHYS, V151, P283.
KAPLAN J, 2004, P NATL ACAD SCI USA, V101, P11566, DOI 10.1073/pnas.0404387101.
KOBUKE Y, 1992, J AM CHEM SOC, V114, P7618.
KRAL P, 2001, PHYS REV LETT, V86, P131.
KRISHNAN A, 1997, NATURE, V388, P451.
KUHLMAN B, 2003, SCIENCE, V302, P1364.
LI JY, 2007, P NATL ACAD SCI USA, V104, P3687, DOI 10.1073/pnas.0604541104.
LIU B, 2009, NANO LETT, V9, P1386, DOI 10.1021/nl8030339.
LIU HM, 2006, J CHEM PHYS, V125, ARTN 084713.
LONG SB, 2005, SCIENCE, V309, P897, DOI 10.1126/science.1116269.
LONG SB, 2007, NATURE, V450, P376, DOI 10.1038/nature06265.
MA HR, 2006, J COMPUT CHEM, V27, P125, DOI 10.1002/jcc.20311.
MACKERELL AD, 1998, J PHYS CHEM B, V102, P3586.
MACKINNON R, 1998, SCIENCE, V280, P106.
MAJUMDER M, 2005, NATURE, V438, P44, DOI 10.1038/43844a.
MURAKAMI Y, 1996, CHEM REV, V96, P721.
OKAMOTO H, 2003, J AM CHEM SOC, V125, P2756, DOI 10.1021/ja0212720.
PICKETT SD, 1993, J MOL BIOL, V231, P825.
QI Z, 1999, BIOPHYS J, V76, P631.
SANCHEZOUESADA J, 2002, J AM CHEM SOC, V124, P10004, DOI 10.1021/ja025783+.
SAUFI SM, 2004, CARBON, V42, P241, DOI 10.1016/j.carbon.2003.10.022.
SIMONSON T, 1996, J AM CHEM SOC, V118, P8452.
SINT K, 2008, J AM CHEM SOC, V130, P16448, DOI 10.1021/ja804409f.
SKOULIDAS AI, 2003, PHYS REV LETT, V89, UNSP 185901.
SOLARES SD, 2004, NANOTECHNOLOGY, V15, P1405, DOI 10.1088/0957-4484/15/11/004.
TSAI CJ, 2006, PLOS COMPUT BIOL, V2, P311, ARTN e42.
VERKMAN AS, 2000, AM J PHYSIOL-RENAL, V278, F13.
WAN RZ, 2005, J AM CHEM SOC, V127, P7166, DOI 10.1021/ja050044d.
WANG B, 2007, SMALL, V3, P580, DOI 10.1002/smll.200600433.
WANG BY, 2006, J AM CHEM SOC, V128, P15984, DOI 10.1021/ja066431k.
WANG BY, 2006, NANO LETT, V6, P1918, DOI 10.1021/nl0610073.
WANG ZK, 2007, NANO LETT, V7, P697, DOI 10.1021/nl062853g.
WHITBY M, 2007, NAT NANOTECHNOL, V2, P87, DOI 10.1038/nnano.2006.175.
WIMLEY WC, 2003, CURR OPIN STRUC BIOL, V13, P404, DOI 10.1016/S0959-440X(03)00099-X.

Cited Reference Count:
67

Times Cited:
0

Publisher:
AMER CHEMICAL SOC; 1155 16TH ST, NW, WASHINGTON, DC 20036 USA

Subject Category:
Chemistry, Physical

ISSN:
1520-6106

DOI:
10.1021/jp9103933

IDS Number:
541HD

========================================================================
*Order Full Text*
All Customers
--------------
Please contact your library administrator, or person(s) responsible for
document delivery, to find out more about your organization's policy for
obtaining the full text of the above articles. If your organization does
not have a current document delivery provider, your administrator can
contact ISI Document Solution at service@isidoc.com, or call 800-603-4367
or 734-459-8565.

IDS Customers
--------------
IDS customers can purchase the full text of an article (having page number,
volume, and issue information) by returning this ENTIRE message as a Reply
to Sender or Forward to orders@isidoc.com. Mark your choices with an X in
the "Order Full Text: []" brackets for each item. For example, [X].

Please enter your account number here:

========================================================================
*Help Desk Contact Information*
If you have any questions, please visit the Thomson Scientific Technical Support Contact Information Web page:
http://www.thomsonscientific.com/support/techsupport
========================================================================

No comments: